On surfaces of general type with $q=5$

Margarida Mendes Lopes, Rita Pardini and Gian Pietro Pirola

Abstract

We prove that a complex surface S with irregularity $q(S)=5$ that has no irrational pencil of genus >1 has geometric genus $p_{g}(S) \geq 8$. As a consequence, we are able to classify minimal surfaces S of general type with $q(S)=5$ and $p_{g}(S)<8$. This result is a negative answer, for $q=5$, to the question asked in [13] of the existence of surfaces of general type with irregularity q that have no irrational pencil of genus > 1 and with the lowest possible geometric genus $p_{g}=2 q-3$ (examples are known to exist only for $q=3,4$).

Mathematics Subject Classification (2010): 14J29.

1. Introduction

Let S be a smooth complex projective surface with irregularity $q(S):=h^{0}\left(\Omega_{S}^{1}\right) \geq 3$. The existence of a fibration $f: S \rightarrow B$ with B a smooth curve of genus $b>1$ ("an irrational pencil of genus $b>1$ ") gives much geometrical information on S (cf. the survey [14]). However, surfaces with an irrational pencil of genus $b>1$ can hardly be regarded as "general" among the irregular surfaces of general type: for instance, for $b<q(S)$ the Albanese variety of such a surface S is not simple.

By the classical Castelnuovo-De Franchis theorem (cf. [6, Proposition X.9]), if S has no irrational pencil of genus >1 then the inequality $p_{g}(S) \geq 2 q(S)-3$ holds, where $p_{g}(S):=h^{0}\left(K_{S}\right)$ is, as usual, the geometric genus. This fundamental inequality has been recently generalized in [17] to Kähler varieties of arbitrary dimension.

The surfaces of general type S for which the equality $p_{g}(S)=2 q(S)-3$ holds are studied in [13]. There those with an irrational pencil of genus >1 are classified and the inequality $K_{S}^{2} \geq 7 \chi(S)-1$ is proven for S minimal. However, the question of the existence of surfaces with $p_{g}(S)=2 q(S)-3$ having no irrational pencil of

The first author is a member of the Center for Mathematical Analysis, Geometry and Dynamical Systems (IST/UTL). The second and the third author are members of GNSAGA-INdAM. This research was partially supported by FCT (Portugal) through program POCTI/FEDER and Project PTDC/MAT/099275/2008 and by MIUR (Italy) through project PRIN 2007 "Spazi di moduli e teorie di Lie".
Received February 8, 2011; accepted in revised form May 2, 2011.
genus $b>1$ is wide open. At present, the state of the art is as follows:

- for $q=3$, the only such surfaces are (the minimal desingularization of) a theta divisor in a principally polarized Abelian threefold ($[11,18]$);
- for $q=4$, a family of examples is constructed in [19];
- for $q \geq 5$, no example is known.

One is led to conjecture that for $q>4$ there are no surfaces with $p_{g}=2 q-3$ that have no irrational pencil. In this note we settle the case $q=5$:

Theorem 1.1. Let S be a smooth projective complex surface with $q(S)=5$ that has no irrational pencils of genus >1. Then:

$$
p_{g}(S) \geq 8
$$

As a consequence we obtain the following classification theorem:
Theorem 1.2. Let S be a minimal complex surface of general type with $q(S)=5$ and $p_{g}(S) \leq 7$. Then either:
(i) $p_{g}(S)=6, K_{S}^{2}=16$ and S is the product of a curve of genus 2 and a curve of genus 3; or
(ii) $p_{g}(S)=7, K_{S}^{2}=24$ and $S=(C \times F) / \mathbb{Z}_{2}$, where C is a curve of genus 7 with a free \mathbb{Z}_{2}-action, F is a curve of genus 2 with a \mathbb{Z}_{2}-action such that F / \mathbb{Z}_{2} has genus 1 and \mathbb{Z}_{2} acts diagonally on $C \times F$. The map $f: S \rightarrow C / \mathbb{Z}_{2}$ induced by the projection $C \times F \rightarrow C$ is an irrational pencil of genus 4 with general fibre F of genus 2.

The idea of the proof of Theorem 1.1 is to obtain contradictory upper and lower bounds for K_{S}^{2} under the assumption that $p_{g}(S)<8$ and S is minimal.

