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Gradient regularity for nonlinear parabolic equations
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Abstract. We consider non-homogeneous degenerate and singular parabolic
equations of the p-Laplacian type and prove pointwise bounds for the spatial
gradient of solutions in terms of intrinsic parabolic potentials of the given datum.
In particular, the main estimate found reproduces in a sharp way the behavior of
the Barenblatt (fundamental) solution when applied to the basic model case of
the evolutionary p-Laplacian equation with Dirac datum. Using these results as
a starting point, we then give sufficient conditions to ensure that the gradient is
continuous in terms of potentials; in turn these imply borderline cases of known
parabolic results and the validity of well-known elliptic results whose extension
to the parabolic case remained an open issue. As an intermediate result we prove
the Hölder continuity of the gradient of solutions to possibly degenerate, homo-
geneous and quasilinear parabolic equations defined by general operators.
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1. Introduction and results

In this paper we deal with non-homogeneous, measure data and possibly degener-
ate/singular parabolic equations of the type

ut � div a(Du) = µ, (1.1)

considered in cylindrical domains�T = �⇥ (�T, 0), where� ⇢ Rn is a bounded
domain and T > 0. We are here ultimately aiming at providing boundedness and
continuity estimates of the spatial gradient of solutions Du in terms of suitable
linear and nonlinear potentials of the right-hand side measure µ. In turn, modulo
standard approximation procedures, a priori estimates found allow µ to be, in the
most general case, a Borel measure with finite total mass: |µ|(�T ) < 1. The
C1-vector field a : Rn ! Rn is assumed to satisfy the following assumptions

(
|a(z)| + |@a(z)|(|z|2 + s2)1/2  L(|z|2 + s2)(p�1)/2

⌫(|z|2 + s2)(p�2)/2|⇠ |2  h@a(z)⇠, ⇠i
(1.2)

whenever z, ⇠ 2 Rn . The numbers s, ⌫, L are assumed to satisfy 0 < ⌫  L and
s � 0. In this paper we shall assume

2�
1

n + 1
< p. (1.3)

The assumptions (1.2) are considered in order to generalize the main model example
we have in mind, that is the evolutionary p-Laplacian equation

ut � div (|Du|p�2Du) = µ, (1.4)

which clearly satisfies the assumptions considered in (1.2) with s ⌘ 0. In this
respect, lat us observe that the number s serves to distinguish the degenerate case
(s = 0) from the non-degenerate one (s > 0).

The lower bound (1.3) looks natural in view of the available existence theory
that guarantees the existence of solutions in a Sobolev space; for this we refer to
[4–6]. On the other hand, the sharpness of the lower bound in (1.3) with respect to
such a property can be seen for instance by looking at the Barenblatt solution; see
Section 1.3 below. For the same reason, as solutions to (1.1) are usually obtained
via approximation with solutions to equations with more regular data and solutions,
in the following we shall always assume to deal with energy solutions, i.e. we say
that u is a solution to (1.1) if

u 2 C0(�T, 0; L2(�)) \ L p(�T, 0;W 1,p(�)) (1.5)

and u solves (1.1) in the distributional sense

�
Z

�T

u't dx dt +
Z

�T

ha(Du), D'i dx dt =
Z

�T

' dµ (1.6)
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whenever ' 2 C1
c (�T ). Finally, without loss of generality we shall assume that

µ 2 L1(Rn+1).

In other words in this paper we shall confine ourselves to provide uniform a priori
estimates for a priori regular (i.e. satisfying (1.5)–(1.6)) solutions, that in turn imply
similar estimates for general solutions to (1.1) by following the by now classical
approximation procedures proposed in [5,6]. For more on integrability of solutions
to measure data problems (that satisfy (1.6) but usually fail to match (1.5)) we again
refer to [6, 21–23]. In particular, we refer to [30, Section 1.4] for a comprehensive
discussion on the approximation methods in the present context.

The results in this paper fall into two categories. The first one includes (spatial)
gradient pointwise bounds via potentials for solutions to singular with i.e. p  2
— parabolic equations which represent the counterpart of those obtained in [30]
for the degenerate case p � 2. Several relevant differences — both in the type of
results obtained and in the techniques required — occur when p < 2, as it will be
explained in the next section. The second realm of results, instead, includes both
degenerate and singular parabolic equations and deals with a characterization of
gradient continuity of solutions in terms of linear and nonlinear potentials decay
properties.

A point of independent interest here, that actually serves as a preliminary tool
for proving the potential estimates and continuity results, is completely new proof
of the Hölder continuity character of the spatial gradient of solutions in the case of
homogeneous equations

wt � div a(Dw) = 0. (1.7)

We indeed remark that, while in the case of the p-Laplacian equation (and system)

wt � div (|Dw|p�2Dw) = 0, (1.8)

this has been done in the fundamental work of DiBenedetto and Friedman [11,
12], the general case (1.7) has remained essentially untouched as since the work
of Lieberman [34], who was dealing with boundary value problems (note that the
proofs presented in [11] are based on linearization techniques possible only in the
case of special structures as in (1.8)). The estimates obtained in [34] are anyway not
sufficient to work as technical background for the results we are going to develop
here, and a new approach to gradient estimates is needed. For the case p � 2
the necessary estimates were obtained in [30], and here we present a yet novel
approach, covering the subquadratic case p < 2, and based on the use of Harnack
inequalities.

In particular, in order to prove the potential estimates, we need a peculiar, rigid
form of the a priori Hölder continuity estimates; see Theorem 3.1 below. This the-
orem is indeed a central tool in our approach as it allows to prove both the gradient
Hölder continuity for solutions to homogeneous equations and the regularity results
and potentials estimates in the case of non-homogeneous ones.
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In rest of the paper, when talking about the gradient of a solution u, we shall
always mean the spatial gradient Du = (uxi )1in . Some of the results of this
paper have been announced in [28].

1.1. Pointwise potential estimates

The results in this section refer to the singular case

2�
1

n + 1
< p  2 (1.9)

and include pointwise bounds for Du in terms of suitable parabolic Riesz potentials
of the right-hand side measure µ. To clarify the situation let us recall the corre-
sponding elliptic background established in [16] (see also [15, 29, 32] for the case
p � 2), and valid for solutions to stationary equations as

�div a(Du) = µ in � (1.10)

with B(x0, 2r) ⇢ � denoting the usual Euclidean ball centered at x0 and with radius
2r > 0, we have that

|Du(x0)|  c
Z

B(x0,r)
(|Du| + s) dx + c

h
I|µ|
1 (x0, 2r)

i1/(p�1)
(1.11)

holds when 2� 1/n < p  2 (this last condition being the usual one ensuring that
elliptic measure data equations have Sobolev solutions). The last quantity on the
right-hand side of (1.11) denotes the classical truncated Riesz potential, i.e.

Iµ� (x0, r) :=
Z r

0

|µ|(B(x0, %))

%n��

d%

%
, � > 0. (1.12)

We refer the reader to [20,25,45, 46] for zero-order nonlinear potentials estimates.
It is now readily seen that in the case of parabolic equations an estimate as

(1.11) simply cannot hold for very elementary reasons: multiplying solutions by
a constant does not yield a solution to a similar equation. For this reason all the a
priori estimates available fail to show homogeneity and scaling properties typical of
elliptic equations as (1.10) (see for instance [1,11,30]), exhibiting instead a scaling
deficit which measures such a homogeneity failure. The analysis of this mechanism
eventually leads to the basic, fundamental technique used to treat equations as (1.1):
the one based on intrinsic geometry and scaling, firstly introduced by DiBenedetto.
We will not go too much into the details of this method, but we rather refer to
[11, 30] for a wider description. We just remark that the core point of this method
prescribes to study the equations not on all parabolic cylinders, but rather on certain
special ones, whose ratio between space and time lengths depend on the size of the
solutions itself on the same cylinder, according to the regularity considered; from
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this fact comes the use of the word “intrinsic”. Specifically, one considers so-called
intrinsic cylinders defined by

Q = Q�
r (x0, t0) ⌘ B(x0, r) ⇥ (t0 � �2�pr2, t0). (1.13)

The number � > 0 in turn obeys |Du| t � > 0 in the sense that

1
|Q�

r |

Z

Q�
r

|Du| dx dt =
Z

Q�
r

|Du| dx dt ⇡ �.

Note that, when � ⌘ 1 or when p = 2, the cylinder in (1.13) reduces to the standard
parabolic cylinder given by

Qr (x0, t0) ⌘ Q1r (x0, t0) ⌘ B(x0, r) ⇥ (t0 � r2, t0).

Exactly in the same way one is alternatively led to consider cylinders of the type

Q�
r�(x0, t0) ⌘ B(x0, �(p�2)/2r) ⇥ (t0 � r2, t0), r� = �(p�2)/2r. (1.14)

The main effect of considering equations on such cylinders is that they locally look
as isotropic ones, and estimates homogenize. As a matter of fact, all the a pri-
ori regularity estimates available for solutions can be expressed in terms of local
geometries, see for instance [11,13,14].

In this paper we shall see that Riesz potentials interact with intrinsic geometries
to make gradient potential estimates hold for singular parabolic equations. Indeed,
the natural — in a sense that will be clear in a few lines — parabolic generalization
of estimate (1.11) can be achieved using a family of intrinsic Riesz potentials. More
precisely, let us recall that the parabolic Riesz potential of µ is defined by

Iµ� (x0, t0; r) :=
Z r

0

|µ|(Q%(x0, t0))
%N��

d%

%
, 0 < �  N := n + 2 (1.15)

where in turn N is the usual parabolic dimension. Then the following holds:

Theorem 1.1 (Intrinsic linear potential bound). Let u be a solution to (1.1) with
2 � 1/(n + 1) < p  2. Let � > 0. The following holds for a.e. (x0, t0) 2 �T :
There exists a constant c � 1, depending only on n, p, ⌫, L , but not on (x0, t0), the
solution u, or the vector field a(·), such that if � > 0 is a generalized root of

� = c� + c
Z 2r�

0

|µ|(Q�
%(x0, t0))

%N�1
d%

%
, r� = �(p�2)/2r, (1.16)

and if Z

Q�
r�

(|Du| + s) dx dt  �,

where Q�
2r� ⌘ Q�

2r�(x0, t0) ⌘ B(x0, 2�(p�2)/2r) ⇥ (t0 � 4r2, t0) ⇢ �T is an
intrinsic cylinder with vertex at (x0, t0), then

|Du(x0, t0)|  �.
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By saying that � is a generalized root of equation (1.16), where � > 0 and c �
1 are given constants, we mean a positive solution to (1.16) (the smallest can be
taken), with the word “generalized” referring to the possibility that no root exists,
in which case we simply set � = 1. The finiteness of the integral on the right-
hand side of (1.16) anyway rules this case out, see Remark 4.1 below. Although the
formulation of Theorem 1.1 might appear at first sight involved, it is actually the
natural parabolic version of the elliptic estimate (1.11). Indeed, when dealing with
degenerate/singular parabolic problems, all estimates find their optimal form only
using intrinsic formulations. As a matter of fact, Theorem 1.1 precisely allows to
recast the behavior of the so-called Barenblatt (fundamental) solution. We refer to
Section 1.3 for the precise computation. Moreover, we remark that when µ ⌘ 0,
Theorem 1.1 gives back a classical result of DiBenedetto and Friedman asserting
that

c
Z

Q�
r�

(|Du| + s) dx dt  � ) |Du(x0, t0)|  �

for a constant c ⌘ c(n, p, ⌫, L) � 1; see Theorem 4.2. As a matter of fact Theorem
1.1 can read as follows: there exists a constant c ⌘ c(n, p, ⌫, L) such that

c
Z

Q�
r�

(|Du| + s) dx dt + c
Z 2r�

0

|µ|(Q�
%(x0, t0))

%N�1
d%

%
) |Du(x0, t0)|  �.

Theorem 1.1 provides estimates on intrinsic cylinders, and therefore its applicability
does not look immediate as it prescribes to go through the intrinsic relation (1.16);
nevertheless Theorem 1.1 always implies a priori estimates in standard parabolic
cylinders:

Corollary 1.2 (Parabolic Riesz potential bound). Let u be a solution to (1.1)with
2� 1/(n + 1) < p  2. The following holds for a.e. (x0, t0) 2 �T : There exists a
constant c, depending only on n, p, ⌫, L , but not on (x0, t0), the solution u, or the
vector field a(·), such that

|Du(x0, t0)|  c
✓Z

Qr

(|Du| + s + 1) dx dt
◆2/[2�n(2�p)]

+ c
⇥
Iµ1 (x0, t0; 2r)

⇤2/[(n+1)p�2n]
(1.17)

holds whenever Q2r ⌘ Q2r (x0, t0) ⌘ B(x0, 2r)⇥(t0�4r2, t0) ⇢ �T is a standard
parabolic cylinder with vertex at (x0, t0).

Finally, when µ is time-independent or admits a favorable decomposition —
see (1.18) below — the elliptic Riesz potentials come back exactly as in (1.11):

Corollary 1.3 (Parabolic/Elliptic Riesz potential bound). Let u be a solution to
(1.1) with 2 � 1/(n + 1) < p  2 and assume that the following decomposition
holds:

µ = µ0 ⌦ f, (1.18)
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where µ0 is a finite mass Borel measure on Rn and f 2 L1(�T, 0). The following
holds for a.e. (x0, t0) 2 �T : There exists a constant c, depending only on n, p, ⌫, L ,
but not on (x0, t0), the solution u, or the vector field a(·), such that

|Du(x0, t0)|  c
✓Z

Qr

(|Du| + s + 1) dx dt
◆2/[2�n(2�p)]

+ ck f k1/(p�1)L1

⇥
Iµ01 (x0, 2r)

⇤1/(p�1)
(1.19)

whenever Q2r (x0, t0) ⌘ B(x0, 2r) ⇥ (t0 � 4r2, t0) ⇢ �T is a standard parabolic
cylinder having (x0, t0) as vertex. The (elliptic) Riesz potential Iµ01 is defined in
(1.12).

Remark 1.4 (Structure of the exponents). It is worthwhile to analyze the expo-
nents appearing in (1.17), and in particular to make a comparison with the one ap-
pearing in (1.19), as they precisely reflect the structure properties of the equation,
and in particular of the Barenblatt (fundamental) solutions. The number 2/[2 �
n(2 � p)] is the same one appearing in the typical gradient estimates for homoge-
neous equations (µ = 0) and reflects the gradient nature of the estimate in ques-
tion. Indeed, when µ ⌘ 0 estimate (1.17) reduces to the classical one obtained
in [11, Chapter 8, Theorem 5.20]. The exponent 2/[(n + 1)p � 2n] instead blows
up as p ! 2n/(n + 1) and reflects the non-homogeneity of the equation studied,
as well as the structure of the Barenblatt solution; see Section 1.3 below. Such
exponent indeed intervenes in those estimates related to the Barenblatt solution, as
for instance the Harnack inequalities in [13, 14, 26]. For the very same reason the
exponent 2/[(n + 1)p � 2n] relates to the fact that the right-hand side measure µ
in general depends on time, and it disappears when µ is time-independent. This
is completely natural as in this case it is possible to consider stationary solutions,
for which (1.19) reduces to the elliptic estimate in (1.11). Yet, it is interesting to
compare estimate (1.17) with the main result in [1], where a completely similar
dependence on the exponents appear.

The techniques used to prove Theorem 1.1, although relying on the general
scheme already introduced in [30] for the case p � 2, differ from those of [30]
in several relevant aspects, which are essentially linked to the fact that we are here
dealing with the singular case. Singular equations are indeed more delicate to treat
when proving gradient bounds: as a matter of fact, as estimates as (1.16) and (1.17)
essentially aim at establishing an upper bound for the gradient, they become more
difficult to prove, because the equations as for instance (1.4) become more degen-
erate as |Du| increases when p < 2. In other words, the structure of the equation
itself poses additional obstructions to the proof of gradient bounds; for the same
reason the word singular appears somehow misleading when used in the present
context. As mentioned earlier in this paper, in order to prove Theorem 1.1 we shall
develop a novel approach to the Hölder continuity of the gradient of homogeneous
equations as (1.7) for general vector field a : Rn ! Rn satisfying (1.2). Here,
avoiding any linearization as used in [11, 12] we treat general singular equations
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as (1.7). The approach in this paper prescribes to use as a central tool a homoge-
neous excess decay bound found in Theorems 3.1-3.5 below. In turn, these imply
the Hölder continuity of the gradient Dw together with suitable a priori estimates
in intrinsic cylinders, as eventually shown in Theorem 3.3. It is worth noticing here
that our proof does not make of logarithmic type inequalities but rather relies on the
classical weak Harnack inequality for linear parabolic equations.

1.2. Continuity of the gradient via potentials

In this section we shall consider parabolic equations under the more general bound
in (1.3), therefore treating both degenerate and singular parabolic equations. For
the sake of exposition we shall first give the continuity criteria in the singular case
(1.9), and eventually will give the statements for the degenerate one p � 2, where,
according to [30], nonlinear Wolff potentials come into the play. The proof of the
results in the case p � 2 can be indeed achieved combining the new arguments
presented here with those developed in [30] in a way which appears then clear to
the careful reader of both the papers.

To understand the role that potentials play in establishing the continuity of the
gradient, let us observe that Corollary 1.2 establishes that Du is locally bounded
provided so (x0, t0) 7! Iµ1 (x0, t0; ·) is. In particular, in this case we have that
Iµ1 (x0, t0; r) ! 0, equiboundedly with respect to (x0, t0). By strengthening this
condition in uniform converge finally leads to the continuity of Du.

Theorem 1.5 (Gradient continuity via linear potentials). Let u be a solution to
(1.1) in �T and assume (1.2) with 2 � 1/(n + 1) < p  2. If Iµ1 (x, t; r) ! 0
uniformly in (x, t) 2 �T as r ! 0, that is

lim
r!0

sup
(x,t)2�T

Z r

0

|µ|(Q%(x, t))
%N�1

d%

%
= 0 (1.20)

holds, then Du is continuous in �T .

