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Lipschitz surfaces, perimeter and trace theorems for BV functions

in Carnot-Carathéodory spaces

DAVIDE VITTONE

Abstract. We introduce intrinsic Lipschitz hypersurfaces in Carnot-Carathéodory
spaces and prove that intrinsic Lipschitz domains have locally finite perimeter.
We also show the existence of a boundary trace operator for functions with
bounded variation on Lipschitz domains and obtain extension results for such
functions. In particular, we characterize their trace space.
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ondary).

1. Introduction and statement of the main results

In the last few years there has been an increasing interest towards analysis and ge-

ometry in metric spaces and, in particular, towards geometric measure theory and

the study of spaces like those of Sobolev or bounded variation (BV) functions. In

this paper we would like to give a contribution in these two directions, by deal-

ing with the study of “Lipschitz regular” hypersurfaces and their relationship with

the perimeter measure, and by establishing trace and extension theorems for BV

functions in a metric setting. Our framework will be that of a Carnot-Carathéodory

(CC) space, i.e., the spaceRn endowed with the CC distance d arising from a family

X = (X1, . . . , Xm) of smooth vector fields. See Section 2 for precise definitions.
In the setting of Carnot groups (see Section 3 for the definition), intrinsic Lips-

chitz surfaces have been introduced in [36,38] as graphs of intrinsic Lipschitzmaps

between complementary subgroups. For the case of codimension one, we propose

here a new definition of Lipschitz surface which agrees with the previous one in

Carnot groups (see Theorem 3.2) and can be stated in the more general framework

of CC spaces.
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Definition 1.1. A set S ⊂ Rn is an X-Lipschitz surface if for any x ∈ S there exist

a neighbourhood U , a Lipschitz function f : U → R and j ∈ {1, . . . ,m} such that

S ∩U = { f = 0} and X j f ! l Ln-a.e. on U

for a suitable l > 0.

Notice that X-regular surfaces (see Section 2.4) are also X-Lipschitz.

To fix terminology, we will say that an open set ! ⊂ Rn is a X-Lipschitz

domain if for any x ∈ ∂! there exist a neighbourhood U , a Lipschitz function

f : U → R and j ∈ {1, . . . ,m} such that

• ! ∩U = { f > 0} or ! ∩U = { f < 0}
• there exists l > 0 such that X j f ! l Ln-a.e. on U .

One of our main results is the following

Theorem 1.2. If ! ⊂ Rn is an X-Lipschitz domain, then ! has locally finite X-

perimeter in Rn .

We refer to Section 2.3 for the definition of the X-perimeter measure |∂E |X of a
measurable subset E ⊂ Rn . An easy consequence of Theorem 1.2 is the fact that

subgraphs of one-codimensional intrinsic Lipschitz graphs in Carnot groups have

locally finite X-perimeter, see Corollary 4.6. In the setting of the Heisenberg group,

this fact has already been proved in [38] together with a Rademacher-type theorem

for intrinsic Lipschitz graphs of codimension one. It would be very interesting to

understand whether a Rademacher-type theorem holds for X-Lipschitz surfaces in

a more general setting. A milder regularity result can be proved in equiregular CC

spaces (see Section 4.2 for the definition), where X-Lipschitz surfaces are locally

(and up to a diffeomorphism of the ambient space) graphs of Hölder continuous

functions. See Proposition 4.10.

In equiregular CC spaces Theorem 1.2 can be refined to prove Ahlfors regular-

ity of the X-perimeter of X-Lipschitz domains. Related results have been proved

in [17–20, 24, 40] for more regular domains. We denote by Q ∈ N the Hausdorff

dimension of (Rn, d).

Theorem 1.3. Let ! be an X-Lipschitz domain with compact boundary in an

equiregular CC space (Rn, X). Then the X-perimeter measure |∂!|X is (Q − 1)-
Ahlfors regular on ∂!, i.e., there exist r̄ > 0 and λ > 0 such that

1
λr

Q−1 " |∂!|X (B(z, r)) " λr Q−1 for any z ∈ ∂!, 0 < r < r̄ . (1.1)

As a consequence, we obtain that the X-perimeter measure of an X-Lipschitz

domain with compact boundary is doubling, see Corollary 4.13. An asymptotic

Ahlfors regularity of the perimeter measure, together with an asymptotic doubling

property, was obtained by L. Ambrosio in [1]. The proofs of Theorems 1.2 and

1.3, as well as many others in this papers, are based on the representation of the
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X-perimeter in certain local coordinates given by an implicit function theorem for

X-Lipschitz surfaces, see Propositions 4.1 and 4.5. Here we have to acknowledge

the influence of the analogous implicit function theorem proved in [22, Theorem

1.1] for X-regular surfaces.

