Astérisque

MIKIO SATO Pseudo-differential equations and theta functions

Astérisque, tome 2-3 (1973), p. 286-291

<http://www.numdam.org/item?id=AST_1973_2-3_286_0>

© Société mathématique de France, 1973, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

PSEUDO-DIFFERENTIAL EQUATIONS AND THETA FUNCTIONS

MIKIO SATO

Kyoto University Université de Nice

1.- It has been known since a year ago that any system of pseudo-differential equations, i.e. any admissible coherent left module \mathcal{M} of the sheaf of rings \mathcal{P} of pseudo-differential operators, given on the conormal sphere bundle $\sqrt{-1S*M}$ of an analytical manifold \mathcal{M} , is isomorphic to a combined system of de RHAM equations, CAUCHY-RIEMANN equations and LEWY -MIZOHATA equations, when considered micre-locally in the neighborhood of a generic point on the real characteristic variety of \mathcal{M} , provided that the complex characteristic variety of \mathcal{M} , i.e. the support of the sheaf \mathcal{M} in a complex neighborhood of $\sqrt{-1S*M}$, meets with its complex conjugate non-tangentially (SATO-KAWAI-KASHIWARA [1], [2]).

In the simplest case where the characteristic variety is real, the cited structure theorem for pseudosdifferential equations says in particular that M is micro-locally isomorphic to a de RHAM system.

Theoretically this process of transforming M to the de RHAM system consists of two steps. In the first steps, the celebrated classical theory of JACOBI on the involutory system of first order (non-linear) partial differential

- 286 -

PSEUDO-DIFFERENTIAL EQUATIONS

equations assures that characteristic variety V of our system \mathcal{M}_{c} , which is proved to be a real involutory submanifold in the contact manifold $\sqrt{-1}S*M$, is brought to the form $V_{o} = \{(x,i\eta) \in \sqrt{-1}S*M | \eta_{1}=\ldots=\eta_{m}=0\}$, $m < \dim M$, by application of a contact tranformation, and consequently our system \mathcal{M} is, by application of a corresponding quantized contact tranformation, brought to a system of the form

$$\mathfrak{M}_{\bullet}: \qquad \frac{\partial}{\partial x_{j}} \mathfrak{u} = P_{j}(x, D')\mathfrak{u} , \qquad j=1, \ldots, m.$$

Here D' means $\frac{\partial}{\partial x_j}$ for $j \ge m$, u denotes a column vector of unknown functions (i.e. generators of the \mathscr{T} -module \mathfrak{M}), and $P_j(x,D')$ denote matrices of pseudo-differential operators of finite order satisfying the following two conditions : first, they should satisfy the compatibility condition

$$\frac{\partial P_j}{\partial x_k} + P_j P_k = \frac{\partial P_k}{\partial x_j} + P_k P_j , \quad i,j = 1, \dots, m ;$$

second, they should be matrix operators "of orders smaller than 1 ", so that \mathfrak{M}_{\bullet} would have V as its characteristic variety.

The second step in the process of transforming \mathfrak{M} is to bring \mathfrak{M}_{0} further to the de RHAM type : $\frac{\partial}{\partial x_{j}} u_{0} = 0$, by eliminating the "lower orders terms", i.e. the terms $P_{j}(x,D')u$ in \mathfrak{M}_{\bullet} . And this elimination is achieved as follows by using pseudo-differential operators of infinite order (which of course ar micro-local operators). Namely, we construct inversible pseudo-differential \bullet perators U(x,D') satisfying

$$\frac{\partial}{\partial x_{j}} \cdot U(x,D') - U(x,D') \cdot \frac{\partial}{\partial x_{j}} = P_{j}(x,D') \cdot U(x,D') , \quad j=1,\ldots,m ,$$

characteristic variety V_0 has a natural foliation structure where the leaves are (m-dimensional) bicharacteristic strips defined by $x_j = \text{const.}, \eta_j = \text{const.}$ for j > m. The wave operator describes the programtion of initial data along each leaf.