Weakening the convergence in (1.20) still leads to VMO gradient regularity.

Theorem 1.6 (Gradient VMO-regularity). Let u be a solution to (1.1) in�T and
assume (1.2) with 2� 1/(n + 1) < p  2. If the function

(x, t) 7! Iµ1 (x, t; r) =
Z r

0

|µ|(Q%(x, t))
%N�1

d%

%

is locally bounded in �T for some r > 0, and if furthermore

lim
r!0

|µ|(Qr (x, t))
r N�1 = 0 uniformly in (x, t) 2 �T , (1.21)

then Du is locally VMO-regular in �T .
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We recall that the local VMO-regularity of Du means that for every subcylin-
der Q̃ b �T , we have that

lim
r!0

sup
Q%⇢Q̃,%r

Z

Q%

|Du � (Du)Q% | dx dt = 0. (1.22)

The case p � 2 instead involves the use of Wolff potentials, and connects to the
results obtained in [30].

Theorem 1.7 (Gradient continuity via nonlinear potentials). Let u be a solution
to (1.1) in �T and assume (1.2) with p � 2. If

lim
r!0

sup
(x,t)2�T

Z r

0

✓
|µ|(Q%(x, t))

%N�1

◆p/[2(p�1)] d%

%
= 0 (1.23)

holds, then Du is continuous in �T . Finally, if the function

(x, t) 7!
Z r

0

✓
|µ|(Q%(x, t))

%N�1

◆p/[2(p�1)] d%

%

is locally bounded in�T for some r > 0, and if furthermore (1.21) holds uniformly
with respect to (x, t) in �T , then Du is locally VMO-regular in �T .

We remark that the previous statements extend to the parabolic case the gradi-
ent continuity criteria found in [17], the proof being here considerably more diffi-
cult and involved — actually new ideas are needed. For statements relating VMO-
regularity and conditions as in (1.21) see also [39,40].

The previous three theorems admit a number of corollaries, allowing to set a
few questions that, being classical in the elliptic case, remained still open in the
parabolic one, at least in the case p 6= 2. A first corollary concerns a Lorentz
Spaces criterion ensuring the continuity of the gradient. The one in the next lines
is actually a borderline version of a result of DiBenedetto [11] asserting that for
solutions to the model equation (1.4), we have

µ 2 LN+� =) Du is Hölder continuous

whenever � > 0, where N = n + 2 is the usual parabolic dimension (see [11,
Chapter IX]). A borderline version of DiBenedetto’s result, valid now for general
equations as in (1.1) and given in terms of natural Lorentz spaces, is the following:

Corollary 1.8 (Lorentz spaces criterion). Let u be a solution to (1.1) in �T , un-
der the assumptions (1.2) with p > 2� 1/(n + 1); assume also that

µ 2 L(N , q), where q := min{1, p/[2(p � 1)]}.

Then Du is continuous in �T .
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Needless to say, LN+� ⇢ L(N , q) for every q > 0. We refer to Section 2
below for the relevant definitions on Lorentz spaces in this setting. See also [27] for
a related gradient boundedness result.

The last result we propose extends to the parabolic case by now classical ellip-
tic results of Lieberman [35] asserting that, when considering elliptic equations as
(1.10), the density condition

|µ|(B%)  c%n�1+�

for some � > 0 implies the local Hölder continuity of the gradient (see also the
work of Kilpeläinen [19] for similar statements concerning u rather than Du). Here
we find that a similar condition still implies Hölder continuity, obviously replacing
n with the parabolic dimension N = n + 2.

Theorem 1.9 (Measure density criterion). Let u be a solution to (1.1) in �T , un-
der the assumptions (1.2) with p > 2� 1/(n + 1); assume also that

|µ|(Q%)  cD%N�1+� (1.24)

holds for some cD � 1 and � > 0, whenever Q% is a standard parabolic cylinder
having width equal to %. Then there exists an exponent � 2 (0, 1), depending only
on n, p, ⌫, L and �, such that Du 2 C0,�loc (�T , Rn).

The borderline case of the previous result also follows:

Corollary 1.10 (Borderline measure density criterion). Let u be a solution to
(1.1) in �T , under the assumptions (1.2) with p > 2� 1/(n + 1). Assume that, for
a non-negative function h : [0,1) ! [0,1) such that

Z

0
[h(%)]q

d%

%
< 1, where q = min{1, p/[2(p � 1)]},

the inequality
|µ|(Q%)  c%N�1h(%) (1.25)

holds for some c � 1, whenever Q% is a standard parabolic cylinder having width
equal to %. Then Du is continuous in �T .

The proof of the gradient continuity criteria of Theorems 1.5-1.9 involves some
delicate new ideas. In particular, we do not use the stopping time arguments on
chains on shrinking cylinders, where we measure the oscillations of Du (as for the
proof of Theorem 1.1 – a method introduced earlier in [30]). On the contrary, we
build a new iteration scheme using an a priori large number of stopping times, by
instead recovering the regularity estimates using excess decay properties that hold
exactly on chains of cylinders bounded by the exit times considered. We shall call
these as maximal iteration chains reflecting the degeneracy/singularity of the equa-
tion and they are defined in due course of the proof of Theorem 1.6. The first result
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we prove is indeed Theorem 1.6; after proving the VMO-regularity of the gradient
we use this result to prove its continuity under the more restrictive assumption of
the convergence of the potentials. A particular feature of the proof is that it is made
in order to keep track of the constant dependence in a very precise way. Indeed,
intrinsic in the proof of Theorem 1.6 is a control of the modulus of continuity of the
gradient in terms of certain radii that, when considering (1.24), leads to the proof of
Theorem 1.9. This last results indeed relies in turn on the method of Theorem 1.6
together with a very careful analysis of the constants dependence in the a priori
estimates for solutions to homogeneous equations, when considered with respect to
a certain exit time argument. Indeed, for Theorem 1.9 it is necessary to develop a
suitable version of Theorem 3.1 below, namely, Theorem 3.5, where a more care-
ful constants dependence is connected to a certain double sided inequality for the
intrinsic geometry.
Remark 1.11. The techniques of this paper are suitable to treat more general equa-
tions of the type

ut � div a(x, t, Du) = µ

under suitable regularity assumptions on the partial map x 7! a(x, ·). More pre-
cisely, we assume that for every point (x, t) the vector field z 7! a(x, ·) satisfies
assumptions (1.2), while the map x 7! a(·, t, ·) is just assumed to be measurable.
Instead, with respect to to the x variable we assume a Dini continuity dependence,
that is, we assume that

|a(x, t, z) � a(y, t, z)|  !(|x � y|)

holds whenever x, y 2 �, t 2 (�T, 0) and z 2 Rn , where
Z

0
!(%)

d%

%
< 1. (1.26)

Note that we do not need to assume any regularity on the partial map t ! a(·, t, ·)
other than measurability. For the sake of brevity we shall not report the necessary
modifications; this can be obtained by using the techniques introduced in this paper
with those of forthcoming [31]. Indeed, in this last paper we shall further exploit
the ideas used here to prove a few regularity results for solutions to p-Laplacian
type evolutionary systems with coefficients. Moreover, we shall also show how
to use the techniques of this paper to prove the Lipschitz continuity of solutions
to systems which are asymptotically close to the p-Laplacian one. See also the
paper [16], where condition (1.26) has been used in the elliptic case.

1.3. Comparison with the Barenblatt solution

Here we are going to demonstreate the sharpness of the intrinsic potential estimate
of Theorem 1.1 by showing that Theorem 1.1 provides for solutions to general
equations as

ut � div a(Du) = � (1.27)
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in Rn ⇥ R, where � is the unit Dirac mass charging the origin, the same asymptotic
estimates that hold for the fundamental solution of

ut � div (|Du|p�2Du) = �. (1.28)

More precisely, for the choice of p and ✓ as follows:

2n
n + 1

< 2�
1

n + 1
< p < 2 and ✓ = n(p � 2) + p, (1.29)

and for a suitable choice of the positive constant cb ⌘ cb(n, p), the function

Bp(x, t) :=

8
>><

>>:

t�n/✓
"
2� p
p

✓
� 1

p�1

 

cb +

✓
|x |
t1/✓

◆ p
p�1

!# p�1
p�2

(x, t) 2 Rn ⇥ (0,1)

0 otherwise

is a very weak solution – in the sense of [6] – to (1.28) in Rn ⇥ R. See for in-
stance [47, page 192]. Specifically, Bp still verifies (1.6), but fails to match the
integrability conditions in (1.5), as it usually happens when dealing with solutions
to problems involving measure data. The function Bp in (1.30) is indeed called
the Barenblatt solution to (1.28) (see [2] for the original motivations). A direct
calculation gives

|DBp(x0, t0)|  ct�(n+1)/✓
0 . (1.30)

As for the bounds in (1.29) notice that indeed DBp(x, t) 2 L1. In fact, observe that
Bp(x, t) = t�n/✓v(|x |t�1/✓ ) with v being a function in C1,↵(R+) for some ↵ > 0.
Then, co-area formula and change of variables give

Z T

0

Z

Rn
|DBp(x, t)| dx dt = !n�1

Z 1

0
|v0(r)|rn�1 dr

Z T

0
t�1/✓ dt < 1

for all T > 0 if and only if

�
1
✓

> �1 () n(p � 2) + p > 1 () p >
2n + 1
n + 1

= 2�
1

n + 1
,

which is exactly the bound in (1.9). Note that here we have also used the estimate
Z 1

0
|v0(r)|rn�1 dr  c

✓
1+

Z 1

1
r

1
p�1+

p
p�1

⇣
p�1
p�2�1

⌘
+n�1 dr

◆
< 1

for some c ⌘ c(n, p), and in turn this is implied by

1
p � 1

+
p

p � 1

✓
p � 1
p � 2

� 1
◆

< �n ()
2

p � 2
< �n () p > 2�

2
n
.
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It follows that
Ar (�) :=

1
|Qr |

Z

Q�
r�

|DBp| dx dt ! 0 (1.31)

as r ! 1, uniformly with respect to � > 0 and (x0, t0) 2 Rn ⇥ R. In fact, this is
true for solutions u to more general Cauchy problems whenever the initial trace of
u is compactly supported, i.e. that the source term is concentrated on t = 0 and has
a compact support, see for example [11, Chapter 11] and [33].

The point we are interested in here is that it is possible to show the pointwise
bound appearing in (1.30) as a direct consequence of Theorem 1.1 and convergence
property (1.31), thereby proving its sharpness. For this, let us start observing that,
with (x0, t0) 2 Rn⇥(0,1), we have t0��2�p%2 < 0 iff % >

p
�p�2t0. Therefore,

whenever � > 0, we obtain
Z 1

0

 
�(Q�

%(x0, t0))
%N�1

!
d%

%

Z 1

p
�p�2t0

✓
1

%N�1

◆
d%

%
= c

⇣
�p�2t0

⌘�(n+1)/2
. (1.32)

Now, let us define, for � > 0, the function

hr (�) := � � c�n(2�p)/2Ar (�) � c
Z 2r�

0

 
�(Q�

%(x0, t0))
%N�1

!
d%

%
,

where Ar (·) has been defined in (1.31). Observe that under the assumption (1.3) we
have n(2� p)/2 < 1 and thus the function hr (·) is negative in a neighborhood of 0
(if Ar (�) ⌘ 0 for some � > 0, there is nothing to prove). On the other hand, for the
same reason, and noticing also that again by (1.3) we have (2 � p)(n + 1)/2 < 1
by (1.32), we conclude with

lim
�!1

hr (�) � lim
�!1

h
� � �n(2�p)/2Ar (1) � c�(2�p)(n+1)/2t�(n+1)/2

0

i
= 1.

The function hr (·) is, on the other hand, easily seen to be continuous and therefore
there exists a solution �r > 0 of the equation hr (�r ) = 0. We can hence apply
Theorem 1.1 to Bp in order to obtain

|DBp(x0, t0)| + �r  2c�n(2�p)/2
r Ar (�r ) + 2c

Z 1

0

 
�(Q�r

% (x0, t0))
%N�1

!
d%

%
.

By using Young’s inequality with conjugate exponents
✓

2
n(2� p)

,
2

2� n(2� p)

◆

we estimate
�
n(2�p)/2
r Ar (�r ) 

�r

4
+ c[Ar (�r )]2/[2�n(2�p)].
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On the other hand, noting ✓/2 + (n + 1)(2 � p)/2 = 1, again Young’s inequality
implies

2c
Z 1

0

 
�(Q�r

% (x0, t0))
%N�1

!
d%

%


�r

4
+ ct�(n+1)/✓

0 .

Merging the last three estimates and reabsorbing terms yields

|DBp(x0, t0)|  c[Ar (�r )]2/[2�n(2�p)] + ct�(n+1)/✓
0 ,

from which (1.30) finally follows letting r ! 1, thanks to (1.31).

1.4. Plan of the paper

The paper is organized as follows; after collecting the basic notation and terminol-
ogy in Section 2, we present in Section 3 the results about Hölder gradient con-
tinuity for solutions to homogeneous equations. The central result is at this stage
Theorem 3.1, which will be a main tool both in the proof of the potential estimates
and in that of the gradient continuity results. In turn, Theorem 3.1 is used here
to give a proof of certain a priori Hölder continuity estimates for solutions of ho-
mogeneous equations (see Theorem 3.3), that will be also an important tool in the
subsequent proof. The proof of the potential estimates in Theorems 1.1-1.3 are then
in Section 4. Finally, Section 5 is devoted to the proof of Theorems 1.6-1.9 and
their consequences.

ACKNOWLEDGEMENTS. The authors thank Paolo Baroni for his remarks on a
preliminary version of the paper.

2. Basic notation and definitions

2.1. Notation

In what follows we denote by c a general positive constant, possibly varying from
line to line; special occurrences will be denoted by c1, c2 etc and relevant depen-
dencies on parameters will be emphasized using parentheses. All such constants
will be greater than or equal to 1. We also denote by

B(x0, r) := {x 2 Rn : |x � x0| < r}

the open ball of Rn with center x0 and radius r > 0; when not important, or clear
from the context, we shall omit denoting the center as follows: Br ⌘ B(x0, r). Un-
less otherwise stated, different balls in the same context will have the same center.
We shall also denote B ⌘ B1 = B(0, 1). In a similar fashion we shall denote by

Qr (x0, t0) := B(x0, r) ⇥ (t0 � r2, t0)
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the standard parabolic cylinder with vertex (x0, t0) and width r > 0. When the
vertex will not be important in the context or it will be clear that all the cylinders
occurring in a proof will share the same vertex, we shall omit to indicate it, simply
denoting Qr . With � > 0 being a free parameter, we shall often consider cylinders
of the type

Q�
r (x0, t0) := B(x0, r) ⇥ (t0 � �2�pr2, t0). (2.1)

These will be called “intrinsic cylinders” as they will be usually employed in a
context when the parameter � is linked to the behavior of the solution to some
equation on the same cylinder Q�

r . Again, when specifying the vertex will not
be essential we shall simply denote Q�

r ⌘ Q�
r (x0, t0). Observe that the intrinsic

cylinders reduce to the standard parabolic ones when either p = 2 or � = 1. In
the rest of the paper � will always denote a constant larger than zero and will be
considered in connection to intrinsic cylinders as (2.1). We shall often denote

�Q�
r (x0, t0) ⌘ Q�

�r (x0, t0) = B(x0, �r) ⇥ (t0 � �2�p�2r2, t0)

the intrinsic cylinder with width magnified of a factor � > 0. Finally, with Q =
A ⇥ (t1, t2) being a cylindrical domain, we denote by

@parQ := A ⇥ {t1} [ @A ⇥ (t1, t2)

the usual parabolic boundary of Q, and this is nothing else but the standard topo-
logical boundary without the upper cap A ⇥ {t2}.

The parabolic metric is defined as

|(x1, t1) � (x2, t2)|par := max
n
|x1 � x2|,

p
|t1 � t2|

o

and the corresponding parabolic distance between sets E1 and E2 in Rn+1 as

distpar(E1, E2) = inf
�
|(x1, t1) � (x2, t2)|par : (x1, t1) 2 E1, (x2, t2) 2 E2

 
.

With A ⇢ Rn+1 being a measurable subset with positive measure, and with g : A !
Rn being a measurable map, we shall denote by

Z

A
g(x) dx dt :=

1
|A|

Z

A
g(x) dx dt

its integral average; of course |A| denotes the Lebesgue measure of A. A similar
notation is adopted if the integral is only in space or time. In the following, with
g ⌘ (gi )1in 2 Rn being this time a vector, we define

kgk := max
i

|gi |,

which is a norm equivalent to the usual one defined by |g|2 :=
P

|gi |2 via

kgk  |g| 
p
nkgk.
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Moreover, everywhere in the following, when considering the sup operator we shall
actually mean esssup, and similarly for inf and osc operators.

Given a real-valued function h and a real number k, we shall denote

(h � k)+ := max{h � k, 0} and (h � k)� := max{k � h, 0}.

As in this paper we are considering only a priori estimates – see the discussion
in the Introduction – we shall restrict ourselves to examine the case when µ is an
integrable function. In particular, with g : A ! Rn being a vector-valued map we
denote

osc
A
g := sup

(x,t),(x0,t0)2A
|g(x, t) � g(x0, t0)|.

In the treatment of parabolic equations, a standard difficulty in using test functions
arguments involving the solution is that we start with solutions that, enjoying the
regularity in (1.5), do not have in general time derivatives in any reasonable sense.
There are several, by now standard, ways to overcome this point, for instance us-
ing a regularization procedure via so-called Steklov averages. See for instance [11,
Chapter 2] for their definition and their standard use. In this paper, in order to
concentrate the attention only on significant issues, following a by now standard
custom (see for instance [12]), we shall argue on a formal level, that is assuming
when using test functions argument, that the solution has for instance square inte-
grable time derivatives. Such arguments can easily be made rigorous using in fact
Steklov averages as for instance in [11] or using convolutions with mollifiers.

