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HBLFFBR ET KANNAI 

1 - INTRODUCTION.-

Let L be an ordinary differential operator with C°° 
coefficients in a neighborhood of the origin, and assume that 
the leading coefficient of L has a zero of finite multiplicity 
at the origin. It is a well known result of the classical theory 
of irregular singular points of ordinary differential equations 
( [l] , [3]) that there exists a system of m linearly independent 
formal solutions u-̂ (x) , ... , u

m(x) of Lu = 0 (m is the order 
of L) with 

(1.1) g.tx; p. 
u^(x) = e x v^(x) 

where the Q.(x) are polynomials in x and 

(1.2) v. (x) = z._ v. .(xHlogx)3 
1 J - U 1 5 J 

(1.3) v. . (x) ~ E°° - v. . x i5] n=0 i,],n 

for 0<_j 1 <: i _< m. Here nu , are integers, 
nu _> 0 , q̂  > 0 and the series in (1.3) do not converge, in 
general, even if the coefficients of L are analytic. (The equa­
tions Lu^ = 0 hold in the sense of formal power series ; the 
coefficients of L are replaced by their formal Taylor expansior 
at the origin). The functions Q̂ (x) are called " determining 
factors ". Clearly, we can assume that the constant terms vanish 
in the determining factors. (In some texts, the e - rather 
than the Q̂ (x) - are called determining factors). 

- 198 -



HYPOELLIPTICITY 

The determining factors may be computed explicitely in 
many cases. Thus, let Lu = E^-Q AJ (xM-'u/dx-1 , and set 
p(x,£) = EJLQ aj(x)(i£)^ - the (complete) symbol of L. It is 
well known that there"exist m complex valued functions 
£^(x), ... , Sm(x) 9 which are continuous in a neighborhood of 
the origin exeept at x = 0, such that p(x,£) = am(x)Tr!?=1( £-c j (x)) . 
The functions Ĉ (x) , ... , ̂ m^x^ a r e c a l l e c^ branches of roots 
of p. If the " characteristics " of L are " simple in the 
sense that whenever Ĉ (x) is an unbounded branch of roots of p 
such that |x| |c^(x)| is also bounded and ?-(x)/?j(x) 1 
as x 0 then i = j , then the determination of the determining 
factors is relatively easy ([2],[4]). In fact, let 

(1.4) ? j(x) ~ Z- a H ( j ) « j > k x k ^ 
be the formal Puiseux expansion ; here q is a positive integer, 
N(j) is a finite integer (positive,negative,or zero) with 
a. .T/.s t 0 unless a. . =0 for all k. (The series (1.4) does J,N(3) ],k 
not converge, in general, unless the coefficients of L are holo-
morphic.) The derivative of the determining factor is given 
by the simple formula 

dQ. _ -, v / 

(1.5) g-l= i I a xk/c* j = r+l,...,m. 
d X i=N(j) D' k 

(Note that if £.(x) = O(-) when x 0 then Q.(x) = 0 ; this 3 x 3 
is true in general, even if " simplicity " of the " characteris­
tics 11 is not assumed) . 
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It is the aim of the present paper to present formulas 

for the determining factors. In section 2, we shall discuss 

briefly the main properties of the determining factors. In sec­

tion 3, we state and prove a formula for the determining factors 

if the " characteristics " are at most " double ", in the sense 

that if Ĉ (x) is a branch of roots of p for which x^(x) 

is unbounded as x -»• 0 and if lim £.(x)/c.(x) = 
x+0 1 3 

lim c . (x)/£,(x) = 1, then either i = j, or i = k, or j = k. 
x+0 

In section 4, we apply the results of section 3 to characterize 

all hypoelliptic ordinary differential operators with at most 

" double " " characteristics ". For this, we apply the charac­

terization of hypoelliptic ordinary differential operators 

given in [4] ; this characterization is given essentially in 

terms of determining factors. In section 5, we compute the 

determining factors and characterize hypoellipticity for general 

third order ordinary differential operators. 

