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ULTRADISTRIBUTIONS, HYPERFUNCTIONS AND 

LINEAR DIFFERENTIAL EQUATIONS 

by Hikosaburo KOMATSU 

In his lecture Ql flQ at Lisbon in 1964, A. Martineau has shown that if a holomorphic 

function F(x + iy) on the wedge domain (Rn + iF) n V, where V is an open convex cone 

in R N and V is an open set in C N, satisfies the estimate 

(0.1) sup |F(X + iy)| 4 c|y|"L, yer» 
x£K 

for every compact set K in & = RnflV and closed subcone Tf in T, then it has 

the boundary value 

(0.2) P(x + irO) = lim P(x + iy) 
y+o 
yen 

in the sense of distribution and that if I\ , ••.. T are open convex cones in R N 

1 m 

such that the dual cones r ° , . . . , T° cover the dual space of R N, then every distri

bution f (x) on Q can be represented as the sum of boundary values 

(0.3) F(x) = F^x + il^O) +...+ Pffl(x + ilM)) 

of holomorphic functions F.(x + iy) on (R N + iI\)nV satisfying the above estimate. 

He has also found a necessary and sufficient condition for P.. in order that the sum of 
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ULTRADISTRIBUTION AND HYPERFUNCTIONS 

the form (0.3) is equal to zero. 

We establish corresponding results for ultradistributions of Roumieu [24], [25j 

and Beurling Q] and apply them to a few problems of regularity and existence of linear 

differential equations. 

1• Hyperfunctions. 

A hyperfunction f on an open set Ot in R N is by definition a cohomology 

class in the relative cohomology group with support in where V is an 
ill 

open set in C N containing fa as a relatively closed set and & is the sheaf of 

holomorphic functions on C 1 1 • (For the theory of hype rfunct ions in general see [26] , 

[27], [17], [5], [8] and [30].) 

There are two interpretations. According to Sato [26] , [27] a hyperfunction is 

the sum of "boundary values" of holomorphic functions whereas Martineau [17] and 

Schapira [30] regard it as a locally finite sum of real analytic functionals. 

Suppose that V is a (Stein) open set in C N and that V is an open convex 

cone in R N. We have a canonical infective mapping 
(1 .1 ) \ 1 »(v r ) — • 8(a), 

where ©'(V̂ ) is the space of all holomorphic functions on the wedge 

(1.2) Vp = (RN + ir)n V 

and 

(1.3) $(A)=H>,ff) 
fa 

is the space of all hyperfunctions on 

(1.4) la = R n n v . 
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KOMATSU 

If F(x + iy) 6 ©<Vr), we denote its image by P(x + iro) and call it the 

boundary value in the sense of hyperfunction. F(x + iro) depends only on F. Namely 

if Tf is a subcone of T9 we have 

(1.5) F(x + ir«0) = F(x + iro). 

(Cf. Martineau [20] , Komatsu [ l l ] , Sato-Kawai-Kashiwara [28], Chap. I). 

If r , .... T are open convex cones in R n such that the dual cones i m 

(1.6) r° = {|6Bn , < y , ^ > » 0 , y e r . } 

cover the dual space of Rn, then we have 

(1.7) A ( a ) = a r e<v r ) + . . . + a r otv r ) , 

1 1 m m 

i. e. every hyperfunction f 6 &(£l) can be written 
(1.8) f(x) = F„(x + ir„0) +...+ F (x + ir 0) 

l i m m 

for some F.(x + iy) € ©O^, )• We call the m-tuple (F̂  , F̂ ) of holomorphic 

functions a defining function of the hyperfunction f. 

Martineaufs edge of the wedge theorem [20] (cf. also Morimoto [22], [23]) 

asserts that 

(1.9) F^x + i^O) +...+ Fg(x + ir^O) = 0 

if and only if there are holomorphic functions F (x + iy) 6 (HVJ, ) depending on indi-

ces j , k alternatingly such that 
e 

(1.10) F. = J 1 F„ , 

where V , is the convex hull of T.UT. and V'CV is a complex neighborhood of & • jk J k 

In particular, a hyperfunction may be identified with a class of defining 

functions. 