2.2. Lorentz spaces and nonlinear potentials

We start by recalling a few basic definitions concerning Lorentz spaces; in this
section µ : Rn+1 ! R will in general denote a measurable map, while Q ⇢ Rn+1

will denote an open subset. We assume |{(x, t) 2 Q : |µ(x, t)| > t}| < 1 for
t � 0. The decreasing rearrangement µ⇤ : [0,1] ! [0,1] of µ is defined as the
(unique) non-increasing, right-continuous function which is equi-distributed with
|µ(·)|, that is

µ⇤(s) := sup {h � 0 : |{(x, t) 2 Rn+1 : |µ(x, t)| > h}| > s}.

Now, the usual definition of the Lorentz space L(� , q)(Q) ⌘ L(� , q), for � 2
(0,1) and q 2 (0,1) prescribes that

[µ]� ,q :=

✓
q
�

Z 1

0

⇣
µ⇤(%)%1/�

⌘q d%

%

◆1/q
< 1. (2.2)

The local version of Lorentz spaces is defined in the usual way by saying that µ 2
L(� , q) locally in Q iff �Aµ 2 L(� , q) for every open subset A b Q.

Lorentz spaces refine the standard Lebesgue spaces and it follows from the
definition that L(� , � ) ⌘ L� . For more on Lorentz spaces we refer for instance
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to [44]. A classical fact due to Hunt [18] states that when considering the maximal
operator of µ⇤ it is possible to obtain a quantity, in fact equivalent to that in (2.2)
when � > 1, that defines a norm in L(� , q). More precisely, defining for ⇠ > 0 the
maximal operator

µ⇤⇤(⇠) :=
1
⇠

Z ⇠

0
µ⇤(y) dy, (2.3)

for q < 1 the quantity

kµk� ,q :=

✓
q
�

Z 1

0

⇣
µ⇤⇤(%)%1/�

⌘q d%

%

◆1/q

is such that

[µ]� ,q  kµk� ,q  c(� , q)[µ]� ,q for � > 1; (2.4)

see for instance [44, Theorem 3.21]. The following inequality, which is a straight-
forward corollary of the definition of rearrangement of a function, holds whenever
A ✓ Q is a measurable set:

Z

A
|µ(x, t)| dx dt 

Z |A|

0
µ⇤(y) dy. (2.5)

We next define the following family of Wolff-type nonlinear potentials:

Wµ
q (x, t; r) :=

Z r

0

✓
|µ|(Q%(x, t))

%N�1

◆q d%

%
, q > 0. (2.6)

Obviously

Wµ
1 ⌘Iµ1 and Wµ

p/[2(p�1)](x, t; r) =
Z r

0

✓
|µ|(Q%(x, t))

%N�1

◆p/[2(p�1)] d%

%
. (2.7)

The following lemma is rather straightforward consequence of the definitions:

Lemma 2.1. Let µ 2 L1(Rn+1, R) and q > 0; for every r > 0 it holds that

sup
(x,t)2Q

Wµ
q (x, t; r)  c1

Z !nr N

0

⇣
µ⇤⇤(%)%1/N

⌘q d%

%
, (2.8)

where the constant c1 depends only on n, q and !n denotes the measure of the unit
ball in Rn . In particular

µ 2 L(N , q) =) lim
r!0

sup
(x,t)2Q

Wµ
q (x, t; r) = 0. (2.9)
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Proof. We give the proof for completeness. Observe that (2.5) and the definition in
(2.3) give, whenever (x0, t0) 2 Q
✓

|µ|(Q%(x0, t0))
%N�1

◆q
=

 

!n%

Z

Q%(x0,t0)
|µ| dx dt

!q


 
%

%N

Z !n%N

0
µ⇤(⇠) d⇠

!q


h
!n%µ⇤⇤(!n%

N )
iq

.

Therefore, integrating the previous inequality in (0, r), and changing variables,
leads to (2.8).

3. The C0,↵-gradient theory

In this section we concentrate on homogeneous equations of the type

wt � div a(Dw) = 0 (3.1)

in a given cylinder Q = B ⇥ (t1, t2), where B ⇢ Rn is a given ball. We remark
that in this section the exponent p will always be, unless otherwise stated, such that
p 2 (1, 2]. In particular, in this section the lower bound (1.3) plays no role. In the
rest of the section w will denote an energy solution to (3.1) in a given cylinder Q.

In the following, with q � 1 and g 2 Lq(Q0) being a function defined on the
measurable set Q0 ⇢ Rn+1, we define the excess functional

Eq(g, Q0) :=

✓Z

Q0
|g � (g)Q0 |q dx dt

◆1/q
(3.2)

which is the Lq -mean deviation of g from its mean value on Q0. An elementary
property of excess functionals we shall often use in the following is

Eq(g, Q0)  2
✓Z

Q0
|g � � |q dx dt

◆1/q
8 � 2 Rn. (3.3)

A central tool in our approach to both the Hölder continuity of the spatial gradient
of solutions to homogeneous equations and to gradient potential estimates in the
case of non-homogeneous equations, is provided by the following:

Theorem 3.1. Suppose thatw is a weak solution to (3.1) in Q�
r , and consider num-

bers A, B, q � 1 and � 2 (0, 1). Then there exist constants �� 2 (0, 1/2) and
⇠ 2 (0, 1/4), both depending only on n, p, ⌫, L , A, B, � , but otherwise indepen-
dent of s, q, the solution w, and the vector field a(·), such that if

�

B
 max

8
<

:
s

⇠ B
, sup
Q�

�� r

kDwk

9
=

;
, s + sup

Q�
r

kDwk  A� (3.4)
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hold, then
Eq(Dw, �� Q�

r )  � Eq(Dw, Q�
r ) (3.5)

holds as well. Moreover, there exist two constants ↵ 2 (0, 1) and c(A, B) � 1, both
depending only on n, p, ⌫, L , A, B, such that

�� =
� 1/↵

c(A, B)
, (3.6)

and c(A, B) is a nondecreasing function of A, B. Finally, (3.5) still holds when
replacing �� by a smaller number �.
Remark 3.2. The proof of Theorem 3.1 will be given first in the case

s > 0, (3.7)

with estimates that will be on the other hand uniform with respect to s. A suitable
approximation argument then allows to treat the case s = 0 starting from the one
s > 0, and for this we refer to Section 3.3 below.

Theorem 3.1 is a key ingredient in the proof of the intrinsic potential esti-
mates of Theorems 1.1-1.3 but it also incorporates enough information to allow for
a proof of the Hölder continuity of Dw, as shown in the next Theorem 3.3. In other
words, Theorem 3.1 allows for a unified approach to the gradient regularity for both
homogeneous and non-homogeneous p-Laplacian equations. In turn, the a priori
estimate in Theorem 3.3 below is another key tool in the proof of the potential esti-
mates. We notice that a slightly different version of Theorem 3.1 has already been
proved in [30] for the case p � 2; here we show the necessary modifications of
the case p < 2 — which are at several stages non-trivial — and then show how to
apply Theorem 3.1 to prove the following:
Theorem 3.3. Let w be a weak solution to (3.1) in a given cylinder Q under as-
sumptions (1.2). Then
• If

2n
n + 2

< p  2

holds, then Dw has is locally Hölder continuous in Q
• If 1 < p  2 and Q�

r ⇢ Q is an intrinsic cylinder such that

s + sup
Q�
r

||Dw||  A� (3.8)

holds for a certain constant A � 1, then

|Dw(x, t) � Dw(x1, t1)|  4
p
nA�

⇣%

r

⌘↵
(3.9)

holds as well whenever (x, t), (x1, t1) 2 Q�
% for a Hölder exponent ↵ ⌘

↵(n, p, ⌫, L , A) 2 (0, 1), which, in particular, is independent of s, the solution
w considered and the vector field a(·). Here Q�

% ⇢ Q�
r are intrinsic cylinders

sharing the same vertex.
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Proof.
Step 0: Reduction to the second assertion. Let us observe that it is sufficient to
prove the second assertion; in fact by Theorem 4.2 below, we know that Dw is
locally bounded in Q and the Hölder continuity follows from the second assertion
via a standard covering argument (compare for instance with [11]).
Step 1: Framework of Theorem 3.1. Our approach to prove the second part of the
Theorem is to apply Theorem 3.1 with particular choices of B and � , and with
q = 1, i.e. letting q ! 1 in the corresponding inequalities of Theorem 3.1 as all
the constants are independent of q. Choose

B = 8
p
n, � =

1
32n3/2A

, (3.10)

and let �� ⌘ �� (n, p, ⌫, L , A) 2 (0, 1/2) be the constant in Theorem 3.1 corre-
sponding A, B, and � . We start defining

�k := 2�k�, rk := �k� r, Qk := Q�k
rk ,

k = 0, 1 . . . , so that Qk+1 ⇢ �� Qk holds whenever k � 0. Define the number

m := inf

(

k � 0 : max

(
8s
B

, sup
Qk+1

kDwk

)

>
2�k
B

)

.

In case m < 1 we redefine the intrinsic geometry parameter
�k = �m, k = m + 1,m + 2, . . . ,

and accordingly, we redefine Qk := Q�m
rk for k = m + 1,m + 2, . . .

Step 2: The equation becomes uniformly parabolic immediately. This means that
m = 0. We then have that at least one of the two following holds true:

�0/4 < s  s + sup
Q0

kDwk  A�0, (3.11)

and
�0/B  2�0/B < sup

Q1
kDwk  s + sup

Q0
kDwk  A�0. (3.12)

Let us prove that, in any case, we have
osc
Qk+1

Dw  2
p
n� osc

Qk
Dw 8 k � 0. (3.13)

Indeed, Theorem 3.1 implies (applied with q = 1 on the fourth line below)

osc
Qk+1

Dw 
p
n max
1 jn

osc
Qk+1

wx j

 2
p
n max
1 jn

kwx j � (wx j )Qk+1kL1(Qk+1)

 2
p
nkDw � (Dw)Qk+1kL1(Qk+1)

 2
p
n� kDw � (Dw)QkkL1(Qk)

 2
p
n� osc

Qk
Dw

(3.14)
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for all k = 0, 1, . . . in the case (3.11) holds (recall that �k = �0), and for k = 0
in the case (3.12) holds. Let us further analyze the occurrence of (3.12) in order to
prove that (3.13) holds when (3.12) is in force. We have by (3.12) and (3.14) (this
last one used only for k = 0) that

osc
Q1

Dw  2
p
n� osc

Q0
Dw  4n� sup

Q0
kDwk  4n� A�0.

Therefore
sup
Q1

wxi � inf
Q1

wxi = osc
Q1

wxi  osc
Q1

Dw  4n� A�0 (3.15)

holds for every i 2 {1, . . . , n}. Next, we have by (3.12) that either

sup
Q1

wxi = sup
Q1

kDwk � 2�0/B or inf
Q1

wxi = � sup
Q1

kDwk  �2�0/B

holds for some i 2 {1, . . . , n}. If the first inequality from the previous line is true,
i.e.

sup
Q1

wxi = sup
Q1

kDwk � 2�0/B

holds for some i 2 {1, . . . , n}, then by (3.15)

2�0/B � inf
Q1

wxi  sup
Q1

wxi � inf
Q1

wxi  4n� A�0,

and by (3.10) it follows that

inf
Q1

wxi �
�0
B

(2� 4nAB� ) =
�0
B

. (3.16)

Similarly, if
inf
Q1

wxi = � sup
Q1

kDwk  �2�0/B

for some i 2 {1, . . . , n}, then we have

sup
Q1

wxi  ��0/B. (3.17)

Inequalities (3.16) and (3.17) readily imply that

kDwk � �0/B a.e. in Q1.

By this and (3.12) we have that

�k/B  sup
Qk+1

kDwk, s + sup
Qk

kDwk  A�k (3.18)

for all k = 0, 1, . . . (again recall that in this case it is �k = �0) and Theorem 3.1
applied with q = 1 then implies (3.13) for all k = 0, 1, . . .
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Step 3: The equation becomes uniformly parabolic in Qm . This means that m � 1.
We have that at least one of the following two inequalities holds:

s > �m/4 > ⇠�m and sup
Qm+1

kDwk > 2�m/B.

Moreover, since m � 1, we have by the very definition of m that

sup
Qk

kDwk 
1
4
p
n
�k�1 =

1
2
p
n
�k, k = 1, . . . ,m, (3.19)

and, in particular, it follows that

osc
Qk

Dw  2
p
n sup

Qk

kDwk  �k, k = 1, . . . ,m. (3.20)

We also have
s + sup

Qm

kDwk  �m  A�m, (3.21)

because s  �m�1/4 = �m/2. Now, if on the one hand s > �m/4, then we
get (3.14) by Theorem 3.1 for all k = m,m + 1, . . ., in view of (3.21). If, on the
other hand,

2�m/B  sup
Qm+1

kDwk,

then we obtain, analogously to Step 2, that

kDwk � �m/B a.e. in Qm+1.

This, together with (3.21) allows us to apply Theorem 3.1 with q = 1 as in Step 2;
we obtain (3.13) for all k = m,m + 1, . . .

Step 4: The equation never becomes nondegenerate parabolic. This means that
m = 1 and therefore, as in the previous Step, we have that (3.20) holds for every
k 2 N.
Step 5: Conclusion. In all cases we have established

osc
Qk

Dw  �k, 1  k  m,

when m � 1, and

osc
Qk+1

Dw  2
p
n� osc

Qk
Dw for k � m, osc

Q0
Dw  2

p
nA�,

when m � 0. Thus, because 2
p
n�  1/2, above inequalities yield

osc
Qk

Dw 

p
nA

2k�1
�
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for all k = 0, 1, . . . But now, since

Q�
(2(p�2)/2�� )kr ⇢ Qk

we have - by taking %  r as in the statement of the Theorem - by choosing k � 0
such that (2(p�2)/2�� )k+1 < %/r  (2(p�2)/2�� )k ,

osc
Q�

%

Dw  osc
Qk

Dw  4
p
nA�

⇣%

r

⌘↵

with

↵ = �
log 2

log
�
2(p�2)/2��

� .

Clearly ↵ ⌘ ↵(n, p, ⌫, L , A), concluding the proof.

Remark 3.4. Theorem 3.3 still holds when p > 2, and for this we refer to [30],
where the needed version of Theorem 3.1 is featured.

In the following we shall also need a different version of Theorem 3.1, that is:

Theorem 3.5. Suppose thatw is a weak solution to (3.1) in Q�
r , and consider num-

bers A, B, q � 1 and � 2 (0, 1). Then there exists a constant �� 2 (0, 1/2)
depending only on n, p, ⌫, L , A, B, � , but otherwise independent of s, q, of the
solution w, and of the vector field a(·), such that if

�

B
 sup

Q�
�� r

kDwk and s + sup
Q�
r

kDwk  A� (3.22)

hold, then
Eq(Dw, �� Q�

r )  � Eq(Dw, Q�
r ) (3.23)

holds as well. Moreover, there exist two constants ↵ 2 (0, 1) and c(A) � 1, both
depending only on n, p, ⌫, L , A, but not on B and q, such that

�� =
1

c(A)

⇣ �

B

⌘1/↵
, (3.24)

and c(A) is a nondecreasing function of A. Finally, (3.23) still holds when replacing
�� by a smaller number �.

This version, which differs from Theorem 3.1 for a different, more peculiar,
dependence of the constant (3.24), will be necessary in order to prove Theorem 1.9
with the right dependence upon the parameters.
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Remark 3.6. The assertions of Theorems 3.1-3.5 still hold for solutions to more
general equations with coefficients of the type

wt � div a(t, Dw) = 0

where the vector field a(·) is supossed to be only measurable with respect to the time
variable, and such that z 7! a(t, z) satisfies assumptions (1.2) for every choice of
t . This fact can be easily derived by observing that the proof of the above results
solely relies on the analysis of the differentiated (with respect to the space variable)
equation; see (3.35) below. The possibility of such a differentiation procedure is
clearly not affected by an additional, even measurable, dependence on time.

3.1. Basic Gradient Hölder continuity estimates

In this section w denotes a solution to (3.1) in a cylinder of the type Q�
r ⌘ Q;

throughout we shall assume that (3.7) holds; see the comments in Remark 3.2. We
denote

kvk2V 2(Q)
:= sup

t1<t<t2

Z

B
|v(x, t)|2 dx +

Z

Q
|Dv(x, t)|2 dx dt (3.25)

whenever we are considering a cylinder of the type Q = B ⇥ (t1, t2). The space
V 2(Q) is that defined by all those L2(t1, t2;W 1,2(B)) functions v such that the
previous quantity is finite. Moreover we set V 20 (Q) = V 2(Q) \ L2(t1, t2;
W 1,2
0 (B)). The following Poincaré-type inequality is then classical (see [11, Chap-

ter 1, Corollary 3.1])

kvk2L2(Q1)  c(n)|{|v| > 0}\Q1|2/(n+2)kvk2V 2(Q1), Q1 = B1⇥(�1, 0), (3.26)

and holds for all functions v 2 V 20 (Q1). We start with a sort of a height bound,
already derived for the case p � 2 in [30]; dealing with the singular case p < 2
necessitates a different proof, and poses additional difficulties. In particular, we
are forced to derive a Caccioppoli inequality which is different from the usual one
involving an additional integration-by-parts argument.

