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SOBOLEV SPACES OF VARIABLE ORDER AND PROBLENS OF CONVEXITY
FOR PARTIAL DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENTS

Sy André UNTERBERGER

When trying to solve an equation P(D)u =f ,
f a given distribution in an open subset of Rn, it is useful,
if one can do so, to exhibit & class of functions o in Q
such that the equation can be solved if feH;Sc(Q), for then
the problem will be solvable for any distribution provided
e is allowed to grow as fast as one pleases near the boundary
of L. By duality, one is led to trying to get regularity
theorems in the H? spaces for distributions with compact support.

We do so in §3 of this paper, for some special
operators, and get sufficient conditions of convexity for
singular supports in a few cases.

In §1, we give two formulas which compare Hs
norms with integrals of the type occurring in Carleman
inequalities.

This is applied in §2, where we get a complete
equivalence between H(> regularity theorems and Carleman-type
inequalities, once the problem is stabilized by adding one
coordinate. The remainder of §2 is devoted to some non-
technical facts concerning convexity, which we hope can help

to clarify some of the purely geometric aspects of the problem.
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UNTERBERGER

1.~ Definition of the Sobolev spaces of variable order; a

two-way relationship between He—norms and integrals of the

kind occurring in Carleman inequalities.

6o

Let 6 be a real C function on Rn, which

can be written as e = e +0 , where e is a constant and G
00 00

belongs to the space j, of L.Schwartz. Let s be a real
constant, and k any number less than the infimum of e .

One can then define (as an operator, say, on fy')
the pseudo-differential operator Ae’s whose symbol coincides
with REF(X)(Loglg\)s for lsllarge enough, and the space

1

H?'s of all distributions ﬁéHk— such that alr8y 6L2; this

space depends only on (e,s) and can be endowed with the
norm “ull = ”Ae’su" +jlu“ , which, up to equivalence,
B o} k-1
depends only on (e,s).
When e is a constant and s=0, one gets the

¢

classical Sobolev space H

&

;s for variable(’ and §, one has
g
CH if F}CY, the spaces He’S being intermediate between
e g OFE (= . . .
H' and T according to the sign of s); the refinement
provided by s is sometimes useful in connection with the
use of partitions of unity: e.g, one gets, for operators

P(x,D) of order m, with simple characteristics, and suitable

ol

absorb what comes from the lower order terms of P, and the

functions e, estimates of the kind
, £ Cl_”Pm(x,D)u"e +'|u”_N] : the + helps to

terms which come from a bracket [?,Pm].
Of course, one can define the spaces Hg;:p(fl)
€S
and Hloc(fl)' in an open set‘fl, assuming only thate is

00
C and real valued in.fl.
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SOBOLEV SPACES OF VARIABLE ORDER

Proposition 1.1.- Let P and s be given according to what

precedes. Let (‘JG @(Rn) be real valued, and assume that:

a) there exists M>O0, M>sup€ , such that ?(E)ﬁ O(E,M)
when §—> 0.

b) {? does not vanish identically on any half-straight line
through the origin.

For every t >0, write ?t(x) = t-n(((x/t).

Then there exist C,,C,,C such that for every u€$ (rR™),

2’

one has
% 2sd -2p(x) 2 2
0150(Log%) {gt ¢ l(‘f’t*u)(X)l ax é"u"(,,s =

02$Z(Log%)259{5t-2€(x) l((ft*u)(x)l 2 dx + CH\::."?_1 .

For classical Sobolev norms (i.ee a constant
and s=0), this was proved by L.Hormander.
To prove it for general p » one has to show
e s* E’.s
that the pseudo-differential operator B = (Al’°) a and

the (almost) pseudo-differential operator

1
z \'4
_\ 1\2s -26(2{) at . "
S = SO(Log;) ‘ft*(t (Pt*) - dominate" each other =

in the sense that ”(Bu,u)-C1 (Su,u)”+”02(Su,u)-(Bu,u1ié (J"v..\'ez__1
for suitable constants C,C1,C2.

Noting, after a commutation, that the symbol
+ .
. - 128  _-2¢(x) 2 gt
of S is like f(x,g) = SO(Log;) t ¢ l?(t;)l -

and that this function is equivalent with E'ze(x)(LOG'EI)Zs

for large |§

, one concludes thanks to a form of the Lax-

Nirenberg theorem,
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We shall use prop.1.1 in the following way:
Assume that P is a differential operator on R™ with constant
coefficients, that e and ¢ are Coo and real valued in an
open subset Q of Rn, that k is a real number and that for
every compact subset XK ofﬂ , there exist C>0 and ’Co>0

such that, for every ué ;DK(Q) and every T>T., one has

e2’te |u| 2 ax £ £ ezw_IP(D)u] 2 dx.