If the dimension n = 1 , the situation is particularly simple. Ve have only one 
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ULTRADISTRIBUTION AND HYPERFUNCTIONS 

choice of "the cones T. : 
0 

(1.11) ^ = {y6R ; y>0j, T 2 = |y6R ; y<Oj. 

In this case it is convenient to call F = (F̂  , -F^) € &{V\£L) a defining function. 

Thus 

(1.12) f(x) = F(x + iO) - P(x - iO). 

The zero class is composed of the restrictions to Y\Sh of all holomorphic functions 

P on V. Hence we have 

(1.13) Si(Sl) = ©<v\,a) /e<v). 

It is known that flj(<ft), iQ»CRn, form a flabby sheaf under the natural restric

tion mapping. In particular we can talk about the support of a hyperfunction. 

On the other hand, let £L(»Q>) be the space of all real analytic functions on 

,0,. We have 

CL(&) = lim, fr(V) 

(1.14) 
= ¿1111 6KK), 
KGUl 

where V runs through the complex neighborhoods of ,0, • Here the space G(V) is a 

Fre'chet space and fiL(K) = lim, ff(U) is a (DFS)-space. Hence we can introduce two natural 
IDK 

locally convex topologies. However, as Martineau £l9] shows, these two topologies coincide. 

The elements in the dual flL'(il) of £L(£l) are called real analytic functio- 

nals on id, If f 6 6Lf (£l) $ there is the smallest compact set KCQ, such that 

f € (flUK))1, which we call the support of f (Martineau ( j7j) . 

£lf (Xt) is naturally identified with the set of all hyperfunctions with compact 

support in ¿1 including the concept of support under Martineau!s duality [ l7J. Since 

the hyperfunctions form a flabby sheaf, every f £ 3J(,Q,) can be written 
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KOMATSU 

(1.15) f = y f. , 
t—, -J 

where f € £tf (*}) and |supp f\ j is locally finite. 

As Martineau [j7J and Schapira [30J did, we can also construct the theory of 

hyperfunctions starting with the definition that hyperfunctions are locally finite sums 

of real analytic functionals. 

We note, however, that the first interpretation provides us with means to study 

the properties of real (generalized) functions through the behavior of holomorphic 

functions.In one-dimensional case this is an old idea. For example, Hardy [4] proved in 

1916 the non-differentiabi.Ur'far of Veierstrass1 function 

k k 

(1.16) ) " a cos b irx , 0<a<1, ab > 1, 
k=1 

by the order of growth of dF/dz as z tends to the real axis. 

Moreover, we have a theory of multiplication and restriction independent of 

regularity. If two hyperfunctions f and g € &(&) can be written 

(1.17) f (x) = ¿2 V. (x + il\0), g(x) = £ 3 Gk(x + tt£0) 

with open convex cones jl^, I^j and |r.j, T^J such that r n ^ 0 for 

all j and k, then we can define the product fg by 

(1.18) (fg)(x) = ¿2 (F.jGk)(x + i(r.O^)O). 
j >k 

If f 6 tB(fl,) is written as (1.17) and if H is a complex affine submanifold of 

C n such that T\ = Im((Rn + ir.)nH) is a nonvoid open convex cone in Im H for all j, 

then we can define the restriction f|Rnfi H by 

(1.19) f|RnOH = YZ F-(x + ir'°)|H-

This theory has been developed into the deep theory of microfunctions by 
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Sato-Kawai-Kashiwara [28] and Morimoto [22] . 