2 - PROPERTIES OF DETERMINING FACTORS. -

For the discussion in this section, it will be conve­

nient to consider operators whose coefficients are elements of 

F[x] - the quotient field of the ring (formal series of powers 

of x"̂ -̂ , where q is an arbitrary positive integer 

(compare [l] ) . Thus, let Lu = a^ (xM^u/dx3 be a formal 

differential operator with 

a j ( x ) ~ C n . q

 a : , k

( * 1 / q ) k 

where n-q is an integer, a. , are complex numbers, and 
3 ] 

a. ¿0 unless a.(x) = 0 ; in the latter case, we set D^q 3 

- 200 -



HYPOELLIPTICITY 

rij =• + oo . Hence n.. is the multiplicity of the zero or minus 
the multiplicity of the pole of a j ^ x ^ a _ t "t^ie origin. We shall 
also use the notation rij = OCa^). Note that the integer q can 
be replaced in (2.1) by any integral multiple of it. We shall 
always assume that n m < « 

Recall that the characteristic index |V] or class [3] 
of L is defined to be m - r, where the integer r, 0 <_ r <_ m , 
is specified by the 

n. - j > n - r for j > r 
(2.2) 3 

rij - j _> n p - r for j < r 
The equation Lu = 0 possesses an indicial equation 

of order r. This indicial equation is obtained by equating to 
zero the coefficient of the lowest order term in the formal ex­
pansion of x pL(xp) (the order of the lowest power of x in 
that expansion is n r - r). Note that for r = 0, the indicial 
equation has no roots, and if q = 1 and the functions a j ^ x ^ 
are holomorphic at the origin, then r = m corresponds to 
a regular singular point at x = 0. Using the roots of the indi­
cial equation, one obtains (by equating coefficients) r linear­
ly independent formal log-fractional powers series solutions of 
Lu = 0. 

In order to find the remaining m - r formal solutions 
of the homogeneous equation Lu = 0, one looks for functions 
Q(x) of the form 
(2.3) Q(x) = z£ = 1 c kx" k / q 

(here q is an integral multiple of the integer occurring in 
(2.1)) such that the formal differential operator M defined 
by Mv = e ̂ L(e^v) has a characteristic index m - j < m , so 

- 201 -



HBLFFER ET KANNAI 

that the equation Mv = 0 possesses an indicial equation of 
order j > 1. Hence, there exist j linearly independent formal 
(log) fractional powers series solution of Mv = 0. Such a func­
tion Q(x) is called a determining factor (of the operator L). 
In this manner, the existence of a system (1.1) - (1.3) of m 
linearly independent formal solutions of Lu = 0 is established 
in the classical theory. The r formal log-fractional powers 
series solutions which are determined by the indicial equation 
of L correspond to r identically vanishing determining fac­
tors. We shall assume, from now on, that Q-|_̂ x^ = ••• = Qr(*) = 0« 

We shall need some expression for the coefficients 
of M. Set e-Q(x)(eQ(x>)(n) = S(n,x). Then S(0,x) = 1 and 
S(n+l,x) = QT(x)S(n,X)+dS(n,x)/dx. Using Leibnitz!s rule, we 
see that 

Mv = m j= oaj Ejh=0(jh)e-q(eq)(j-h)v(h)(x) = 

(2.4) 
= L™ = 0 (^=h(^)a,(x)S(j-h,x))v(h)(x) 

Differentiating (2.3), we see that 

(2.5) Q t ( x ) = *k=q+l ek X ' k / q 

where e^ = - k ĉ /q , t = s+q . It can be verified by easy 
induction that 
(2.6) o(S(n,x) - Q'n) > -(n-l)t/q-l 

Hence the lowest terms in the coefficient of v in M are 
contained in the sum 
E m

 n a. x n ^ ( e ^ : V t j / q . Set 3=0 j^q t 
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min n.-tj/q = w,Mv = ZP_Q- b̂ (x)d v/dx . Then (if e^ is arbi-0<_j <m 3 

trary) 
w = 0(bQ(x)). Clearly, 

0(bh)> min £0(a.) + o(S(j-h,x))] > min {n.-(j-h)t/q] = 
h<j<m 3 0<j<m 3 

= w + ht/q > o(bQ(x)) + h. 
It follows that the characteristic index of M can be strictly 
less than m only if E a. (e.)3 = 0, where I = {j:n•-t./q=w}. 

jfel 3> nj q T 3 3 

This well known result implies that the branches of roots can be 
labelled in such a way that the lowest order term c s in the deter­
mining factor Q.(x) (j > r) is given by e, = i a- . and 
N(j) = - t. (The formal Puiseux expansion (1.4) exists even if the 
coefficients a j ^ x ^ a r e o n l v elements of F£X] ; the integer q 
appearing in (1.4) is an integral multiple of the q which appears 
in (2.1).) 
Unfortunately, the higher terms which appear in the formula (2.3) 
are less easily obtained,, in the most general case. Only if the 
" characteristics " are " simple " (in the sense that if 
N(j)/q < - 1 and * N(fc) , j i k then ou N(j) ̂  <*k N(k)^ 
one can read the complete determining factor off the Puiseux expan­
sion (1.4) ([4]). (If a..(x)€. C°° then the " characteristics " are 
11 simple " in the sense of section 1 if and only if they are simple 
in the sense described above, see section 6 in [4] .) 

