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Saddle-shaped solutions of bistable elliptic equations
involving the half-Laplacian

ELEONORA CINTI

Abstract. We establish existence and qualitative properties of saddle-shaped
solutions of the elliptic fractional equation (�1)1/2u = f (u) in the whole space
R2m , where f is of bistable type. These solutions are odd with respect to the
Simons cone and even with respect to each coordinate.

More precisely, we prove the existence of a saddle-shaped solution in every
even dimension 2m, as well as its monotonicity properties, asymptotic behaviour,
and instability in dimensions 2m = 4 and 2m = 6.

These results are relevant in connection with the analog for fractional equa-
tions of a conjecture of De Giorgi on the 1-D symmetry of certain solutions.
Saddle-shaped solutions are the simplest candidates, besides 1-D solutions, to be
global minimizers in high dimensions, a property not yet established.
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1. Introduction and results

This paper concerns the study of saddle-shaped solutions of elliptic equations with
fractional diffusion of the form

(�1)1/2u = f (u) in Rn, (1.1)

where n = 2m is an even integer and f is of bistable type.
The fractional powers of the Laplacian are the infinitesimal generators of Lévy

stable processes and appear in anomalous diffusion phenomena in plasmas, flame
propagation, chemical reactions in liquids and population dynamics.
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Our interest in saddle-shaped solutions originates from the following conjec-
ture of De Giorgi. Consider the Allen-Cahn equation

�1u = u � u3 in Rn, (1.2)

which models phase transitions. In 1978 De Giorgi conjectured that the level sets
of every bounded solution of (1.2), which is monotone in one direction, must be
hyperplanes, at least if n  8. That is, such solutions depend only on one Euclidian
variable.

The conjecture has been proven to be true in dimension n = 2 by Ghoussoub
and Gui [16] and in dimension n = 3 by Ambrosio and Cabré [2]. For 4  n  8,
if @xnu > 0, and assuming the additional condition

lim
xn!±1

u(x 0, xn) = ±1 for all x 0

2 Rn�1,

it has been established by Savin [20]. Recently a counterexample to the conjecture
for n � 9 has been found by del Pino, Kowalczyk and Wei [14].

For the fractional equation (�1)su = f (u) in Rn with 0 < s < 1, the con-
jecture has been proven to be true when n = 2 and s = 1/2 by Cabré and Solà-
Morales [8], and when n = 2 and for every 0 < s < 1 by Cabré and Sire [6], and
by Sire and Valdinoci [22]. In two recent papers [4, 5], Cabré and the author prove
the conjecture in dimension n = 3 for every power 1/2  s < 1.

Coming back to the classical Allen-Cahn equation, Savin [20], proved that if
n  7 then every global minimizer of the equation �1u = u � u3 in Rn is one-
dimensional. A natural question arises: is there a global minimizer in R8 which is
not one-dimensional? Saddle-shaped solutions are the candidates to give a positive
answer to this question, which is still an open problem.

Moreover, by a result of Jerison and Monneau [17], if one could prove that
saddle-shaped solutions are global minimizers in R8, one would have a counterex-
ample to the conjecture of De Giorgi in R9, in an alternative way to that of [14].

Saddle-shaped solutions are expected to have relevant variational properties
due to a well known connection between nonlinear equations modeling phase tran-
sitions and the theory of minimal surfaces. This connection also motivated the
conjecture of De Giorgi.

More precisely, the saddle-shaped solutions that we consider are even with
respect to the coordinate axes and odd with respect to the Simons cone, which is
defined as follows. For n = 2m the Simons cone C is given by:

C = {x 2 R2m : x21 + ... + x2m = x2m+1 + ... + x22m}.

We recall that the Simons cone has zero mean curvature at every point x 2 C \ {0},
in every dimension 2m � 2. Moreover Bombieri, De Giorgi, and Giusti [3] proved
that in dimensions 2m � 8 it is a minimizer of the area functional, that is, it is a
minimal cone (in the variational sense).
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We define two new variables

s =

q
x21 + · · · + x2m and t =

q
x2m+1 + · · · + x22m,

for which the Simons cone becomes C = {s = t}.
We now introduce the notion of saddle-shaped solution. These solutions de-

pend only on s and t , and are odd with respect to the Simons cone.
Definition 1.1. Let u be a bounded solution of (�1)1/2u = f (u) in R2m , where
f 2 C1 is odd. We say that u : R2m ! R is a saddle-shaped (or simply saddle)
solution if

(a) u depends only on the variables s and t . We write u = u(s, t);
(b) u > 0 for s > t ;
(c) u(s, t) = �u(t, s).

Remark 1.2. If u is a saddle solution then, in particular, u = 0 on the Simons cone
C = {s = t}. In other words, C is the zero level set of u.

Saddle solutions for the classical equation �1u = f (u) were first studied
by Dang, Fife, and Peletier in [13] in dimension 2m = 2 for f odd, bistable and
f (u)/u decreasing for u 2 (0, 1). They proved the existence and uniqueness of
saddle-shaped solutions and established monotonicity properties and the asymptotic
behaviour. The instability property of saddle solutions in dimension 2m = 2 was
studied by Schatzman [21]. In two recent works [10,11], Cabré and Terra proved the
existence of saddle-shaped solutions for the equation �1u = f (u) in R2m , where
f is of bistable type, in every even dimension 2m. Moreover they established some
qualitative properties of these solutions, such as monotonicity properties, asymp-
totic behaviour, and also instability in dimensions 2m = 4 and 2m = 6.

In this work, we establish existence and qualitative properties of saddle-shaped
solutions for the bistable fractional equation (1.1).

To study the nonlocal problem (1.1) we will realize it as a local problem in
Rn+1

+
with a nonlinear Neumann condition on @Rn+1

+
= Rn . More precisely, if u =

u(x) is a function defined on Rn , we consider its harmonic extension v = v(x, �)
in Rn+1

+
= Rn

⇥ (0,+1). It is well known (see [8,12]) that u is a solution of (1.1)
if and only if v satisfies(

1v = 0 in Rn+1
+

,

�@�v = f (v) on Rn
= @Rn+1

+
.

(1.3)

Problem (1.3), associated to the nonlocal equation (1.1), allows to introduce the
notions of energy, stability, and global minimality for a solution u of problem (1.1).

Let � ⇢ Rn+1
+

be a bounded domain. We denote by

eB+

r = {(x, �) 2 R2m+1
: � > 0, |(x, �)| < r}

and by eB+

r (x, �) = (x, �) +
eB+

r .
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We define the following subset of @�:

@0� := {(x, 0) 2 Rn+1
+

:
eB+

" (x, 0) ⇢ � for some " > 0} (1.4)

and
@+� := @� \ Rn+1

+
. (1.5)

Given a C1,↵ nonlinearity f : R ! R, for some 0 < ↵ < 1, define

G(u) =

Z 1

u
f.

We have that G 2 C2(R) and G 0
= � f .

Let v be a C1(�) function. We consider the energy functional

E�(v) =

Z
�

1
2
|rv|

2
+

Z
@0�

G(v). (1.6)

Observe that the potential energy is computed only on the boundary @0� ⇢ @Rn+1
+
.

This is a quite different situation from the one of interior reactions.
We start by recalling that problem (1.3) can be viewed as the Euler-Lagrange

equation associated to the energy functional E .
Definition 1.3. a) We say that a bounded solution v of (1.3) is stable if the second
variation of energy �2E/�2⇠ , with respect to perturbations ⇠ compactly supported
in Rn+1

+
, is nonnegative. That is, if

Qv(⇠) :=

Z
Rn+1

+

|r⇠ |2 �

Z
@Rn+1

+

f 0(v)⇠2 � 0 (1.7)

for every ⇠ 2 C1

0 (Rn+1
+

).
We say that v is unstable if and only if v is not stable.
b) We say that a bounded solution u of (1.1) in R2m is stable (unstable) if its

harmonic extension v is a stable (unstable) solution for the problem (1.3).
Another important notion related to the energy functional E is the one of global

minimality.

Definition 1.4. a) We say that a bounded C1(Rn+1
+

) function v in Rn+1
+

is a global
minimizer of (1.3) if

E�(v)  E�(v + ⇠),

for every bounded domain � ⇢ Rn+1
+

and every C1 function ⇠ with compact
support in � [ @0�.

b) We say that a bounded C1 function u in Rn is a global minimizer of (1.1) if
its harmonic extension v is a global minimizer of (1.3).
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Observe that the perturbations ⇠ do not need to vanish on @0�, in contrast from
interior reactions.

In some references, global minimizers are called “local minimizers”, where
local stands for the fact that the energy is computed in bounded domains. Clearly,
every global minimizer is a stable solution.

In what follows we will assume some or all of the following properties on f :

f is odd; (1.8)
G � 0 = G(±1) inR, andG > 0 in (�1, 1); (1.9)

f 0 is decreasing in (0, 1). (1.10)

Note that, if (1.8) and (1.9) hold, then f (0) = f (±1) = 0. Conversely, if f is odd
in R, positive with f 0 decreasing in (0, 1) and negative in (1,1) then f satisfies
(1.8), (1.9) and (1.10). Hence, the nonlinearities f that we consider are of “bal-
anced bistable type”, while the potentials G are of “double well type”. Our three
assumptions (1.8), (1.9), (1.10) are satisfied for the scalar Allen-Cahn type equation

(�1)1/2u = u � u3. (1.11)

In this case we have that G(u) = (1/4)(1� u2)2 and (1.8), (1.9), (1.10) hold. The
three hypothesis also hold for the Peierls-Nabarro problem

(�1)1/2u = sin(⇡u), (1.12)

for which G(u) = (1/⇡)(1+ cos(⇡u)).
By a result of Cabré and Solà-Morales [8], assumption (1.9) on G guarantees

the existence of an increasing solution, from �1 to 1, of (1.1) in R. We call these
solutions layer solutions. In addition, such an increasing solution is unique up to
translations.

The following is the precise result established in [8].
Theorem 1.5 ([8]). Let f be any C1,↵ function with 0 < ↵ < 1 and G 0

= � f .
Then:

• There exists an increasing solution u0 : R ! (�1, 1) of (�1)1/2u0 = f (u0) in
R (that is, a layer solution u0) if and only if

G 0(�1) = G 0(1) = 0, and G > G(�1) = G(1) in (�1, 1).

• If f 0(±1) < 0, then a layer solution of (1.3) is unique up to translations.
• If f is odd and f 0(±1) < 0, then every layer solution of (1.3) is odd in x with
respect to some half-axis. That is, u(x + b) = �u(�x + b) for some b 2 R.

Normalizing the layer solution to vanishing at the origin, we call it u0 and its har-
monic extension in the half-plane v0. Thus we have8><

>:
u0 : R ! (�1, 1)
u0(0) = 0, u0

0 > 0
(�1)1/2u0 = f (u0) in R.

(1.13)



628 ELEONORA CINTI

The monotone bounded solution u0 of the Peierls-Nabarro problem (1.12) in R is
explicit. Calling v0 its harmonic extension in R2

+
we have that

v0(x, �) =

2
⇡
arctan

x
�+ 1/⇡

.

In the following theorem, we establish the existence of a saddle-shaped solution for
problem (1.1) in every even dimension n = 2m. We use the following notations:

O := {x 2 R2m : s > t} ⇢ R2m

eO := {(x, �) 2 R2m+1
+

: x 2 O} ⇢ R2m+1
+

.

Note that
@O = C.

We define the cylinder
CR,L = BR ⇥ (0, L),

where BR is the open ball in R2m centered at the origin and of radius R.