Now, Martineau's results in [l8] may be summarized as follows. If we replace 

6<Vr) by the subspace (Vj,) of all YQ&iVp) satisfying the growth condition (0.1) 

and til* cohomology group H^V , ©") by the cohomology group H11, ̂  (V,6') with bound, 

>then we obtain distributions instead of hyperfunctions and the boundary value (1.1) in 

the sense of hyperfunction coincides with the boundary value (0.2) in the sense of 

distribution (cf. also Kothe [l5]). 

As Morimoto [22] , [23] points out, Martineau's theory [18], [20] of the edge of 

the wedge theorem has reached a point very close to the theory of microfunctions. 

The motivation of our study is to develop Martineau's idea further and apply the 

results to regularity problems of differential equations. 

2. Ultradistributions. 

Let Mp, p = 0, 1, be a sequence of positive numbers. We impose the 

following conditions : 

(M.1) Mjj ̂ M ^ M ^ , p = 1, 2, ... ; 

(M.2) M N< A H P min M M , p = 1, 2, . . . ; 
P 0<qN<p 

co M M 
(M.3) £ ] J L l v < A p ^ , p = 1 , 2 , . . . . 

q=p+1 q p+1 

Here A and H are constants independent of p. 

An infinitely differentiable function <p on an open set jQ, in R n is called 

an ultradifferentiable function of class (M̂ ) (resp. of class { M
pJ) i f f o r each 

compact set K in ^ and for every h 0 there is a constant C (resp. there are 
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constants h and C) such that 

(2.1) sup |Da<p(x)| < c J ^ M , |a| = 0, 1, 2, . . . , 
x£K la" 

where 

(2.2) Da = d"1 . . . d"* = (I ^ . . . (J » ) B » 1 n xi ox ' vi dx ' 1 n 
and 

(2.3) lal = a. + . . . + a . 
1 1 1 n 

If s >1, the Gevrey sequence 

(2.4) M P = (p!)S or p P S or r(l + ps) 

satisfies the conditions (M.1), (M.2) and (M .3) . In this case we write (s) and |sj 
instead of (M ) and IM I for short. P I PJ 

We denote by (Q,) (resp. by £ the space of all ultradifferent-

(M ) 

iable functions cp of class (M^) (resp. of class {̂ pj) o n »&> ŷ «0 P to) 

(resp. «©№>)(&)) the subspace of (XX) (resp. of composed of all 

functions with compact support. 

We have 
(M ) (Ml ,h 

(2.5) «6 P (a) = ¿ ± 5 1 ^ 1 5 1 « P J (K) , 
KCCAh-̂ 0 

<M } JM Lh 
(2.6) -£l p ;CQ) = H m lim^ P (K) , 

Kccan-*» 
(M ) (M },h 

(2.7) <© P (A) = liny ̂ im S) P 

Kcca h->o 

(M } {M Lh 
(2.8) p (a) = 1 1 ^ 1 1 ^ ^ p 

KCCCh-KX) 
(M Lh 

where % (K) is the Banach space of all infinitely differentiable functions <p 
in the sense of Whitney on the regular compact set K satisfying condition (2.1) and 

(m j,h n 

«©K

 P is its closed subspace composed of all functions <p on B with support in K. 
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ULTRADISTRIBUTION AND HYPERFUNCTIONS 

Thus we can introduce natural locally convex topologies in these spaces. We denote 
(M )• {M ]» (M ) {M I 

by 5) P (a) (by JD P (&)) the strong dual of £) P (&) (of & P (&)) and 

call its elements ultradistributions of class (M ) (of class 1M I). 
p ( pj 

JB P (Qt) is exactly the space of ultradistributions discussed by Roumieu [24J , 

(M )• 

[25] and if M is the Gevrey sequence, s (a) coincides with the space of gene

ralized distributions of Beurling and Bjorck (jj. 