Set 3(j) = N(j)/ if a. t 0 and 3(j) = «» 
if £j^x^ = 0. We shall assume, from now on, without explicitly 
mentioning it, that the factors in (2.1) are labelled in such a way 
that the sequence {$(j)} is non-increasing. We note that 
3(r) j> - 1 and B(r+1) < - 1. This follows immediately, either by 
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equating the coefficients of x ̂  ̂  in the equation 

(2.7) p(x,£) = am(x)nj=1 - ?.(x)) 

(compare [j+, section 2j for the case q =1) or by the fact that 
the lowest terms of the determining factors Q _ , . . . ,Q are 
given, with the correct multiplicities, by the lowest terms of the 
branches cj(x). 

The following lemma will simplify somewhat the proofs 
in sections 3 and 5. 

Lemma 2.1 : 
Let P(x) be an element of F [x] , P(x) = E^^a^x^ q, 

such that the characteristic index of the operator 
e" P ( x )L(e P ( x )v) is strictly less than m. Then Q(x) = E

k = s
a

k
x k / q 

is a determining factor for L. 

Proof : 
Set Mv = e" Q ( x )L(e Q ( x )v). Then 

P(x)-Q(x) -P(x)T, P(x) Q(x)-P(x) s Mv = e x e L(e e v). 
It follows from the assumptions that there exists an element w 
of F[x] with e~PL(ePw) = 0. But e

p( x)-Q( x> 6 F[xJ which implies 
that e P ( x )" Q ( x )w €F[x] .Set v = e p ( x )' Q ( x )w. Then Mv = 0. 
Hence M possesses an indicial equation and the lemma follows. 

3 - DETERMINING FACTORS WHEN " CHARACTERISTICS " ARE A MOST  
11 DOUBLE 

In the process of obtaining formulas for the determining 
factors when the " characteristics " are not " simple we shall 
need the following simple lemma : 
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Lemma 3.1 : 
Let Lu = aj (x)d:lu/dx~5 be a formal differential operator 
whose coefficients are formal power series, let n̂  = oCa^Cx)), 
and let m - r be the characteristic index of L. Let Cj be an 
arbitrary complex number, 0 <_ j <_ m - 1. Then the characteristic 
index of the operator Nu = am(x)dmu/dxm + Z?_g(aj(x) + 
c. a. . (x))d-]u/dx̂  is also equal to m - r. Moreover, 
nr = o ( a

r
( x ) + c j a p + 1

( x ) ) i f r < m. 

Proof : 
Set a .-.(x) = 0, c = 1, and m+1 m 

Pj = oCa^Cx) + Cj a^I+1(x)) , 0 <_ j <_ m. Clearly, 
Pj _> min (o(aj(x)), o(a^+1(x)) _> min(nj,nj+1 - 1). But according 
to (2.2), o(a^+1(x)) > n p + 1 - 1 > n p, so that p p = o(ar) = np. 
Applying (2.2) once more we see that if j > r then 
Pj - j > P r - r. If j < r then j + 1 <_ r. Hence we obtain from 
the second inequality of (2.2) that in this case Pj - j _> p r - r. 