‘Tk

Replacing u by t*u and making T= Log%,

and finally integrating with respect to at , one gets the

=5
inequality "u" £c "P(D)u“a,-k/2°

For instance, (1) holds for every P(D) if
e:()’ is linear: this shows that ué¢ H< x-x0,N> if ué¢ 8'(Rn)

anda P(D)u ¢u < ¥ X0 N>

Another example is provided by the
. . . n
following inequality, due to F.Treves: if Q cCC’, and P(D)
equals P(J), a polynomial in the %_/_'s, then (1) is wvalid,
7
with e~=0‘, whenevere is strictly pseudo-convex in Q: one
has then that P(—a)H;Sc(Q) ) H;Sc(ﬂ.) if {) is a domain of

holomorphy; in particular, every domain of holomorphy is

P(- d)-strongly convex.

00
Proposition 1.2.- Let ()é (o] (Rn) and s€ R; let k be an integer

21, and let (Péo%(Rk) be real valued and not identically O.
For every uel(Rn), and every t >0, define the function
u®(’;t, on Rn)< Rk, as (u@k}/t)(x,y) = t‘_k/zu(x) q)(y/t)

Assume that €> 0 everywhere.

Then one has (on compact subsets of Rn, with suitable constants

and sufficiently small t):

01 and 02,
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SOBOLEV SPACES OF VARIABLE ORDER

C1ﬂu®(}/t”2's é(Log%)sz‘t-2€(x),u(x), 2 ax + ”u"2.s
écz[nu@qfll{s +nuug,s].

To prove this, let B be the operator (on Rnx R

of symbol (E2+'72)€(x)(laog(§2+')2))25; it veod (R™X R*),
2

e

If@ is a function on Rn)< Rk, homogeneous of order O,

with @(5,y)=o for lilélyl and B(£,7)=1 for l;-];zl?l, B is (still

ky

one has || vl sr\./(Bv,v).

thanks to the Lax-Nirenberg theorem) equivalent with B1+B2,

where the symbols of B1 and 32 are respectively

6 m) P8 (roglg)* ana (1-p(5 ) )h) € (zaghy)) .
Substituting vt=u®?ﬁ, one gets that (th,vt) is, uniformly
for small t, equivalent with (Ku,u), where K is the pseudo-

differential operator on R® of symbol k=k1+k2, where

k, (x,%) = [§] 2€(x)(Log}§I)25J@~(§,Z/t)’gv(g)’ 2 af  ena
ERD =J (1-BE, /%)) [?/tlze(x)uog)t/t)>25[(P<;>) 2 .
It is not hard to see that ,(K1u,u)’5§ C”u"é s and that
(Kau,u) can be replaced, up to an error term bounded by
C"uﬂg s (it is at this point that one uses the assumption
€>>O), by (KSu,u), where the symbol of K, is

1y (x) =j 15/4] €0 (o 575 ])2% 90| * at.

The proposition 1.2 follows.

2.- Various types of convexity; some global properties of

convex sets.

The preceding paragraph shows that, for dif-
ferential operators P with constant coefficients, there should
be some kind of equivalence between Carleman-type inequalities
and regularity theorems in the He spaces, provided one agrees

to make P operate on higher dimensional spaces.
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Let us start, for brevity in further statements,

with the following 4X 2-matrix of definitions: being given
an open set Q in Rn, two closed subsets K and L of (L
such that KC L, and a differential operator P(D) on Rn
with constant coefficients, let us say that ({L,L,K) is
P(-D)-convex if ue f_‘(Q) and supp(P(D)u)CK imply
supp(u)C L; let us say that (Q_,L,K) is P(-D)-ﬁingular convex
if the same condition holds with supports replaced by sin-
gular supports and that it is P(-D)-strongly convex if both
conditions are satisfied; finally, let us say that (.O.,L.K)
is P(-D)-—stably convex if
for every integer k> O, (.Q.x Rk,Lka,Kx Rk) is P(-D)-
singular convex.
We shall say also thatQ is P(-D)-convex (singular-convex,
strongly convex, stably convex) if for every compact subset
K ofﬂ , there is some compact LC&).. such that the triple
(Q,L,K) be P(-D)-convex (singular-convex, strongly convex,
stably convex).