By the Denjoy-Carleman-Mandelbrojt theorem there are sufficiently many functions 

in the space <©*(&), where * = (M ) or {M^] • Hence we can construct the theory of 

ultradistributions in the same way as Schwartz1 theory of distributions. In particular, 

oB̂ Gft)* XI C Rn, form a soft sheaf and the dual of "&*(&) is identified 

with the subspace of & (£l) composed of all ultradistributions with compact support 

in . The spaces <$*'(.&) and are all complete barrelled 

bornologic nuclear spaces ( |j3] cf. also Schapira [29J). 

We have 

(2.9) a(a ) c c 
a*xd the inclusion mappings are continuous and of dense range. Hence we may consider 

(2.10) ^ t o ) c f ( a ) c a t o ) . 

Since these inclusion mappings keep support (Harvey [Y]), they can be extended to the 

inclusions 

(2 .11) &'(a)c c a(a). 

I f , t > s > 1 , we have 

(4.12) £• ( Q M i*J' (Q) C.? ( t )' (Q) C^{ S!' ( g ) c ^ s ) ' (Q)c.jo(q). 
* * 5= ^ == 

The theory of multiplication and convolution is the same as for distributions. 
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A differential operator 

oo 
(2.13) P(D) = X ] a / 

of infinite order is said to be an ultradifferential operator of class (M̂ ) (of class 

JM^) if there are constants L and C (for every L > 0 there is C) such that 

(2.14) |aj N< cJ
al/M|a|, |a| = 0, 1, ... . 

Ultradifferential operators of class * are continuous operators in the spaces of class 

* and sheaf homomorphisms in the sheaves and ¿9* • 

THEOREM 2.1 (First structure theorem [13]). 

(ft)) UL Q̂fl only if on every relatively compact open  

set G of fa (on ,0,) 

oo 

|a|=0 a 

with measures f on G (on fa) such that 

(2.16) HfJc>(G) < C L' a' / M|a|' W = 0 ' 1» 

for some L and C (for every relatively compact open set G, every L>0 

and some c) • 

For the class { M

p} 'this is due to Roumieu [24], [25]. However, it is not certain 

whether or not the topology of jĝ P̂ OQ,) he employed in his proof coincides with the 

above natural topology. 

THEOREM 2.2 (Second structure theorem |j3]). 

f€ JB (&) if and only if for every relatively compact convex open set G in 

fa there are an ultradiff erential operator P(D) of class * and a, measure 

g on G such that 

(2.17) f = P(D)g • 

The proofs of Theorems 2.1 and 2.2 for the class {M^} a r e complicated. We employ 
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a result by De Wilde [J] and Komatsu [V] on the duals of the inductive limits of weakly 

compact sequences of Banach spaces. 

We define 

(2.18) M*(p) = sup log . 

P P 

If = (pl)S> M*(P) i s equivalent to p 1 ^ S ~ 1 \ 

THEOREM 2.3 ([13]). 

If P(x + iy) ĵs a, holomorphic function on V̂ , and if for every compact set 

K in fa and closed subcone r 1C T there are constants L and C (for  

every L > 0 there is a, constant C) such that 

(2.19) sup |P(x + iy)| <T C exp M*(L/|y|) for yZV , 
xGK 

then the boundary value F(x + iro) in the sense of hyperfunction is in 

JB^V'CO) (in J D ^ ^ (A)) and (0.2) holds in the topology of ¿9*' fo). 

The assumption may considerably be relaxed. Namely employing the coordinate 

transformation which was used in the proof of a local version of Bochner's tube theorem 

[j2], we can show that if (2.19) holds for a ray T! in T, then it holds for any 

closed subcone f. 

From the second structure theorem we obtain 

THEOREM 2.4 ([l3j). 

Let f 6 1 (.Qr) and G be a relatively compact open subset of £1 • Then 

f can be represented as (1.8) on G with holomorphic functions F_. satis 

fying the condition of Theorem 2.3. 

If the dimension n = 1, the difference of two defining functions of the same 

hyperfunction is a holomorphic function on a neighborhood of Q, • Thus if a defining 

function satisfies estimate (2.19), any other defining function satisfies it also. 