Recall the standard notations 
(a) = aa + 6p(x,Q 

and q(x,D)u = E? = Q cj(x)(-i)̂ d̂ u/dx̂  for 
q(x,5) = Z? = 0 Cj(x) 

The main result of the present paper is 

Theorem 1 : 
Let the coefficients a j ^ x ^ °^ "t}le differential ope­

rator L = E?_Q a j (x)d̂ /dx-1 be C°° (complex valued) functions in 
a neighborhood of the origin and let n m < °° . Assume that the 
branches ^ (x), . . . , £m(x) of roots of p(x,£) = ̂ -0 a j ^ x ^ ' ^ ^ ^ 
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satisfy the following condition. If x.£̂ (x) is unbounded as 
x -* 0 , and lim c.(x)/c-(x) = lim c.(x)/£,(x) = 1, then either 

x+0 1 3 x+0 1 K 

i = j o r i = k o r j = k . Set 

(3.1) q(x,C) = p(x,C) + f P Q ) (X ,U 

and let m - r be the common characteristic index of L = p(x,D) 
and q(x,D). Then the derivatives of the non-zero determining 
factors Q +̂̂ (x),...,Qm(x) of L are given by the formula 

dQ. v / 

(3.2) i e j ) k x ^ j a r + i , . . . , n 

where zT w • \ 3- 1 x k / / q , q < 3 < m, is the formal Puiseux k=M( 3) 3 ,k 5 

expansion of the branch n j ^ x ^ °^ roots of q(x,£)> labelled 
so that the sequence {M(j)> is non-increasing. 

Proof : 
We show first that M(j) = N(j) and Bj N(J) = aj N(j) 

for r < j _< m. Set w = min n^ + hN(j)/q, 
0<h<m 

I = {h : n h + hN(j)/q = w} , so that 

0 < s h f e i V x ) a j , H < J > * N ( 3 ) / Q > H ) > W • A N D 

o( 2 h f c Ia h(x)(a j j N ( i )x N (^^) h) > w , but 

o(Z^ Ta, (x) ( a X N ( ^ ) / q ) h ) = w for all but finitely many values 
h 1 n 

of a . If h£ I, then n
h + 1 " 1 = 

nh+l + ( H + 1 ) N (3)/q " h N(j)/q - (l+N(j)/q > 
> w - hN(j)/q - (l+N(j)/q) = n h - (l+N(j)/q) > n h . 
Hence p h = n h, where wc set J H = o(ah - ~ (h+l)a +̂1> and 
a _.(x) = 0. For all h , 0 < h < m , m+1 ~ ~ 
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p h + hN(j)/q > min (nh + hN(j)/q ,nh + 1 - 1 + hN(j)/q > 

> min (w,n h + 1 + (h+1) N (j)/q - (1 + N(j)/q)) = w. 

Hence p h + hN(j)/q = w precisely for h £1 and cu N ^ ^ x N ^ ^ q is 
the lowest term in a Puiseux expansion for a branch nk of roots 
of q(x,£), since 

o(Eh J[an - |(h + l)a^ + 1l (â  5 N ( j ) x N ( j ) / q ) h ) > w, and if he I then 

o(a h(x)U J 5 N ( j )x^>^) h) < o C a A + 1 < x ) ( a j ) N ( j / < ^ V V 

By lemma 3.1, m 2 k > r> a n d follows thvt all lowest order terms 
of the expansions of the m - r branches n ^(x) , . . . , tim(x) are 
obtained in this way. 

We want to prove that the function Q..(x), whose deriva­
tive is given in (3.2), is a determining factor. By lemma 2.1, 
it suffices to show that the characteristic index of the operator 
-T.(x) T.(x) 
e ^ L(e ̂  v) is strictly less than m, where dT_.(x)/dx = 
i j^ x^ # Thus suppressing the subindex j , consider the operator 
Mv = e~ T ( x )L(e T ( x )v) = L^_Q bh(x)dhv/dxh. Then (compare (2.4)) 

(3.3) bQ(x) =E k = Q ak(x)S(k,x) 

(3-4 4) b, (x) =Z ™ . k av(x)S(k-l,x) 1 k = l k 

(3.5) b2(x) = I Z k = 1 k(k-l)ak(x)S(k-2,x) 

where 
/0 Kv Q/ . -T(x), T(x),(n) 
(3.6) S(n,x) = e (e ) 
But S(0,x) = 1 and S(n+l,x) = TT(x)S(n,x) + Sf(n,x). It follows 
easily by induction that 
(3.7) o(R(n,x)) > (n-2)N(j)/q - 2 
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where 
(3.8) R(n,x) = S(n,x) - ]>'(x)]n + H^i)[T'(x)]n"2T"(x). 

Substituting in (3.3), we see that 

(3.9) bQ(x) =l£=0 ak(x)[T'(x)Jk + Z^ = 2
k ( k" 1 ) ak(x)[T»(x)]k"2T"(x)+ 

+ E k = Q ak(x)R(k,x). 