Proposition 3.7 (Height bound). Assume that

s + sup
Q�
r

kDwk  A� (3.27)

holds for some constant A � 1. There exists a number � ⌘ � (n, p, ⌫, L , A) 2
(0, 1/2) such that if either

|Q�
r \ {wxi < �/2}|  � |Q�

r | or |Q�
r \ {wxi > ��/2}|  � |Q�

r | (3.28)

holds for some i 2 {1, . . . , n}, then |wxi | � �/4 holds almost everywhere in Q�
r/2.
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Proof. Without loss of generality, we may assume that

|Q�
r \ {wxi < �/2}|  � |Q�

r |, (3.29)

then proving that wxi � �/4 holds almost everywhere in Q�
r/2. Indeed, assuming

that the second inequality in (3.28) holds, by defining w̃ := �w we have

|Q�
r \ {wxi > ��/2}|  � |Q�

r | () |Q�
r \ {w̃xi < �/2}|  � |Q�

r |. (3.30)

Observing that w̃ solves the equation w̃t � div ã(Dw̃) = 0, where ã(z) := �a(�z)
and the vector field ã(·) still satisfies assumptions (1.2), we reduce to the case
(3.29). Again without loss of generality, we shall assume that the vertex of all
the cylinders considered in the following coincides with the origin. The rest of the
proof now goes in three steps.

Step 1: Rescaling. We now perform the standard intrinsic scaling by defining

v(x, t) :=
w(r x, �2�pr2t)

r
, (x, t) 2 Q1 := B1 ⇥ (�1, 0), (3.31)

so that the newly defined function v solves

�p�2vt � div a(Dv) = 0 in Q1. (3.32)

From now on all the estimates will be recast in terms of the function v. Notice that
with the new definition we still have

s + kDvkL1(Q1)  A� (3.33)

and assumption (3.29) translates into

|{(x, t) 2 Q1 : vxi (x, t) < �/2}|  � |Q1|.

Our next aim is to show that

vxi � �/4 a.e. in Q1/2. (3.34)

The statement of the Proposition will then follow by scaling back to w.

Step 2: A Caccioppoli-type estimate. In the following we shall proceed formally
(assuming for instance that solutions are differentiable with respect to time), and all
the details can be justified in a standard way using Steklov averages [11]. The main
point here is that since we are dealing with singular equations the treatment must
be different from the one in [30]. We start by differentiating equation (3.32) in the
xi -direction; recall that we are assuming that p < 2, s > 0 and Dv is bounded. It
follows, indeed

Dv 2 L2loc(�1, 0;W
1,2
loc (B1, Rn)) \ C0(�1, 0; L2loc(B1, Rn)).
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The details can be found for instance in [11, Chapter 8, Section 3]. We obtain the
following equation:

�p�2(vxi )t � div @xi (a(Dv)) = 0. (3.35)

Multiplying the previous equation by (vxi � k)��2, where � 2 C1
c (Q1) and k 2

(0, A�), and integrating by parts yields (actually using the weak formulation and in
fact Steklov averages)

0 = �p�2
Z

Q1
(vxi )t (vxi � k)��2 dx dt

+
Z

Q1

D
@xi a(Dv), D�2

E
(vxi � k)� dx dt

+
Z

Q1

⌦
@xi a(Dv), D((vxi � k)�)

↵
�2 dx dt =: I1 + I2 + I3.

We integrate the first term by parts with respect to t and the second onewith respect
to xi . We obtain

I1 = ��p�2
Z

Q1
@t

Z k

vxi

(y � k)� dy �2 dx dt = �p�2
Z

Q1
(vxi � k)2��t� dx dt

and

I2 = �
Z

Q1

D
a(Dv), @xi D�2

E
(vxi � k)� dx dt

�2
Z

Q1\{vxi<k}
ha(Dv), D�i�vxi xi dx dt =: I2,1 + I2,2.

We estimate the terms I2,1, I2,2, and I3 using the structure of a(·) described in (1.2)
as follows: the growth condition on a(·) implies

�
�I2,1

�
� 2L

Z

Q1

⇣
|Dv|2 + s2

⌘(p�1)/2
(vxi � k)�

⇣
|�||D2�| + |D�|2

⌘
dx dt (3.36)

and

�
�I2,2

�
�  2L

Z

Q1

⇣
|Dv|2 + s2

⌘(p�1)/2
|D(vxi � k)�||D�||�| dx dt, (3.37)

and the coercivity of @a(·) gives

I3  �⌫

Z

Q1

⇣
|Dv|2 + s2

⌘(p�2)/2
|D(vxi � k)�|2�2 dx dt. (3.38)
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Furthermore, from Young’s inequality we deduce

2L
⇣
|Dv|2 + s2

⌘(p�1)/2
|D(vxi � k)�||D�||�|


⌫

2

⇣
|Dv|2 + s2

⌘(p�2)/2
|D(vxi � k)�|2�2 +

2L2

⌫

⇣
|Dv|2 + s2

⌘p/2
|D�|2.

Therefore,

I3 + I2,2  �
⌫

2

Z

Q1

⇣
|Dv|2 + s2

⌘(p�2)/2
|D(vxi � k)�|2�2 dx dt

+
2L2

⌫

Z

Q1\{vxi<k}

⇣
|Dv|2 + s2

⌘p/2
|D�|2 dx dt.

Rearranging terms yields

⌫

2

Z

Q1

⇣
|Dv|2 + s2

⌘(p�2)/2
|D(vxi � k)�|2�2 dx dt

+ �p�2
Z

Q1
(vxi � k)2�(��t )� dx dt


2L2

⌫

Z

Q1\{vxi<k}

⇣
|Dv|2 + s2

⌘p/2
|D�|2 dx dt

+ 2L
Z

Q1

⇣
|Dv|2 + s2

⌘(p�1)/2
(vxi � k)�

⇣
|�||D2�| + |D�|2

⌘
dx dt.

(3.39)

Replace then � with �✓ , where � 2 C1(Q1) vanishes on the parabolic boundary
of Q1 and ✓ 2 C1(R), being nonincreasing and vanishing for t � 0, approximates
the characteristic function of (�1, ⌧ ), ⌧ 2 (�1, 0). In view of (3.33) and of the
fact that we have chosen k 2 (0, A�), we have bounds
⇣
|Dv|2 + s2

⌘(p�2)/2
�(2A�)p�2, max{

⇣
|Dv|2 + s2

⌘1/2
, (vxi � k)�}  2A�,

and thus (3.39) yields, with ⌧ realizing (actually approaching) the supremum below,

�p�2k(vxi � k)��k2V 2(Q1)

 2�p�2
Z

Q1

⇣
|D(vxi � k)�|2�2 + (vxi � k)2�|D�|2

⌘
dx dt

+ �p�2 sup
t2(�1,0)

Z

B1
(vxi � k)2��2 dx

 c�p sup
Q1

⇣
|�||D2�| + |D�|2 + |�||�t |

⌘ �
�Q1 \ {vxi < k} \ {� > 0}

�
�

(3.40)
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for a constant c ⌘ c(p, ⌫, L , A). This is the Caccioppoli-type inequality we were
looking for.
Step 3: Iteration. Define first truncation levels

km :=
�

4

✓
1+

1
2m

◆
, so that

�

4
 km 

�

2
,

for all integers m = 0, 1, . . . We then consider the following non-negative cut-off
functions: �m 2 C1(Q1), where

Q(m) := Q%m %m :=
1
2

+
1

2m+1 , m � 0,

defined in such a way to vanish outside Q(m) and smoothly on the parabolic bound-
ary of Q(m) and, moreover, satisfy the following conditions:

0  �m  1, �m ⌘ 1 on Q(m+1)

[5pt]|D2�m | + |D�m |2 + |(�m)t |  c(n)4m .
(3.41)

Now, let us introduce, again for m � 0, the sets

Am := Q(m) \ {vxi < km}.

Taking � ⌘ �m and k ⌘ km , by (3.41) estimate (3.40) gives

�p�2k(vxi � km)��mk2V 2(Q1)  c4m�p|Am |.

Using (3.26) and then the previous inequality, we have, as �m ⌘ 1 on Q(m+1), that

�p�2(km � km+1)
2|Am+1|  �p�2k(vxi � km)��mk2L2(Am+1)

 �p�2k(vxi � km)��mk2L2(Q(m))

 c�p�2k(vxi � km)��mk2V 2(Q(m))
|Am |2/(n+2)

 c4m�p|Am |1+2/(n+2)

with a constant c = c(n, p, ⌫, L , A). In turn, observing that

km � km+1 = 2�m�3�,

we arrive at
|Am+1|  c8m |Am |1+2/(n+2),

for a constant c still depending only on n, p, ⌫, L , A, and for every m � 1. At this
stage by using a standard iteration lemma (see for instance [11, Chapter 1, Lemma
4.1]) we have that there exists a number � ⌘ � (n, p, ⌫, L , A) 2 (0, 1) such that if

|Q1 \ {vxi < �/2}| = |A0|  � |Q1|,
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then |Am | ! 0 and this implies (3.34) by the inclusion

Q1/2 \ {vxi  �/4} ⇢ \m Am .

The proof is complete.

The previous result allows us to use the same machinery employed in [30,
Section 3] for the case p � 2. The outcome is the following statement, whose
proof is completely similar to the one for the case p � 2.

Proposition 3.8. Assume that (3.27) is in force. Then there are numbers � 2
(0, 1/2), � 2 (0, 1), and cd � 1, all depending only on n, p, ⌫, L , A, such that
(3.28) implies
✓Z

Q�
�r

|Dw�(Dw)Q�
�r
|q dx dt

◆1/q
cd��

✓Z

Q�
r

|Dw�(Dw)Q�
r
|q dx dt

◆1/q
(3.42)

whenever � 2 (0, 1) and q � 1.

Similarly, we have to the following result, that, proved in [30] in the case
p � 2, extends to the case 1 < p < 2 with a completely similar proof.

Proposition 3.9. Assume that

sup
Q�
r

kDwk  A� and ⇠�  s  ⇠1A�, where 0 < ⇠  ⇠1. (3.43)

Then
✓Z

Q�
�r

|Dw�(Dw)Q�
�r
|q dx dt

◆1/q
 c̃d��1

✓Z

Q�
r

|Dw�(Dw)Q�
r
|q dx dt

◆1/q
(3.44)

holds whenever � 2 (0, 1) for constants �1 ⌘ �1(n, p, ⌫, L , A, ⇠, ⇠1) 2 (0, 1) and
c̃d ⌘ c̃d(n, p, ⌫, L , A, ⇠, ⇠1) � 1.

The next proposition analyzes the case ruled out by the previous Proposition
3.8. Usually such type of result is achieved via arguments based on logarithmic type
inequalities (see for instance [11, 30]). Here we propose an alternative approach,
using the weak Harnack inequality for supersolutions to linear parabolic equations,
which turns out to be faster and probably more elegant. To this aim, we recall a
classical result.

Theorem 3.10 (Weak Harnack principle). Let z 2 L2(�1, 0;W 1,2(B1)) be a
non-negative weak supersolution in Q1 ⌘ B1 ⇥ (�1, 0) to the linear parabolic
equation

zt � div
�eB(x, t)Dz

�
= 0,
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where the matrix B̃ has measurable coefficients and satisfies the conditions

⌫1|⇠ |2  heB(x, t)⇠, ⇠i  L1|⇠ |2

whenever ⇠ 2 Rn , and where 0 < ⌫1  L1. If

Q⇤ = B(0, 1� �1) ⇥ (�(�2 + �3 + �4),�(�2 + �3))

and
Q⇤⇤ = B(0, 1� �1) ⇥ (��2, 0),

where �i for i 2 {1, 2, 3, 4} are positive parameters such that �1 + . . . + �4 < 1,
then there exists a constant c, depending only on n, ⌫1, L1 and {�i }, such that

Z

Q⇤
z dx dt  c inf

Q⇤⇤
z.

The previous theorem roughly tells that, in order to realize a suitable Harnack prin-
ciple, we need a waiting time �3 > 0. We refer to [36] for a proof of the previous
theorem; see also [13, 26, 42] for more on Harnack inequalities in the nonlinear
parabolic setting.

Proposition 3.11. Assume that (3.27) holds and let � 2 (0, 1) be described in
Proposition 3.7. Suppose that (3.28) is not satisfied for any i 2 {1, . . . , n}. Then it
is possible to find ⌘ 2 (1/2, 1), depending only on n, p, ⌫, L , A, such that

kDwk  ⌘A� a.e. in Q�
�r/2. (3.45)

Proof. Assume that for any i 2 {1, . . . , n} the assumption (3.28) does not hold;
therefore for every i 2 {1, . . . , n} it happens that

|{(x, t) 2 Q�
r : wxi (x, t) � �/2}| < (1� � )|Q�

r | (3.46)

and
|{(x, t) 2 Q�

r : wxi (x, t)  ��/2}| < (1� � )|Q�
r |. (3.47)

Here � ⌘ � (n, p, ⌫, L , A) is the number determined in Proposition 3.7. We con-
sider the occurrence of (3.46) for single i 2 {1, . . . , n}; we later describe how to
argue for (3.47). Defining the scaled function

v(x, t) :=
w(r x, �2�pr2t)

r
, (x, t) 2 Q1, (3.48)

solving (3.32), inequality (3.46) takes the form

|{(x, t) 2 Q1 : vxi (x, t) < �/2}| � � |Q1|. (3.49)
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In particular, by setting

Q⇤ = B(0, 1� �/(80n4)) ⇥ (�1+ �/4,��/4) ⇢ Q1 (3.50)

we still have
|Q⇤ \ {vxi < �/2}| �

�

4
|Q⇤|. (3.51)

Furthermore, it is quite standard to show that ṽ := (vxi � �/2)+ is a weak subsolu-
tion to the linear parabolic equation with measurable coefficients

zt � �2�pdiv
�
@a(Dv)Dz

�
= 0. (3.52)

For the sake of the non-Finnish reader we briefly recall the argument in Remark
3.12 below. Next, we extend the coefficients of the equation of ṽ outside of {ṽ > 0}
by setting

eB(x, t) =

(
�2�p@a(Dv(x, t)) in Q1 \ {ṽ > 0}
⌫ I d on Q1 \ {ṽ = 0},

I d being the identity matrix. By the upper bound (3.27) and the fact that |Dv| �
�/2 in the support of ṽ, we obtain

1
c

✓
A�

�

◆p�2
|⇠ |2 

D
�2�p@a(Dv)⇠, ⇠

E
 c

✓
�/2
�

◆p�2
|⇠ |2

almost everywhere in Q1\{ṽ > 0}, for a constant c ⌘ c(n, p, ⌫, L) � 1. Therefore
the eigenvalues of measurable coefficients eB belong to [Ap�2/c, c] and ṽ is a weak
subsolution to the linear parabolic equation

zt � div
�eB(x, t)Dz

�
= 0. (3.53)

Moreover, it follows by (3.27) (look also at (3.33)) that z ⌘ A� � �/2� ṽ is a non-
negative weak supersolution to (3.53) in Q1. Therefore we apply Theorem 3.10
with the choice Q⇤⇤ ⌘ B1/2 ⇥ (��/8, 0) and Q⇤ as defined in (3.50); the outcome
is

1
c

Z

Q⇤
(A� � �/2� ṽ) dx dt  A� � �/2� sup

B1/2⇥(��/8,0)
ṽ, (3.54)

for a constant c ⌘ c(n, p, ⌫, L , A, � ) ⌘ c(n, p, ⌫, L , A). By (3.51) we have the
lower bound

Z

Q⇤
(A� � �/2� ṽ) dx dt �

1
|Q⇤|

Z

Q⇤\{ṽ=0}
(A� � �/2) dx dt

�
�

4
(A� � �/2) �

�

8
A�,
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and combining the previous inequality with (3.54) yields

sup
B�/2⇥(�(�/4)2,0)

vxi  max
⇢
1
2
,
⇣
1�

�

8c

⌘�
A� =: ⌘A�.

Finally, interchanging vxi with �vxi in the above reasoning - keep in mind the
change of variable made at the beginning of the proof of Proposition 3.7 - and using
(3.47), we actually obtain the same bound instead for the supremum of �vxi . Since
the above holds for arbitrary i 2 {1, . . . , n}, inequality (3.45) follows.

Remark 3.12 (Proof that ṽ is a weak subsolution of (3.52)).We shall argue mod-
ulo a standard time regularization via Steklov averages. We shall test the weak for-
mulation with ⌘" := "�1 min(", ṽ)�, " > 0, where � 2 C1

c (Q1) is non-negative.
Firstly,

(vxi )t"
�1 min(", ṽ) = @t

Z vxi

�/2
"�1 min(", (y � �/2)+) dy

holds for all " > 0 and therefore integration by parts yields
Z

Q1
(vxi )t⌘" dx dt = �

Z

Q1

Z vxi

�/2
"�1 min(", (y � �/2)+) dy �t dx dt

! �
Z

Q1
ṽ�t dx dt

as " ! 0. Secondly, since

D⌘" = "�1 min(", ṽ)D� + "�1��{0<ṽ<"}Dvxi ,

we have that
⌦
@a(Dv)Dvxi , D⌘"

↵
� "�1 min(", ṽ)

⌦
@a(Dv)Dvxi , D�

↵

! h@a(Dv)Dṽ, D�i

almost everywhere as " ! 0. Collecting calculations, we have showed

0 = lim
"#0

Z

Q1

⇣
�p�2(vxi )t⌘" +

⌦
@a(Dv)Dvxi , D⌘"

↵⌘
dx dt

�
Z

Q1

⇣
��p�2ṽ�t + h@a(Dv)Dṽ, D�i

⌘
dx dt.

Since � is an arbitrary non-negative test function, it follows that ṽ is a weak subso-
lution.
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3.2. Proof of Theorem 3.1

We shall give here the proof in the case s > 0, while the case s = 0 follows
via approximation, as explained in Section 3.3 below. Note that anyway we shall
never use the fact that s > 0 but when appealing to Propositions 3.8-3.11. Indeed,
assuming that the statements of these last two results remain true for s = 0, then
the rest of the proof below remains unchanged. The proof goes now in five steps.