Theorem 1.6. For every dimension 2m � 2 and every nonlinearity f satisfying
(1.8) and (1.9), there exists a saddle solution u of (�1)1/2u = f (u) in R2m , such
that |u| < 1 in R2m .

Let v be the harmonic extension of the saddle solution u in R2m+1
+

. If in addi-
tion f satisfies (1.10), then the second variation of the energy Qv(⇠) at v, as defined
in (1.7), is nonnegative for all function ⇠ 2 C1(R2m+1

+
) with compact support in

R2m+1
+

and vanishing on C ⇥ [0,+1).

We prove the existence of a saddle solution u for problem (1.1), by proving the
existence of a solution v for problem (1.3), with the following properties:

(1) v depends only on the variables s, t and �. We write v = v(s, t, �);
(2) v > 0 for s > t ;
(3) v(s, t, �) = �v(t, s, �).

Using a variational technique we construct a solution v for the following problem
8>>><
>>>:

1v = 0 in eO
v > 0 in eO
v = 0 on C ⇥ [0,+1)

�@�v = f (v) on O ⇥ {� = 0}.

Then, since f is odd, by odd reflection with respect to C ⇥ [0,+1) we obtain a
solution v in the whole space which satisfies properties (1), (2), (3). Clearly the
function u(x) = v(x, 0) is a saddle solution for problem (1.1).
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To prove this existence result, we will use the following non-sharp energy es-
timate for v. Given 1/2  � < 1, there exists " = "(� ) > 0 such that

ECS,S� (v)  CS2m�". (1.14)

In [4, Theorem 1.7], Cabré and the author establish the following sharp energy
estimates for saddle-shaped solutions,

ECS,S (v)  CS2m�1 log S.

Here, (1.14) is not sharp, but it is enough to prove the existence of a saddle solution.
For solutions of problem (1.3) depending only on the coordinates s, t and �,

problem (1.3) becomes
(

�(vss + vt t + v��) � (m � 1)
⇣vs
s

+

vt
t

⌘
= 0, in R2m+1

+

�@�v = f (v) on @R2m+1
+

,
(1.15)

while the energy functional becomes

E(v,�)

=cm
⇢Z

�
sm�1tm�1 1

2
(v2s +v2t +v2�)dsdtd�+

Z
@0�

sm�1tm�1G(v)dsdt
�

,
(1.16)

where cm is a positive constant depending only on m-here we have assumed that
� ⇢ R2m+1 is radially symmetric in the first m variables and also in the last m
variables, and we have abused notation by identifying � with its projection in the
(s, t, �) variables.

In Section 5, we prove the existence and monotonicity properties of a maximal
saddle solution.

To establish these results, we need to introduce a new nonlocal operator DH,' ,
which is the square root of the Laplacian for functions defined in domains H ⇢ Rn

which do not vanish on @H . We introduce this operator and we establish maximum
principles for it, in Section 4.

We define the new variables
8>><
>>:
y =

s + t
p

2

z =

s � t
p

2
.

(1.17)

Note that |z|  y and that we may write the Simons cone as C = {z = 0}.
The following theorem concerns the existence and monotonicity properties of

a maximal saddle solution.
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Theorem 1.7. Let f satisfy conditions (1.8), (1.9), and (1.10).
Then, there exists a saddle solution u of (�1)1/2u = f (u) in R2m , with |u| <

1, which is maximal in the following sense. For every solution u of (�1)1/2u =

f (u) in R2m , vanishing on the Simons cone and such that u has the same sign as
s � t , we have

0 < u  u in O.

As a consequence, we also have

0  |u|  |u| in R2m .

In addition, if v is the harmonic extension of u in R2m+1
+

, then v satisfies:

(a) @sv � 0 in R2m+1
+

. Furthermore @sv > 0 in R2m+1
+

\ {s = 0} and @sv = 0 in
{s = 0};

(b) @tv  0 in R2m+1
+

. Furthermore @tv < 0 in R2m+1
+

\ {t = 0} and @tv = 0 in
{t = 0};

(c) @zv > 0 in R2m+1
+

\ {0};
(d) @yv > 0 in {s > t} ⇥ [0,+1).

As a consequence, for every direction @⌘ = ↵@y � �@t , with ↵ and � positive
constants, @⌘v > 0 in {s > t > 0} ⇥ [0,+1).

Theorem 1.7 above is the analog in [11, Theorem 1.7] for reactions in the
interior. In [11] two important ingredients in the proof of the existence and mono-
tonicity properties of the maximal saddle solution are the following. Let u(1) be
a saddle solution of �1u(1)

= f (u(1)) in R2m , with f bistable, and let u(1)
0 be

the layer solution in dimension n = 1 of (�u(1)
0 )00 = f (u(1)

0 ) (whose existence is
guaranteed by hypothesis (1.9) on f ). Then

i) u(1)
0 (|s � t |/

p

2) is a supersolution of �1u(1)
= f (u(1)) inO;

ii) |u(1)(x)| 

���u(1)
0 (d(x,C))

���=
����u(1)
0

✓
|s � t |
p

2

◆���� for every x 2 R2m, (1.18)

where d(·,C) denotes the distance to the Simons cone.

The following proposition establishes the analog for boundary reactions of point i)
above.

Proposition 1.8. Let f satisfy hypothesis (1.8), (1.9), (1.10). Let u0 be the layer
solution, vanishing at the origin, of problem (1.1) in R and let v0 be its harmonic
extension in R2

+
.

Then, the function v0(z, �) = v0
⇣
s�t
p

2
, �
⌘
satisfies

(
�1v0 � 0 in eO
�@�v0 � f (v0) on O ⇥ {0}.
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Concerning point ii) above, estimate (1.18) follows by an important gradient bound
of Modica [19] for the classical equation �1u = f (u) in Rn .

In the fractional case Cabré and Solà-Morales [8] and Cabré and Sire [6] estab-
lished a non-local version of the Modica estimate in dimension n = 1, the analog
estimate for dimentsions n > 1 is still an open problem. Therefore, we are not
able to deduce the analog of (1.18) for solutions of the equation (�1)1/2u = f (u)
in R2m . For this reason, to give an upper barrier for saddle solutions, that at the
same time is a supersolution, we consider the function min{Kv0(|s � t |/

p

2, �), 1}
where K � 1 is a large constant depending only on n, ||u||1, and f . Proposition
1.8 implies that this function is a supersolution in eO. Moreover, we will show that
there exists K � 1, depending only on n, ||u||1, and f , such that if v is a bounded
solution of problem (1.3), vanishing on C ⇥ [0,+1), then

|v(x, �)|  min{Kv0(|s � t |/
p

2, �), 1}, for every (x, �) 2 R2m+1
+

. (1.19)

Estimate (1.19) follows by regularity results established in [8].
In section 6, we prove the following theorem concerning the asymptotic be-

haviour at infinity for a class of solutions which contains saddle-shaped solutions.

Theorem 1.9. Let f satisfy conditions (1.8), (1.9), and (1.10), and let u be a
bounded solution of (�1)1/2u = f (u) in R2m such that u ⌘ 0 on C, u > 0 in
O = {s > t} and u is odd with respect to C.

Then, denoting U(x) := u0((s � t)/
p

2) = u0(z) we have,

u(x) �U(x) ! 0 and ru(x) � rU(x) ! 0, (1.20)

uniformly as |x | ! 1. That is,

||u �U ||L1(R2m\BR) + ||ru � rU ||L1(R2m\BR) ! 0 as R ! 1. (1.21)

Our proof of Theorem 1.9 follows the one given by Cabré and Terra in [11], and
uses a compactness argument based on translations of the solutions, combined with
two crucial Liouville-type results for nonlinear equations in the half-space and in a
quarter of space.

Finally, in Section 7 we establish that saddle-shaped solutions are unstable in
dimension 2m = 4 and 2m = 6.

Theorem 1.10. Let f satisfy conditions (1.8), (1.9), (1.10). Then, every bounded
solution u of (�1)1/2u = f (u) in R2m such that u = 0 on the Simons cone
C = {s = t} and u has the same sign as s� t , is unstable in dimension 2m = 4 and
2m = 6.

Instability in dimension 2m = 2 follows by a result of Cabré and Solà Morales
[8] which asserts that every stable solution of (1.1) in dimension n = 2 is one-
dimensional. This is the analog of the conjecture of De Giorgi in dimension n = 2
for the half-Laplacian.
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In [10], Cabré and Terra proved instability in dimension 2m = 4 for saddle-
shaped solutions of the classical equation �1u = f (u) in R4. A crucial ingredient
in the proof of this result is the pointwise estimate (1.18).

However, in dimension 2m = 6, this estimate is not enough to prove instability
and thus Cabré and Terra used a more precise argument, based on some monotonic-
ity properties and asymptotic behaviour of a maximal saddle solution.

Since, as said before, we cannot prove the analog of (1.18) for solutions of the
equation (�1)1/2u = f (u), here we follow the argument introduced by Cabré and
Terra in dimension 2m = 6, both for the case 2m = 4 and 2m = 6.

Using this approach, the crucial ingredients in the proof of Theorem 1.10 are:

i) the equation satisfied by vz , where v is the harmonic extension of the maximal
saddle solution u in R2m+1

+
;

ii) a monotonicity property of v;
iii) the asymptotic behaviour at infinity of v.

The paper is organized as follows:

• In Section 2 we prove Theorem 1.6 concerning the existence of a saddle solution
for the equation (1.1) in every dimension 2m.

• In Section 3, we give a supersolution and a subsolution for the square root of the
Laplacian in a domain H ⇢ Rn . In particular we prove Proposition 1.8.

• In Section 4, we introduce the operator DH,' and we establish maximum prin-
ciples for it.

• In Section 5, we prove the existence of a maximal saddle solution u and its
monotonicity properties (Theorem 1.7).

• In Section 6, we prove Theorem 1.9, concerning the asymptotic behaviour of
saddle solutions.

• In Section 7, we prove Theorem 1.10 about the instability of saddle solutions in
dimensions 2m = 4 and 2m = 6.

ACKNOWLEDGEMENTS. The author wishes to thank Xavier Cabré for his guidance
and for fruitful discussions on the topic of this paper.

2. Existence of a saddle solution in R2m

In this section we prove the existence of a saddle solution u for problem (1.1), by
proving the existence of a solution v for problem (1.3) with the following properties:

(1) v depends only on the variables s, t and �. We write v = v(s, t, �);
(2) v > 0 for s > t ;
(3) v(s, t, �) = �v(t, s, �).

We recall that we have defined the sets:

O = {x 2 R2m : s > t} ⇢ R2m, eO = {(x, �) 2 R2m+1
+

: x 2 O} ⇢ R2m+1
+

.
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Let BR be the open ball in R2m centered at the origin and of radius R. We will
consider the open bounded sets

OR := O \ BR = {s > t, |x |2 = s2 + t2 < R2} ⇢ R2m .

eOR,L :=(O \ BR)⇥(0, L)={(x, �) 2 R2m+1
+

:s> t, |x |2=s2+t2< R2, � < L}.

Note that
@OR = (C \ BR) [ (@BR \ O).

Before giving the proof of Theorem 1.6, we recall some results established in [8]
concerning the regularity of weak solutions of problem (1.3). Cabré and Solà-
Morales (see [8, Lemma 2.2]) proved that every bounded weak solution v of prob-
lem (1.3) with f 2 C1,↵ , satisfies v 2 C2,↵ , for all 0 < ↵ < 1. This result was
deduced using the auxiliary function

w(x, �) =

Z �

0
v(x, t)dt,

which is a solution of the Dirichlet problem
(

�1w = f (v(x, 0)) in R2m+1
+

w(x, 0) = 0 on @R2m+1
+

.