The following theorem shows the equivalence
between stable convexity and the validity of "sufficiently
many" Carlemen-type estimates; it also indicates (at least
pa.rtially) now the stable convexity is related with the other

notions of convexity.

Theorem 2.1.- LetQ be an open subset of Rn, and K and L

two compact subsets of ) , with KC L. The following conditions
are equivalent:
P(-D)-
a) (S£1,1,K) is stably convex (i.e, condition (2) holds for
every k2 0).
b) (Qx Rk,L)( Rk,Kx Rk) is P(—D)-strongly' convex for every k20,

¢) condition (2) holds for some k>1.
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d) for every closed set F inQ., disjoint from L, and
for every compact subset M of_(z ,there exist two functions E
and o ¢ Coo (€1), a real number k and a constant C >0, such

that ian?(x) > max(O,supK6 x) ) , and such that the inequality

3) Sezte(x)lu(x)l 2 dx £ C[Je2rd(x)'P(D)u(x)’ 2 dx + "u"i]

hold for every ué€ O@M(Q) and every number't'zo.

The proof goes along the cycle (abcd): b>c
is trivial and a->b is almost.

To prove that d->a, rewrite (3) as
Je”t’(") ,u(x)l 2 dx £ C[Sezro-(x)’l’(l))u(x), 2 dx + ”(1“A)mP(D)u”(2)]'

With A and jt real, ana A0, one has also, with (:':Aeq&,
o' =AC+H[r:
5e2"te'(x)fu(x)l 2 dx s C[ e21,'o"(x) IP(D)u(x)' 2 dx +

ex“‘"(L-A )mP(D)u”ﬂ .
For ve e (QLx Rk) with support in MK[—1 ,1]1{, one can
write this inequality for the function xl—>u(x,y) (y fixed),
then integrate with respect to dy; making at the same time

’C=Lo;g% , one gets for t<£1:
jt-2f'(x)'v(x,y)l 2 dxdy &£ Jt-26'(x) ’P(D)v(x,y)’ 2 dxdy +

2 feor3, |

Proposition 1.1 gives then llv“?,sC["P(D)vli, + "P(D)v"2 ]

2m+r.

and shows that if ve¢ é'(QX Rk) has its support in
MX [-1 ,1]k (in fact, allow some shrinkage) and is such that

1]
2m+’k, then v g He .

]
P(D)ve BN H
. s . o) . k .
Now, if P(D)véH and is C outside KX R , it will belong to
6'
H N H2m+# provided that ¢'<s on K and 2m+u< s; also v will

be in Hzoc in a neighborhood of {XO}XRK (xoe Q\ L) provided
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that e'(xo)>t. With q=supK6(x), one has then to solve the
system of inequalities (in the unknowns )\andr, , for arbi-
trarily given s and t):

>\q+|.l. <s
)\Q(xo)+}—l>t

2m+u< 8
A>0

Note that, as the proof shows, one can, in condition d), replace

the assumption (D(xo)>ma.x(0,q) makes it possible.

the closed set F by a single point.

To prove that c->d, assume that the condition
(2) holds for some k21 (it will then also hold for every
kx'<k, as it is easy to see), and let F and M be given.
A simple application of the closed graph theorem shows the
existence of two strictly positive Cc* bounded functions
(:l and O , such that iane(x)>supK6(x), and such that the
inequalities “ vl% < C"P(D)v"o. and ”u"e < C”P(D)u”o, hold,
v and u having their supports in Mka and M respectively.
Applying prop.1.2 with v = u@® t, one gets
t-Qe(X) |u(x), 2 dx \é CUt-26(x)IP(D)u(x)' 2 dx + "P(D)\JE] N
which proves (3) for T large enough.

Corollary 2.1.- Assume that Q is stably P(-D)-convex and for

A
every compact KC.Q., let K be the smallest compact subset of ﬂ
N
such that (Q,K,K) be stably P(-D)-convex. Then the (non-
A
decreasing) map K+» K is upper semi-continuous, i.e being
A
given K and an open neighborhood U of K , there is a compact

A
neighborhood KE of K such that KEC v.

A
Note that the map K> K is not continuous, as the example
of the laplacian on R2, K being a circle, shows.