For fixed q and p_{g}, by Noether's formula giving an upper bound for K^{2} is the same as giving a lower bound for the topological Euler characteristic c_{2}. More precisely, it is the same as giving a lower bound for $h^{1,1}$, the only Hodge number which is not determined by p_{g} and q. In our situation, the upper bound follows directly from the result of [9] that if S is a surface of general type with $q=5$, having no irrational pencils, then $h^{1,1} \geq 11+t$, where t is bigger or equal to the number of curves contracted by the Albanese map.

If the canonical system $\left|K_{S}\right|$ has no fixed components, one can apply the results of [2] to get a lower bound for K_{S}^{2} which is enough to rule out this possibility. Hence the bulk of the proof consists in obtaining a lower bound for K_{S}^{2} under the assumption that $\left|K_{S}\right|$ has a fixed part $Z>0$. This is done in Section 2, where we improve by 1 in the case $Z>0$ a well known inequality for surfaces with birational bicanonical map due to Debarre ($c f$. Corollary 2.7). The proof is based on a subtle numerical analysis of the intersection properties of the fixed and moving part of $\left|K_{S}\right|$ that is, we believe, of independent interest.

It would be possible to generalize Theorem 1.1 for $q \geq 6$, if a good lower bound for $h^{1,1}(S)$ could be established. Unfortunately it is very difficult to extend the methods of [9] for $q \geq 6$. Recently, a lower bound on $h^{1,1}$ has been obtained in [12] by completely different methods, but it is not strong enough for our purposes.
Notation and conventions: a surface is a smooth complex projective surface. We use the standard notation for the invariants of a surface $S: p_{g}(S):=h^{0}\left(\omega_{S}\right)=$ $h^{2}\left(\mathcal{O}_{S}\right)$ is the geometric genus, $q(S):=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$ is the irregularity and $\chi(S):=p_{g}(S)-q(S)+1$ is the Euler-Poincaré characteristic.

An irrational pencil of genus b of a surface S is a fibration $f: S \rightarrow B$, where B is a smooth curve of genus $b>0$.

We use \equiv to denote linear equivalence and \sim to denote numerical equivalence of divisors.

An effective divisor D on a smooth surface is k-connected if for every decomposition $D=A+B$, with $A, B>0$ one has $A B \geq k$. (Recall that on a minimal surface of general type every n-canonical divisor is 1 -connected and, unless $n=2$ and $K_{S}^{2}=1$, it is also 2-connected (cf. [3])).

Acknowledgements. We wish to thank Letterio Gatto and Stavros Papadakis for very helpful conversations.

2. Reider divisors

Let S be a surface and let M be a nef and big divisor on S such that $M^{2} \geq 5$. By Reider's theorem, if a point P of S is a base point of $\left|K_{S}+M\right|$, then there is an effective divisor E passing through P such that either:

- $E^{2}=-1, M E=0$ or
- $E^{2}=0, M E=1$.

This suggests the following definition:
Definition 2.1. Let M be a nef and big divisor on a surface S. An effective divisor E such that $E^{2}=k$ and $E M=s$ is called a (k, s) divisor of M.

By $[8,(0.13)]$, the $(-1,0)$ divisors and the $(0,1)$ divisors are 1-connected. In addition, if E is a $(-1,0)$ divisor, using the index theorem one shows that the intersection form on the components of E is negative definite. In particular, there exist only finitely many $(-1,0)$ divisors of M on S.

Lemma 2.2. Let M be a nef divisor with $M^{2} \geq 5$ on a surface S. Then:
(i) if E is a reducible $(0,1)$ divisor E of M, and $0<C<E$ then $C^{2}<0$;
(ii) if E_{1}, E_{2} are two distinct $(0,1)$ divisors of M, then $E_{1} E_{2}=0$ and E_{1} and E_{2} are disjoint.

Proof. Let E, C be as in (i). The index theorem gives $C^{2}<0$ if $M C=0$ and $C^{2} \leq 0$ if $M C=1$. Assume that $C^{2}=0$. Then $E C=(E-C) C>0$, since E is 1 -connected, and therefore $(E+C)^{2} \geq 2$. Since $M^{2} \geq 5$ and $M(C+E)=2$ we have a contradiction to the index theorem. Hence $C^{2}<0$.