Applying standard regularity results for the Dirichlet problem above, they deduce
regularity for the solution v of problem (1.3). Moreover, using standard elliptic es-
timates for bounded harmonic functions, we have that the following gradient bound
for v holds:

|rv(x, �)| 

C
1+ �

for every (x, �) 2 R2m+1
+

. (2.1)

We define now the sets

eL2(eOR,L) = {v 2 L2(eOR,L) : v = v(s, t, �) a.e.}

and

eH10 (eOR,L) = {v 2 H1(eOR,L) : v ⌘ 0 on @+eOR,L , v = v(s, t, �) a.e.}.

They are, respectively, the set of L2 functions in the bounded open set eOR,L which
depend only on s, t , and �, and the set of H1 functions in the bounded open seteOR,L which depend only on s, t and � and which vanish on the positive boundary
@+eOR,L in the weak sense.

We recall that the inclusion eH10 (eOR,L) ⇢⇢
eL2(@0eOR,L) is compact (see [8]).

Indeed, let v 2
eH10 (eOR,L). Since v ⌘ 0 on @+eOR,L , we can extend v to be



634 ELEONORA CINTI

identically 0 in R2m+1
+

\
eOR,L , so that v 2

eH1(R2m+1
+

) = {v 2 H1(R2m+1
+

) : v =

v(s, t, �) a.e.}. We have
Z
@0 eOR,L

|v(x, 0)|2dx = �

Z
Rn+1

+

@�(|v|
2)

= �2
Z

Rn+1
+

v@�v  C||v||eL2(eOR,L )||v||eH1(eOR,L ).

Now, the compactness of the inclusion, follows from the fact that since v ⌘ 0 on
@+eOR,L a.e., then eH10 (eOR,L) ⇢⇢

eL2(@0eOR,L) is compact (to see this it is enough
to extend v to be identically zero in a A \

eOR,L , where A ⇢ Rn+1
+

is a Lipschitz set
containing eOR,L ).

We can now give the proof of Theorem 1.6.

Proof of Theorem 1.6. As already mentioned, we prove the existence of a solution
v for the problem (1.3) such that v = v(s, t, �) and v(s, t, �) = �v(�t, s, �). The
space eH10 (eOR,L), defined above, is a weakly closed subspace of H1(eOR,L).

Consider the energy functional in eOR,L ,

EeOR,L
(v) =

Z
eOR,L

1
2
|rv|

2
+

Z
@0 eOR,L

G(v) for every v 2
eH10 (eOR,L).

Next, we prove the existence of a minimizer of this functional among functions ineH10 (eOR,L). Recall that we assume condition (1.9) on G, that is,

G(±1) = 0 and G > 0 in (�1, 1).

We define a continuous function eG which coincides with G in [�1, 1] and satisfies
the following properties:

•
eG = G in [�1, 1],

•
eG > 0 in R \ [�1, 1],

•
eG is even,

•
eG has linear growth at infinity.

We consider the new energy functional

eEeOR,L
(v) =

Z
eOR,L

1
2
|rv|

2
+

Z
@0 eOR,L

eG(v) for every v 2
eH10 (eOR,L).

Note that every minimizer w of eEeOR,L
(·) in eH10 (eOR,L) such that �1  w  1 is

also a minimizer of EeOR,L
(·) in the set

{v 2
eH10 (eOR,L) : �1  v  1}.
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We show that eEeOR,L
(·) admits a minimizer in eH10 (eOR,L). Indeed, by the prop-

erties of eG, it follows that eEeOR,L
(·) is well-defined, bounded below and coercive

in eH10 (eOR,L). Hence, using the compactness of the inclusion eH10 (eOR,L) ⇢⇢eL2(@0eOR,L), taking a minimizing sequence {vkR,L} 2
eH10 (eOR,L) and a subsequence

convergent ineL2(@0eOR,L), we conclude that eEeOR,L
(·) admits an absolute minimizer

vR,L in eH10 (eOR,L).
Note moreover that, without loss of generality, we may assume that 0 

vkR,L  1 in eOR,L because, if not, we can replace the minimizing sequence vkR,L
with the sequence min{|vkR,L |, 1} 2

eH10 (eOR,L). Indeed, it is also minimizing be-
cause eG is even and eG �

eG(1). Then an absolute minimizer vR,L is such that
0  vR,L  1 in eOR,L .

Next, we can consider perturbations vR,L+⇠ of vR,L , with ⇠ depending only on
s, t and �, and having compact support in eOR,L \ {t > 0}. In particular ⇠ vanishes
in a neighborhood of {t = 0}. Since the problem (1.3) in (s, t, �) coordinates is the
first variation of EeOR,L

(v) —recall that E has the form (1.16) on eH10 functions—
and the equation is not singular away from {s = 0} and {t = 0}, we deduce that
vR,L is a solution of (1.15) in eOR,L \ {t > 0}.

We now prove that vR,L is also a solution in all of eOR,L , that is, also across
{t = 0}. To see this for dimensions 2m + 1 � 5, let ⇠" be a smooth function of
t alone being identically 0 in {t < "/2} and identically 1 in {t > "}. Thus we
have that |r⇠"|  2/". Let ' 2 C1

0 (eOR,L [ @0eOR,L), we multiply the equation
�1vR,L = 0 by '⇠" and integrate by parts to obtain

Z
eOR,L

rvR,Lr' ⇠" +

Z
eOR,L\{t<"}

rvR,L ' r⇠" +

Z
@0 eOR,L

@�vR,L ' ⇠" = 0.

Reminding that vR,L satisfies the Neumann condition �@�vR,L = f (vR,L) on
@0eOR,L , we get
Z
eOR,L

rvR,Lr' ⇠" +

Z
eOR,L\{t<"}

rvR,L ' r⇠" =

Z
@0 eOR,L

f (vR,L) ' ⇠". (2.2)

We conclude by seeing that the second integral on the left-hand side goes to zero as
" ! 0. Indeed, by Cauchy-Schwartz inequality,

�����
Z
eOR,L\{t<"}

rvR,L'r⇠" dxd�

�����
2

 C
Z
eOR,L\{t<"}

|rvR,L |
2 dxd�

Z
eOR,L\{t<"}

|r⇠"|
2 dxd�.

(2.3)



636 ELEONORA CINTI

Since |r⇠"|
2

 C/"2, |eOR,L \ {t < "}|  CR"
m L , and m � 2, the second factor

in the previous bound, is bounded independently of ". At the same time, the first
factor tends to zero as " ! 0, since |rvR,L |

2 is integrable in eOR,L .
In dimension 2m + 1 = 3, the previous proof does not apply and we argue as

follows. We consider perturbations ⇠ 2 H̃10 (eOR,L) which do not vanish on {t = 0}.
Considering the first variation of energy and integrating by parts, we find that the
boundary flux sm�1tm�1@tvR,L = @tvR,L (here m � 1 = 0) must be identically 0
on {t = 0}. This implies that vR,L is a solution also across {t = 0}.

We have established the existence of a solution vR,L in eOR,L with 0  vR,L 

1. Considering the odd reflection of vR,L with respect to C ⇥ R+,

vR,L(s, t, �) = �vR,L(t, s, �),

we obtain a solution in BR \ {0} ⇥ (0, L). Using the same cut-off argument as
above, but choosing now 1� ⇠" to have support in the ball of radius " around 0, we
conclude that vR,L is also solution around 0, and hence in all of BR ⇥ (0, L). Here,
the cut-off argument also applies in dimension 3.

We now wish to pass to the limit in R and L , and obtain a solution in all
of R2m+1

+
. Let S > 0, L 0 > 0 and consider the family {vR,L} of solutions in

BS+2 ⇥ [0, L 0
+ 2], with R > S + 2 and L > L 0

+ 2. Since |vR,L |  1, regularity
results proved in Lemma 2.2 of [8] , applied in B2 ⇥ [0, 2] where B2 is centered at
points in BS ⇥ [0, L 0

], give a uniform C2,↵(BS ⇥ [0, L 0
]) bound for vR,L (uniform

with respect to R and L). We have

|rvR,L |  C in BS ⇥ [0, L 0

], for all R > S + 2, L > L 0

+ 2 (2.4)

for some constant C independent of S, R, L and L 0. Moreover since vR,L is har-
monic and bounded we have that

|rvR,L(x, �)| 

C
�

in BR ⇥ (1, L). (2.5)

Choose now L = R� , with 1/2 < � < 1 (this choice will be used later to prove
that the solution that we construct is not identically zero). By the Arzelà-Ascoli
Theorem, a subsequence of {vR,R� } converges in C2(BS ⇥ [0, S� ]) to a solution in
BS ⇥ (0, S� ). Taking S = 1, 2, 3, . . . and making a Cantor diagonal argument, we
obtain a sequence vR j ,R

�
j
converging in C2loc(R

2m+1
+

) to a solution v 2 C2(R2m+1
+

).

By construction we have found a solution v inR2m+1
+

depending only on s, t and �,
such that v(s, t, �) = �v(t, s, �), |v|  1 and v � 0 in {s > t}. We want to prove
now that |v| < 1. Indeed, remind that v satisfies(

1v = 0 in R2m+1
+

�@�v = f (v) on @R2m+1.

Since f (1) = 0 and v is not identically 1 (because v ⌘ 0 on C ⇥ R+), using that
v  1 and applying the maximum principle and Hopf’s Lemma, we conclude that
v < 1. In the same way we prove that v > �1.
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It only remains to prove that v 6⌘ 0 in R2m+1
+

. Then, the strong maximum
principle and Hopf’s Lemma lead to v > 0 in {s > t} ⇥ R+ since f (0) = 0 and
v � 0 in {s > t} ⇥ R+.

To prove that v 6⌘ 0 in R2m+1
+

, we establish an energy estimate for the saddle
solution constructed above, which is not sharp, but it is enough to prove v 6⌘ 0 in
O = {s > t} ⇥ R+.

We use a comparison argument, based on the minimality property of vR,L in
the set eOR,L .

Let 1/2 < � < 1 as above and � be a positive real number depending only on
� and such that 1/2  � < � < 1. Let S < R � 2, then S� < L since we have
chosen L = R� . We consider a C1 function g :

eOS,S� ! R defined as follows:

g(x, �) = g(s, t, �) = ⌘(s, t)min
⇢
1,
s � t
p

2

�
+ (1� ⌘(s, t))vR,L(s, t, �),

where ⌘ is a smooth function depending only on r2 = s2 + t2 such that ⌘ ⌘ 1 in
BS�1 and ⌘ ⌘ 0 outside BS and thus |r⌘|  2. Observe that g agrees with vR,L on
the lateral boundary of eOS,S� and g is identically 1 inside (OS�1 \ {(s � t)/

p

2 >
1}) ⇥ (0, S� ).

Next we consider a C1 function ⇠ : (0, S� ) ! (0,+1), such that

⇠(�) =

8<
:
1 if 0 < �  S� � S�

log S� � log �
log S� � log (S� � S�)

if S� � S� < �  S� .

Then, we define w :
eOS,S� ! (�1, 1) as follows

w(x, �) = ⇠(�)g(x, �) + [1� ⇠(�)]vR,L(x, �). (2.6)

For simplicity of notations we set ˆO := (OS�1\ {(s� t)/
p

2 > 1})⇥(0, S� � S�).
Observe that w agree with vR,L on @+eOS,S� and w ⌘ 1 in ˆO. We extend w to be
identically equal to vR,L in eOR,L \

eOS,S� . By minimality of vR,L in eOR,L , we have

EeOR,L
(vR,L)  EeOR,L

(w).