Now let us suppose further that the characteristic variety V has a fiber structure $V \rightarrow W$ (smooth) rather than a foliation structure. The fibers of f are bicharacteristic strips, which we assume to be all isomorphic to a typical one, an m-dimensional manifold F , and V is isomorphic to $F \times W$. The base space W has the structure of a contact manifold, and is identified with a conormal bundle $\sqrt{-1}S*N$ whose points we describe by $(t,i\tau)$. Denoting by x the coordinates of a point on the universal covering manifold \tilde{F} of F , our equations will now assume the form :

$$\frac{\partial}{\partial x} u(x,t) = P_j(x,t,\frac{\partial}{\partial t})u(x,t).$$

On taking into account the fact that \mathfrak{M} is a system on $\mathbb{F} \times \mathbb{W} = (\tilde{\mathbb{F}} \times \mathbb{W})/\pi_1(\mathbb{F})$, $\pi_1(\mathbb{F})$ denoting the fundamental group of \mathbb{F} , we observe that finding solutions of \mathfrak{M} on $\mathbb{F} \times \mathbb{W}$ amounts to finding a solution of the above equations on $\tilde{\mathbb{F}} \times \mathbb{W}$ which **possesses** a quasi-periodicity conditions of the form

$$u(\sigma(x),t) = T_{\sigma}(x,t,\frac{\partial}{\partial t})u(x,t). \qquad \forall \sigma \in \pi_{1}(F) ,$$

where $T_{\sigma}(x,t,\frac{\partial}{\partial t})$ are family of invertible pseudo-differential operators in t subject to the conditions

$$T_{\sigma'\sigma}(x,t,\frac{\partial}{\partial t}) = T_{\sigma'}(\sigma(x),t,\frac{\partial}{\partial t}) \cdot T_{\sigma}(x,t,\frac{\partial}{\partial t}),$$
$$\frac{\partial}{\partial x_{j}}T_{\sigma}(x,t,\frac{\partial}{\partial t}) = -T_{\sigma}(x,t,\frac{\partial}{\partial t}) \cdot P_{j}(x,t,\frac{\partial}{\partial t}) + \sum_{k} \frac{\partial\sigma(x)_{k}}{\partial x_{j}} P_{k}(\sigma(x),t,\frac{\partial}{\partial t}) \cdot T_{\sigma}(x,t,\frac{\partial}{\partial t}).$$
$$\text{ining S-matrices by } S_{\sigma}(t,\frac{\partial}{\partial t}) = T_{\sigma}^{-1}(0,t,\frac{\partial}{\partial t}) \cdot U(\sigma(0),t,\frac{\partial}{\partial t}) \text{ by means of } T_{\sigma}$$

Defining S-matrices by $S_{\sigma}(t, \frac{\partial}{\partial t}) = T_{\sigma}^{-1}(0, t, \frac{\partial}{\partial t}) \cdot U(\sigma(0), t, \frac{\partial}{\partial t})$ by means of T_{σ} and wave operator $U(x, t, \frac{\partial}{\partial t})$, we see that $S_{\sigma}(t, \frac{\partial}{\partial t})$ are invertible pseudo-differential operators in t and satisfy the relation $S_{\sigma,\sigma}(t, \frac{\partial}{\partial t}) = S_{\sigma}(t, \frac{\partial}{\partial t}) \cdot S_{\sigma}(t, \frac{\partial}{\partial t})$,

- 288 -

PSEUDO-DIFFERENTIAL EQUATIONS

and that an initial data u(0,x) admits the corresponding global solution of our system (which clearly is uniquely determined) if and only if $S_{\sigma}(t,\frac{\partial}{\partial t})u(0,t) = u(0,t)$ hold for all $\sigma \in \pi_1(F)$, i.e. if and only if u(0,t)is a simultaneous eigenfunction of $S_{\sigma}(t,\frac{\partial}{\partial t})$ of eigenvalues 1.

2.- We now apply the preceding observations to the situation where the fiber F is a 2n-dimensional torus $\mathbb{R}^{2n}/\mathbb{Z}^{2n}$. F and $\pi_1(F)$ are \mathbb{R}^{2n} and \mathbb{Z}^{2n} respectively, and σ is given by $x \to x_{+\nu}$, $\nu \in \mathbb{Z}^{2n}$.

First we give the following definition : <u>Definition</u>.- A set of 2n pseudo-differential operators on $W = \sqrt{-1} S^*N$, $P_j(t, \frac{\partial}{\partial t})$, $j = 1, \ldots, 2n$, (or rather, the linear set spanned by them $\{v_1P_1 + \ldots + v_{2n}P_{2n} \mid v \in \mathbb{Z}^{2n}\}$) is called a Jacobi structure on W if the following conditions are satisfied :

(1) P_j satisfy the commutation relation $P_k P_j - P_j P_k = 2\pi i e_{jk}$, with $e_{jk} = -e_{kj} \in \mathbb{Z}$, $det(e_{jk}) \neq 0$.

(2) P_j are pseudo-differential operators of orders smaller than 1. (From (1) and (2) follows that $c_1P_1 + \ldots + c_nP_{2n}$ also has an order smaller than 1, for any $c \in \mathbb{C}^{2n}$.)