We now prove the corollary:
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Let N be an arbitrary compact neighborhood of K and let M
N

be a compact neighborhood of N. Apply condition d) of

theorem 2.1, with F ={) ~ U. Now define KE in such a way

that one have sup G(x) < ianQ(x), and K_cCcN. It follows

Ké (3

then easily from theorem 2.1 that the triple (SZ,L,K ) is
P(-D)-stably convex for some compact LC U.

Proposition 2.1.- Let.(l be an open subset of Rn+k, and XK

and L two compact subsets of<£1 with KCL., Let P(D) be a
differential operator with constant coefficients on Rn.
Say that an affinén;ubspace-E of Rn+k is parallel to R

if, writing z=(x,y) for each zéIfE<Rk, y is constant on E.
Then (S),L,K) is P(-D)-stably convex if and only if, for

every E parallel to R°, ((LNE,LNE,KNE) is.

The proof is straightforward.

At this point, one should make the following
remark: it is not clear whether corollary 2.1 holds with
stable convexity replaced by other types of convexity.

One could then bypass the difficulty by saying, for any of
the four types of convexity introduced, that (II,L,K) is
convex if and only if for each neighborhood E,of L, there
is some neighborhoodté of K such that the usual implication
holds: we will refer to this type of convexity as convexity
"in the Alexander sense", as it is the same trick used when
one replaces singular cohomology by the direct limit of
the cohomology of the neighborhoods (see proposition below).
If one uses throughout convexity in the

Alexander sense, one can, in the definition of convexity
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for supports, replace the function u ¢ 6“(fl) by one
belonging to ;b((l); on the other hand, prop.2.1 will
remain true if one replaces "(fl,L,K) is stably convex"
by "(fl,L,K) is singular—convex"(provided k271).

Note also that if one is only interested in
convexity for open sets (i.e not for triples), it does not
make any difference whether one defines it in the Alexander

sense or not.

Proposition 2.2.- Let ({1,1,K) be a triple in R". Then,

if (fl,L,K) is P(-D)-convex for some operator P(D) in Rr™
of order > 1, the inclusion homomorphism Hn(fl,L)——>HanL,K)
is zero, the (say, real) cohomology groups being taken in

the Alexander sense.

To say that H (Q),1)—s> H((L,K) is zero
means that for every neighborhood V of L, there is a neigh-
borhood W of K such that every (n—f)-cycle in W which bounds
in.fl_bounds in V; thanks to an Alexander duality theorem,
this is equivalent with saying that each connected component
ofﬂ(l\-K which is relatively compact in.gl is contained in L.

Then, if this homomorphism is not zero, let
M be the union of K and of all the connected components of
§l\~x which are relatively compact in(l: it is well known
that M is compact and by hypothesis, it is not contained

x,5>

in L; now, if u=e® is a solution of P(D)u=0 and if };

is the characteristic function of M, the support of P(D)()Lu)
is included in K but the support of 7(u is M; hence,

(fl,L,K) is not P(-D)-convex.

This concludes the proof of proposition 2,2.
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Now, assume that an open set Q of Rr1+k

(k21)
is P(—D)-singular convex for some operator P(D) on Rn of order
2> 1; thus, to each compact subset K of {l. one can associate
a compact L of £ such that ({L,L,K) is P(-D)-singular convex
in the Alexander sense; then (LN E,LNE,KNE) is P(-D)-
convex for each E parallel to Rn. Proposition 2.2 then shows
that Hn(f)_f\ E,Lf'\E)~—>Hn(.Q_r\E,K(\E) is zero for every E.
This condition can be shown to be sufficient for certain
operators P(D), e.g. those which are elliptic and with
simple (complex) characteristics.

In any case, the question now arises of the
characterization of such open sets. For k=1, we give the
following (though we prove only the "only if" part):
for each E parallel to Rn, the boundary homomorphism
Hn(fl,flf\E)———>Hh_1(fl(\E) is zero, that is, every (n-1)-
cycle in Sl{\E which bounds in () must bound in.(llWE.
Indeed, let ¢ be an n-chain in {) such that ac lies in gl{]E:
we have to show that ¢ is homologous to zero in fl/\E.