Thus, since w = vR,L in eOR,L \
eOS,S� , we get

EeOS,S�
(vR,L)  EeOS,S�

(w).

We give now an estimate for EeOS,S�
(w). First, observe that, sincew ⌘ 1 onOS�1\

{(s � t)/
p

2 > 1}, thenZ
OS

G(w) =

Z
OS\(OS�1\{(s�t)/

p

2>1})
G(w)

 C|OS \ (OS�1 \ {(s � t)/
p

2 > 1})|  CS2m�1.

(2.7)
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Next, we give a bound for the Dirichlet energy of w. We haveZ
eOS,S�

|rw(x, �)|2dxd� =

Z
eOS,S� �S�

|rw(x, �)|2dxd�

+

Z
eOS,S� \

eOS,S� �S�

|rw(x, �)|2dxd�.
(2.8)

Since w ⌘ 1 in ˆO, and |
eOS,S��S� \

ˆO|  CS2m�1+� , we getZ
eOS,S�

|rw(x, �)|2dxd�  CS2m�1+�
+

Z
eOS,S� \

eOS,S� �S�

|rw(x, �)|2dxd�. (2.9)

Consider now the integral on the right-hand side of (2.9). By the definition (2.6) of
w, we have that

|rw(x, �)|2 |⇠ 0(�)|2[g(x, �)+vR,L(x, �)]2+{|rg|2+|rvR,L(x, �)|2}[1+⇠(�)]2.

Integrating in eOS,S� \
eOS,S��S� , using that g, |rg|, v, and ⇠ are bounded, the

definition of ⇠ , the gradient bound (2.5) for vR,L , and the fact that rg vanishes in
(OS�1 \ {(s � t)/

p

2 > 1}) ⇥ (0, S� ), we getZ
eOS,S� \

eOS,S� �S�

|rw(x, �)|2

 C
Z

OS

Z S�

S��S�
|⇠ 0(�)|2d�dx + CS2m�1+�

+ C
Z

OS

Z S�

S��S�

1
�2
d�dx + CS2m�1+�

 C

2
64 1⇣
log S�

S��S�

⌘2 + 1

3
75
Z

OS

Z S�

S��S�

1
�2
d�dx + CS2m�1+�

 CS2m
"

1�
� log (1� S��� )

�2 + 1

#
1

S� � S�
�

1
S�

�
+ CS2m�1+�

 CS2m · S2(���)
· S��

+ CS2m�1+�
 CS2m+��2�

+ CS2m�1+� ,

(2.10)

where C denotes different positive constants independent on S.
Combining (2.7), (2.9) and (2.10), we get

EeOS,S�
(w)  C(S2m�1

+ S2m�1+�
+ S2m+��2�). (2.11)

Since, by hypothesis, � and � = �(� ) satisfy 1/2  � < � < 1, then there exists
" = "(� ) > 0 such that

EeOS,S�
(w)  CS2m�".
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Thus by minimality of vR,L , we get

EeOS,S�
(vR,L)  CS2m�".

We now let R and L = R� tend to infinity to obtain

EeOS,S�
(v)  CS2m�".

Note that this bound, after odd reflection with respect to C, leads to the energy
bound (1.14)

ECS,S� (v)  CS2m�".

Using this estimate we prove the claim. Suppose that v ⌘ 0. Then we would have

cmG(0)S2m = ECS,S� (v)  CS2m�".

This is a contradiction for S large, and thus v 6⌘ 0.
We give now the proof of the last part of the statement, that is, we prove stabil-

ity of saddle-shaped solutions under perturbations vanishing on C ⇥ (0,+1).
Since f (0) = 0, concavity leads to f 0(w)  f (w)/w for all real numbers

w 2 (0, 1). Hence we have
(

�1v = 0 in eO
�@�v � f 0(v)v on O ⇥ {0}.

By a simple argument (see the proof of [1, Proposition 4.2]), it follows that the value
of the quadratic form Qv(⇠) is nonnegative for all ⇠ 2 C1 with compact support
in eO [ @0eO (and not necessarily depending only on s, t and �). Indeed, multiply
the equation �1v = 0 by ⇠2/v, where ⇠ 2 C1(R2m+1

+
) with compact support ineO [ @0eO, and integrate by parts in eO, we get:

0 =

Z
eO(�1v)

⇠2

v
=

Z
eO rv · r⇠

2⇠
v

�

Z
eO |rv|

2 ⇠
2

v2
+

Z
@0O

⇠2

v

@v

@�



Z
eO |r⇠ |2 �

Z
@0O

f 0(v)⇠2 = Qv(⇠).

By an approximation argument, the same holds for all ⇠ 2 C1 with compact support
in the closure of eO and vanishing on C⇥R+. Finally, by odd symmetry with respect
to C ⇥ R+, the same is true for all C1 functions ⇠ with compact support in R2m+1

+

and vanishing on C ⇥ R+.
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Remark 2.1. Observe that, if � ! 1, estimate (2.11) tends to

ECS,S (v)  CS2m .

This is a not sharp energy estimate, indeed in [4, Theorem 1.7], Cabré and the author
prove that saddle solutions v satisfy

ECS,S (v)  CS2m�1 log S.

3. Supersolution and subsolution for A1/2

In [9], Cabré and Tan introduced the operator A1/2, which is the square root of the
Laplacian for functions defined on a bounded set and that vanish on the boundary.
Let u be defined in a bounded set H ⇢ Rn and u ⌘ 0 on @H . Consider the
harmonic extension v of u in the half-cylinder H ⇥ (0,1) vanishing on the lateral
boundary @H ⇥ [0,1). Define the operator A1/2 as follows

A1/2u := �@�v|H⇥{0}. (3.1)

Then, since @�v is harmonic and also vanishes on the lateral boundary, as for the
case of the all space, the Dirichlet-Neumann map of the harmonic extension v on
the bottom of the half cylinder is the square root of the Laplacian. That is, we have
the property:

A1/2 � A1/2 = �1H

where �1H is the Laplacian in H with zero Dirichlet boundary value on @H .
Hence, we can study the problem

8><
>:
A1/2u = f (u) in H
u = 0 on @H
u > 0 in H,

(3.2)

by studying the local problem
8>>><
>>>:

�1v = 0 in � = H ⇥ (0,1)

v = 0 on @L� = @H ⇥ [0,1)

v > 0 in �

�@�v = f (v) on H ⇥ {0}.

(3.3)

In [9] some results (Lemma 3.2.3 and Lemma 3.2.4) need to assume that H is
bounded. But for our aim, definition (3.1) is enough and it can be given also in the
case that H is not bounded. Thus, we can consider problem (3.2) and (3.3) for a
general open set H ⇢ Rn .
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In this section we give a subsolution and supersolution for the problem8><
>:
A1/2u = f (u) in O
u = 0 on @O
u > 0 in O.

(3.4)

In what follows it will be useful to use the new variables:8><
>:
y =

s + t
p

2
z =

s � t
p

2

. (3.5)

Note that |z|  y and that we may write the Simons cone as C = {z = 0}.
If we take into account these new variables, problem (1.15) becomes8<

:
vyy + vzz + v�� +

2(m � 1)
y2 � z2

�
yvy � zvz

�
= 0 in R2m+1

+

�@�v = f (v) on @R2m+1
+

.
(3.6)

We give the definition of supersolution and subsolution for problem (3.2) by using
the associated local formulation (3.3).
Definition 3.1. a) We say that a function w, defined on H ⇥ [0,+1), w ⌘ 0 on
@H ⇥ [0,+1) is a supersolution (subsolution) for problem (3.3) if(

�1w � () 0 in H ⇥ (0,+1)

�@�w � () f (w) on H ⇥ {0}.

b)We say that a function u, defined on H , u ⌘ 0 on @H , is a supersolution (subsolu-
tion) for problem (3.2) if its harmonic extension v such that v ⌘ 0 on @H⇥[0,+1),
is a supersolution (subsolution) for problem (3.3).
Lemma 3.2. The following assertions are equivalent:
i) u is a subsolution (supersolution) for problem (3.2);
ii) there exists an extension w of u on H ⇥ (0,+1) vanishing on @H ⇥ (0,+1),

such that w is a subsolution (supersolution) for problem (3.3).
Proof. The first implication i) ) ii) is trivial.

It remains to show that ii) ) i). We consider the case of supersolution (the
argument for subsolution is analog). Suppose that there exists a function w defined
on Rn+1

+
such that: 8>>>>><

>>>>>:

�1w � 0 in H ⇥ (0,+1)

w ⌘ 0 on @H ⇥ (0,+1)

w > 0 in H ⇥ (0,+1)

w(x, 0) = u(x) on H ⇥ {0}
�@�w � f (w) on H ⇥ {0}.
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Now consider the harmonic extension v of u in H ⇥ (0,+1), with v ⌘ 0 on @H ⇥

(0,+1). Then by the maximum principle we have that v  w in H ⇥ (0,+1).
This implies that

�@�v � �@�w on @H ⇥ (0,+1)

and hence that
�@�v � f (v) on @H ⇥ (0,+1).

We recall that in [8] it is proven that, under hypothesis (1.9), there exists a layer
solution (i.e., a monotone increasing solution, from �1 to 1), for problem (1.3) in
dimension n = 1. Normalizing it to vanish at {x = 0}, we call it u0 (see (1.13)).

Moreover we remind that |s � t |/
p

2 is the distance to the Simons cone (see
[10]).

We can give now the following proposition. The first part of the statement,
which gives a supersolution for problem (3.2) in H = O, is equivalent to Proposi-
tion 1.8 in the Introduction.

Proposition 3.3. Let f satisfy hypothesis (1.8), (1.9), (1.10). Let u0 be the layer
solution, vanishing at the origin, of problem (1.1) in R.

Then, the function u0(z) = u0(s � t)/
p

2 is a supersolution of problem (3.2)
in the set H = O = {s > t}.

Remark 3.4. We observe that, if f satisfies hypothesis (1.8), (1.9), (1.10), then
f (⇢)/⇢ is non-increasing in (0, 1). Indeed, given 0 < ⇢ < 1, there exists ⇢1, with
0 < ⇢1 < ⇢, such that

f (⇢)

⇢
=

f (⇢) � f (0)
⇢ � 0

= f 0(⇢1) > f 0(⇢).

Therefore ✓
f (⇢)

⇢

◆
0

=

f 0(⇢)⇢ � f (⇢)

⇢2
=

f 0(⇢) � f 0(⇢1)

⇢
< 0.

Proof of Proposition 3.3. We begin by considering the function v0((s � t)/
p

2, �)
and we show that it is a supersolution of the problem (3.3) in the set eO.

First, we remind that the problem (3.3) in the (s, t, �) variables reads

8>>>><
>>>>:

�(vss + vt t + v��) � (m � 1)
⇣vs
s

+

vt
t

⌘
= 0 in eO

v = 0 on C ⇥ [0,+1)

�@�v = f (v) on eO \ {� = 0}
v > 0 in eO.

(3.7)

By a direct computation, we have that v0((s � t)/
p

2, �) is superharmonic in the
set {(s, t, �) : s > t > 0} and satisfies the Neumann condition �@�v = f (v). In
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dimension 2m + 1 � 5 there is nothing else to be checked, by a cut-off argument
used as in (2.2).

In dimension 2m + 1 = 3, v0((s � t)/
p

2, �) is a supersolution in eO because
the outer flux �@tv0((s � t)/

p

2, �) = @xv0
⇣
(s � t)/

p

2, �
⌘

> 0 is positive.