Next we prove (ii). We have:

$$
M^{2} \geq 5, \quad M\left(E_{1}+E_{2}\right)=2, \quad M\left(E_{1}-E_{2}\right)=0
$$

hence by the index theorem we obtain:

$$
2 E_{1} E_{2}=\left(E_{1}+E_{2}\right)^{2} \leq 0, \quad-2 E_{1} E_{2}=\left(E_{1}-E_{2}\right)^{2} \leq 0
$$

So $E_{1} E_{2}=0$. By 1-connectedness of E_{1}, E_{2} we conclude that neither divisor is contained in the other. Then we can write $E_{1}=A+B, E_{2}=A+C$ where $A \geq 0$, $B, C>0$ and B and C have no common components.

Since M is nef and $M E_{i}=1$, we have $1 \geq M B(=M C)$ and so $B^{2} \leq 0, C^{2} \leq$ 0 . Then, since $0=\left(E_{1}-E_{2}\right)^{2}=(B-C)^{2}$, we conclude that $B^{2}=C^{2}=B C=0$. Hence by (i) $B=E_{1}$ and $C=E_{2}$, namely $A=0$ and E_{1} and E_{2} are disjoint.

Lemma 2.3. Let S be a surface and let M be a nef and big divisor such that the linear system $|M|$ has no fixed components. Let E be a $(0,1)$ divisor of M and let C be the only irreducible component of E such that $M C=1$. Then either $|M|$ has a base point on C or C is a smooth rational curve.

Proof. Suppose $|M|$ has no base points on C. Then, since $M C=1$ the restriction map $H^{0}(M) \rightarrow H^{0}\left(C,\left.M\right|_{C}\right)$ has image of dimension at least 2 . It follows that C is a smooth rational curve.

Proposition 2.4. Let X be a non ruled surface and let M be a divisor of X such that:

- $M^{2} \geq 5$,
- the linear system $|M|$ has no fixed components and maps X onto a surface.

Let C be an irreducible curve contained in the fixed locus of $\left|K_{X}+M\right|$. Then either:
(i) C is contained in $a(-1,0)$ divisor of $M, M C=0$ and $C^{2}<0$;
or
(ii) C is contained in a $(0,1)$ divisor of $M, M C \leq 1$ and $C^{2} \leq 0$.

Proof. Let $P \in C$ be a point. By Reider's theorem, there is a $(-1,0)$ divisor or a $(0,1)$ divisor of M passing through P.

Assume for contradiction that C is not a component of any $(-1,0)$ or $(0,1)$ divisor of M. Since there are only finitely many distinct $(-1,0)$ divisors of M in S, we can assume that there is a $(0,1)$ divisor passing through a general point P of C. It follows that there are infinitely many $(0,1)$ divisors on S. Recall that two distinct
$(0,1)$ divisors are disjoint by Lemma 2.2. Thus, since $|M|$ has a finite number of base points, by Lemma 2.3 X is ruled, against the assumptions.

So C is contained in a $(-1,0)$ divisor or a $(0,1)$ divisor E of M. In the first case, M being nef implies that $M C=0$ and so $C^{2}<0$ by the index theorem. In the second case, again by nefness $M C \leq 1$ and again by the index theorem $C^{2} \leq 0$.

Lemma 2.5. Let S be a surface and let M be a nef and big divisor of S and let E be $a(0,1)$ divisor of M. If L is a divisor such that $(M-L)^{2}>0$ and $M(M-L)>0$, then $E L \leq 0$.

Proof. Write $\gamma:=M(M-L)$. Then $M(\gamma E-(M-L))=0$. Since $(M-L)^{2}>0$ and $E^{2}=0, \gamma(M-L) \nsim E$. Thus, by the index theorem $0>(\gamma E-(M-L))^{2}=$ $-2 \gamma E(M-L)+(M-L)^{2}$.

So $E(M-L)>0$, and therefore $E L \leq 0$.
Proposition 2.6. Let S be a smooth minimal surface of general type and let M be a divisor such that

- $Z:=K_{S}-M>0$;
- the linear system $|M|$ has no fixed components and maps S onto a surface.