Note that 
lk ^ = 1 ^ a k U > [ T , ^ ] k " 1 = t l l ^ i (x)[T'(x)Jk^ + 

+ z^=2 *«S^2 ak(x)[T'(x)]k"2T"(x) = 

E k = Q ak(x)[T'(x)]k + E k = 2 î|li> ak(x)[T'(x)]k"2T"(x)-q(x,-iT»(x)) 

But q(x, - iT1(x)) = 0. Hence 

(3.10) bQ(x) = (Z k z l k ak(x)[T'(x)]k-1) + s k = Q ak(x)R(k,x). 

It follows from (3.7) that o(E k = Q aR(x)R(k,x)) > w - 2N(j)/q - 2. 

We distinguish now between two cases. Either 
(i) o(p(1)(x, - iTf(x))) < w - 2N(j)/q - 1, or 
(ii) a(p(1)(x, - iTf(x))) > w - 2N(j)/q - 1. 

(i) In this case 

o ( ^ E k z l k ak(x) [T1 (X)]1^1 > o(p(1)(x, - iT'(x))) - 1 

and o(p(1)(x, - iT'(x))) - 1 < w - 2N(j)/q - 2. 
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Hence o(bQ(x)) > o(p(1)(x, - iT'(x))) - 1. Note that (2.6) may 
be applied to (3.4) , with T replacing Q and - N(j') replacing 
t, yielding the estimate 

o(b.(x) - k a, (x) fT^x)]*"1) > min [n, +(k-2)N(j)/q-ll 
1 k ^ -l<k<m L k 

_> w - 2N(j)/q - 1. It follows that 
o(b1(x)) = o(Ek = 1 k ak[T'(x))k-1) = o(p(1)(x, - iT'(x))). 
Hence the characteristic index of M cannot be larger than 

m - 1. 
(ii) In this case, the branch ^j^ x^ ^ s no"t: " simple "> 

i.e., there exists an index k,r k <_ m, k ̂  j, such that 
N(j) = N(k) and 3j N(j) = ^ N ( k ) • BY assumption, if N(a) = N(j) 
and $j = 3£?N(£) J t n e n either j = l or k = % . An easy 
computation shows that 

°(Zh = 2 ^ ^ ^ ^ ^ ( x ) ] 1 1 " 2 ) = o(p(2)(x,nj(x)) has to be equal to 

w = 2N(j)/q . Applying (2.6) (modified as in case (i)) to (3.5), 
we see that 
o(b2(x) - z£_2 —^T^" a h ( x ) E T ^ x ) ] h " " 2 ) > min [n +(h-3)N(j)/q-l] 

2_<h<_m 
> w - 3N(j)/q - 1 > w - 2N(j)/q. 

Hence o(b2(x)) = w - 2N(j)/q. On the other hand, it follows from 
(3.7) and (3.10) that in our present case (ii) 
o(bQ(x)) >_ w - 2N(j)/q - 2. Hence the characteristic index of M 
is less than or equal to m - 2. 
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If j and l are two distinct indices such that 
N(j) = N(a) and $ . = 3 for N(j) <_ k < - q - 1 (so that 
the right hand sides of (3.2) coincide for j and I , then 
case (ii) occurs (it is easy to see that 

o(q(1)(x, - iT?)) > w - 2N(j) - 1 and 

P(l) 5 " — w " 2 N ^ ' " 1' a n d " t h e indicial equation 
of M is of the second order. Hence Q.(x) = Q (x) is indeed 
a double determining factor. By assumption there can be no third 
index f with N(j) = N(f) and 3^ = ef N(f)* H e n c e t h e 

formula (3.2) is completely established, with the correct multi­
plicities . 

4 - HYPOELLIPTICITY WHEN M CHARACTERISTICS 11 ARE AT MOST " DOUBLE ". 