Remark 3.5. Observe that in dimension 2m+1 = 3, v0((s�t)/
p

2, �) is a solution
of problem (1.3) away from the sets {s = 0}, {t = 0}, while in higher dimensions it
is a strict supersolution.

Corollary 3.6. Let f satisfy hypothesis (1.8), (1.9), (1.10). Let u0 be the layer
solution, vanishing at the origin, of problem (1.1) in R and suppose K � 1.

Then, the function min{Ku0(z), 1} = min{Ku0(s � t/
p

2), 1} is a supersolu-
tion of problem (3.2) in the set O = {s > t}.

Proof. Proceeding as in the proof of Proposition 3.3, we consider the function
min{Kv0(z, �), 1}. To prove that it is a supersolution of problem (3.3) in eO, it
is enough to prove that it is a supersolution of problem (3.3) in the set {(x, �) 2

eO :

Kv0(z, �) < 1}.
First of all, in the proof of Proposition 3.3, we have seen that v0(z, �) is super-

harmonic in eO, and thus min{Kv0(z, �), 1} = Kv0(z, �) is superharmonic in the
set {(x, �) 2

eO : Kv0(z, �) < 1}.
Moreover

�@�(Kv0(z, 0)) = K f (v0(z, 0)) on {(x, 0) 2
eO : Kv0(z, 0) < 1}.

By Remark 3.4, we have that f (u)/u is decreasing and then for every K � 1 we
get

K f (u0)
Ku0

=

f (u0)
u0

�

f (Ku0)
Ku0

if Ku0 < 1.

This let us to conclude the proof, indeed

� @�(Kv0(z, 0)) = K f (v0(z, 0)) � f (Kv0(z, 0))
on {(x, 0) 2

eO : Kv0(z, 0) < 1}.

4. The operator DH,' and maximum principles

In what follows we need to introduce a new nonlocal operator DH,' , which is the
analogue of A1/2 but it can be applied to functions which do not vanish on the
boundary of H .

Suppose that u and ' are functions defined in H ⇢ Rn , such that u = ' on
@H . As in the case of A1/2 we want to consider the harmonic extension v of u in
the cylinder � = H ⇥ (0,+1) and we have to give Dirichlet data on the lateral
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boundary of the cylinder @L� = @H ⇥ (0,+1). We do it in the following way:
we put v(x, �) = '(x) for every (x, �) 2 @L�.

As before we define DH,' as follows:

DH,'u := �@�v|�⇥{0}.

We observe that, since v is independent on � on @L�, we have v� = 0 on the lateral
boundary. Thus, we can apply the operator A1/2 to v�(x, 0) and we get, as before

A1/2 � DH,' = �1H,'

where �1H,' is the Laplacian in H with Dirichlet boundary value '.
If we have a nonlocal problem of the type

(
DH,'u = f (u) in H
u = ' on @H,

then it can be restated in the local problem
8><
>:

�1v = 0 in �
v(x, �) = '(x) on @L�
�@�v = f (v) on H ⇥ {0}.

(4.1)

Observe that the operator DH,' coincides with A1/2 if the boundary data ' is iden-
tically zero.

Next, we give some maximum principles for the operator DH,' .

Lemma 4.1. Let� = H⇥R+ be a cylinder inRn+1
+

, where H ⇢ Rn is a bounded
domain. Let v 2 C2(�) \ C(�) be a bounded harmonic function in �. Then,

inf
�

v = inf
@�

v.

Proof. Substracting a constant from v, we may assume that v is nonnegative on @�
and we need to show v � 0 in �.

We follow a classical argument based on the construction of a strictly positive
harmonic function  in � tending to infinity as |(x, �)| ! 1. We proceed in the
following way.

First, since H ⇢ Rn is bounded, there exists a ball BR of radius R in Rn

such that H ⇢ BR . Let µR and �R be, respectively, the first eigenvalue and the
corresponding eigenfunction of the Laplacian�1 in BR with 0�Dirichlet value on
@BR .

We define the function  : BR ⇥ R+
! R as follows

 (x, �) = �R(x)e
p

µR�.



SADDLE-SHAPED SOLUTIONS FOR THE HALF-LAPLACIAN 645

Then the restriction of  in � is a strictly positive harmonic function.
Moreover, since �R is strictly positive, we have that

lim
|(x,�)|!+1

 (x, �) = lim
�!+1

 (x, �) = +1. (4.2)

We consider now the function w = v/ . Then w satisfies
8<
:

�1w � 2
r 

 
· rw = 0 in �

w � 0 on @�.

Note thatw has the same sign as v. In addition, by (4.2),w(x, �) ! 0 as |(x, �)| !

+1 and thus, by the strong maximum principle (applied, by a contradiction argu-
ment, to a possible negative minimum) w � 0 in �, which implies v � 0 in �.

From the previous result we deduce the following lemma.

Lemma 4.2. Assume that u 2 C2(H) \ C(H) satisfies
⇢
DH,'u + c(x)u � 0 in H,
u = ' on @H,

where H is a bounded domain in Rn and c(x) � 0 in H . Suppose that ' � 0 on
@H . Then u � 0 in H .

Proof. Consider the harmonic extension v of u in� = H⇥(0,+1)with Dirichlet
data v(x, �) = '(x) on the lateral boundary @L� = @H ⇥ (0,+1) (as in the
definition of the operator DH,'). We prove that v � 0 in�, then in particular u � 0
in H .

Suppose by contradiction that v is negative somewhere in �⇥ R+. Since v is
harmonic, by Lemma 4.1 the inf� v < 0 will be achieved at some point (x0, 0) 2

H ⇥ {0}. Thus, we have
inf
�

v = v(x0, 0) < 0.

By Hopf’s lemma,
v�(x0, 0) > 0.

It follows
�v�(x0, 0) = DH,'v(x0, 0) < 0.

Therefore, since c � 0,

DH,'v(x0, 0) + c(x0)v(x0, 0) < 0.

This is a contradiction with the hypothesis DH,'u + c(x)u � 0.

The following corollary follows directly by the previous lemma.
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Corollary 4.3. Let H be a bounded domain in Rn . Suppose that u1 and u2 are two
bounded functions, u1, u2 2 C2(H) \ C(H), which satisfy(

DH,'u1  DH,'u2 in H
u1 = u2 = ' on @H.

Then, u1  u2 in H .

We conclude this section with the following strong maximum principle.

Lemma 4.4. Assume that u 2 C2(H) \ C(H) satisfies8<
:
DH,'u + c(x)u � 0 in H,
u � 0 in H,
u = ' on @H,

where � is a smooth bounded domain in Rn and c 2 L1(H). Suppose ' � 0 on
@H .

Then, either u > 0 in H , or u ⌘ 0 in H .

Proof. The proof is similar to the one of Lemma 4.2.
Consider the harmonic extension v of u in � = H ⇥ [0,+1) with lateral

boundary data v = ' on @L�. We observe that v � 0 in �. Suppose that v 6⌘ 0
but v = 0 somewhere in �. Then there exists a minimum point x0 2 H such
that v(x0, 0) = 0. Hence by Hopf’s lemma we see that @�v(x0, 0) > 0. This
implies that DH,'u(x0) + c(x0)u(x0) < 0, since v(x0, 0) = u(x0) = 0, which is a
contradiction.

5. Maximal saddle solution and monotonicity properties

In this section we prove Theorem 1.7 concerning the existence and monotonic-
ity properties of a maximal saddle solution. In the proof we will use that ev-
ery saddle solution u of (�1)1/2u = f (u) is bounded above by the function
ub(z) = min{1, K |u(z)|} where z = |s � t |/

p

2 is the distance to the Simons
cone and K is a large constant. Let R > 0 and consider the open region

TR = {x 2 R2m : t < s < R}. (5.1)

Note that TR � OR = O \ BR .
Let, as before, v be the harmonic extension of a saddle solution u in the half-

space R2m+1
+

. The regularity results given in [8] give a uniform upper bound for
|rv| (see (2.1)). Then, since v = 0 on C ⇥ R+

= {z = 0} ⇥ R+, there exists a
constant C , depending only on n, ||u||1, and || f ||C1 , such that

|v(x, �)| = |v(y, z, �)|  C|z|, for every (x, �) 2 R2m+1
+

.

In particular, we have that |u(x)| = |v(x, 0)|  C|z| for every x 2 R2m .
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Observe that there exists a real number K � 1 such that

min{1,C|z|}  min{1, K |u0(z)|} for every z.

Indeed it is enough to choose

K � max{C/u0

0(0), 1/u0(C
�1)}. (5.2)

This is possible since the quantities u0

0(0) and u0(C
�1) are strictly positive.

If we choose K as in (5.2), then the harmonic extension v in R2m+1
+

of every
saddle solution u of (1.1) satisfies

|v(x, �)|  min{1, K |u0(z)|} for every (x, �) 2 R2m+1
+

. (5.3)

We define
ub(z) := min{1, K |u0(z)|}, (5.4)

where K satisfies (5.2). Note that ub = 0 on C \ TR .

Lemma 5.1. Let f satisfies conditions (1.8), (1.9), (1.10).
Then, there exists a positive solution uR of(

DTR,ubu = f (u) in TR
u = ub on @TR .

which is maximal in TR in the following sense. We have that uR � u in TR (and
hence in OR) for every bounded solution u of (�1)1/2u = f (u) in R2m that van-
ishes on the Simons cone and has the same sign as s � t . In addition uR depends
only on s and t .

Proof. We construct a sequence of solutions of linear problems involving the oper-
ator DTR,ub and, by the iterative use of the maximum principle, we prove that this
sequence is non increasing and it converges to the maximal solution uR .

We set

Lw :=

�
DTR,ub + a

�
w, and g(w) := f (w) + aw,

where a is a positive constant chosen such that g0(w) = f 0(w) + a is positive for
every w.

Next we define a sequence of functions uR, j as follows. We set

uR,0(x) := ub = min{1, Ku0(z)}, for every x 2 TR,

and we define uR, j+1 to be the solution of the linear problem⇢
LuR, j+1 = g(uR, j ) in TR
uR, j+1 = ub on @TR .

(5.5)



648 ELEONORA CINTI

Since L is obtained by adding a positive constant to DTR,ub , it satisfies the maximum
principles (Lemma 4.2 and Corollary 4.3) and hence the above problem admits a
unique solution uR, j+1 = uR, j+1(x). Furthermore (and here we argue by induc-
tion), since the problem and its data are invariant by orthogonal transformations in
the first (respectively, in the last) m variables xi , the solution uR, j+1 depends only
on s and t .

First, observe that by Corollary 3.6, the function uR,0 = min{1, Ku0(z)} is
a supersolution of problem Lw = g(w), i.e., LuR0 � g(uR,0). This implies that
LuR,1 = g(uR,0)  LuR,0 and then uR,1  uR,0  1 in TR . Moreover ub � 0 on
@TR and therefore, by Lemma 4.2, uR,1 � 0 in TR .

Assume now that 0  uR, j  uR, j�1  1 for some j � 1. By the choice of a,
we have g(uR, j )  g(uR, j�1). We get

LuR, j+1 = g(uR, j )  g(uR, j�1) = LuR, j .

Again by the maximum principle (Corollary (4.3)) uR, j+1  uR, j . Besides,
uR, j+1 � 0 since g(uR, j ) � 0. Therefore, by induction we have proven that the
sequence uR, j is nonincreasing, that is

1 � uR,0(x) � uR,1(x) � · · · � uR, j (x) � uR, j+1(x) � · · · � 0.

By monotone convergence, this sequence converges to a nonnegative solution in
TR , uR , which depends only on s and t , and such that uR = ub(z) on @TR . Thus,
the strong maximum principle (Lemma 4.4) leads to uR > 0 in TR .