Then the following hold:
(i) if $M^{2} \geq 5+K Z$, then $h^{0}(2 M)<h^{0}\left(K_{S}+M\right)$;
(ii) if $M^{2} \geq 5,(M-Z)^{2}>0$ and $M(M-Z)>0$, then there are no $(0,1)$ divisors of M. Furthermore $h^{0}(2 M)<h^{0}\left(K_{S}+M\right)$ and every irreducible fixed component C of $\left|K_{S}+M\right|$ satisfies $M C=0$.

Proof. We observe first of all that $h^{0}(2 M)=h^{0}\left(K_{S}+M\right)$ if and only if Z is the fixed part of $\left|K_{S}+M\right|$.
(i) Assume for contradiction that $h^{0}(2 M)=h^{0}\left(K_{S}+M\right)$. Let C be an irreducible component of Z. By Proposition $2.4, C^{2} \leq 0$ and $M C \leq 1$. Now

$$
-2 \leq C^{2}+K C \leq C^{2}+K Z
$$

and hence $C^{2} \geq-2-K Z$. It follows

$$
(M-C)^{2}=M^{2}-2 M C+C^{2} \geq M^{2}-2-2-K Z=M^{2}-4-K Z>0
$$

In addition, we have:

$$
M(M-C)=(M-C)^{2}+C(M-C) \geq(M-C)^{2}-C^{2} \geq(M-C)^{2}>0
$$

Since $M Z \geq 2$ by the 2-connectedness of canonical divisors, there is at least a component D of Z such that $M D>0$. By Proposition 2.4, we have $M D=1$ and D is contained in a $(0,1)$ divisor E of M. Then Lemma 2.5 gives $E C \leq 0$ for all the components of Z, and so $E Z \leq 0$.

But now since $M E=1$ and $E^{2}=0$ we obtain that $K E=1+E Z \leq 1$. On the other hand, $K_{S} E$ is >0 by the index theorem and it is even by the adjunction formula, hence we have a contradiction.
(ii) Let E be a $(0,1)$ divisor of M. Then we have $E Z \leq 0$ by Lemma 2.5 and we get a contradiction as above. So there are no $(0,1)$ divisors of M on S. Hence by Proposition 2.4 every irreducible fixed curve of $\left|K_{S}+M\right|$ satisfies $M C=0$. Since $M Z \geq 2$ by the 2-connectedness of the canonical divisors, not every component of Z can be a fixed component of $\left|K_{S}+M\right|$ and therefore $h^{0}\left(K_{S}+M\right)>h^{0}(2 M)$.

As a consequence, we obtain the following refinement of [10, Theorem 3.2 and Remark 3.3]:

Corollary 2.7. Let S be a minimal surface of general type whose canonical map is not composed with a pencil. Denote by M the moving part and by Z the fixed part of $\left|K_{S}\right|$. If $Z>0$ and $M^{2} \geq 5+K_{S} Z$, then

$$
K_{S}^{2}+\chi(S)=h^{0}\left(K_{S}+M\right)+K_{S} Z+M Z / 2 \geq h^{0}(2 M)+K_{S} Z+M Z / 2+1
$$

Furthermore, if $h^{0}\left(K_{S}+M\right)=h^{0}(2 M)+1$ then $\left|K_{S}+M\right|$ has base points and there is a $(-1,0)$ divisor or a $(0,1)$ divisor E of M such that $E Z \geq 1$.

Proof. Since M is nef and big, by Kawamata-Viehweg vanishing $h^{0}\left(K_{S}+M\right)=$ $\chi\left(K_{S}+M\right)$, hence the equality follows by the Riemann-Roch theorem whilst the inequality is Proposition 2.6, (i).

For the second assertion it suffices to notice that $h^{0}\left(K_{S}+M\right)=h^{0}(2 M)+1$ means that the image of the restriction map $H^{0}\left(K_{S}+M\right) \rightarrow H^{0}\left(Z,\left.\left(K_{S}+M\right)\right|_{Z}\right)$ is 1-dimensional. Since $\left(K_{S}+M\right) Z \geq 2$, the system $\left|K_{S}+M\right|$ has necessarily base points. Thus there is a $(-1,0)$ divisor or a $(0,1)$ divisor E of M. By adjunction $K_{S} E-E^{2}$ is even and so necessarily $E Z \geq 1$.

3. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Let $a: S \rightarrow A$ be the Albanese map of S. Notice that by the classification of surfaces the assumptions that $q(S)=5$ and S has no irrational pencil of genus >1 imply that S is of general type and a is generically finite onto its image. Without loss of generality we may assume that S is minimal. By [5], an irregular surface of general type having no irrational pencils of genus >1 satisfies $p_{g} \geq 2 q-3$. We assume for contradiction that $p_{g}(S)=7=2 q(S)-3$, so that $\chi(S)=3$. We denote by $\varphi_{K}: S \rightarrow \mathbb{P}^{6}$ the canonical map and by Σ the canonical image. Since $q(S)>2, \Sigma$ is a surface by [20].

We denote by t the rank of the cokernel of the map $a^{*}: \mathrm{NS}(A) \rightarrow \mathrm{NS}(S)$. Note that t is bigger than or equal to the number of irreducible curves contracted by the Albanese map.

Denote as usual by $b_{i}(S)$ the i-th Betti number and by $c_{2}(S)$ the second Chern class of S. By [9, Theorem 1,(3)], we have $b_{2}(S) \geq 31+t$, namely $c_{2}(S) \geq 13+t$. By Noether's formula this is equivalent to:

$$
\begin{equation*}
K_{S}^{2} \leq 23-t \tag{3.1}
\end{equation*}
$$

Denote by \mathbb{G} the Grassmannian of 2-planes of $H^{0}\left(\Omega_{S}^{1}\right)^{\vee}$ and by \mathbb{G}^{\vee} the Grassmannian of 2-planes in $H^{0}\left(\Omega_{S}^{1}\right)$. By the Castelnuovo-De Franchis theorem, the kernel of the map $\rho: \bigwedge^{2} H^{0}\left(\Omega_{S}^{1}\right) \rightarrow H^{0}\left(K_{S}\right)$ does not contain any nonzero simple tensor. Hence ρ induces a morphism $\mathbb{G}^{\vee} \rightarrow \mathbb{P}\left(H^{0}\left(K_{S}\right)\right)$ which is finite onto its image. Since $\operatorname{dim} \mathbb{G}^{\vee}=6$, it follows that $\operatorname{ker} \rho$ has dimension $3, \rho$ is surjective and it induces a finite map $\mathbb{G}^{\vee} \rightarrow \mathbb{P}\left(H^{0}\left(K_{S}\right)\right)$. As a consequence, we have the following facts:
(a) the surface S is generalized Lagrangian, namely there exist independent 1forms $\eta_{1}, \ldots \eta_{4} \in H^{0}\left(\Omega_{S}^{1}\right)$ such that $\eta_{1} \wedge \eta_{2}+\eta_{3} \wedge \eta_{4}=0$. In addition, we may assume that $\eta_{1} \wedge \eta_{2}$ is a general 2-form of S. In that case, the fixed part of the linear system $\mathbb{P}\left(\wedge^{2} V\right)$, where $V=<\eta_{1}, \ldots \eta_{4}>$, coincides with the fixed part of the canonical divisor ($c f$. [15, Section 3]).
(b) the canonical image Σ is contained in the intersection of \mathbb{G} with the codimension 3 subspace $T=\mathbb{P}\left(\operatorname{Im} \rho^{\vee}\right) \subset \mathbb{P}^{9}=\mathbb{P}\left(\bigwedge^{2} H^{0}\left(\Omega_{S}^{1}\right)\right.$) (where ρ^{\vee} is the transpose of ρ),
(c) since \mathbb{G}^{\vee} is the dual variety of \mathbb{G}, the space T is not contained in an hyperplane tangent to \mathbb{G}, hence $Y:=\mathbb{G} \cap T$ is a smooth threefold.