- 261 -



KOMATSU 

Moreover, Painleve*'s theorem holds also in the topology of ultradistributions. Therefore 

we have 

THEOREM 2.4. 

Let n = 1. If P(x + iy) is_ a, holomorphic function on "V̂  and if its  

boundary value P(x + iro) either in the sense of hyperfunction or in the  

sense of ultradistribution is in (£|) (in Jĝ **pl («Q))> then F(x+iy) 

satisfies the condition of Theorem 2.3. 

Our conjecture is that this is true also in the case where n>1. 

3. Ordinary differential equations. 

First we consider the single linear ordinary differential equation 

m m-1 
(3.1) (am(x)JL + a ^ W - t ^ . aQ(x))u(x) = f(x) , 

dx dx 
where a. (x) are real analytic functions on the open interval iQ, = (a , b) and 

a (x) i 0. 
m ' 

Choose a complex neighborhood V of to which aj( x) a r e continued analytic

ally and let F(x + iy) and U(x + iy) 6 6<V\<a) be the defining functions of f and 

u respectively. We denote by P(x , d/dx) the differential operator on the left hand 

side of (3.1) and by P(z , d/dz) its analytic continuation to V. Then equation (3.1) 

is equivalent to 
(3.2) P(z , gj)U(z) =F(z) mod G(V). 

We can choose V so that V and V\£l are simply connected and that V \ & 

is free from zeros of a (z). Hence we obtain : m 

THEOREM 3.1 (Sato [26]). 
| For every hyperfunction f on ,Q# there is a hyperfunction solution u of 
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j (3.1) on ,Q,« 

THEOREM 3.2 (Sato Q26], Komatsu [iO]). 

If f is a hyperfunction on ,Q,, any hyperfunction solution û  of (3.1) 

on a, subinterval 0»^ can be prolonged to a, hyperfunction solution u on 

THEOREM 3.3 (Komatsu [iO]). 

There are 

(3.3) m + ord a (x) 

¿7-^ x m 

linearly independent hyperfunction solutions u on £t of the homogeneous  

equation 

(3.4) P(x , ±)u(x) = 0 , 
where orcF a (x) is the order of zero of a (x) at x. x m m 7 

The last theorem is derived from the index formula 

(3.5) X(PV) -•>*(•)- C °r*z »B(») 
z6V 

for the operator 

(3.6) P y = P(z , d/dz) : CKV) • CtfV). 

Here ^(V) denotes the Euler characteristic of the open set V in C ( [ 1 0 ] ) 

Now it is easy to prove the following. 

THEOREM 3.4 ( [14] / 2 ) . Qjhe following are equivalent : 

(i) Every hyperfunction solution on £1 of the homogeneous equation is real  

analytic ; 

(1) We were informed at the conference that B. Malgrange had obtained index formula 
(3.5) independently about a year later than us. See B. Malgrange. Remarques sur les 
points singuliers des équations différentielles, C. R. Acad. Se. Paris, Sér. A, 273 
(1971), 1136-1137. 

(2) Combining the results of T. Kannai at this conference and Theorem 3.5, we can prove 
Theorem 3.4 with "real analytic" replaced by "infinitely differentiate". 
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(ii) am(x) ¿ 0 for ail xÉÛ ; 

(iii) If Pu6 0(il), then u€a(Q). 

If x Q is a singular point of P(x , d/dx) or a zero of am(z), we define the 

irregularity^^ o" O F X Q *° b e ^ h e m a x i m a l gradient of the highest convex polygon 

below the points (j , ord a.(x)), j = 0, 1, m. x is a regular singular point 
x 0 2 

if (T< 1 and an irregular singular point if or > 1 . 