Moreover, uR is maximal with respect to any bounded solution u, |u| < 1 in
R2m , that vanishes on the Simons cone and has the same sign as s � t . Indeed, let
vR,1 be the harmonic extension of uR,1 in TR ⇥ R+ which is equal to ub on the
lateral boundary @TR ⇥ R+. It is the solution of the following problem8><

>:
1vR,1 = 0 in TR ⇥ R+

vR,1 = ub on @TR ⇥ R+

�@�vR,1 + avR,1 = g(uR,0) = g(ub) on TR ⇥ {0}.
(5.6)

Consider now v the harmonic extension of u in R2m+1
+

. Then the restriction of v to
TR , which we still call v, is the solution of the problem(

1v = 0 in TR ⇥ R+

�@�v + av = g(u) on TR ⇥ {0}.
(5.7)

Recall that by (5.3), we have that v  ub in R2m+1
+

. Since g is increasing, then the
difference v � vR,1 is a solution of8><

>:
1(v � vR,1) = 0 in TR ⇥ R+

v � vR,1 = v � ub  0 on @TR ⇥ R+

�@�(v � vR,1) + a(v � vR,1) = g(u) � g(ub)  0 on TR ⇥ {0}.
(5.8)
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We claim that v  vR,1 in TR ⇥ [0,+1). Indeed, suppose by contradiction that
v � vR,1 is positive somewhere in TR ⇥ [0,+1). Then, by the maximum principle
(Lemma 4.2), sup(v � vR,1) > 0 will be achieved at some point (x0, 0) 2 TR ⇥ {0}.
By Hopf’s Lemma and since a is positive, we would have

�@�(v � vR,1)(x0, 0) + a(v � vR,1)(x0, 0) > 0.

This is a contradiction with the last inequality of (5.8). Thus we have proved that
v  vR,1 in TR ⇥ R+.

Suppose now that v  vR, j . Arguing as before, we consider the problem
satisfied by (v � vR, j+1). Using the maximum principle and Hopf’s Lemma we
deduce that v  vR, j+1 in TR ⇥ [0,+1). By induction, v  vR, j for every j and,
in particular, u  uR, j for every j . Then,

u  uR = lim
j!1

uR, j in TR .

The following are monotonicity results for the maximal solution constructed above.

Lemma 5.2. Let uR be the function constructed in Lemma 5.1. Let vR be the har-
monic function in TR ⇥ (0,+1) such that vR(x, 0) = uR(x) for every x 2 TR and
v(x, �) = ub(x) for every (x, �) 2 @TR ⇥ (0,+1).

Then @tvR  0.

Proof. We consider the nonincreasing sequence of function uR, j constructed in the
proof of Lemma 5.1. We set vR,0(x, �) = uR,0(x) = min{1, Ku0(z)} for every
(x, �) 2 R2m+1

+
and, for every j � 1 we call vR, j the harmonic extension of uR, j

in TR ⇥ (0,+1) such that vR, j (x, �) = ub(x) for every (x, �) 2 @TR ⇥ (0,+1).
The function vR, j is a solution in coordinates s and t of the problem

8>>>><
>>>>:

@ssvR, j + @t tvR, j + @��vR, j +

(m � 1)
s

@svR, j +

(m � 1)
t

@tvR, j = 0
in TR ⇥ (0,1)

vR, j = ub on @TR ⇥ (0,+1),

�@�vR, j + avR, j = g(vR, j�1) on TR ⇥ {0}.

Differentiating with respect to t we get:8<
:�1(@tvR, j ) +

(m � 1)
t2

@tvR, j = 0 in TR ⇥ (0,1)

�@�(@tvR, j ) + a@tvR, j = g0(vR, j�1)@tvR, j�1 on TR ⇥ {0}.
(5.9)

We observe that @tvR, j  0 on @TR ⇥ (0,+1). Indeed vR, j ⌘ 0 on (C \ @TR) ⇥

(0,+1) and vR, j > 0 inside TR ⇥ (0,+1). Then, @tvR, j  0 on {t = s <
R} ⇥ (0,+1).

Moreover vR, j = min{Ku0(z), 1} = min{Ku0((R � t)/
p

2), 1} on {t < s =

R} and thus @tvR, j = �K/
p

2u̇0((R � t)/
p

2)  0 on {t < s = R} ⇥ (0,+1).
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Now, we argue by induction. First, recall that

vR,0 = min{Ku0(z), 1} = min{Ku0((s � t)/
p

2), 1},

then @tvR,0  0.
Suppose that @tvR, j�1  0, we prove that @tvR, j  0. Indeed we have that

(m�1)/t2 � 0. Moreover, for what said before, @tvR, j  0 on the lateral boundary
of the set TR ⇥ (0,+1) and it satisfies the Neumann condition

�@�(@tvR, j ) + a@tvR, j = g0(vR, j�1)@tvR, j�1 on TR ⇥ {0}. (5.10)

Assume by contradiction that @tvR, j is positive somewhere in TR ⇥ R+, then, by
the maximum principle the sup vR, j > 0 will be achieved at some point (x0, 0) in
TR ⇥ {0}. Since g0 > 0 and a > 0, applying Hopf’s Lemma we get a contradiction
with (5.10). This implies that @tvR, j  0 for every j and then, passing to the limit,
that @tvR  0.

Lemma 5.3. Let uR be the function constructed in Lemma 5.1. Let vR be the har-
monic function in TR ⇥ (0,+1) such that vR(x, 0) = uR(x) for every x 2 TR and
vR(x, �) = ub(x) for every (x, �) 2 @TR ⇥ (0,+1).

Then, @yvR � 0.

Proof. Consider as before the sequences of functions vR, j and uR, j . We first ob-
serve that @yvR, j � 0 on @TR ⇥ (0,+1). Indeed vR, j ⌘ 0 on the part of the
boundary {t = s < R} ⇥ (0,+1). Thus, since @y is a tangential derivative here,
we have @yvR, j ⌘ 0 on {t = s < R} ⇥ (0,+1).

Take now a point (s = R, t, �), with 0 < t < R, on the remaining part of the
boundary. Recall that vR, j  uR,0 = min{Ku0(z), 1} = min{Ku0((s � t)/

p

2), 1}
in all of TR ⇥ (0,+1).

Then, for every 0 < � < t we have

vR, j (R � �, t � �, �)  min
⇢
Ku0

✓
R � � � (t � �)

p

2

◆
, 1
�

= min
⇢
Ku0

✓
R � t
p

2

◆
, 1
�

= ub(R, t).

Then @yvR, j � 0 on {t < s = R} ⇥ (0,+1).
Next, we consider the problem satisfied by @tvR, j and @svR, j . We recall that

@tvR, j is a solution of (5.9) and @svR, j satisfies
8<
:�1(@svR, j ) +

(m � 1)
s2

@svR, j = 0 in TR ⇥ (0,1)

�@�(@svR, j ) + a@svR, j = g0(vR, j�1)@svR, j�1 on TR ⇥ {0}.
(5.11)
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Thus, since @y = (@s + @t )/
p

2, we have that @yvR, j satisfies the equation

�1(@yvR, j ) = �

m � 1
p

2

✓
@svR, j

s2
+

@tvR, j

t2

◆

= �

m � 1
s2

@yvR, j �

(m � 1)(s2 � t2)
p

2s2t2
@tvR, j .

Then @yvR, j is a solution of the problem
8>>>>><
>>>>>:

�1(@yvR, j ) +

(m � 1)
s2

@yvR, j +

(m � 1)(s2 � t2)
p

2s2t2
@tvR, j = 0

in TR ⇥ (0,1)

@yvR, j � 0 on @TR ⇥ (0,+1)

�@�(@yvR, j ) + a@yvR, j = g0(vR, j�1)@yvR, j�1 on TR ⇥ {0}.

By the proof of Lemma 5.2 we see that @tv  0 in TR ⇥ (0,+1) and thus

(m � 1)(s2 � t2)
p

2s2t2
@tvR, j  0, in TR ⇥ (0,+1).

Then, we can apply, as in the proof of Lemma 5.2, the maximum principle and
Hopf’s Lemma, to obtain @yvR, j � 0 for every j . Finally, passing to the limit for
j ! 1, we get @yvR � 0 in TR ⇥ (0,+1).

We can give now the proof of Proposition 1.7.

Proof of Proposition 1.7. In Lemma 5.1 we established the existence of a maximal
solution uR in TR , that is, uR is a solution of DTR,ubuR = f (uR) in TR and

uR � u

for every bounded solution |u|  1 inR2m that vanishes on C and has the same sign
as s � t .

By standard elliptic estimates and the compactness arguments as in the proof
of Theorem 1.6, up to a subsequence we can take the limit as R ! +1 and obtain
a solution u inO = {s > t}, with u = 0 on C. By construction,

u  u := lim
R j!1

uR j ,

for all solutions u as above. In addition, u depends only on s and t .
By maximality of u and the existence of saddle solution of Theorem 1.6, we

deduce that u > 0 inO.
Since f is odd, by odd reflection with respect to the Simons cone, we obtain a

maximal solution u in R2m such that |u|  |u| in R2m .
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Let v be the harmonic extension of u in R2m+1
+

. We prove now the monotonic-
ity properties of v.

By Lemmas 5.2 and 5.3, we have that @tvR  0 and @yvR � 0 in TR⇥(0,+1).
Letting R ! +1, we get @tv  0 and @yv � 0 in eO. As a consequence @sv � 0
in eO.

Since v(s, t, �) = �v(t, s, �), it follows that @sv � 0 and @tv  0 in R2m+1
+

.
Now, @tv  0 in R2m+1

+
and satisfies

�1@tv +

m � 1
t2

@tv = 0 in R2m+1
+

.

Then, the strong maximum principle implies that @tv < 0 in R2m+1
+

\ {t = 0}.
Moreover we multiply by t the following equation satisfied by v in R2m+1

+

@ssv + @t tv + @��v +

m � 1
s

vs +

m � 1
t

vt = 0.

Using that v 2 C2 and letting t ! 0, we get @tv = 0 on {t = 0}. In the same way
we deduce that @sv > 0 in R2m+1

+
\ {s = 0} and @sv = 0 on {s = 0}. Recalling that

@z = (@s � @t )/
p

2, statement c) follows directly by a) and b). Finally, we remind
that @yv satisfies

�1@yv = �

m � 1
s2

@yv �

(m � 1)(s2 � t2)
p

2s2t2
@tv � �

m � 1
s2

@yv, (5.12)

in {s > t > 0} ⇥ [0,+1), since @tv  0 in this set. Since we have already proven
that @yv � 0 in {s > t > 0} ⇥ [0,+1), the strong maximum principle implies
@yv > 0 in {s > t > 0} ⇥ [0,+1).

6. Asymptotic behaviour of saddle solutions in R2m

In this section we study the asymptotic behaviour at infinity of solutions which are
odd with respect to the Simons cone and positive in the set O = {s > t}. In
particular our result holds for saddle solutions.

We will consider the (y, z) system of coordinates. Recall that we have defined
in (1.17) y and z by 8><

>:
y =

s + t
p

2
z =

s � t
p

2
,

(6.1)

which satisfy y � 0 and �y  z  y.
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We give the proof of Theorem 1.9, which states that any solution u as above
tends to infinity to the function

U(x) := u0(z) = u0(d(x,C)),

uniformly outside compact sets. We recall that u0 is the layer solution of
(�1)1/2u0 = f (u0) in R which vanishes at the origin, and d(·,C) denotes the
distance to the Simons cone. Similarly ru converges to rU . We will use this fact
in the proof of instability of saddle solutions in dimension 2m = 4 and 2m = 6.