Using the Lefschetz hyperplane section theorem we see that $\operatorname{Pic}(Y)$ is generated by the class of a hyperplane. Then Σ is the scheme theoretic intersection of Y with a hypersurface of degree $m \geq 2$ of \mathbb{P}^{6}. Thus, since \mathbb{G} has degree 5 (cf. [16, Corollary 1.11]), it follows that $\operatorname{deg} \Sigma=5 m$ and by [16, Proposition 1.9] we have $\omega_{\Sigma}=\mathcal{O}_{\Sigma}(m-2)$. By [13, Theorem 1.2], the degree d of φ_{K} is different from 2. Since $K_{S}^{2} \leq 23$ by (3.1), the inequality $K_{S}^{2} \geq d \operatorname{deg} \Sigma=5 d m$ gives $d=1$, namely φ_{K} is birational onto its image. So we have $m \geq 3$, since $\omega_{\mathbb{G}}=\mathcal{O}_{\mathbb{G}}(-5)$ (cf. [16, Proposition 1.9]) and Σ is of general type.

Write $\left|K_{S}\right|=|M|+Z$, where Z is the fixed part and M is the moving part. If $Z=0$, then in view of (a) we have $K_{S}^{2} \geq 8 \chi=24$ by [2, Theorem 1.2]. This would contradict (3.1), hence $Z>0$.

Since $m>2$, every quadric that contains Σ must contain Y. Recall that Y is obtained from \mathbb{G} by intersecting with 3 independent linear sections. Denote by R the homogeneous coordinate ring of \mathbb{G}. Since R is Cohen-Macaulay and Y has codimension 3 in \mathbb{G}, these 3 linear sections form an R-regular sequence. As a consequence ($c f$. [7, Proposition 1.1.5]) the (vector) dimension of the space of quadrics of \mathbb{P}^{6} containing Y is the same as the (vector) dimension of the space of quadrics of \mathbb{P}^{9} containing \mathbb{G}. Since the latter dimension is 5 (cf. [16, Proposition 1.2]), it follows that:

$$
h^{0}(2 M) \geq h^{0}\left(\mathcal{O}_{\mathbb{P}^{6}}(2)\right)-5=23 .
$$

Then by (3.1) and Corollary 2.7 we have:

$$
\begin{equation*}
26-t \geq K_{S}^{2}+\chi(S)=h^{0}\left(K_{S}+M\right)+K_{S} Z+M Z / 2 \geq 23+K_{S} Z+M Z / 2+1 \tag{3.2}
\end{equation*}
$$

So $K_{S} Z+M Z / 2 \leq 2-t$. Recall that $M Z \geq 2$ by the 2-connectedness of canonical divisors.

Assume $K_{S} Z=0$. Then every component of Z is an irreducible smooth rational curve with self-intersection -2 and as such it is contracted by the Albanese map. Since $K_{S} Z+M Z / 2 \leq 2-t$, the only possibility is $t=1$ and $M Z=2$. Hence $Z=r A$, where A is a -2 -curve. Since $M Z=2$ and $K_{S} Z=0$, we have $Z^{2}=-2$ and so $r=1$. Hence Z is a -2 -cycle of type A_{1}; in particular it is reduced and, in the terminology of [2], it is contracted by any subspace $V \subseteq H^{0}\left(\Omega_{S}^{1}\right)$. Then, again by (a) and [2, Theorem 1.2], we get $K^{2} \geq 8 \chi=24$, a contradiction.

So $K_{S} Z>0$. Then by (3.2) necessarily $K_{S} Z=1, M Z=2$ (yielding $Z^{2}=$ $-1)$ and $h^{0}\left(K_{S}+M\right)=24 \leq h^{0}(2 M)+1$. As we have already remarked, the canonical image Σ has degree ≥ 15. Therefore $M^{2} \geq 15>5+K_{S} Z=6$ and, by Corollary 2.7, there is a $(-1,0)$ or a $(0,1)$ divisor E of M. Since the hypotheses of Proposition 2.6, (ii) are satisfied, E must be a $(-1,0)$ divisor of M.

Then $M(E+Z)=2$ and so by the algebraic index theorem $M^{2}(E+Z)^{2}-4 \leq$ 0 , yielding $(E+Z)^{2} \leq 0$. Since $(E+Z)^{2}=-2+2 E Z$ and, by Corollary $2.7, E Z \geq$ 1 , the only possibility is $E Z=1$ and $(E+Z)^{2}=0$. In this case $K_{S}(E+Z)=2$ and this is impossible by the proof of [2, Proposition 8.2], which shows that a minimal irregular surface with $q \geq 4$, having no irrational pencils of genus >1, cannot have effective divisors of arithmetic genus 2 and self-intersection 0 .