The second part of this paper deals with trace theorems for functions of

bounded X-variation in CC spaces. The theory of traces for Sobolev functions

in this framework has been deeply investigated: here we mention [6–8, 11, 23–26,

49, 58] and refer to the beautiful introduction of [26] for an account on the subject.

On the contrary, the theory of traces for BVX functions in CC spaces is still at an

early stage. To our best knowledge, trace and extension theorems for BVX functions

have been established in [54] only for H -admissible domains (a class containing,

for instance, C1 domains with no characteristic points) in Carnot groups of step 2.

We are able to prove trace and extension theorems for BVX functions defined on

X-Lipschitz domains of a CC space.

Theorem 1.4. Let ! ⊂ Rn be an X-Lipschitz domain with compact boundary.

Then, there exists a bounded linear operator

T : BVX (!) → L1(∂!, |∂!|X )

such that

∫

!
u divX g dLn = −

∫

!
〈σu, g〉 d|Xu| +

∫

∂!
〈ν!, g〉Tu d|∂!|X (1.2)

for any u ∈ BVX (!) and g ∈ C1(Rn, Rm).

Here, |Xu| denotes the total X-variation of u and σu : ! → Sm−1 is the Radon-
Nikodym derivative of the vector measure Xu with respect to |Xu|, so that Xu =
σu |Xu|. Moreover, divX g = X∗

1g1 + · · · + X∗
mgm and ν! is the generalized inward

normal to !. See Section 2.3 for precise definitions. The trace operator T is not
continuous if BVX (!) is endowed with the topology of weak∗ convergence (see
e.g. [2]). We prove in Theorem 5.6 that T is instead continuous with respect to the

so-called strict convergence.

Concerning the problem of the extension of BVX functions, we want to men-

tion also the paper [9] were, in a more general framework, it is proved that the

existence of an extension operator for BVX function on a domain ! is equivalent

to the validity of certain isoperimetric-type inequalities in !. Here we prove the
following

Theorem 1.5. Let ! ⊂ Rn be an X-Lipschitz domain with compact boundary.

Then, there existsC=C(!)with the following property. For anyw∈L1(∂!,|∂!|X )

and any δ > 0 there exists u ∈ C∞(!) ∩ W
1,1
X (!) such that

Tu = w,

∫

!
|u| dLn " δ and

∫

!
|Xu| dLn " C‖w‖L1(∂!,|∂!|X ) . (1.3)
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If ∂! is also X-regular, then u can be chosen in such a way that

∫

!
|Xu| dLn " (1+ δ)‖w‖L1(∂!,|∂!|X ) . (1.4)

We have denoted by W
1,1
X (!) ⊂ BVX (!) the space of functions u ∈ L1(!)

such that Xu ∈ L1(!). Let us point out that Theorems 1.4 and 1.5 characterize
L1(∂!, |∂!|X ) as the trace space of BVX (!) functions. Theorem 1.5 allows to

obtain an extension result for BVX functions defined on X-Lipschitz domains, see

Corollary 5.4.

Finally, we prove that, in equiregular CC spaces, the trace of u on ∂! can be

characterized in terms of the approximate limit of u at points of ∂!.

Theorem 1.6. Let (Rn, X) be an equiregular CC space, ! ⊂ Rn an X-Lipschitz

domain with compact boundary and u ∈ BVX (!). Then

lim
r→0+

1

r Q

∫

!∩B(z,r)
|u − Tu(z)| dLn = 0 for |∂!|X -a.e. z ∈ ∂! (1.5)

and in particular

Tu(z) = lim
r→0+

∫
! !∩B(z,r)u dLn for |∂!|X -a.e. z ∈ ∂! . (1.6)

The paper is organized as follows. In Section 2 we introduce the basic notions on

CC spaces, functions with bounded X-variation and sets with finite X-perimeter.