Our proof of the asymptotic behaviour follows a method used by Cabré and
Terra for the classical equation �1u = f (u). They use a compactness argument
based on translations of the solution, combined with two crucial Liouville-type re-
sults for nonlinear equations. Here, we use analog Liouville results for the nonlinear
Neumann problem satisfied by the harmonic extension v of our saddle solutions u.
Both results were proven using the moving planes method.

The first result establishes a symmetry property for solutions of a nonlinear
Neumann problem in the half-space, and it was proven in [18].

Theorem 6.1 ([18]). Let Rn+1
+

= {(x1, x2, · · · , xn, �) | � > 0} and let f be such
that f (u)/u

n+1
n�1 is non-increasing. Assume that v is a solution of problem

8><
>:

�1v = 0 in Rn+1
+

,

�@�v = f (v) on {� = 0},
v > 0 in Rn+1

+
.

(6.2)

Then v depends only on �.
More precisely, there exist a � 0 and b > 0 such that

v(x, �) = v(�) = a�+ b and f (b) = a.

Remark 6.2. If f satisfies hypothesis (1.8), (1.9), (1.10), then f (u)/u
n+1
n�1 is non-

increasing.
Indeed, by Remark 3.4, f (u)/u is non-increasing in (0, 1). Moreover, we can

write
f (u)

u
n+1
n�1

=

f (u)
u

· u1�
n+1
n�1 .

Since (n + 1)/(n � 1) > 1, then u1�
n+1
n�1 is non-increasing, and thus f satisfies the

hypothesis of Theorem 6.1 above and Theorem 6.4 below.

Corollary 6.3. Let f satisfy (1.8), (1.9), (1.10). Let v be a bounded solution of
problem (6.2).

Then, v ⌘ 0 or v ⌘ 1.
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Proof of Corollary 6.3. By Remark 6.2, f satisfies the hypothesis of Theorem 6.1.
Moreover since f is bistable, we have that f is odd, f (0) = f (±1) = 0, f > 0
in (0, 1) and f < 0 in (1,+1). Then, since v is bounded, necessarely we have
v(x, �) = b with f (b) = 0, that is v ⌘ 0 or v ⌘ 1.

The following theorem, proven in [9], establishes an analog symmetry property
but for solutions in a quarter of space.

Theorem 6.4 ([9]). Let Rn+1
++

= {(x1, x2, · · · , xn, �) | xn > 0, � > 0} and let f
be such that f (u)/u

n+1
n�1 is non-increasing. Assume that v is a bounded solution of

problem 8>>><
>>>:

�1v = 0 in Rn+1
++

,

�@�v = f (v) on {xn > 0, � = 0},
v = 0 on {xn = 0, � � 0},
v > 0 in Rn+1

++
.

Then v depends only on xn and �.

Before proving Theorem 1.9, we give the following definition of semi-stability,
which will be used in the proof of the asymptotic behaviour.

Definition 6.5. Let � ⇢ Rn+1
+

be an open set. Let v be a bounded solution of
(
1v = 0 in �
�@�v = f (v) on @0�.

We say that v is semi-stable in � if the second variation of the energy �2E/�2⇠2

with respect to perturbations ⇠ with compact support in � [ @0� is nonnegative.
That is, if

Qv(⇠) =

Z
�

|r⇠ |2dxd��

Z
@0�

f 0(u)⇠2dx � 0,

for all ⇠ 2 C1

c (� [ @0�).
Now, we can give the proof of our asymptotic behaviour result.

Proof of Theorem 1.9. Let u be a bounded solution of (�1)1/2u = f (u) in R2m
such that u ⌘ 0 on C, u > 0 in O, and u is odd with respect to C. Consider the
harmonic extension v of u in R2m+1

+
, that satisfies

(
1v = 0 in R2m+1

+

�@�v = f (v) on @R2m+1
+

. (6.3)
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Set V (x, �) := v0(z, �), where v0 is the harmonic extension in R2
+
of the layer

solution u0 defined in (1.13). We want to prove that for every � � 0

v(x, �) � V (x, �) ! 0 and rv(x, �) � rV (x, �) ! 0,

uniformly as |x | ! 1.
Suppose that the theorem does not hold. Thus, there exists ✏ > 0 and a se-

quence {xk} with

|xk | ! 1 and |v(xk, �) � V (xk, �)| + |rv(xk, �) � rV (xk, �)| � ✏. (6.4)

By continuity we may move slightly xk and assume xk 62 C for all k. Moreover, up
to a subsequence (which we still denote by {xk}), either {xk} ⇢ {s > t} or {xk} ⇢

{s < t}. By the symmetries of the problem we may assume {xk} ⇢ {s > t} = O.
We distinguish two cases:

Case 1. {dist(xk,C) = dk} is unbounded.
In this case, since 0 < zk = dist(xk,C) = dk ! +1 (for a subsequence), we

have that V (xk, �) = v0(zk, �) = v0(dk, �) tends to 1 and |rV (xk, �)| tends to 0,
that is,

V (xk, �) ! 1 and |rV (xk, �)| ! 0.

From this and (6.4) we have

|v(xk, �) � 1| + |rv(xk, �)| �

✏

2
, (6.5)

for k large enough. Taking subsequence (and relabeling the subindex) we may
assume dist(xk,C) = dk � 2k.

Consider the ball Bk(0) ⇢ R2m of radius k centered at x = 0, and define

wk(x̃, �) = v(x̃ + xk, �), for every (ex, �) 2 Bk(0) ⇥ (0,+1).

Since Bk(0) + xk ⇢ {s > t}, we have that 0 < wk < 1 in Bk(0) ⇥ (0,+1) and
(
1wk = 0 in Bk(0) ⇥ (0,+1)

�@�wk = f (v) on Bk(0) ⇥ {� = 0}.
(6.6)

Letting k tend to infinity we obtain, through a subsequence, a nonnegative solution
w of the problem 8><

>:
�1w = 0 in R2m+1

+

�@�w = f (v) on @R2m+1
+

w > 0 in R2m+1
+

.

(6.7)

Since f satisfies (1.8), (1.9), (1.10), we have that, by Corollary 6.3, w ⌘ 0 or
w ⌘ 1. In either case, rw(0) = 0, that is, |rv(xk, �)| tends to 0.

Next we show that w 6⌘ 0. By Theorem 1.6 we have that v is stable in O ⇥

(0,+1). Hence, wk is semi-stable in Bk(0) ⇥ (0,+1) (since Bk(0) + xk ⇢ O)
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in the sense of Definition 6.5. This implies that w is stable in all of R2m+1
+

and
therefore w 6⌘ 0 (otherwise, since f 0(0) > 0 we could construct a test function ⇠
such that Qw(⇠) < 0 which would be a contradiction with the fact that w is stable).

Hence, it must be w ⌘ 1. But this implies that w(0, �) = 1 and so v(xk, �)
tends to 1. Therefore, we have that v(xk, �) tends to 1 and |rv(xk, �)| tends to 0,
which is a contradiction with (6.5). We have proven the theorem in this Case 1.
Case 2. {dist(xk,C) = dk} is bounded.

The points xk remain at a finite distance to the cone. Then, at least for a subse-
quence,

dk ! d � 0 as k ! 1.

Let x0k 2 C be a point that realizes the distance to the cone, that is,

dist(xk,C) = |xk � x0k | = dk, (6.8)

and let ⌫0k be the inner unit normal to C = @O at x0k . Note that Bdk (xk) ⇢ O ⇢

R2m \ C and x0k 2 @Bdk (xk) \ C, i.e., x0k is the point where the sphere @Bdk (xk)
is tangent to the cone C. It follows that x0k 6= 0 and that (xk � x0k )/dk is the unit
normal ⌫0k to C at x0k . That is, xk = x0k + dk⌫0k .

Now, since the sequence {⌫0k } is bounded, there exists a subsequence such that

⌫0k ! ⌫ 2 R2m, |⌫| = 1.

Write wk(x̃, �) = v(x̃ + x0k , �), for x̃ 2 R2m . The functions wk are all solutions of
(
1wk = 0 in R2m+1

+

�@�wk = f (wk) on @R2m+1
+

,
(6.9)

and are uniformly bounded. Hence, by elliptic estimates, the sequence {wk} con-
verges locally in space in C2, up to a subsequence, to a solutionw inR2m+1

+
. There-

fore we have that, as k tends to infinity and up to a subsequence,

wk ! w and rwk ! rw uniformly on compact sets of R2m+1
+

,

where w is a solution
(
1w = 0 in R2m+1

+

�@�w = f (w) on @R2m+1
+

.
(6.10)

Note that the curvature of C at x0k goes to zero as k tends to infinity, since C is a
cone and |xk | ! 1 (note that |x0k | ! 1 due to |xk | ! 1 and |xk � x0k | = dk !
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d < 1). Thus, C at x0k is flatter and flatter as k ! 1 and since we translate x0k to
0, the limiting solution w satisfies8>>><

>>>:

1w = 0 in M := {(x, �) 2 R2m+1
+

:ex · ⌫ = 0, � > 0}
w � 0 in M
w = 0 on {ex · ⌫ = 0}
�@�w = f (w) on {� = 0}.

(6.11)

For the details of the proof of this fact see [11].
Now, since v is stable for perturbations vanishing on @O ⇥ R+, it follows that

w is stable for perturbations with compact support in M , and thereforew can not be
identically zero. By Theorem 6.4, since f satisfies (1.8), (1.9), (1.10), we deduce
that w is symmetric, that is, it is a function of only two variable (the orthogonal
direction to H and �). It follows that

w(x̃, �) = v0(x̃ · ⌫, �) for all (x̃, �) 2 M.

From the definition ofwk , and using that zk = dk = |xk�x0k | is a bounded sequence
and that xk � x0k = dk⌫0k , we have that

v(xk, �) =wk(xk � x0k , �) = w(xk � x0k , �) + o(1) = v0((xk � x0k ) · ⌫, �) + o(1)
= v0((xk � x0k ) · ⌫0k , �) + o(1) = v0(dk, �) + o(1)
= v0(zk, �) + o(1) = V (xk, �) + o(1).

The same argument can be done for rv(xk, �) and rV (xk, �). We arrive to a
contradiction with (6.4).

7. Instability in dimensions 4 and 6

Before proving the theorem on the instability of saddle solutions in dimensions 4
and 6, we establish a lemma that will be useful later.

Lemma 7.1. Assume that f satisfies conditions (1.8), (1.9), (1.10). Let v be a
bounded solution of (1.3) in Rn+1

+
and w a function such that |v|  |w|  1 in

Rn+1
+

. Then,
Qv(⇠)  Qw(⇠) for all ⇠ 2 C1

0 (Rn+1
+

),

where Qw is defined by

Qw(⇠) =

Z
Rn+1

+

|r⇠ |2dxd��

Z
@Rn+1

+

f 0(w)⇠2dx .

In particular, if there exists a function ⇠ 2 C1

0 (Rn+1
+

) such that Qw(⇠) < 0, then v
is unstable.
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Proof. Let v be a bounded solution of (1.3) and w a function with |v|  |w|  1.
Since f 0 is decreasing in (0, 1) we have that

f 0(|v|) � f 0(|w|) in Rn+1
+

.

Moreover, f 0 being even yields,

f 0(v) � f 0(w) in Rn+1
+

,

so that
Qv(⇠)  Qw(⇠),

for every test function ⇠ 2 C1

0 (Rn+1
+

).
Hence, if there exists ⇠0 such that Qw(⇠0) < 0, then also Qv(⇠0) < 0. That is,

v is unstable.