Step 1: Stopping time for the singular iteration and the choice of ⇠ . With ⌘ ⌘
⌘(n, p, ⌫, L , A) 2 (0, 1) being defined in Proposition 3.11, we set

⌘1 :=
1+ ⌘

2
, so that ⌘ < ⌘1 < 1 and ⌘1 � ⌘ =

1� ⌘

2
. (3.55)

Obviously ⌘1 ⌘ ⌘1(n, p, ⌫, L , A) 2 (0, 1). We define m 2 N as the smallest
integer such that

⌘m1 A� <
�

2B
. (3.56)

Observe that this determinesm � 1 as a function of the parameters n, p, ⌫, L , A, B.
Define ⇠ accordingly as

⇠ := min{1/8, (⌘1 � ⌘)⌘2m1 A}, (3.57)

which then also depends only on parameters n, p, ⌫, L , A, B. The choices in (3.56)
and (3.57) fix the number ⇠ in the statement of Theorem 3.1.

Step 2: The first nonsingular case. In this case we assume that ⇠�  s. The equation
becomes immediately nonsingular and Proposition 3.9 then implies that

✓Z

Q�
�r

|Dw � (Dw)Q�
�r
|q dx dt

◆1/q
 c̃d��1

✓Z

Q�
r

|Dw � (Dw)Q�
r
|q dx dt

◆1/q

for all � 2 (0, 1) and constants c̃d and �1 depending only on n, p, ⌫, L , A, B, since
⇠ above depends only on such parameters. Thus we will eventually obtain (3.5)
with � ⌘ �� whenever

�� ⌘ � 

✓
�

c̃d

◆1/�1
⌘

� 1/↵

c(A, B)
. (3.58)

For this reason, we shall from now on argue under the assumption that

s  (⌘1 � ⌘)⌘2m1 A� = ⇠� (3.59)

holds for m defined as in (3.56).
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Step 3: The Singular Iteration. Given a cylinder Q�
r , where the intrinsic inequality

(3.27) holds, by Propositions 3.8 and 3.11 we then have two possibilities:

• The Nonsingular Alternative. This means that we can apply Proposition 3.8
and therefore we have that
✓Z

Q�
�r

|Dw�(Dw)Q�
�r
|qdx dt

◆1/q
cd��

✓Z

Q�
r

|Dw�(Dw)Q�
r
|q dx dt

◆1/q
(3.60)

for every � 2 (0, 1), where the constants � ⌘ �(n, p, ⌫, L , A) 2 (0, 1) and
cd ⌘ cd(n, p, ⌫, L , A) � 1 are those defined in Proposition 3.8.

• The Singular Alternative. In this case we can instead apply Proposition 3.11
that in turn yields

sup
Q�

�1r

||Dw||  ⌘A�,

where ⌘ ⌘ ⌘(n, p, ⌫, L , A) 2 (0, 1) and �1 ⌘ �1(n, p, ⌫, L , A) 2 (0, 1).

The previous alternatives can be now combined in order to build a basic iteration
scheme, that we call the Singular Iteration. Let ⌘1 be as in (3.55). We define the
sequences (

�i+1 := ⌘1�i

�0 := �,

(
Ri+1 := �1Ri
R0 := r.

With such a choice the following inclusions trivially hold:

Q�i+1
Ri+1 ⇢ Q�i

�1Ri ⇢ Q�i
Ri ⇢ Q�

r 8 i 2 N. (3.61)

From now on we shall also set
Qi := Q�i

Ri .

Here, as in the following, all the cylinders share the same vertex. We now proceed
building the iteration scheme by (finite) induction: to this aim, let us assume that
the Singular Alternative holds in the cylinders Q�i�1

Ri�1 for i 2 {1, . . . , j} for some
integer j such that 1  j  2m. Therefore we have that

s + sup
Q

� j�1
R j�1

||Dw||  A� j�1 and sup
Q

� j�1
�1R j�1

||Dw||  ⌘A� j�1

hold. It follows that for all such j we have

s + sup
Q

� j
R j

kDwk  (⌘1 � ⌘)⌘2m1 A� + sup
Q

� j�1
�1R j�1

kDwk

 (⌘1 � ⌘)A� j�1 + ⌘A� j�1 = A� j .

(3.62)
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In particular, the needed upper bound (3.27) is verified with Q�
r ⌘ Q� j

R j , and we can
proceed inductively to verify wether the Singular Alternative or the Nonsingular
Alternative occurs in Q� j

R j , provided j  2m.
Step 4: The second nonsingular case. Now, consider all such numbers �� such

that
��  � :=

⇣
⌘

(2�p)/2
1 �1

⌘m+1
, (3.63)

so that
Q�

�� r ⇢ Q�
�r ⇢ Q�m+1

Rm+1
(3.64)

holds. Assume, according to the first inequality in (3.4) and to (3.59) (and towards
the final determination of �� in the statement), that

s  ⇠�,
�

B
 sup

Q�
�r

||Dw|| (3.65)

hold. This in turn implies

A�m ⌘ ⌘m1 A� <
�

2B
 sup

Q�
�r

||Dw||  sup
Q

�m+1
Rm+1

||Dw|| (3.66)

by (3.56) and (3.65). Let us now define

m̃ := min
n
k 2 N : The Singular Alternative does not occur on Q�k

Rk

o
. (3.67)

Observe that by definition this means that the Singular Iteration can be performed
m̃ times, but that it cannot be applied on the cylinder Q�m̃

Rm̃ . We have

m̃  m. (3.68)

Indeed, by assuming by contradiction that m < m̃, then the Singular Alternative
would hold at m and therefore

sup
Q�m+1
Rm+1

||Dw||  ⌘A�m < A�m,

contradicting (3.66). Thus (3.68) holds provided (3.65) is assumed, and from now
on, we shall choose, when providing �� , a number suitably smaller than �, where �
has been introduced in (3.63). Indeed, notice that if the above reasoning still holds
upon decreasing the value of �. Moreover, as in the case of (3.62), we have

s + sup
Q

� j
R j

||Dw||  A� j , for j 2 {0, 1 . . . , m̃}. (3.69)
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Next we shall apply the result of the Nonsingular Alternative. First, since the Singu-
lar Alternative could not be applied in Qm̃ and (3.69) in particular holds for j = m̃,
then the Nonsingular Alternative must occur in Qm̃ and we have

✓Z

�Qm̃

|Dw � (Dw)�Qm̃ |q dx dt
◆1/q

 cd��

✓Z

Qm̃

|Dw � (Dw)Qm̃ |q dx dt
◆1/q (3.70)

for all � 2 (0, 1]. Second, by (3.68), we have
✓Z

Qm̃

|Dw � (Dw)Qm̃ |q dx dt
◆1/q

 2
✓

|Q0|
|Qm̃ |

◆1/q ✓Z

Q0
|Dw � (Dw)Q0 |

q dx dt
◆1/q

 2
✓

|Q0|
|Qm |

◆1/q ✓Z

Q0
|Dw � (Dw)Q0 |

q dx dt
◆1/q

 2��m(n+2)
1 ⌘

�m(2�p)
1

✓Z

Q�
r

|Dw � (Dw)Q�
r
|q dx dt

◆1/q
.

(3.71)

Third, since ��Q�
r ⇢ �Qm ⇢ �Qm̃ - recall the definition of � in (3.63) and again

(3.68) - we have
✓Z

��Q�
r

|Dw � (Dw)��Q�
r
|q dx dt

◆1/q

 2
✓

|�Qm̃ |

|��Q�
r |

◆1/q ✓Z

�Qm̃

|Dw � (Dw)�Qm̃ |q dx dt
◆1/q

 2��(n+2)
✓Z

�Qm̃

|Dw � (Dw)�Qm̃ |q dx dt
◆1/q

(3.72)

for all � 2 (0, 1]. Combining (3.70)-(3.72) we arrive at
✓Z

��Q�
r

|Dw � (Dw)��Q�
r
|q dx dt

◆1/q

4cd
h
��(n+2)��m(n+2)

1 ⌘
�m(2�p)
1

i
��

✓Z

Q�
r

|Dw � (Dw)Q�
r
|q dx dt

◆1/q (3.73)

for all � 2 (0, 1]. Taking thus any

� 

 
�(n+2)�m(n+2)

1 ⌘
m(2�p)
1 �

4cd

!1/�

, �� := ��, (3.74)

we conclude with (3.5) in this case.
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Step 5: Determining the number �� . By looking at conditions (3.58) and (3.74), we
are led to define

�� :=
⇣
⌘

(2�p)/2
1 �1

⌘m+1
min

8
<

:

 
�(n+2)�m(n+2)

1 ⌘
m(2�p)
1 �

4cd

!1/�

,

✓
�

c̃d

◆1/�1
9
=

;
(3.75)

and notice that �� depends indeed only on n, p, ⌫, L , A, B, � , as �1, ⌘1 and m only
depend on such parameters. The number �� just defined in (3.75) is the one we are
looking for and it does not depend on the solutionw (neither on the vector field a(·))
since it works both in Step 2 and Step 3. Moreover, it has the form required in (3.6).
The proof is now complete when s > 0 (although all the previous consideration
formally holds for s = 0 provided one can use the two Alternatives in Step 3).
The case s = 0 now follows from the case s > 0 via the approximation argument
described in the next Section 3.3.

Proof of Theorem 3.5. The proof closely follows of the one found for Theorem 3.1,
therefore, we shall indicate the necessary modifications step by step.

Step 1. Here the crucial remark is that the number ⌘1 does not depend on B. We
notice that m as defined in (3.56) satisfies

m ⇡
log(4AB)

� log ⌘1
=: c̃1(A) log(AB) = log(AB)c1(A). (3.76)

for suitable constant c1(A), which is non-decreasing in A, and also depends on
n, p, ⌫, L .

Step 2. Since we are now assuming (3.22) rather than (3.4), the content of Step 2
becomes irrelevant. A different argumentation will occur later, when considering
the stopping time of the Singular Iteration. In particular we shall not assume (3.59).

Step 3. In fact, as now (3.59) is not any longer in force, there is an additional
reason for the Singular Iteration to stop. In other words, even before checking the
occurrence of the Singular Alternative at step, let’s say, j , we have to verify that the
starting condition

s + sup
Q

� j
R j

||Dw||  A� j

holds. Observe that were (3.59) in force, this would no longer be necessary, as
shown in (3.62). Therefore, considering the number m̃ defined in (3.67), the iter-
ation may stop at m̃ either because the Nonsingular Alternative occurs or simply
because the initial condition

s + sup
Q

�m̃
Rm̃

||Dw||  A�m̃ (3.77)

does not hold. Treating the two different cases will be done in the next step.
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Step 4. Exactly as for Theorem 3.1 we have (3.68) and we proceed as done there.
In the case the Singular Alternative stops at m̃ as the Nonsingular Alternative holds
(together with (3.77)) we proceed as in Theorem 3.1. In particular, we take �� as
indicated in (3.74). In the other case the Singular Iteration stops at step m̃ as (3.77)
fails to hold, that is

s + sup
Q

�m̃
Rm̃

||Dw|| > A�m̃ = ⌘m̃1 A�. (3.78)

This implies that m̃ � 1 as on the other hand the second inequality in (3.22) is
assumed. Note also that since the Singular Alternative holds at level m̃ � 1, we
have

s + sup
Q

�m̃�1
Rm̃�1

||Dw||  A�m̃�1 =
A
⌘1

�m̃ (3.79)

and
sup
Q

�m̃
Rm̃

||Dw||  ⌘A�m̃�1 = ⌘⌘m̃�1
1 A�. (3.80)

Comparing (3.78) and (3.80) yields

s > ⌘m̃1 A� � sup
Q

�m̃
Rm̃

||Dw|| � ⌘m̃�1
1 (⌘1 � ⌘) A� = (⌘1 � ⌘)A�m̃�1. (3.81)

In conclusion, by (3.79) and (3.81), we find

sup
Q

�m̃�1
Rm̃�1

kDwk  A�m̃�1 and (⌘1 � ⌘)A�m̃  s 
A
⌘1

�m̃

and we can therefore apply Proposition 3.9 with the choice

Q�
r ⌘ Q�m̃

Rm̃ , ⇠ ⌘ (⌘1 � ⌘)A, ⇠1 ⌘ 1/⌘1.

The outcome is that
✓Z

�Qm̃

|Dw � (Dw)�Qm̃ |q dx dt
◆1/q

 c̃d��1

✓Z

Qm̃

|Dw � (Dw)Qm̃ |q dx dt
◆1/q

holds whenever � 2 (0, 1), where c̃d � 1 and �1 2 (0, 1) are constants depending
only on n, N , p, ⌫, L and A, but not on B and q. The last estimate is the analog of
(3.70) and from this point on we may argue exactly as after there, to obtain (3.73)
with cd replaced by c̃d , and � replaced by �1. Therefore, by choosing

� 

 
�(n+2)�m(n+2)

1 ⌘
m(2�p)
1 �

4c̃d

!1/�

, �� := ��, (3.82)

we conclude with (3.5).
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Step 5. In view of (3.74) and (3.82) we finally determine � as follows

�� :=
⇣
⌘

(2�p)/2
1 �1

⌘m+1
 

�(n+2)�m(n+2)
1 ⌘

m(2�p)
1 �

4(cd + c̃d)

!1/min{�,�1}

. (3.83)

Notice here that the only parameter containing a dependence on B is m. Using the
dependence described in (3.76) and in (3.83) we obtain (3.24), for a suitable choice
of the constant c(A).

3.3. The approximation scheme

Here we briefly discuss the approximation method needed to reduce the proof of
Theorems 3.1-3.5 to the nonsingular case s > 0; when switching to the case s = 0
the constants will increase, in a universal way. We shall of course confine ourselves
to the case of Theorem 3.1. We start mollifying the vector field a(·) as follows. Let
" > 0 (actually denoting a sequence converging to zero) and let ✓" 2 C1

c (B"(0))
be a standard mollifier with B"(0) ⇢ Rn , such that

R
Rn ✓"(z) dz = 1. Define the

regularized vector fields a" : Rn ! Rn as

a"(z) :=
Z

Rn
✓"(z�⇠)a(⇠) d⇠.

We then define w" as the unique solution to the following Cauchy-Dirichlet prob-
lem: (

(w")t � div a"(Dw") = 0 in Q�
r

w" = w on @parQ�
r .

Exactly as for instance in [1] or [27], it follows that a"(·) satisfies (1.2) with new
constants ⌫, L , and with s (here assumed to be equal to zero) replaced now by
s" = "; without loss of generality we shall consider " small enough to have s"  �.
Again as in [1,27] it follows that up to not relabeled subsequences (i.e. we still keep
the notation ")

8
><

>:

Dw" ! Dw strongly in L p and a.e.
Z

Q�
r

(|Dw"| + s")p dx dt  cpa
Z

Q�
r

(|Dw| + s")p dx dt,
(3.84)

where ca depends only on n, p, ⌫, L . Before going on let us recall a basic result
(see [11, Chapter 8, Theorem 5.1’]) asserting

Z

Q�
r

(|Dw"| + s")p dx dt  cp�p =) sup
Q�
r/2

kDw"k  c̃ac� (3.85)
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for a new constant c̃a ⌘ c̃a(n, p, ⌫, L). Now we assume that the Theorem 3.1 holds
for the case s > 0, and fix A, B, � in the “s = 0”-version of Theorem 3.1 we want
to prove. Take the choice

� ! 2�(n+2)� =: �̃ , A ! 2c̃aca A =: Ã, B ! 2B (3.86)

and determine the number ��̃ ( Ã) in Theorem 3.1 for the case s > 0 (remark that
��̃ ( Ã) also depends on n, p, ⌫, L via the new constants in (1.2) for a"(·); it of course
also depends on B). We claim that now Theorem 3.1 for the case s = 0 holds with
the choice

�� (A) := ��̃ ( Ã)/2, (3.87)

and indeed the assumptions in question are now

�

B
 sup

Q�
��̃ r/2

kDwk  sup
Q�
r

kDwk  A�. (3.88)

Let us observe that for yet another not relabeled subsequence we may assume that

�

2B
 sup

Q�
��̃ r/2

kDw"k.

Indeed, were this not the case, by using the convergence in (3.84) we would im-
mediately contradict the first inequality in (3.88). On the other hand, thanks to
(3.84)-(3.85), it follows that

s" + sup
Q�
r/2

kDw"k  Ã�. (3.89)

We can therefore apply Theorem 3.1 in the case s ⌘ s" > 0, thereby obtaining

Eq(Dw", (��̃ /2)Q�
r )  2�(n+2)� Eq(Dw", Q�

r/2).

Letting " ! 0, (3.84) and (3.89) yield

Eq(Dw, (��̃ /2)Q�
r )  2�(n+2)� Eq(Dw, Q�

r/2)  � Eq(Dw, Q�
r )

and this proves Theorem 3.1 in the case s = 0, with the choice in (3.87). Notice
that the choices in (3.86) and (3.87) do keep the structure of the number �� with
respect to � and B described in (3.6) and (3.24).
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4. Proof of the intrinsic potential estimate and consequences

In this section we give the proof of Theorem 1.2, which in turn implies Corol-
laries 1.2 and 1.3. First, in Section 4.1 we propose a few comparison estimates
necessary to implement the iteration procedure that will lead, in Section 4.2 below,
to the proof of the intrinsic potential estimate (1.16).