In this section we apply theorem 1 to the problem of 
characterizing hypoelliptic ordinary differential operators whose 
" characteristics " are at most " double One of the main results 
of [4j is that if L is an ordinary differential operator of or­
der m with C°° coefficients in a neighborhood of the origin and 
if n m < oo , then L is hypoelliptic in a neighborhood of the 
origin if and only if (i) ar(0) i 0 and (ii) | Re Q..(x)| °° as 
x 0 for r < j _< m. This result was applied in [4j for the cha­
racterization of hypoelliptic ordinary differential operators 
whose " characteristics " are at most " simple " (Theorem 2 of 
[V] ) • Similarly, we shall prove 

Theorem 2.-
Let the coefficients a j ^ x ^ o f t h e differential opera­

tor L = £™_o aj (x)d3/dx:i be C°° (complex valued) functions in 
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a neighborhood of the origin, and let n m < °° . Assume that the 
branches c-̂ (x), ... , Cm(x) of roots of 
p(x,£) = E^-Q aj(x)(i^)^ satisfy the following condition. 
If xc^(x) is unbounded as x ->• 0, and 
lim c-(x)/c-(x) = lim C-(x)/c,(x) = 1, then either i = j or x->0 3 x+0 
i = k or j = k . Set q(x,C) = p(x,£) + | (x,£). 
A necessary and sufficient condition for the hypoellipticity of 
L in a neighborhood U of the origin is that there exists a 
constant C > 0 such that for x L U and C a complex number 
satisfying q(x,c) = 0, either |c| < C or |x| | Imc | 00 

as x 0. 

Proof : 
Sufficiency : Set Nu = q(x,D)u = £™ = 0 bj(x)d̂ u/dx̂ . 

By lemma 3.1, the characteristic index m - r of L is equal 
to the characteristic index of N , and n p = oCb^Cx)). The ope­
rator Nu satisfies all the assumptions of Lemma 6.1 bis of ]VJ ; 

hence the conclusions of that lemma apply to N. In particular, 
o(br(x)) = 0, which implies that condition (i) is satisfied. 

By theorem 1, the derivatives of the determining fac­
tors of L are given by (3.2). Choose a branch of x 1 ^ which 
is positive for x > 0 (this implies a certain choice of the cons­
tants 3. , ). For every j, r < j < m, there exists at least one 

J » K "~ 
3- , which is not real, with N ( j ) < k < - q - l (otherwise J 3K — — 
|x| | Im̂  | would not tend to » as x 0 , since 
rij(x) - 3j k x k ^ is bounded as x •> 0, by lemma 6.2 
of [4] ) . Hence | Re Qj(x)| + » as x -> 0+. Similarly, we can 
prove that | Re (x) | -* 00 as x -> 0_. This condition (ii) is 
also satisfied. 
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Necessity : It is easy to prove (as is done at the end 
of section 6 in [4]) that if there exists an unbounded branch 
rij(x) of zeros of q(x,£) with 1 < j < r then b^tO) = 0 
and, by Lemma 3.1, n p > 0. Similarly, q(0,c) = 0 can hold only 
for finitely many values of c • Otherwise q(0,c) = 0, = 0 
for all j , 0 <_ j <_ m and in particular br(0) = 0 and 
ar(0) =0. If |x| I Im rij(x)| does not tend to «> as x 0 
(even if it does so from one side only) for some index j, 
r < j <_ m, then Lemma 6.2 of W\ implies once again that 3- v 

is real for N(j) <_ k <_ - q - 1 (for a suitable choice of the 
branch of x 1 ^ ) . Thus Qj(x) is purely imaginary (at least 
from one side) by (3.2), and L cannot be hypoelliptic near the 
origin. Hence p(x,c) = 0 only if either |c| is bounded or 
I x I I Im? I -> 00 as x 0. 

5. DETERMINING FACTORS AND HYPOELLIPTICITY FOR OPERATORS OF THE  
THIRD ORDER. -

Consider the operator Lu = Sj-o aj (x)d^u/dx^ 5 where 
the coefficients a j ^ x ^ a r e c°° functions at a neighborhood of 
the origin and n 3 < » . Hence a3(x) t 0 for x i 0 if x 
is sufficiently small. Set 

a.(x) 
(5.1) b.(x) = , 0 < j < 3. 

Then every function b j ^ x ^ , 0 <_ j <_ 3 , has a formal Laurent 
expansion, with > " 00 • T h e determining factors of L are 
obviously unaffected by this division. Moreover 3 - r is both 
the characteristic index of L and of ^— L. 

a3 
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Set p(x,ç) = S? = 0 b_.(x)(iç)
3 and 

(5.2) q(x,Ç) = p(x,Ç) + j p[ijj (x,ç) - -y P(2) ( x > Ç ) 

We can state now 

Theorem 3.-

Let 

(5.3) q ( x , ç ) „ - i T j 3 a i ( ç _ e - b M ( j ) 

be the formal Puiseux expansion of q, labelled so that {M(j)} 

is non-increasing. Then the derivatives of the determining fac­

tors of L are given by 

dQ. n w 

( 5- 4 ) dx^ = 1 2k=mj) »j,]c* / q , j = r + 1, 3. 