The equivalence between X-Lipschitz surfaces and intrinsic Lipschitz graphs in

Carnot groups is the object of Section 3. Section 4.1 is devoted to the study of

X-Lipschitz surfaces and the proof of Theorem 1.2, while Theorem 1.3 is proved

in Section 4.2. Finally, Theorems 1.4, 1.5 and 1.6 are proved in Section 5 together

with the aforementioned related result.

ACKNOWLEDGEMENTS. It is a great pleasure to thank E. Spadaro for many illu-

minating discussions. The author is also grateful to R. Monti, R. Serapioni and F.

Serra Cassano for their interest in the paper and for several stimulating discussions.

2. Notation and preliminary results

We briefly introduce Carnot-Carathéodory spaces and refer to [10] for a more gen-

eral account on the subject.
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2.1. Carnot-Carathéodory spaces

Let X = (X1, . . . , Xm) be a fixed family of C∞ vector fields in Rn . As common in

the literature, we will systematically identify vector fields and first order differential

operators. We call horizontal (at a given point x ∈ Rn) any vector that is a linear

combination of X1(x), . . . , Xm(x). An absolutely continuous curve γ : [0, T ] −→
Rn is sub-unit if

γ̇ (t) =
m∑

j=1
h j (t)X j (γ (t)) and

m∑

j=1
h2j (t) " 1 for a.e. t ∈ [0, T ],

with h1, . . . , hm measurable coefficients.

Definition 2.1. We define the Carnot-Carathéodory distance d between x, y ∈ Rn

as

d(x, y) = inf

{
T ! 0 : there exists a sub-unit path γ : [0, T ] → Rn

such that γ (0) = x and γ (T ) = y

}
.

If the above set is empty we set d(x, y) = +∞.

If d(x, y) < ∞ for every x, y ∈ Rn , then d is a distance on Rn . We shall

generally assume that

d is finite and the identity map (Rn, d) → (Rn, | · |) is a homeomorphism. (2.1)

Condition (2.1) holds, for example, when the Chow-Hörmander condition

rank L(X1, . . . , Xm)(x) = n

is satisfied for any x ∈ Rn (see [52]); here, L(X1, . . . , Xm) denotes the Lie algebra
generated by X1, . . . , Xm and their commutators of any order. We will use the
notation B(x, r) for balls with respect to the CC distance, while Euclidean balls in
Rk are denoted byB(x, r).

Given E ⊂ Rn and k ! 0, the k-dimensional Hausdorff and spherical Haus-

dorff measures of E are defined, respectively, by

Hk
d(E) := lim

δ↓0
inf

{∑∞
i=0(diam Ei )

k : E ⊂ ∪∞
i=0Ei , diam Ei < δ

}

Skd (E) := lim
δ↓0
inf

{∑∞
i=0(diam Bi )

k : E ⊂ ∪∞
i=0Bi , diam Bi < δ, Bi ⊂ Rn balls

}
.

The standard Euclidean Hausdorff measures in Rn will instead be denoted by

Hk,Sk .
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2.2. Lipschitz and C1X functions

When u : ! → R is a measurable function on an open set ! ⊂ Rn we define its

horizontal gradient Xu as

Xu := (X1u, . . . , Xmu),

where the derivatives are to be understood in the sense of distributions. It is well

known that, if u : ! → R is Lipschitz continuous with respect to d, then Xu ∈
L∞(!). Viceversa (see [32, 40]), if u is continuous and Xu ∈ L∞(!), then u is
Lipschitz on any open set !′ # !.
We will say that u is of class C1X (!) if u and Xu are continuous. If u is of class C1X ,
then it is differentiable (in the classical sense) along the vector fields X1, . . . , Xm .

In the sequel, we will use several times the following simple lemma, whose

proof is given for the sake of completeness.

Lemma 2.2. Let f : Rn → R be a continuous function and Y a vector field in Rn

with smooth coefficients. Assume that Y f ! l holds, in the sense of distributions, on

an open set U ⊂ Rn and for a suitable positive constant l. If x ∈ Rn and h1 < h2
are such that exp(hY )(x) ∈ U for any h ∈ (h1, h2), then

f (exp(tY )(x)) ! f (exp(sY )(x)) + l(t − s) for any t, s ∈ (h1, h2) with s < t.