Let us first clarify that, with � > 0 being fixed, generalized solutions as in
(1.16) always exist provided the Riesz potential is finite:

Iµ1 (x0, t0; 2r) :=
Z 2r

0


|µ|(Q%(x0, t0))

%N�1

�
d%

%
< 1. (4.1)

Remark 4.1 (Finiteness of potentials implies generalized roots exist). Let us
assume that (4.1) holds with Q%(x0, t0) denoting a standard parabolic cylinder.
Changing variable (i.e. % ! �(2�p)/2%) in (1.16), we obtain

� = c� + c�(n+1)(2�p)/2
Z 2r

0

"
|µ|(Q�

�(p�2)/2%
(x0, t0))

%N�1

#
d%

%

and accordingly define the function

h(�) := � � c� � c�(n+1)(2�p)/2
Z 2r

0

"
|µ|(Q�

�(p�2)/2%
(x0, t0))

%N�1

#
d%

%

defined for � > 0. Observe that h(·) is continuous function in (0,1) and, more-
over, h(�) < 0 for 0 < � < c�. On the other hand, using that

|µ|
⇣
Q�

�(p�2)/2%

⌘
 |µ|(Q%), for � � 1,

we have

lim
�!1

h(�) � lim
�!1

h
� � c� � c�(n+1)(2�p)/2Iµ1 (x0, t0; 2r)

i
= 1,

since (n + 1)(2 � p)/2 < 1 for p > 2 � 1/(n + 1). Therefore there must exist
� 2 [c�,1) solving h(�) = 0, that is, a solution to (1.16).

4.1. Comparison results

In the rest of the section, until the proof of Theorem 1.1, we consider in the fixed
parabolic cylinder Q�

%(x0, t0) ✓ �T , %, � > 0, the unique solution

w 2 C0([t0 � �2�p%2, t0); L2(B(x0, %)))

\ L p(t0 � �2�p%2, t0;W 1,p(B(x0, %)))
(4.2)
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to the following Cauchy-Dirichlet problem:
(

wt � div a(Dw) = 0 in Q�
%

w = u on @parQ�
%.

(4.3)

The following result is taken from [11, Chapter 8, Theorem 5.2], and in the form
suitable for general equations can be also retrieved from [27].

Theorem 4.2. With w being defined in (4.3), there exists a constant c3 � 1, de-
pending only on n, p, ⌫, L , but otherwise independent of s, of the solution w con-
sidered and of the vector field a(·), such that

sup
1
2 Q�

%

||Dw|| 
c3
2

(� + s) +
c3
2

�
n(p�2)

n(p�2)+2

 Z

Q�
%

(|Dw| + s) dx dt

! 2
n(p�2)+2

.

Then we establish a comparison estimate between u and w in the next result:

Lemma 4.3. Let u be as in Theorem 1.2 and w as in (4.3); then there exists a
constant c depending only on n, p, ⌫, L such that the following inequality holds:

Z

Q�
%

|Du � Dw| dx dt  c

2

4
|µ|(Q�

%)

|Q�
%|

n+1
n+2

3

5

n+2
(p�1)n+p

+ c

2

4
|µ|(Q�

%)

|Q�
%|

n+1
n+2

3

5

 Z

Q�
%

(|Du| + s) dx dt

!(2�p) n+1n+2

.

(4.4)

Proof.

Step 1: Preliminary estimates. We go back to the proof of Lemma 4.1, Step 1,
in [30] and obtain the following preliminary estimates, which in fact hold also for
the whole p > 1:

sup
⌧

Z

Q⌧

|u�w| dx  |µ|(Q) (4.5)

and Z

Q

ha(Du) � a(Dw), Du � Dwi

(↵ + |u�w|)⇠
dx dt  c

↵1�⇠

⇠ � 1
|µ|(Q) (4.6)

for ↵ > 0 and ⇠ > 1, where c ⌘ c(n, p, ⌫) � 1.

Step 2: Comparison estimates. Fix now

⇠ =
n + 1
n

(p � 1), (4.7)
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so that

⇠ > 1 () p > 2�
1

n + 1
.

Define

↵ =

✓Z

Q
|u�w|

n+1
n dx dt

◆ n
n+1

and assume that ↵ > 0, for if it is not, then u = w and (4.4) follows. The parabolic
Sobolev inequality (see for example [11, Chapter 1, Proposition 3.1]) gives

↵  c(n)

"Z

Q
|Du � Dw| dx dt

✓
sup
⌧

Z

Q⌧

|u�w| dx
◆ 1

n
# n
n+1

,

and thus by (4.5) that

↵  c|µ|(Q)
1

n+1

✓Z

Q
|Du � Dw| dx dt

◆ n
n+1

. (4.8)

Next (see for instance [39]) we recall some of the basic properties of the map

V (z) = Vs(z) := (s2 + |z|2)
p�2
4 z , z 2 Rn,

that are the inequalities

|V (z1) � V (z2)|2  c̃ ha(z1) � a(z2), z1 � z2i (4.9)

and

1
c̃

⇣
s2 + |z1|2 + |z2|2

⌘ p�2
2


|V (z1) � V (z2)|2

|z1 � z2|2
 c̃

⇣
s2+|z1|2 + |z2|2

⌘ p�2
2 (4.10)

holding for some universal constant c̃ = c̃(n, ⌫, L) � 1, whenever z1, z2 2 Rn .
Applying (4.6) together with (4.9) yields

Z

Q

|V (Du) � V (Dw)|2

(↵ + |u�w|)⇠
dx dt  c

↵1�⇠

⇠ � 1
|µ|(Q).
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This implies, together with Hölder’s inequality and (4.8), recalling also (4.7),
Z

Q
|V (Du) � V (Dw)|

2
p dx dt

=
Z

Q

 
|V (Du) � V (Dw)|2

(↵ + |u � w|)⇠

! 1
p

(↵ + |u � w|)
⇠
p dx dt



 Z

Q

|V (Du) � V (Dw)|2

(↵ + |u � w|)⇠
dx dt

! 1
p ✓Z

Q
(↵ + |u � w|)

n+1
n dx dt

◆ p�1
p

 c
✓

|µ|(Q)

|Q|
↵1�⇠

◆ 1
p
↵

⇠
p

 c

 
|µ|(Q)

n+2
n+1

|Q|

✓Z

Q
|Du � Dw| dx dt

◆ n
n+1

! 1
p

.

(4.11)

We then use (4.10) as follows:

|Du � Dw| =
h
(|Du|2 + |Dw|2 + s2)

p�2
2 |Du � Dw|2

i 1
2

· (|Du|2 + |Dw|2 + s2)
2�p
4

 c|V (Du) � V (Dw)|(|Du|2 + |Dw|2 + s2)
2�p
4

 c|V (Du) � V (Dw)|(|Du � Dw|2 + |Du|2 + s2)
2�p
4 .

(4.12)

Young’s inequality, used when p < 2 with conjugate exponents (2/p, 2/(2� p)),

ab
2�p
2  � b + c(p, � )a

2
p , � 2 (0, 1),

yields

|Du � Dw|  c|V (Du) � V (Dw)|
2
p +

1
2
|Du � Dw|

+ c|V (Du) � V (Dw)|(|Du| + s)
2�p
2

(4.13)

with a constant c depending only on n and p. In turn, we deduce by Hölder’s
inequality that
Z

Q
|Du � Dw| dx dt  c

Z

Q
|V (Du) � V (Dw)|

2
p dx dt

+ c
✓Z

Q
|V (Du) � V (Dw)|

2
p dx dt

◆ p
2
✓Z

Q
(|Du| + s) dx dt

◆ 2�p
2

.

(4.14)
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Now, if on one hand
✓Z

Q
|V (Du) � V (Dw)|

2
p dx dt

◆ p
2
✓Z

Q
(|Du| + s) dx dt

◆ 2�p
2


Z

Q
|V (Du) � V (Dw)|

2
p dx dt,

implying by (4.14) that
Z

Q
|Du � Dw| dx dt  c

Z

Q
|V (Du) � V (Dw)|

2
p dx dt,

then using (4.11) in the above inequality leads to

Z

Q
|Du � Dw| dx dt  c

"
|µ|(Q)

|Q|
n+1
n+2

# n+2
(p�1)n+p

and the result follows in this case. If on the other hand
Z

Q
|V (Du) � V (Dw)|

2
p dx dt



✓Z

Q
|V (Du) � V (Dw)|

2
p dx dt

◆ p
2
✓Z

Q
(|Du| + s) dx dt

◆ 2�p
2

,

then
Z

Q
|Du � Dw| dx dt

 c
✓Z

Q
|V (Du) � V (Dw)|

2
p dx dt

◆ p
2
✓Z

Q
(|Du| + s) dx dt

◆ 2�p
2

holds by (4.14). Inserting (4.11) into this we obtain
Z

Q
|Du � Dw| dx dt

 c

 
|µ|(Q)

n+2
n+1

|Q|

✓Z

Q
|Du � Dw| dx dt

◆ n
n+1

! 1
2 ✓Z

Q
(|Du| + s) dx dt

◆ 2�p
2

and thus also
Z

Q
|Du � Dw| dx dt  c

"
|µ|(Q)

|Q|
n+1
n+2

#✓Z

Q
(|Du| + s) dx dt

◆(2�p) n+1n+2
.

This concludes the proof.
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Corollary 4.4. Let u andw be as in Lemma 4.3. Suppose that the intrinsic relations
Z

Q�
%

(|Du| + s) dx dt  �,
|µ|(Q�

%)

%n+1
 �, (4.15)

are satisfied. Then there exists a constant c4 = c4(n, p, ⌫, L) � 1 such that
Z

Q�
%

|Du � Dw| dx dt  c4

"
|µ|(Q�

%)

%N�1

#

. (4.16)

Proof. Simply note that by the first intrinsic inequality in (4.15) we have
2

4
|µ|(Q�

%)

|Q�
%|

n+1
n+2

3

5

 Z

Q�
%

(|Du| + s) dx dt

!(2�p) n+1n+2

=

"
|µ|(Q�

%)

%n+1

#

�(p�2) n+1n+2

 Z

Q�
%

(|Du| + s) dx dt

!(2�p) n+1n+2


|µ|(Q�

%)

%n+1
,

and, moreover, using the second inequality in (4.15) we also get
2

4
|µ|(Q�

%)

|Q�
%|

n+1
n+2

3

5

n+2
(p�1)n+p

=

"
|µ|(Q�

%)

%n+1

# n+2
(p�1)n+p

�
(n+1)(p�2)
(p�1)n+p 

|µ|(Q�
%)

%n+1
.

The proof of (4.16) now follows using the last two inequalities together with Lemma
4.3, and finally recalling that N � 1 = n + 1.

In the following, in accordance to (3.2), we define

E(g, Q) :=
Z

Q
|g � (g)Q | dx dt

whenever g 2 L1(Q, Rn) and Q ⇢ �T is a cylinder. We proceed with another
couple of technical lemmas whose general form will make them useful also in the
next section, where we will prove the gradient continuity results.

Lemma 4.5. Let �, ✓ 2 (0, 1). Suppose that
Z

Q�
%

(|Du| + s) dx dt  � and
|µ|(Q�

%)

%N�1 
�n+2

c4
✓�, (4.17)

where c4 ⌘ c4(n, p, ⌫, L) is as in Corollary 4.4. Then

s + sup
1
2 Q�

%

kDwk  6c3�, (4.18)
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where c3 ⌘ c3(n, p, ⌫, L) is as in Theorem 4.2, and, moreover, the lower bound
Z

�Q�
%

|Du| dx dt � ✓� 
Z

�Q�
%

|Dw| dx dt 
p
n sup

�Q�
%

kDwk (4.19)

holds.

Proof. Corollary 4.4, in view of (4.17), gives the comparison estimate
Z

Q�
%

|Du � Dw| dx dt  �n+2✓�. (4.20)

This, together with (4.17), further implies the bound
Z

Q�
%

(|Dw| + s) dx dt 
Z

Q�
%

(|Du| + s) dx dt +
Z

Q�
%

|Du � Dw| dx dt  2�.

Therefore, an application of Theorem 4.2 yields

sup
1
2 Q�

%

kDwk  c3� + c32
2

n(p�2)+2�  5c3�,

because n(p � 2) + 2 � 1 as we are assuming (1.3). Now (4.18) follows using
again (4.17). Applying then (4.20) together with the triangle inequality yields

Z

�Q�
%

|Du| dx dt 
Z

�Q�
%

|Du � Dw| dx dt +
Z

�Q�
%

|Dw| dx dt

 ��(n+2)
Z

Q�
%

|Du � Dw| dx dt +
Z

�Q�
%

|Dw| dx dt

 ✓� +
Z

�Q�
%

|Dw| dx dt,

thereby finishing the proof.

Lemma 4.6. Let � 2 (0, 1/2). Suppose that Dw satisfies the decay estimate

E(Dw, �Q�
%) 

⇣ "

2n+7
⌘
E(Dw, 2�1Q�

%) (4.21)

for some " 2 (0, 1], and that the bounds
Z

Q�
%

(|Du| + s) dx dt  � and
|µ|(Q�

%)

%N�1  � (4.22)

hold. Then we have

E(Du, �Q�
%) 

⇣"

4

⌘
E(Du, Q�

%) + 4c4��(n+2)

"
|µ|(Q�

%)

%N�1

#

,

where c4 ⌘ c4(n, p, ⌫, L) is as in Corollary 4.4.
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Proof. Applying the triangle inequality and assumption (4.21), we arrive at the fol-
lowing chain of inequalities:

E(Du, �Q�
%)  2

Z

�Q�
%

|Du � (Dw)�Q�
%
| dx dt

 2E(Dw, �Q�
%) + 2

Z

�Q�
%

|Du � Dw| dx dt

 "2�(n+6)E(Dw, 2�1Q�
%) + 2��(n+2)

Z

Q�
%

|Du � Dw| dx dt

 "2�(n+5)E(Du, 2�1Q�
%) + 4��(n+2)

Z

Q�
%

|Du � Dw| dx dt

 "2�(n+5)E(Du, 2�1Q�
%) + 4c4��(n+2)

"
|µ|(Q�

%)

%N�1

#

.

The last inequality is a consequence of (4.22) by Corollary 4.4. Observe also that
we repeatedly used (3.3). The result follows by observing that

E(Du, 2�1Q�
%)  2

Z

1
2 Q�

%

|Du � (Du)Q�
%
| dx dt  2n+3E(Du, Q�

%).

4.2. Proof of Theorem 1.2

The starting point here is a new iteration method, already introduced in [30] in order
to treat the case p � 2, that will be here modified to treat the subquadratic case via
Lemmas 4.5 and 4.6. We shall use large (de)magnifying constants such as 600, 800,
1200, to clarify the role of certain passages in the proof. Now, define the set L� (of
Lebesgue points) as

L� =

(

(x0, t0) 2 �T : lim
%!0

Z

Q�
%(x0,t0)

Du dx dt = Du(x0, t0)

)

(4.23)

for � > 0. Basic properties of maximal operators - see for instance [43, Chapter 1,
Page 8] - imply that this set is actually independent of � and, in particular, L� =
L1 =: L for all 0 < � < 1. Moreover, Q̃ \ L has zero Lebesgue measure.
Therefore, in the following, when referring to the statement of Theorem 1.1, we
shall prove (1.16) whenever (x0, t0) 2 L.
Step 1: Setting of the constants and basic inequalities. With (x0, t0) 2 L being
fixed, in the following all the cylinders will have (x0, t0) as vertex, therefore we
shall as usual omit denoting the vertex simply writing Q�

%(x0, t0) ⌘ Q�
%. We start

taking � of the form

� � H1� + H2
Z 2r�

0

|µ|(Q�
%)

%N�1
d%

%
, r� = �(p�2)/2r, (4.24)
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and fix the constants H1, H2 � 1 in a few lines, in a way that makes them depending
only on n, p, ⌫, L . In the end, when proving (1.16), we shall simply take c :=
max{H1, H2}. Then � defined in (1.16) certainly satisfies (4.24). Taking constant
c3 from Theorem 4.2, we define

A := 6c3, B := 400
p
n, � = 2�(n+7). (4.25)

We then fix the constant �� ⌘ �� (n, p, ⌫, L , A, B, � ) 2 (0, 1/2) in Theorem 3.5
corresponding to the choices in (4.25). Since A depends itself on n, p, ⌫, L , this
ultimately fixes a constant �� 2 (0, 1/2) depending only on n, p, ⌫, L . Next, we
take k as the smallest integer (larger or equal to 2) satisfying

8
p
nA(�� /2)(k�1)↵ 

(�� /2)n+2

800
, (4.26)

and in this way k depends only upon n, p, ⌫, L . Now, define

Qi := Q�
ri , ri = �i1r�, �1 := �� /2 (4.27)

whenever i � 0 is an integer; again �1 ⌘ �1(n, p, ⌫, L) 2 (0, 1/4). We also set

H1 := 400��(n+2)
1 and H2 := 1600c4��(k+3)(n+2)

1 , (4.28)

where c4 ⌘ c4(n, p, ⌫, L) has been fixed in Corollary 4.4. Notice that the choice of
H1 implies that

Z

Q0
(|Du| + s) dx dt + �

�(n+2)
1 E(Du, Q0)  (1+ 2��(n+2)

1 )� 
�

100
(4.29)

and
s 

�

400
(4.30)

hold. Now, recalling again that N � 1 = n + 1, observe that

Z 2r�

0

|µ|(Q�
%)

%N�1
d%

%
=

1X

i=0

Z ri

ri+1

|µ|(Q�
%)

%N�1
d%

%
+

Z 2r�

r�

|µ|(Q�
%)

%N�1
d%

%

�
1X

i=0

|µ|(Qi+1)

r N�1
i

Z ri

ri+1

d%

%
+

|µ|(Q0)
(2r�)N�1

Z 2r�

r�

d%

%

= �n+11 log
✓
1
�1

◆ 1X

i=0

|µ|(Qi+1)

r N�1
i+1

+
log 2
2n+1

"
|µ|(Q0)
r N�1
�

#

� �n+21

1X

i=0

|µ|(Qi )

r N�1
i

.