Proof : 

Choose complex numbers ĉ  and d.. such that 

Cj + dj = - (j+l)/2 , Cjdj = (j+1) (j+2)/12. Repeated application 

of Lemma 3.1 yields that the operator q(x,D), whose j-th coef­

ficient is 

b..(x) - (j+l)b +̂1(x)/2 + (j+2)(j+l)bV + 2(x)/12 = 

= [bj(x) + Cjbï+1(x)] + d j [bj+1(x) + C j bï+2(xO] 

has the same characteristic index 3 - r as L (here we have 

put b1+(x) = b5(x) = 0). Hence the use of the index r in (5.4) 

is justified. By lemma 2.1, it suffices to consider the characte-
-T(x) T(x) 

ristic index of the operator Mv = e L(e v(x)), where 

(5.5) ^ = i C M... 6. Vx
k / <1 dx k=M(j) j ,k 

for some j , r < j <_ 3. Set Mv = E^-Q C J (x)d3 v/dx3 . Then 
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(5.6) c3(x) = 1 
(5.7) c2(x) = b2(x) + 3Tf(x) 
(5.8) C l(x) = 3[Tf(x)]2 + 2b2(x)T!(x) + b^x) + 3T"(x) 

(5.9) cQ(x) = [l"(x)]3 + b2(x)[T»(x)]2 + b1(x)T'(x) + bQ(x) + 
+ 3Tt(x)T"(x) + b2(x)T"(x) + T ( 3 )(x) 

Inserting (5.2) into (5.3) (using also (5.3) and (5.5)), we see 
that 
(5.10) cQ(x) = 3TfT" + T ( 3 ) + b2T" + b£Tf + B̂ /2 - b£/6 

Differentiating (5.7) ana tb.b), we get : 

7 ^ °1 ( X ) = 3 T t T " + f T ( 3 ) + b 2 T ? + b 2 T " + \ bl 

\ c9(x) = \ b"(x) + t ( 3 ^ ( x ) 

6 dx2 2 6 2 2 

Hence 
(5.11) cQ(x) = \ d_ C l ( x ) - 1 i_ c (X) 

dx 
and 

o(c0) >_ min (o(ĉ ) ,o(c2)) min (o(ĉ ) - 1, o(c2) - 2) 
so that the characteristic index of M is strictly less than 3. 
Note that if r = 0 and the right hand side of (5.4) is independent 
of j, j = 1,2,3, then o(c2(x)) = o(qvz'(x, - iT'(x))) > - 1 
which proves that the characteristic index of M is 0 and Q̂ (x) 
is a triple determining factor. If the right hand sides of (5.4) 
are the same for exactly two values of j, say for j = a n <^ 
j = j 2 , then it is easily seen that 

o(q(1)(x, - iT'(x))) > o(q(2)(x, - iT'(x))) - 1 
where - iTf(x) is given by (5.5) for j = But 
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c2(x) = - q ( 2 )(x 5 - iTT(x))/2 and 
c1(x) = - i q ( 1 )(x, - iT'(x)) + c£ (x) . 
It follows that oCc-ĵ) >_ o(c2) - 1 and the characteristic index 
of M is 1. 
Hence formula (5.4) gives also the correct multiplicities of the 
determining factors. 

We can now characterize hypoelliptic ordinary diffe­
rential operators of the third order. 
Theorem 4 : 

L is hypoelliptic near the origin if and only if 
(i) n r = 0 and (ii) whenever n̂ (x) is an unbounded branch of 
zeros of q(x,£) where q(x,£) is given by (5.2), then 
|x| |lm nj(x)| -> oo as x 0. 

Theorem 4 is an immediate corollary of theorem 1 of 
(stated also in section 4 of the present paper), Theorem 3, 

and the fact that the Puiseux expansion of n j ^ x ^ ̂ s actually 
asymptotic expansion (compare Lemma 6.2 in [}+]). 

Condition (i) of Theorem 4 can be replaced by a condi­
tion on the zeros sets of q(x,£) and of a3(x)p(x,£) . We leav< 
the details to the reader. 
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