Let E be defined by the equation y=0. One can write

c = c1+c2, where c, and c, are carried by the half-spaces
{y}»?} and [yé d} : this permits a reduction to the case
when ¢ is carried by {y; 0}. Without changing lac, one can

replace ¢ by a polyhedral n-chain whose elements are trans-

this- allows

versal to the hyperplanes Ey parallel to E=EO:

to define the intersection cycle Uy = c(\Ey for each y2> O,
with 60=.Bc. Now the carrier of 6; is an upper semi-

continuous function of y, which proves that the set of all
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numbers y such that 6y bounds in Q.(\ Ey is open. On

the other hand, there is some compact L such that the in-
clusion homomorphism Hn(_Q_nEy,LnEy)—+Hn(ﬂ('\Ey,'éf\}ay)
is zero for every y, ¢ being the carrier of c¢: in other
words, Xy bounds in LﬁEy if it bounds in .Q-(\Ey ; this
shows that the set of all y such that b’y bounds in QnEy

is closed, and concludes the proof.

We now give an easy generalisation of prop.2.2.
Let G(n) be the (disjoint) union of the G(n,p) (1<£p<Ln),
where G(n,p) is the set of all p-dimensional linear subspaces
of Rn. Define the subset V(P) of G(n) as follows: an element
g of G(n,p) does not belong to Vv(P) if and only if each
distribution ue¢ Q'a' (Rn) whose singular support is included
in £ and is such that P(D)u ¢ c®’(R™) is in fact ¢ in R®
(according to a lecture he gave in Paris quite recently, it

seems that L.HSrmander has a characterization of V(P)).

Proposition 2.3: Let P(D) be a differential operator in Rn

with constant coefficients, and let 2 e v(p)Ne(n,p). If a
triple (Q,L,K) is P(-D)-singular convex in the Alexander
sense, then for each affine space E parallel to g the
inclusion homomorphism HE(QLNE,LNE)—>HY(Q N E,KNE)

is zero.

Assume it is not. With ()' = QL NE, L'=LNE,
K'=KNE, let M' be the union of K' and of all the connected
components of ﬂ'\ K' which are relatively compact in K'.
Let x, be a point in M' not in L'. As Eé V(P) there is

some u ¢ D‘Z)' (Rn) whose singular support is included in E,
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such that P(D)uc c® (R®), which is not C°° at %o+ On any
given compact subset of Rn, one can assume that u is con-
tinuous since one can replace it by kX u, where k_is a
function with compact support such that k(x-y) coincides
near the diagonal with the kernel of VL-A)_N for some
large N. Assume that E is defined by the equation x"=0,
where x=(x',x") is a linear set of coordinates in Rn.

Let d(x") be a CVD function with compact support in the
set {Ix"'(ﬁ} , equal to 1 for Ix"l( 8/2. Let X/(x') be the
characteristic function of M'. Then the function v(x',x")=
el(x"))((x')u is well-defined and with compact support in
I),if € is small enough. Its singular support contains xo,
hence does not shrink towards L as £ —» O, However, one
can check that the singular support of P(D)v shrinks towards

K' as & = 0.

3.~ Sufficient conditions of convexity for some special

classes of operatore.

Proposition 3.1.- Let K = Op[h] be a pseudo-differential

oo
operator of convolution, whose symbol h is C outside O

and can be written as h=h +hr, where h, is homogeneous of

1 1

degree 1 and hr is (non-homogeneous) of order r<1.

oo
Let Q € C (Rn) be real-valued. Let ZE be the unit sphere

n

of R', W an open subset of ZE N I}.an open subset of Rn,

and assume that, for each (x,g)éﬂx W, one has

Ony Oh
(4) =t .
% %, 3, dx 0
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Let CX(E) be a Coo function on Rn\-{oi, homogeneous of
degree 0, such that supp(o()('\z C W; let Op [ol] be the
associated pseudo-differential operator of convolution.
Then for every distribution u € 6'(_0..) such that Op[u(]Ku

belongs to He, Op[e(]u belongs to He'%.

Using some cut-off functions, to take into
account the fact that (4) holds only in QX W, one can
reduce the proof to the case when (4) holds inﬂ?‘z. One

has then to prove the inequality

”v“2 [”Kv’% + ”v” , ve & (_O_) (M compactc {2).
\

Vith A:Op[ lg\Q(x)] , B = Op[Loglgﬂ , one can find a pseudo-

differential operator L such that AeK - I:Ae is of order -00.

The symbol of L is, up to a zero-order eymbol,

x + x - aeaa'o
n (x,8) + n_(x,F) e azaL Jg|

and the inequality to be proved 1° equivalent with

hB%'W”g = C[”L"Ni + """fN] » e @M1 «@), (MCﬁ1)'

As ”Lwﬂg > ((¥L - 1¥°)w,w), anda as the principal symbol
of 'L - 1T is

B ZB( a8, 'bQ
an? ‘;EJ ‘)EL P 31,1

the proof is flnlshed, with the help of the Lax-Nirenberg

) (zoe |E]),

theorem.