Proof of Theorem 1.2. By [5], a surface of general type S with $q(S)=5$ has $p_{g}(S) \geq 6$ and, in addition, if $p_{g}(S)=6$ then S is the product of a curve of genus C and a curve of genus 3. Now statement (ii) is a consequence of Theorem 1.1 and [13, Theorem 1.1].

References

[1] M. A. BarJa, Numerical bounds of canonical varieties, Osaka J. Math. 37 (2000), 701718.
[2] M. A. Barja, J. C. Naranjo and G. P. Pirola, On the topological index of irregular surfaces, J. Algebraic Geom. 16 (2007), 435-458.
[3] W. Barth, C. Peters and A. Van de Ven, "Compact Complex Surfaces", Ergebnisse der Mathematik, 3. Folge, Band 4, Springer, Berlin, 1984.
[4] A. BEAUVILLE, L'application canonique pour les surfaces de type général, Invent. Math. 55 (1979), 121-140.
[5] A. BEAUVILLE, L'inégalité $p_{g} \geq 2 q-4$ pour les surfaces de type général, appendix to [10].
[6] A. Beauville, "Complex Algebraic Surfaces", second edition, L.M.S Student Texts 34, Cambridge University Press, Cambridge, 1996.
[7] W. Bruns and J. Herzog, "Cohen-Macaulay Rings", revised edition, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998.
[8] F. Catanese, C. Ciliberto and M. Mendes Lopes, On the classification of irregular surfaces of general type with non birational bicanonical map, Trans. Amer. Math. Soc. 350 (1998), 275-308.
[9] A. Causin and G. P. Pirola, Hermitian matrices and cohomology of Kaehler varieties, Manuscripta Math. 121 (2006), 157-168.
[10] O. DEBARRE, Inégalités numériques pour les surfaces de type général, with an appendix by A. Beauville, Bull. Soc. Math. France 110 (1982), 319-346.
[11] C. D. Hacon and R. Pardini, Surfaces with $p_{g}=q=3$, Trans. Amer. Math. Soc. 354 (2002), 2631-2638.
[12] R. LAZARSFELD and M. POPA, Derivative complex $B G G$ correspondence and numerical inequalities for compact Khaeler manifolds, Invent. Math. 182 (2010), 605-633.
[13] M. Mendes Lopes and R. Pardini, On surfaces with $p_{g}=2 q-3$, Adv. Geom. 10 (2010), 549-555.
[14] M. Mendes Lopes and R. Pardini, The geography of irregular surfaces, In: "Current Developments in Algebraic Geometry", Math. Sci. Res. Inst. Publ., Cambridge Univ. Press 59 (2012), 349-378.
[15] M. Mendes Lopes and R. Pardini, Severi type inequalities for surfaces with ample canonical class, Comment. Math. Helv. 86 (2011), 401-414.
[16] S. MUKAI, "Curves and Grassmannians", Algebraic geometry and related topics (Inchon, 1992), 19-40, Conf. Proc. Lecture Notes Algebraic Geom., I, Int. Press, Cambridge, MA, 1993.
[17] G. Pareschi and M. Popa, Strong generic vanishing and a higher dimensional Castelnuovo-de Franchis inequality, Duke Math. J. 150 (2009), 269-28.
[18] G. P. Pirola, Algebraic surfaces with $p_{g}=q=3$ and no irrational pencils, Manuscripta Math. 108 (2002), 163-170.
[19] C. SCHOEN, A family of surfaces constructed from genus 2 curves, Internat. J. Math. 18 (2007), 585-612.
[20] G. XIAO, Irregularity of surfaces with a linear pencil, Duke Math. J. 55 (1987), 596-602.

Departamento de Matemática Instituto Superior Técnico Universidade Técnica de Lisboa Av. Rovisco Pais 1049-001 Lisboa, Portugal mmlopes@math.ist.utl.pt

Dipartimento di Matematica
Università di Pisa
Largo B. Pontecorvo, 5
56127 Pisa, Italy
pardini@dm.unipi.it
Dipartimento di Matematica
Università di Pavia
Via Ferrata, 1
27100 Pavia, Italy
gianpietro.pirola@unipv.it