Suppose that a Jacobi structure $(F_j(t,\frac{\partial}{\partial t}))_{j=1,\ldots,2n}$ is given on W. Then, defining the operators $P_j(x,t,\frac{\partial}{\partial t})$ by

$$P_{j}(x,t,\frac{\partial}{\partial t}) = \pi i(Ex)_{j} + P_{j}(t,\frac{\partial}{\partial t})$$

with $E = (e_{jk})$ and $(Ex)_j = \Sigma_k e_{jk} x_k$, and choosing $T_{\sigma}(x, t, \frac{\partial}{\partial t})$ to be a multiplication operator by a factor $c(v)e^{\pi i \langle Ev, x \rangle}$ (where $\langle Ev, x \rangle = \Sigma_{j,k} e_{jk} v_k x_j$ while c(v) is a non-zero constant satisfying the relation $c(v'+v)/c(v')c(v) = (-1)^{\langle Ev', v \rangle}$ and is given e.g. by $c(v) = (-1)^{\sum j \langle k} e_{jk} v_k v_j)$, we see that all requirements imposed in the preceding paragraph are satisfied. The S-matrices are given by $S_v(t, \frac{\partial}{\partial t}) = c(v)^{-1}e^{\pi i (v_1 P_1 + \dots + v_2 n^P_2 n)}$. They are mutually commutative although P_j are not.

<u>Definition</u>.- A column vector of microfunctions on W is called a Jacobi function if it is a simultaneous eigenfunction of $e^{\pi i P_1}$,..., $e^{\pi i P_{2n}}$ of eigenvalue 1 (and hence a simultaneous eigenfunction of $e^{\pi i (\nu_1 P_1 + \dots + \nu_{2n} P_{2n})}$ of eigen-value $c(\nu)$ for all $\nu \in \mathbb{Z}^{2n}$).

<u>Definition</u>.- A column vector of microfunctions $\Theta(\mathbf{x}|t)$ on $\mathbf{\tilde{F}} \times \mathbf{W} = \mathbf{R}^{2n} \times \mathbf{W}$ is called a theta function, associated to the Jacobi structure, if the followings hold.

(1)
$$\left(\frac{\partial}{\partial x_{j}} - (Ex)_{j}\right) \Theta(x|t) = P_{j}(t, \frac{\partial}{\partial t}) \Theta(x|t)$$

(2) $(x_{+\nu}|t) = c(\nu) e^{\pi i \langle E\nu, x \rangle} \Theta(x|t), \quad \nu \in \mathbb{Z}^{2^{n}}$

From the observations of preceding paragraph we obtain <u>THEOREM.</u>- If $\Theta(\mathbf{x}|\mathbf{t})$ is a theta function associated to the Jacobi structure then the 'zero-value' $\Theta(\mathbf{0}|\mathbf{t})$ is a Jacobi function. Conversely, any Jacobi function $f(\mathbf{t})$ on W determines uniquely a theta function $\Theta(\mathbf{x}|\mathbf{t})$ with the property $\Theta(\mathbf{0}|\mathbf{t}) = f(\mathbf{t})$ uniquely.

It is known that, from micro-local stand point, it is not very restricting to assume that the underlying contact manifold $W = \sqrt{-1} S^*N$ has the dimension 2n-1 (i.e. dim N = n). If this is the case, we can show that the number of linearly independent theta functions or Jacobi functions is finite. Still more important is the case where operators P_j are of the orders $\frac{1}{2}$, because we can then introduce a natural representation of the symplectic group Sp(n) by infinitesimal operators $\frac{1}{2}(P_jP_k + P_kP_j)$, can prolong the germ of the manifold W to a (2n-1)-dimensional projective space of 2n -dimensional symplective vector space in a natural way, and can deduce the automorphy property of Jacobi function $\Theta(0|t)$ under the action of Sp(n,Z). (The 'factor of automorphy' appears to be a pseudo-differential operator of infinite order in general).

It is known that our concept of theta function includes a wide class

of functions, of which the well-known class of theta functions of Siegel-Hilbert type is a very special example.

Some detailed account for what is stated here is found in [3]. Complete details will appear elsewhere.

REFERENCES

-:-:-:-

- M. SATO T. KAWAI M. KASHIWARA, Microfunctions and pseudo-differential equations, RIMS-116, also to appear in Proc. Katata Symposium 1971, Springer Lecture Note.
- [2] M. SATO T. KAWAI M. KASHIWARA, On pseudo-differential equations in hyperfunction theory, to appear in Proc. A.M.S. Summer Inst. on P.D.E., Berkeley 1971.
- [3] T. KAWAI, Local theory of theta functions, after SATO's lecture at Nagoya University, 1971, Japanese (to appear).