(4.31)
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Therefore, by (4.24) and the choice in (4.28) it follows that

8c4��(k+2)(n+2)
1

1X

i=0

|µ|(Qi )

r N�1
i


�

200
. (4.32)

In particular, we have

|µ|(Qi )

r N�1
i


�
(k+2)(n+2)
1
1600c4

�  � 8 i � 0. (4.33)

Step 2: Exit time argument. Next, whenever i � 0, define

Ci =
Z

Qi

(|Du| + s) dx dt + �
�(n+2)
1 E(Du, Qi ), (4.34)

so that (4.29) reads also as C0  �/100. Let us show that without loss of gener-
ality we may assume there exists an exit index ie � 0 with respect to the previous
inequality, that is an integer ie � 0 such that

Cie 
�

100
, C j >

�

100
8 j > ie. (4.35)

Indeed, on the contrary, we could find an increasing subsequence { ji } such that
C ji  �/100, for every i 2 N, and then, as (x0, t0) 2 L, obviously

|Du(x0, t0)|  lim
i!1

Z

Q ji

|Du| dx dt 
�

100
,

and the proof would be finished. Therefore, for the rest of the proof, we shall argue
under the additional assumption (4.35).

Step 3: Estimates after the exit index. The following lemma is the core of the proof:

Lemma 4.7. If i � ie, then inequality
Z

Qi

(|Du| + s) dx dt  � (4.36)

implies

E(Du, Qi+1) 
1
4
E(Du, Qi ) + 4c4��(n+2)

1

"
|µ|(Qi )

r N�1
i

#

. (4.37)
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Proof. We begin with a comparison estimate. By (4.33) and (4.36) we may apply
Corollary 4.4 so that
Z

Qi+ j

|Du � Dwi | dx dt
|Qi |

|Qi+ j |

Z

Qi

|Du�Dwi | dx dtc4�
� j (n+2)
1

"
|µ|(Qi )

r N�1
i

#

holds for all j = 0, 1, . . . , k (recall that k ⌘ k(n, p, ⌫, L) 2 N has been defined in
Step 1). Using again (4.33) we obtain

Z

Qi+ j

|Du � Dwi | dx dt 
�
(k+1� j)(n+2)
1
1600

� (4.38)

for all j = 0, 1, . . . , k. Next, conditions (4.36) and (4.33) allow to verify assump-
tion (4.17) in Lemma 4.5 both with � ⌘ �1 and with � ⌘ �k1 (take ✓ ⌘ 1/1600).
Thus we obtain

s + sup
Qi+1

kDwik  s + sup
1
2 Qi

kDwik  6c3� ⌘ A� (4.39)

and
Z

Qi+k

|Du| dx dt �
�

1600


Z

Qi+k

|Dwi | dx dt 
p
n sup
Qi+1

kDwik. (4.40)

At this point, as a consequence of Theorem 3.3 (applied with Q�
% ⌘ Qi+k) and by

(4.39) and (4.26), we have

2 osc
Qi+k

Dwi  8
p
nA�

(k�1)↵
1 � 

�n+21
800

�.

This and (4.38) imply

E(Du, Qi+k)  2
Z

Qi+k

|Du � (Dwi )Qi+k | dx dt

 2E(Dwi , Qi+k) + 2
Z

Qi+k

|Du � Dwi | dx dt

 2 osc
Qi+k

Dwi +
�n+21 �

800


�n+21 �

400
.

(4.41)

Combining (4.30) and (4.41) we obtain

Ci+k =
Z

Qi+k

(|Du| + s) dx dt + �
�(n+2)
1 E(Du, Qi+k)


Z

Qi+k

|Du| dx dt +
�

200
,
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and therefore the fact Ci+k � �/100 and (4.40) imply

�

B
⌘

�

400
p
n

 sup
Qi+1

kDwik.

The lower bound above combined with (4.39) allows to verify assumptions of The-
orem 3.5 in Q�

r ⌘ 2�1Qi , with the choice of the constants made in (4.25). Hence
we get

E(Dwi , Qi+1) = E(Dwi , (�� /2)Qi )  2�(n+7)E(Dwi , 2�1Qi ).

Inequality (4.37) now follows by Lemma 4.6, which is in turn applicable with " = 1
thanks to the previous inequality, (4.33), and (4.36).

Step 4: Iteration and conclusion. Denote in short

Ai := E(Du, Qi ), ki = |(Du)Qi |.

By the definition in (4.34) and (4.35) we have

s + kie + �
�(n+2)
1 Aie  Cie 

�

100
. (4.42)

We now prove, by induction, that

s + k j + A j  � (4.43)

holds whenever j � ie. Indeed, by (4.42), the case j = ie of the previous inequality
holds. Then, assume by induction that (4.43) holds whenever j 2 {ie, . . . , i}. This,
in particular, implies that

Z

Q j

(|Du| + s) dx dt  s + k j + A j  �

whenever j 2 {ie, . . . , i}. Lemma 4.7 is hence at our disposal for such j and
estimate (4.37) gives

A j+1 
1
4
A j + 4c4��(n+2)

1

"
|µ|(Q j )

r N�1
j

#

(4.44)

for all j 2 {ie, . . . , i}. It immediately follows by (4.43) (assumed for all j 2
{ie, . . . , i}) and (4.33) that

Ai+1 
�

4
+ 4c4��(n+2)

1

"
|µ|(Qi )

r N�1
i

#


�

4
+

�

400


�

3
. (4.45)



GRADIENT REGULARITY FOR NONLINEAR PARABOLIC EQUATIONS 807

Furthermore, summing up (4.44) for j 2 {ie, . . . , i} leads to

i+1X

j=ie

A j  Aie +
1
4

iX

j=ie

A j + 4c4��(n+2)
1

i+1X

j=ie

|µ|(Q j )

r N�1
j

, (4.46)

yielding
i+1X

j=ie

A j  2Aie + 8c4��(n+2)
1

i+1X

j=ie

|µ|(Q j )

r N�1
j

. (4.47)

Using the previous inequality we have

ki+1 � kie =
iX

j=ie

(k j+1 � k j ) 
iX

j=ie

Z

Q j+1

|Du � (Du)Q j | dx dt


iX

j=ie

|Q j |

|Q j+1|

Z

Q j

|Du � (Du)Q j | dx dt

= �
�(n+2)
1

iX

j=ie

A j

 2��(n+2)
1 Aie + 8c4��2(n+2)

1

iX

j=ie

|µ|(Q j )

r N�1
j

and thus it follows from (4.32) that

ki+1  kie + 2��(n+2)
1 Aie + 8c4��2(n+2)

1

1X

j=0

|µ|(Q j )

r N�1
j

 2Cie +
�

200
.

In turn, by (4.42) the previous estimate yields ki+1  �/3. The last inequality
together with (4.30) and (4.45) allows to verify the induction step, i.e.

s + ki+1 + Ai+1 
�

400
+

�

3
+

�

3
< �.

Therefore (4.43) holds for every i � ie. Estimate (1.16) finally follows with the
choice (announced at the beginning) c := max{H1, H2}, since, as (x0, t0) 2 L, it
holds that

|Du(x0, t0)| = lim
i!1

ki  �,

finishing the proof of Theorem 1.1.

Proof of Corollary 1.2. Let us assume that Iµ1 (x0, t0; 2r) < 1, otherwise the proof
trivializes. Next, let us consider the function

h(�) := � � c�
n(2�p)
2 A(�) � c�

(n+1)(2�p)
2 B(�),
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where
A(�) :=

1
|Qr |

Z

Q�
r�

(|Du| + s + 1) dx dt

and

B(�) :=
Z 2r

0

|µ|(Q�
�(p�2)/2%

(x0, t0))

%N�1
d%

%
,

and c is again the constant appearing in Theorem 1.2. Clearly both A and B are
nonincreasing functions of � in (0,1), because

Q�2

�
(p�2)/2
2 %

⇢ Q�1

�
(p�2)/2
1 %

for all �2 > �1 > 0 and % 2 (0, 2r].

We consider the function h(·) defined for all those � such that Q�
r ⇢ �T ; observe

that the domain of definition of h(·) includes [1,1) as Q�
�(p�2)/2r ⇢ Qr ⇢ �T

when � � 1. Again, observe that h(·) is a continuous function and moreover h(1) 
0 as c � 1 and A(1) � 1. On the other hand, observe that

lim
�!1

h(�) � lim
�!1

h
� � c�

n(2�p)
2 A(1) � c�

(n+1)(2�p)
2 B(1)

i
= 1,

because (n + 1)(2� p)/2 < 1 for p > 2� 1/(n + 1). It follows that there exists a
number � � 1 such that h(�) = 0 and this means that � solves (1.16) with

� = �(�) =
Z

Q�
r�

(|Du| + s + 1) dx dt = �
n(2�p)
2 A(�).

Therefore we can apply (1.16) to have

� + |Du(x0, t0)|  2c�
n(2�p)
2 A(�) + 2c�

(n+1)(2�p)
2 B(�). (4.48)

On the other hand, observe that by Young’s inequality with conjugate exponents
✓

2
n(2� p)

,
2

2� n(2� p)

◆

and ✓
2

(n + 1)(2� p)
,

2
(n + 1)p � 2n

◆

we have

2c�
n(2�p)
2 A(�)  �/4+ [2cA(1)]

2
2�n(2�p)

 �/4+ c̃
✓Z

Qr

(|Du| + s + 1) dx dt
◆ 2
2�n(2�p)
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and

2c�
(n+1)(2�p)

2 B(�)  �/4+ [2cB(1)]
2

(n+1)p�2n

 �/4+ c̃

 Z 2r

0


|µ|(Q%(x0, t0))

%n+1

�
d%

%

! 2
(n+1)p�2n

.(4.49)

Substituting the last inequalities into (4.48) readily gives (1.17).

Proof of Corollary 1.3. We adopt the notation from the proof of Theorem 1.3 and
replace (4.49) by a different estimate. Indeed, the integrand of B(�) can be esti-
mated as follows:

|µ|
⇣
Q�

�(p�2)/2%

⌘

%N�1  k f kL1

|µ0|
⇣
B�(p�2)/2%

⌘

%n�1

= k f kL1�
(n�1)(p�2)

2
|µ0|

⇣
B�(p�2)/2%

⌘

(�(p�2)/2%)n�1
.

Changing variables eventually leads to

c�
(n+1)(2�p)

2 B(�)  c�2�pk f kL1Iµ01 (x0, 2�(p�2)/2r)

 c�2�pk f kL1Iµ01 (x0, 2r),

where we used that � � 1 to derive the last inequality. In turn applying Young’s
inequality with conjugate exponents (1/(2� p), 1/(p � 1)) gives

c�2�pk f kL1Iµ01 (x0, 2r)  �/4+ ck f k1/(p�1)L1

⇥
Iµ01 (x0, 2r)

⇤1/(p�1)
.

The rest of the proof is analogous to the one of Theorem 1.3.

5. Continuity of the gradient via potentials

5.1. Preliminary choice of the geometry

Let us fix an open subcylinder Q̃ b �T such that Q̃ = �̃ ⇥ (t1, t2) where �̃ b �

is a smooth subdomain, and let us take an intermediate cylinder Q̃0 such that

Q̃ b Q̃0 b �T . (5.1)

Let us finally set

R̄0 := distpar(Q̃, @par Q̃0) ⇡ distpar(Q̃0, @par�T ) > 0. (5.2)
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Under the assumptions of Theorems 1.5-1.9, since (x, t) 7! Iµ1 (x, t; r) is locally
bounded in �T , we can apply Theorem 1.3 so that the gradient is locally bounded
�T ; in particular Du is bounded in Q̃0. Consequently, we denote

M := 1+ s + sup
Q̃0

|Du| < 1. (5.3)

Notice that by estimate (1.17) and (5.2) the number M depends only on the quanti-
ties n, N , p, ⌫, L , kDukL p and R0. We now distinguish two cases, the first is when
p  2 (and of course the lower bound in (1.9) holds). In this case we consider
cylinders of the type Q�

r�(x0, t0) defined in (1.14); notice that whenever � increases
the cylinder does not increase as p  2. Let us fix

�M := M and R0 := �
(p�2)/2
M R̄0/4. (5.4)

It follows that Q�M
r (x0, t0) ⇢ Q̃0 whenever (x0, t0) 2 Q̃ and r  R0, and in

particular
s + sup

Q�M
r

||Du||  �M whenever r  R0. (5.5)

In the proof of the continuity results given in the next section we shall now solely
consider stretched cylinders of the type appearing in the previous display.

In the case p > 2 (where the proofs can be obtained combining the methods
used here with those already explained in [30]) the intrinsic cylinders taken are a bit
different. Indeed, with the definition in (5.3) we consider intrinsic cylinders of the
type Q�M

r (x0, t0) with r  R̄0. Since this time p � 2 we have Q�M
r (x0, t0) ⇢ Q̃0

when (x0, t0) 2 Q̃ and r  R̄0, that is when Qr (x0, t0) ⇢ Q̃0. As stated above,
we shall not deal with the case p � 2 for brevity, if not to provide the description
of the necessary modifications. Anyway we again remark that in the following we
shall give full details only for the case p  2, which is indeed more delicate.

5.2. Proof of the gradient continuity results

The plan of the section is the following. We start proving the VMO-regularity of
Du by showing Theorem 1.6; this in turn opens the way to the Hölder continuity of
Du under additional assumptions on µ(·), and this is the content of Theorem 1.9.
Then we upgrade the arguments for proving Theorem 1.6 to prove the continuity of
results stated in Theorem 1.5. Finally, we report the necessary remarks for Theorem
1.7 and Corollaries 1.8-1.10.

Proof of Theorem 1.6. According to the definition of VMO-regularity of Du given
in (1.22), let us fix an open subcylinder Q̃ b �T as in Section 5.1. We shall show
that for every " 2 (0, 1) and (x0, t0) 2 Q̃ there exists a radius r̄" < R̄0, which is
independent of (x0, t0) 2 Q̃, such that

E(Du, Q%(x0, t0)) =
Z

Q%(x0,t0)
|Du � (Du)Q%(x0,t0)| dx dt < " (5.6)
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holds whenever % 2 (0, r̄"]. Preliminary to this fact, we are going to prove the
following lemma:

Lemma 5.1. Under the assumptions of Theorem 1.6, and with the notation of Sec-
tion 5.1, for every " > 0, there exists a radius of the type

r" =
"1/↵1

c5
R("), with ↵1 2 (0, 1), c5 � 1, R(") 2 (0, R0] (5.7)

such that Z

Q�M
% (x0,t0)

|Du � (Du)Q�M
% (x0,t0)

| dx dt < "�M (5.8)

holds whenever % 2 (0, r"]. Here c5,↵1 ⌘ c5,↵1(n, p, ⌫, L), and R(") denotes
another radius such that R(") ⌘ R(n, p, ⌫, L ,M, µ(·), "). The radius R(") is
determined in (5.12) below.

The previous lemma will eventually be used in the proof of Theorem 1.9.

Step 1: Preliminaries. With the choices made in (5.1)-(5.5) it follows that
Z

Q�M
% (x0,t0)

(|Du| + s) dx dt  M = �M (5.9)

holds whenever (x0, t0) 2 Q̃ and % < R0. With " > 0, we choose the number
�� ⌘ �� (n, p, ⌫, L , ") 2 (0, 1/2) in Theorem 3.5 corresponding to the choice of
parameters

� ⌘ �M , A ⌘ 6c3, B ⌘
100

p
n

"
, � ⌘

"

2n+7
, q = 1, (5.10)

where c3 ⌘ c3(n, p, ⌫, L) is the constant fixed in Theorem 4.2. Set �1 := �� /2,
while in the following c4 ⌘ c4(n, p, ⌫, L) is the constant introduced in Corollary
4.4. In particular, by taking (3.24) into account we have

�1 =
"2/↵

c5
, ↵ 2 (0, 1), c5 � 1, (5.11)

where ↵ and c5 depend only on n, p, ⌫, L . We then choose R 2 (0, R0] such that

sup
0<%�

(2�p)/2
M R

sup
(x0,t0)

|µ|(Q%(x0, t0))
%N�1 

�n+21 "

400c4�
(N�1)(2�p)/2
M

, (5.12)

which is again possible by assumption (1.21). Notice that at this stage R depends
only on n, p, ⌫, L ,M and " (and of course on the measure µ(·)). As a consequence
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we obtain

sup
0<%R

sup
(x0,t0)

|µ|(Q�M
% (x0, t0))
%N�1  sup

0<%R
sup

(x0,t0)

|µ|
⇣
Q

�
(2�p)/2
M %

(x0, t0)
⌘

%N�1


�n+21 "

400c4


�n+21 "

400c4
�M .

(5.13)

We remark that standard parabolic cylinders appear in the second term of the above
lines. Finally, with (x0, t0) 2 Q̃, we define the chain of shrinking intrinsic cylinders

Qi ⌘ Q�M
ri (x0, t0), ri = �i1r, r 2 (�1R, R]. (5.14)

Step 2: Proof of Lemma 5.1. With " > 0 being fixed as in the statement of Lemma
5.1, we shall prove that

E(Du, Qh) < "�M 8 h 2 N \ [1,1). (5.15)

Let h � 1 and let us distinguish two cases; the first is when
Z

Qh

|Du| dx dt <
"�M

50
,

so that we have

E(Du, Qh)  2
Z

Qh

|Du| dx dt <
"�M

25
 "�M , (5.16)

and (5.15) follows. The other case is when
Z

Qh

|Du| dx dt �
"�M

50
. (5.17)

Let wh�1 be the comparison solution introduced at the beginning of the Section 4.1
corresponding to the cylinder Qh�1, i.e. wh�1 solves the Cauchy-Dirichlet problem

(
(wh�1)t � div a(Dwh�1) = 0 in Qh�1

wh�1 = u on @parQh�1.