In the proof of the instability results for dimension 4 and 6 we use the max-
imal solution v of problem (1.3) and, more importantly, the equation satisfied by
vz = @zv. We prove that this solution v is unstable by constructing a test function
⇠(y, z, �) = ⌘(y, �)vz(y, z, �) such that Qv(⇠) < 0. Two crucial ingredients will
be the asymptotic behaviour and monotonicity results for v (Theorems 1.9 and 1.7).
Since v is maximal, Lemma 7.1 implies that all bounded solutions �1  v  1
vanishing on C ⇥ R+ and having the same sign as s � t are also unstable.

We recall that if v is a function depending only on s, t and �, then the second
variation of the energy is given by

cmQv(⇠) =

Z
+1

0

Z
{s>0, t>0}

sm�1tm�1(⇠2s + ⇠2t + ⇠2� )dsdtd�

�

Z
{s>0, t>0}

sm�1tm�1 f 0(v)⇠2dsdt,

where cm is a positive constant depending on m. Here, the perturbations are of the
form ⇠ = ⇠(s, t, �) and vanishes for s, t and � large enough.

Moreover, if we change to variables (y, z, �), for a different constant cm we
get,

cmQv(⇠) =

Z
+1

0

Z
{�y<z<y}

(y2 � z2)m�1(⇠2y + ⇠2z + ⇠2� )dydzd�

�

Z
{�y<z<y}

(y2 � z2)m�1 f 0(v)⇠2dydz,

where ⇠ = ⇠(y, z, �) vanishes for y and � large enough.
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Proof of Theorem 1.10. We begin by establishing that the maximal solution v is
unstable in dimension 2m = 4 and 2m = 6. As said before, using that v is maximal
and applying Lemma 7.1, we deduce the instability of v in dimensions 4 and 6.

We have, for every test function ⇠ ,

Qv(⇠) =

Z
R2m+1

+

|r⇠ |2dxd��

Z
@R2m+1

+

f 0(v)⇠2dx .

Suppose now that ⇠ = ⇠(y, z, �) = ⌘(y, z, �) (y, z, �). For ⇠ to be Lipschitz and
of compact support inR2m+1

+
, we need ⌘ and to be Lipschitz functions of compact

support in y 2 [0,+1) and � 2 [0,+1). The expression for Qv becomes,

Qv(⇠) =

Z
+1

0

Z
R2m

⇣
|r⌘|2 2 + ⌘2|r |

2
+ 2⌘ r⌘ · r 

⌘
dxd�

�

Z
R2m

f 0(v)⌘2 2dx .

Using that 2⌘ r⌘ · r =  r(⌘2) · r , and integrating by parts this term we
have

Qv(⇠) =

Z
+1

0

Z
R2m

⇣
|r⌘|2 2 � ⌘2 1 

⌘
dxd�

�

Z
R2m

⇣
 (y, z, 0)⌘2@� (y, z, 0) + f 0(v)⌘2 2

⌘
dx,

that is,

Qv(⇠) =

Z
+1

0

Z
R2m

⇣
|r⌘|2 2 � ⌘2 1 

⌘
dxd��

Z
R2m

⌘2 (@� + f 0(v) )dx .

Choose (y, z, �) = vz(y, z, �). We consider now problem (1.3), which is satisfied
by v, written in the (y, z, �) variables

8<
:

vyy + vzz + v�� +

2(m � 1)
y2 � z2

(yvy � zvz) = 0 in R2m+1
+

�@�v = f (v) on @R2m+1
+

.
(7.1)

If we differentiate these equations written in (y, z, �) variables with respect to z,
we find

8<
:
1vz �

2(m � 1)
y2 � z2

vz +

4(m � 1)z
(y2 � z2)2

�
yvy � zvz

�
= 0 in R2m+1

+

�@�vz = f 0(v)vz on @R2m+1
+

.
(7.2)



660 ELEONORA CINTI

Replacing in the expression for Qv we obtain,

Qv(⇠) =

Z
+1

0

Z
R2m

✓
|r⌘|2v2z

� ⌘2
⇢
2(m � 1)(y2 + z2)

(y2 � z2)2
v2z �

4(m � 1)zy
(y2 � z2)2

vyvz

�◆
dxd�.

Next we change coordinates to (y, z, �) and we have, for some positive constant
cm ,

cmQv(⇠) =

Z
+1

0

Z
{�y<z<y}

(y2 � z2)m�1
✓

|r⌘|2v2z

� ⌘2
⇢
2(m � 1)(y2 + z2)

(y2 � z2)2
v2z �

4(m � 1)zy
(y2 � z2)2

vyvz

�◆
dydzd�.

Now choose ⌘(y, z, �) = ⌘1(y)⌘2(�), where ⌘1 and ⌘2 are smooth functions with
compact support in [0,+1). Moreover we require that ⌘2(�) ⌘ 1 for � < N and
⌘2(�) ⌘ 0 for � > N + 1, where N is a large positive number that we will choose
later. For a > 1, a constant that we will make tend to infinity, let � = �(⇢) be a
Lipschitz function of ⇢ := y/a with compact support [⇢1, ⇢2] ⇢ [0,+1). Let us
denote by

⌘a1(y) := �(y/a) and

⇠a(y, z, �) = ⌘a1(y)⌘2(�)vz(y, z, �) = �(y/a)⌘2(�)vz(y, z, �).

The change y = a⇢, dy = ad⇢ yields,

cmQv(⇠a)

= a2m�3
Z N+1

0

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

⇢2(m�1)

 
1�

z2

a2⇢2

!m�1  
�2⇢⌘

2
2(�)v

2
z

+ a2�2(⇢)(⌘0

2)
2v2z

��2⌘22

8><
>:
2(m � 1)

⇣
1+

z2
a2⇢2

⌘

⇢2
⇣
1�

z2
a2⇢2

⌘2 v2z �

4(m � 1)z

a⇢3
⇣
1�

z2
a2⇢2

⌘2 vyvz
9>=
>;

1
CA dzd⇢d�.

(7.3)
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Dividing by a2m�3N and using that
⇣
1�

z2
a2⇢2

⌘2
 1 and 1+

z2
a2⇢2 � 1, we obtain

cmQu(⇠a)

a2m�3N



1
N

Z N+1

0

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

⇢2(m�1)⌘22v
2
z (a⇢, z, �)

✓
�2⇢ �

2(m � 1)
⇢2

�2
◆
dzd⇢d�

+

a2

N

Z N+1

N

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

⇢2(m�1)�2(⌘0

2)
2v2zdzd⇢d�

+

1
N

Z N+1

0

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

4(m�1)z⇢2m�5⌘22�
2(⇢)

a
vy(a⇢, z, �)vz(a⇢, z,�)dzd⇢d�.

= I1 + I2 + I3.

We study these three integrals separately.
Consider first I3. From Theorem 1.9 we have that vy(a⇢, z, �) ! 0 uniformly,

for all ⇢ 2 [⇢1, ⇢2] = supp�, as a tends to infinity. Hence, given ✏ > 0, for a
sufficiently large, |vy(a⇢, z)|  ✏. Moreover, we have seen in Theorem 1.7 that
vz � 0. Hence, since � is bounded, for a large we have

I3 

�����
1
N

Z N+1

0
⌘22

Z 4(m � 1)z⇢2m�5�2(⇢)

a
vyvzd⇢dzd�

�����



1
N

Z N+1

0
⌘22

Z �����
4(m � 1)z⇢2m�5�2(⇢)

a

����� |vy|vzd⇢dzd�



1
N

Z N+1

0
⌘22

Z
4(m � 1)⇢2m�4�2(⇢)|vy|vzd⇢dzd�



C✏
N

Z ⇢2

⇢1

⇢2m�4d⇢
Z N+1

0
⌘22d�

Z a⇢

�a⇢
vzdz

=

C✏
N

Z N+1

0
⌘22

Z ⇢2

⇢1

(v(a⇢, a⇢, �) � v(a⇢,�a⇢, �)) d⇢d�

 C✏,

where C are different constants depending on ⇢1 and ⇢2. Hence, as a tends to
infinity, this integral converges to zero.
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Now, consider I2 and choose N such that a2/N  1/a2. With this choice of
N , we have

I2 =

a2

N

Z N+1

N

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

⇢2(m�1)�2(⌘0

2)
2v2z



1
a2

Z N+1

N

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

⇢2(m�1)�2(⌘0

2)
2v2z



C
a
sup v2z .

Thus, I2 tends to 0 as a ! 1.
Next, consider I1. We have that, again by Theorem 1.9, vz(a⇢, z, �) converges

to @zv0(z, �) which is a bounded positive integrable function. We write

I1=
1
N

Z N+1

0
⌘22

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

⇢2(m�1)v2z (a⇢, z, �)
✓
�2⇢�

2(m � 1)
⇢2

�2
◆
d⇢dzd�

=

1
N

Z N+1

0
⌘22

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

(@zv0)
2⇢2(m�1)

✓
�2⇢ �

2(m � 1)
⇢2

�2
◆
d⇢dzd�

+

1
N

Z N+1

0
⌘22

Z ⇢2

⇢1

Z
{�a⇢<z<a⇢}

⇢2(m�1)(vz(a⇢, z, �)�@zv0(z, �))(vz(a⇢, z, �)

+@zv0(z, �))
✓
�2⇢ �

2(m � 1)
⇢2

�2
◆
d⇢dzd�.

For a large, |vz(a⇢, z, �) � @zv0(z, �)|  ✏ in [⇢1, ⇢2]. In addition vz(a⇢, z, �) +

@zv0(z, �) is positive and is a derivative with respect to z of a bounded function,
thus it is integrable in z. Hence, since � = �(⇢) is smooth with compact support,
the second integral converges to zero as a tends to infinity. Therefore, letting a tend
to infinity, we obtain

lim sup
a!1

cmQv(⇠a)

a2m�3N

 lim sup
a!1

1
N

 Z N+1

0
d� ⌘22

Z
+1

0
dz (@zv0)

2(z)

!

·

Z
d⇢ ⇢2(m�1)

✓
�2⇢ �

2(m � 1)
⇢2

�2
◆

 C
Z

+1

0
(@zv0)

2(z)dz
Z
⇢2(m�1)

✓
�2⇢ �

2(m � 1)
⇢2

�2
◆
d⇢ .

(7.4)

Finally, we prove that when 2m = 4 and 2m = 6, there exists a test function � for
which Z

⇢2(m�1)
✓
�2⇢ �

2(m � 1)
⇢2

�2
◆
d⇢ < 0. (7.5)
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The integral in ⇢ can be seen as an integral in R2m�1 of radial functions � =

�(|x |) = �(⇢).
Hardy’s inequality in R2m�1 states (see e.g. [15]) that

(2m � 1� 2)2

4

Z
R2m�1

'2

|x |2
dx 

Z
R2m�1

|r'|
2dx

holds for every H1 function ' with compact support, and the constant (2m � 1 �

2)2/4 is the best possible. Using this inequality we have that the integral in (7.5) is
positive for all Lipschitz � with compact support if and only if

2(m � 1) 

(2m � 1� 2)2

4
.

Writing n = 2m, the above inequality holds if and only if

n2 � 10n + 17 � 0,

that is, n � 8. Thus, when 2m = 4 and 2m = 6, we have that the integral (7.5)
is negative for some compactly supported Lipschitz function � = �(⇢) and then
we conclude that the limsup in (7.4) is negative for such � and hence that u is
unstable.

Remark 7.2. We observe that for n � 8 the limsup in (7.4) is nonnegative for every
� and we conclude a certain asymptotic stability at infinity of v.
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