THEOREM 3.5 ([14]). Tfre following are equivalent : 

(i) Every hyperfunction solution on ,Q, of the homogeneous equation is a 

distribution ; 

(ii) All singular points in £1 are regular ; 

(iii) If Pu 6 «©! (£t), then uÉcfi'CQ,). 

THEOREM 3.6 ([14]). 

Let s > 1. Then the following are equivalent : 

(i) Every hyperfunction solution on & of the homogeneous equation is an 

ultradistribution of class (s) ; 

(ii) The irregularity or of any singular point in £h does not exceed 

s/(s-1) ; 

(iii) If Pu€^) ( s ) ,(û), then u€JD ( s ) ,(Û). 

Sketch of proof. 

(i) =>(ii). Let 0 be an irregular singular point. Then, Hukuhara [VJ and 

Malmquist [l6J show that there is a holomorphic solution U(z) of P(z , d/dz)U(z) = 0 

either in the upper half plane or in the lower such that 

(3.6) sup |U(x + iy)| >x C e x p j a / l y l f " 1 } , 
x6K 1 

(s)1 

with C> 0 . Hence its boundary value U(x + iO) can not belong to «£ (û) for any 

(1) Our definition of irregularity is different from that of Malgrange, loc. cit. 
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s><r/((r-l). 

(ii) =»(iii). Set Z = 1 for Theorem 3.5 and Z= s/(s-1) for Theorem 3.6. 

Statement (ii) means that the irregularity (T^t at any singular point. 

Let XQ be an arbitrary point in «0» • If we set 

(3.7) TT'(b) = ((« - x Q f ±)a'-1U(z), j = 1, 

the vector W(z) = ( v V ) , V(z)) satisfies the equation 

(3.8) ((« - x / ± - B(z))W(z) =F'(z) , 

where B(z) is an mxm matrix of holomorphic functions bounded in a neighborhood of 

XQ and the components P* of F1 satisfy the estimate 

(3.9) supJF^x + iy)| < C\y\~L or 
x6K 

N<C exp{(L/|y|)l/(s-1)j. 

Changing the independent variable into 

|log(^-), t - 1 

Z X0 
V 

1 2 1 
and integrate (3.8) along the curve T U T , where T is a segment joining XQ+id 

2 i8 
and XQ + ir and T is an arc joining x^ + ir and z = x^ + ire with center at 

XQ. Then we can easily show that W^(z) and hence U(z) satisfy estimate (3.9). 

(iii) (i). Trivial. 

Combining Theorems 3.5 and 3.6 with Theorems 3.1, 3.2 and 3.3, we obtain 

THEOREM 3.7. 

If P(x , d/dx) satisfies the equivalent conditions of Theorem 3.5 (resp.  

Theorem 3.6), then Theorems 3.1, 3.2 and 3.3 hold with hyperfunction replaced  

by distribution (resp. ultradistribution of class (s)). 
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The above results are extended to the first order system : 

(3.10) (Al(x)l + A0(x))u(x) = f(x) , 

where AQ(x) and Â  (x) are mxm matrices of real analytic functions on SX such 

that det A^(x) is not identically zero. 

In fact, Theorems 3 . 1 , 3.2 and 3.3 hold good if we replace (3.3) by 

(3.11) m + o r d ^t A (x) 
xea x 

(Qo] ) . Hence Theorem 3.4 holds with a
m( x) i n (ii) replaced by det Â  (x). 

To define the irregularity <r of a singular point, which we assume to be the 

origin, we employ Hukuhara's canonical form. Let 

(3.12) (A^ z j A + AO(z))U(z) =F(z) 

be the equation on V\X1 for the defining function. Hukuhara [6j shows that there is 

a transformation matrix T(z) whose elements are polynomials in z +^^ for some integer 

q such that W(z) = T ̂  (z)U(z) satisfies the equation 

(3.13) - B(z))¥(z) = P'(z) , 

where F'(z) satisfies essentially the same growth condition as F(z) and B(z) has 

the form 

(3.14) B(z) = A'(z) + z"1C(z) 

with a diagonal matrix Af(z) whose (j,j)-element 

(3.15) X.(z) = X .z" °"+...+ O ) z " 1 " 1 / < 1 

3 3 3 

is either 0 or z~1 times a polynomial in z" 1^ and a matrix C(z) of holomorphic 

functions in z^^. 
x Q = 0 is called a regular singular point if det Â  (xQ) = 0 but all Vj(z) = 0 
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and an irregular singular point of irregularity o* (> 1) if some \ £ 0 in (3.15). 