Since (5.9) and (5.13) hold, Lemma 4.5 is at our disposal with choices of parameters
� ⌘ �M � 1, � ⌘ �1, ✓ ⌘ "/400, Q�

% ⌘ Qh�1, and �Q�
% ⌘ Qh . Using also (5.17)

we then have

�M

B
⌘

"�M

100
p
n

 sup
Qh

kDwh�1k, s + sup
1
2 Qh�1

kDwh�1k  6c3�M ⌘ A�M .
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Theorem 3.5 then gives

E(Dwh�1, Qh) = E(Dwh�1, (�� /2)Qh�1) 
⇣ "

2n+7
⌘
E(Dwh�1, 2�1Qh�1)

and hence Lemma 4.6, together with (5.9) and (5.13), implies

E(Du, Qh) 
"

4
E(Du, Qh�1) + 4c4��(n+2)

1

"
|µ|(Qh�1)

r N�1
h�1

#


"

2
�M +

"�M

100
 "�M .

(5.18)

This completes the proof of (5.15). Now, since the reasoning is independent of the
choice of (x0, t0) 2 Q̃ and of the initial radius r 2 (�1R, R] chosen to build the
chain in (5.14), we obtain (5.8) with

r" = �1R = �� R/2. (5.19)

Indeed, let %  �1R; this means there exists and integer m � 1 such that �m+1
1 R <

%  �m1 R. Therefore we have % = �m1 r for some r 2 (�1R, R] and (5.8) follows
from (5.15). In order to obtain the required form in (5.7), it is sufficient to recall
(5.19) together with (5.11) and the choice of B and � made in (5.10). The proof of
Lemma 5.1 is complete.

Step 3: Proof of VMO-regularity. Here we are going to finally prove (5.6). By
the previous step we can find a new radius r̄" as in (5.7), depending, for the choice
made here, only on n, p, ⌫, L , R0, " and M , such that (5.8) holds with " replaced
by �

p�3
M "/2. Therefore, as Q%(x0, t0) ⇢ Q�M

% (x0, t0), and using (3.3), we have that
Z

Q%(x0,t0)
|Du � (Du)Q%(x0,t0)| dx dt

 2�2�p
M

Z

Q�M
% (x0,t0)

|Du � (Du)Q�M
% (x0,t0)

| dx dt  "

(5.20)

holds provided %  r̄". This finishes the proof.

Proof of Theorem 1.9. The proof essentially revisits the one of Theorem 1.6, and
makes essential use of Lemma 5.1; for this reason we shall adopt the notation in-
troduced in the proof of Theorem 1.6. Our aim is to show that, for every cylin-
der Q̃ b �T as in Section 5.1, there exists a radius R0 > 0, depending on
n, p, ⌫, L , �,M, cD , an exponent � 2 (0, 1), depending only on n, p, ⌫, L , �, but
independent of M , and finally a constant c, depending on n, p, ⌫, L ,M, �, cD , such
that the decay estimate

E(Du, Q⇢(x0, t0)) =
Z

Q⇢(x0,t0)
|Du � (Du)Q⇢(x0,t0)| dx dt < c⇢� (5.21)
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holds whenever ⇢  R0 and (x0, t0) 2 Q̃. In turn, the local Hölder continuity
of Du in �T follows from a classical Campanato-type integral characterization of
Hölder continuity due to Da Prato [7]. As mentioned, the main tool here is Lemma
5.1, and the dependence in (5.7), where we are now going to disclose the exact
identity of R(") for a certain choice of ". More precisely, we start taking " = ⇢
with ⇢  R0, where R0 has been initially determined in (5.4). By recalling (5.11),
verifying (5.12) amounts to take R such that

sup
0<%�

(2�p)/2
M R

sup
(x0,t0)

|µ|(Q%(x0, t0))
%N�1 

⇢
2n+4

↵ +1

400c4cn+25 �
(N�1)(2�p)/2
M

,

In turn, using (1.24) it is sufficient to verify

R� 
⇢
2n+4

↵ +1

400c4cn+25 cD�
N (2�p)/2
M

() R 
⇢1/↵2

c6

with c6 � 1 which depends only on n, p, ⌫, L ,M, �, cD while ↵2 2 (0, 1) is de-
pending only on n, p, ⌫, L , �, but neither on M or cD . By further reducing the
size of R0, in a way that makes it depending only on n, p, ⌫, L ,M, �, cD , we may
assume that R  ⇢1/↵3 for ↵3 = 2↵2. Using this relation in (5.8) we have that

Z

Q�M
⇢1/↵3

(x0,t0)
|Du � (Du)Q�M

⇢1/↵3
(x0,t0)

| dx dt < �M⇢

whenever ⇢  R0 ⌘ R0(n, ⌫, L ,M, �, cD) and ↵3 depends only on n, p, ⌫, L , �.
Proceeding as in (5.20) we obtain

Z

Q
⇢1/↵3 (x0,t0)

|Du � (Du)Q
⇢1/↵3 (x0,t0)| dx dt < c⇢

for a new constant c, from which (5.21) follows, taking � = ↵3 and yet a new
constant c.

Proof of Theorem 1.5. The proof upgrades the one given for Theorem 1.6. The idea
is to prove the continuity of the gradient by showing that this is the uniform limit of
a sequence of continuous maps.
Step 1: The basic function sequence. We shall keep here the notation introduced in
Section 5.1. With (x0, t0) 2 Q̃, consider the maps

(x0, t0) ! (Du)Q�M
% (x0,t0)

, %  R0,

which are obviously continuous; the radius R0 has been determined in (5.4). The
proof breaks now in several steps: first, we show that there exists a continuous map
g : Q̃ ! Rn such that

(Du)Q�M
% (x0,t0)

! g(x0, t0) as % ! 0. (5.22)
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Then, as on the other hand the convergence

(Du)Q�M
% (x0,t0)

! Du(x0, t0) as % ! 0

holds at every point (x0, t0) 2 Q̃ \ L�M , this will imply that (the precise represen-
tative of) Du is continuous in Q̃. Since Q̃ b �T is arbitrary, this will finally prove
the theorem. In turn, in order to prove, simultaneously that (5.22) holds pointwise
and then uniformly, it is sufficient to prove that, for every " > 0, there exists a
radius r"  R0, independent of the point (x0, t0) considered, such that

|(Du)Q�M
% (x0,t0)

� (Du)Q�M
⇢ (x0,t0)

|  "�M 8 %, ⇢ 2 (0, r"] (5.23)

and (x0, t0) 2 Q̃. In fact, for every fixed (x0, t0) 2 Q̃, the net

% ! (Du)Q�M
⇢ (x0,t0)

is a Cauchy one, and this allows to define the function g(·) appearing in (5.22).
Then, keeping % fixed and letting ⇢ ! 0 in (5.23) gives

|(Du)Q�M
% (x0,t0)

� g(x0, t0)|  "�M 8 % 2 (0, r"]

and this means that the convergence in (5.22) is uniform. The rest of the proof is
now dedicated to show the validity of (5.23).

Step 2: Smallness conditions. With " > 0 fixed in (5.23), we choose the number
�� ⌘ �� (n, p, ⌫, L , ") 2 (0, 1/2) in Theorem 3.5 corresponding to the choice of
parameters

� ⌘ �M , A ⌘ 6c3, B ⌘
100

p
n

"
, � ⌘

1
2n+7

, q = 1,

where c3 ⌘ c3(n, p, ⌫, L) is the constant fixed in Theorem 4.2. Set �1 := �� /2,
while in the following c4 ⌘ c4(n, p, ⌫, L) is the constant introduced in Corollary
4.4. Next, we take a positive radius R  R0 such that

sup
(x0,t0)

Z 2�(2�p)/2
M R

0

|µ|(Q%(x0, t0))
%N�1

d%

%


�
4(n+2)
1 "

800c4�
(2�p)(N�1)/2
M

, (5.24)

sup
0<%�

(2�p)/2
M R

sup
(x0,t0)

|µ|(Q%(x0, t0))
%N�1 

�n+21 "

800c4�
(N�1)(2�p)/2
M

, (5.25)

and

sup
0<%R

sup
(x0,t0)2Q̃

E(Du, Q�M
% (x0, t0)) 

�
4(n+2)
1 "

800
. (5.26)
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Let us observe that (5.24)-(5.25) are possible since now (1.20) is in force. Finally,
(5.26) is allowed by Theorem 1.6 as its assumptions are in turn again verified by
(1.20); in particular observe that (5.26) follows from Step 3 of the proof of Theorem
1.6. Notice that exactly as in (5.13) from (5.25) it follows that

sup
0<%R

sup
(x0,t0)

|µ|(Q�M
% (x0, t0))
%N�1 

�n+21 "

800c4
�M . (5.27)

We shall eventually show that the radius R determined by the smallness conditions
(5.24)-(5.26) will work as r" in (5.23).
Step 3: Preliminary iteration step. With (x0, t0) 2 Q̃, we again define the chain of
shrinking intrinsic cylinders

Qi ⌘ Q�M
ri (x0, t0), ri = �i1R, i � 0. (5.28)

We then have the following:

Lemma 5.2. Assume that
Z

Qi+1

|Du| dx dt �
"�M

50
and

|µ|(Qi )

r N�1
i


�n+21 "

400c4
�M . (5.29)

Then it holds that

E(Du, Qi+1) 
1
2
E(Du, Qi ) + 4c4��(n+2)

1

"
|µ|(Qi )

r N�1
i

#

. (5.30)

Proof. Letwi be the comparison solution introduced at the beginning of the Section
4.1 corresponding to the cylinder Qi , i.e. wi solves the Cauchy-Dirichlet problem

(
(wi )t � div a(Dwi ) = 0 in Qi

wi = u on @parQi .

Since (5.9) and (5.13) hold, Lemma 4.5 is at our disposal with choices of parameters
� ⌘ �M � 1, � ⌘ �1, ✓ ⌘ "/400, Q�

% ⌘ Qi , and �Q�
% ⌘ Qi+1. Using also the first

inequality in (5.29) we then have

�M

B
⌘

"�M

100
p
n

 sup
Qi+1

kDwik, s + sup
1
2 Qi

kDwik  6c3�M ⌘ A�M .

Theorem 3.5 then gives

E(Dwi , Qi+1) = E(Dwi , (�� /2)Qi )  2�(n+7)E(Dwi , 2�1Qi )

and hence Lemma 4.6 - used this time with " = 1 - together with (5.9) and (5.25),
implies (5.30). This completes the proof of the lemma.
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Step 4: Exit times set and iteration chains. The main fact here is the following:

Lemma 5.3. It holds that

|(Du)Qh � (Du)Qk | 
"�M

10
(5.31)

whenever 0  k  h.

Proof. For the proof we need some terminology. Given a chain {Qi } of geometri-
cally shrinking intrinsic cylinders as in (5.14), we consider the set L defined by

L :=

⇢
i 2 N :

Z

Qi

|Du| dx dt <
"�M

50

�
. (5.32)

Accordingly, we define the “left and right boundaries” of L as follows:

@leftL := {i 2 L : i � 1 /2 L} , @rightL := {i 2 L : i + 1 /2 L} [ {1}. (5.33)

We then define a set of the type

Cmi = { j 2 N : i  j  i +m, i 2 @rightL , i +m + 1 2 @leftL , j 62 L if j > i}

as the maximal iteration chain of length m, starting at i . In other words we have
Cmi = {i, . . . , i + m} and each element of Cmi but i lies outside of L; moreover Cmi
is maximal in the sense that there cannot be another set of the same type properly
containing it. Obviously, such sets do not exist when L = N. In the same way we
define the the infinite maximal chain starting at i as

C1
i = { j 2 N : i  j < 1, i 2 @rightL , j 62 L if j > i}.

Notice that, in every case, the smallest element of such a chain always belongs to L ,
being then the only one of the chain to have such a property. Moreover, we define

ie := min L . (5.34)

Note that we set ie = 1 if L = ;. We are now ready for the proof of (5.31); for
this we need to distinguish three cases. We shall of course assume 0  k < h.

Case 1: k < h  ie. Keeping (5.27) in mind, notice that if h � 1 > k, then we can
apply Lemma 5.2 repeatedly, and this yields

E(Du, Qi+1) 
1
2
E(Du, Qi ) + 4c4��(n+2)

1

"
|µ|(Qi )

r N�1
i

#

(5.35)
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for every i 2 {k, . . . , h � 2}. Summing up the previous inequalities, and making
obvious manipulations – see (4.46)-(4.47) – we have

h�1X

i=k
E(Du, Qi )  2E(Du, Qk) + 8c4��(n+2)

1

h�2X

i=k

|µ|(Qi )

r N�1
i


�
4(n+2)
1 "

400
+ 8c4��(n+2)

1

h�2X

i=k

|µ|(Qi )

r N�1
i

,

(5.36)

where we have used (5.26) in the last line. By recalling that

1X

i=0

|µ|(Qi (x0, t0))
r N�1
i


1X

i=0

|µ|
⇣
Q

�
(2�p)/2
M ri

(x0, t0)
⌘

r N�1
i

 �
(2�p)(N�1)/2
M �

�(n+2)
1

Z 2�(2�p)/2
M R

0

|µ|(Q%(x0, t0))
%N�1

d%

%


�
3(n+2)
1 "

800c4
,

see for instance (4.31) above, and using directly (5.26) for the case h � 1 = k, we
conclude that in any case (i.e. h � 1 � k) it holds

h�1X

i=k
E(Du, Qi ) 

�
2(n+2)
1 "

50
.

In turn, (5.31) follows since

|(Du)Qh � (Du)Qk | 
h�1X

i=k
|(Du)Qi+1 � (Du)Qi |


h�1X

i=k

Z

Qi+1

|Du � (Du)Qi | dx dt


h�1X

i=k

|Qi |

|Qi+1|
E(Du, Qi )

= �
�(n+2)
1

h�1X

i=k
E(Du, Qi ) 

"

50


"�M

50
.

(5.37)

Notice that the case analyzed here includes the one when the index ie defined in
(5.34) is infinite, i.e. the set L is empty.
Case 2: ie  k < h. Let us prove that in this case we have

|(Du)Qh | 
"�M

25
and |(Du)Qk | 

"�M

25
. (5.38)
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We prove the former inequality in (5.38), the proof of the latter being the same.
If h 2 L , the first inequality in (5.38) follows immediately from the definition of
L . On the other hand, if h 62 L , then, as h � ie, it is possible to consider the
maximal iteration chain Cmh

ih such that h 2 Cmh
ih ; notice that h > ih as h 62 L 3 ih .

Then iterating Lemma 5.2 as done after (5.35) - i.e. replacing k by ih - we gain
the analogue of (5.37), that is |(Du)Qh � (Du)Qih

|  "/50. In turn using that
|(Du)Qih

|  "�M/50 as ih 2 L , we again obtain the first inequality in (5.38) and
in any case (5.38) follows. Estimating as

|(Du)Qh � (Du)Qk |  |(Du)Qh | + |(Du)Qk | 
"�M

25
+

"�M

25


"�M

10
we have that (5.31) holds in the second case too.
Case 3: k < ie < h. Here we prove that (5.38) still holds and then we conclude
as in Step 2. Indeed, the first inequality in (5.38) follows as in Case 2. As for the
second estimate in (5.38), let us remark that, as ie 2 L , we have that

|(Du)Qie | 
"�M

50
. (5.39)

On the other hand, we can argue exactly as in Case 1, i.e. this time replacing h by
ie, thereby obtaining |(Du)Qie � (Du)Qk |  "/50 that together with (5.39) gives
the second inequality in (5.38). In turn, (5.31) follows also in this case. The proof
of the lemma is complete.

Step 5: Proof of (5.23). The proof of (5.23) follows using Lemma 5.3 together with
the already proved VMO-regularity of the gradient, that is (5.26). We actually take
r" = R and fix 0 < ⇢ < %  R. This means there exists two integers, 0  k  h
such that

�k+11 R < %  �k1R and �h+11 R < ⇢  �h1 R. (5.40)
Observe that

|(Du)Q�M
% (x0,t0)

� (Du)Qk+1 | 
Z

Qk+1

|Du � (Du)Q�M
% (x0,t0)

| dx dt


|Q�M

% (x0, t0)|
|Qk+1|

Z

Q�M
% (x0,t0)

|Du � (Du)Q�M
% (x0,t0)

| dx dt

 �
�(n+2)
1 E(Du, Q�M

% (x0, t0)) 
"

10
where in the last line we have used (5.26) and in second-last one we have used
(5.40). In the same way we also obtain

|(Du)Q�M
⇢ (x0,t0)

� (Du)Qh+1 | 
"

10
.

Using the last two inequalities together with Lemma 5.3 we conclude with (5.23),
and the proof is complete.
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Proof of Theorem 1.7. The proof of this theorem can be now obtained by adapting
the methods of proof of Theorems 1.5-1.6 to the case p � 2 according to the scheme
introduced in [30]. In particular, notice that in the case p � 2, Theorems 3.5 and
3.3 – in slightly different versions – have been proved in [30].

Proof of Corollary 1.8. By Lemma 2.1, and in particular by (2.9) it follows that

lim
r!0

sup
(x,t)2Q

Wµ
q (x, t; r) = 0, where q = min{1, p/[2(p � 1)]}.

Recall that the quantity Wµ
q has been defined in (2.6). The proof now follows

appealing to Theorems 1.5 and 1.7 and recalling (2.7).

Proof of Corollary 1.10. By (1.25) it follows that

lim
r!0

sup
(x,t)2Q

Wµ
q (x, t; r)  c lim

r!0

Z r

0
[h(%)]q

d%

%
= 0,

with q = min{1, p/[2(p � 1)]}. Once again the proof follows appealing to Theo-
rems 1.5 and 1.7.
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[47] J. L. VÁZQUEZ, “Smoothing and Decay Estimates for Nonlinear Diffusion Equations,

Equations of Porous Medium Type”, Oxford Lecture Series in Math. Appl., 33. Oxford
University Press, Oxford, 2006, xiv+234.

Aalto University
Institute of Mathematics
P.O. Box 11100
FI-00076 Aalto, Finland
tuomo.kuusi@tkk.fi

Dipartimento di Matematica e Informatica
Università di Parma
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