Using the fact that if a triple (,Q.,L,K) in Rr"
is such that H'({1,L)—>H*((L,K) is zero, then one can for
each xoé Q_\ L find in Q a strictly subharmonic function

as large as one pleases at x, and as small as one pleases

0

on K, one derives easily from prop.3.1 the following:

- 338 -



SOBOLEV SPACES OF VARIABLE ORDER

Proposition 3.2.~ Let A = Op[h] be a pseudo-differential

operator of convolution, where h is coo outcide O, h=h1+hr

(h1 homogeneous of degree 1, hr of order< 1). Let §° [4 25.

Let Q be an open subset of Rn(n7»2), and K and L two

compact subsets of.(L, with KC L. Assume that one at least

of the three conditions a),b),c) holds:

a) h1(§°) $ 0

b) h1(§°) = 0, and the vector dh1(g°) whose components are
aaﬂ§°) is real and non zero. Moreover, for every line F1

paréhlel to dh1(§°), the inclusion homomorphism

"' (F1(\_Q_,F1ﬁ L)-_;..H1 (F1(\Q_ ,F,‘f\ K) is zero.

c) h1(§°) = 0, dh1(§°) = a+ib, where a and b are two inde-

pendent real vectors. Moreover, for each plane F2 parallel

to the plane generated by a and b, the inclusion homomorphism

H2(F20ﬂ,F2{) L)—9H2(F20_0_,F2('] K) is zero.

Then for each point xoé.gl\ L, and each
compact subset M ofj)., there is a neighborhood W of §° in
ZE such that, for each function [x(g) homogeneous of degree
O and C°o outside zero, with Z nsupp(o() C W, the following
holds: if a distribution u¢ £y() satisfies
sing supp(Op{_D(] Au)C.‘K, then Op[a(] u is COO in a neighborhood

of xo.

Proposition 3.2 can be applied to give suf-
ficient conditions of convexity for operators which, &—
locally, can be reduced in a way to operators with simple
real characteristics. The case of operators which, themselves,

have only simple real characteristics is now well-known.
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Instead, we shall state results for the case
of operators on R2 and some special operators on R3.

If P(D) is an operator on R2, then the set
V(P) introduced before prop.2.3 can be characterized as the
set of lines of equation §1x1+§2x2 = 0, such that there
exists & sequence (én) in 02, lcnl—> o< while lImCﬂ
remains bounded, with P(C?)=O, the (complex) direction
defined by (;?,;2) tending as n-»o0 to the (real) direction
(g1,§2) (think of Hormander's characterization of hypoelliptic
operators for a motivation). Now, any operator P(D) on R3
can be factored as a product of pseudo-differential operators
of convolution, which, except for hypoelliptic factors,
contains only operators of order 1 whose principal parts
are operators of derivation along the directions belonging
to V(P). It follows then from prop.2.3 and prop.3.2 that an
open set.(l in R2 is P(-D)-sigular convex if and only if
every line parallel to some element of V(P) has a connected
intersection with(l(note that in this case, the 2- localisation
in prop.3.2 is not needed, as one can prove singular convexity

for each pseudo-differential factor of P(D) separately).

We shall now state a result for operators

P(D) on R3

whose symbols P(E) satisfy the following conditions:
P(g) is homogenrneous and real-valued, and at every point ?fo
such that P(j)(g) = 0 (j=1,2,3), the matrix (P(jk)(g)) has
rank 2 (note that it cannot have rank 3, because of Euler's

identity). This being assumed, let lq be the set of equation

P(E) = 0, let S be the subset of Iﬂ defined by the equations
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P(j)(g) =0 (j=1,2,3) (it is easily seen to consist of a
finite number of lines), and let S, be the subset of S
generated, as a cone, by the points of sNZ which .are
isolated in VAL . Then the set V(P) can be characterized
as the following: V(P)f)G(3,1) is the closure of the set
of all lines which are orthogonal to ™ at some points of
[~ 8, and V(P)NG(3,2), apart from the planes which
contain some element of V(P)f\G(3,1) (this set can be
neglected in the formulation of conditions of convexity),
consists of the directions of planes which are orthogonal

to some line belonging to S Then, using Morse's lemma

7
to be in a position to apply prop.3.2, one can show that
the necessary conditions given in prop.2.3 are, in this

case, also sufficient.
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