Then Theorems 3.5 and 3.6 and hence Theorem 3.7 hold for the system (3.10). 

Methee's result [2l] is a special case of ours. 

4. Existence of singular solutions. 

Let 

(4.1) P(D) = Z ] a / 

be a differential operator with constant coefficients possibly of infinite order. P(D) 

is said to be elliptic if there exists a constant A such that we have 

(4.2) I ^ I^A" 1^! for |g|>A 

for those £ + ii^ 6 R n + iRn which satisfy V(% + iij) =0. 

Chou [2] , BJorck [Y| , Harvey (jf[ and Kawai [jj have proved under various 

assumptions that if P(D) is not elliptic, then the equation 

(4.3) P(D)u(x) = 0 

has always a singular hyperfunction (or ultradistribution) solution u. 

Modifying the method of [Y] we prove the following. 

THEOREM 4 . 1 . Suppose that there exists a sequence tfJ'̂  = + i^J'^€Rn + iRn 

of zeros of P(£) such that 

(4.4) 5 ^ . 0 0 , 

(4.5) |0£>, . . . , ^ h \ * \\li)\<C(^i))a 

for some constants 0<(T<1 and C>0. 

Then (4.3) has a solution u£JD^^"^ (Rn) whose singular support in the  

sense of Sato [~28] contains 0X(1, 0, 0)oo and is contained in 

R n X(1, 0, 0)oo. 
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Proof. We may assume that ^ 2 j . Let 

(4-6) P(x + iy) = ¿ 3 expfcr' 1^) + i <x + iy , ^>>J . 

Suppose that for some K <co 

Hx<K, |y|N<K and Y l > 0 . 

Then we have 

£ | e x p J ( r - 1 ( ^ ) ) < r

+ i < x + i y , | 
0=1 1 J 

< £ e x p { ( 7 - 1 ( ^ ) ) < r - y ^ + K C ^ f j 

< exp suptcr"1 h<f- y |/2) exp(-y |.(j)/2) 
l>0 3=1 

< « p | W r 1 ) *
M ) / ( i - . ' ? 1 ) 

<C e x p { ( L / y i )
l / ( c r " " 1 ) J for y i s< K'. 

Hence (4.6) converges absolutely and locally uniformly in R n + ir, where T = |y6Rn ; 

y ^ O J . By Theorem 2.3 P(x + iTO) 6 J©* 1^' (Rn). It is clear that P(D)F(x+iy) = 0 

so that P(D)F(x+irO) = 0. 

If x = 0 and y = (y , 0, ..., 0), we have 

P(x + iy) = ¿ 3 exp ( ^ ( i j ^ f - y i i j ^ j 

Thus there is a sequence — • 0 such that 

|F(x + iy)Uexp{( ,r- 1 -l)(y1

(j))Cr/(0"l)J • 

I (s) ! —1 
Therefore F(x + iro) [ _ does not belong to £ ^ o r â y s > 0* on any 

x _—...—x = u 
2 n 

neighborhood of the origin. 

If the conjecture after Theorem 2.4 is true, the inequality shows that 

(s)i _1 

F(x+iro) itself does not belong to £ ' for any s >& on any neighborhood of the 

origin. - 268 -
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We note that if P(D) is a non-elliptic operator of finite order, then after an 

affine coordinate transformation the assumptions of Theorem 4.1 are satisfied. 
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