In particular, if there exists t ∈ (h1, h2) such that f (exp(tY )(x)) = 0, then such a

t is unique.

Proof. Up to a smooth change of coordinates (see also the proof of Proposition 4.1,

where a similar argument is used) we may assume that there exists a neighbour-

hood V ⊂ U of the compact set {exp(hY )(x) : h ∈ [s, t]} such that Y = en =
(0, . . . , 0, 1) on V . Therefore, for any h ∈ [s, t] we have xh := exp(hY )(x) =
xs + (h − s)en .

For k ∈ N let ψk ∈ C∞
c (B(xs,

1
k
)) be such that ψk ! 0 and

∫
ψk dLn = 1.

For any h ∈ [s, t] define τhψk(y) := ψk(y − (h − s)en). If k is large enough, then
τhψk has support in V for any h ∈ [s, t]. Clearly, as k → ∞ the functions τhψk

converge to the Dirac delta at xh .

Since the inequality ∂xn f ! l holds in the sense of distributions on V , by the

continuity of f we have

f (xt ) − f (xs) = lim
k→∞

(∫

V

f τtψk dLn −
∫

V

f τsψk dLn
)

= lim
k→∞

∫ t

s

d

dh

(∫

V

f τhψk dLn
)
dh

= lim
k→∞

∫ t

s

(
−

∫

V

f (y)
∂ψk

∂xn
(y − hen) dy

)
dh

! lim
k→∞

∫ t

s

l

∫

V

ψk(y − ten) dy dh = l(s − t)

and the lemma follows.
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2.3. Functions with bounded X-variation and X-perimeter

The space of functions with bounded X-variation has been considered in several

papers, see e.g. [14, 16, 24, 31, 39]. If g = (g1, . . . , gm) ∈ C1c (!; Rm) we set
divX g := ∑m

j=1 X
∗
j g j , where X

∗
j is the formal adjoint operator of X j given by

X∗
jψ(x) =

n∑

i=1

∂(ai jψ)

∂xi
(x) ∀ψ ∈ C1(Rn)

and where we have set X j (x) = (a1 j (x), . . . , anj (x)). Notice that the m-vector
function g can be canonically identified with a section of the horizontal bundle,

namely g1X1 + · · · + gmXm .

Definition 2.3. Let! be an open subset ofRn; we say that u ∈ L1(!) has bounded
X-variation in ! if

|Xu|(!) := sup

{∫

!
u divX g dLn : g ∈ C1c (!, Rm), |g| " 1

}
(2.2)

is finite. The space of functions with bounded X-variation in ! is denoted by

BVX (!).

It is well known that u belongs to BVX (!) if and only if Xu is represented by a
Radon vector measure µ = (µ1, . . . , µm) on ! with finite total variation. More-

over, the measure |Xu| coincides with the total variation1 |µ| of µ and there exists
a |Xu|-measurable function σu : ! → Sm−1 such that µ = Xu = σu |Xu| and

∫

!
u divX g dLn = −

m∑

j=1

∫

!
g j dµ j = −

∫

!
〈g, σu〉 d|Xu|

for all g ∈ C1c (!, Rm). The space BVX (!) is a Banach space when endowed with
the norm

‖u‖BVX (!) := ‖u‖L1(!) + |Xu|(!) .

We also introduce the Sobolev space W
1,1
X (!) as the space of those functions u ∈

L1(!) such that Xu is represented by a function in L1(!, Rm). It is a Banach space
if endowed with the norm

‖u‖
W
1,1
X (!)

:= ‖u‖L1(!) + ‖Xu‖L1(!)

and, clearly, W
1,1
X (!) ⊂ BVX (!).

1 Recall that the total variation of µ is defined by

|µ|(A) := sup{∑∞
i=1 |µ(Ai )| : A = ∪i Ai , Ai disjoint}.
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It follows from (2.2) that the total X-variation on open sets is lower semicon-

tinuous with respect to the L1-convergence, i.e., if u, uk ∈ L1(!) are such that
uk → u in L1(!), then

|Xu|(!) " lim inf
k→∞

|Xuk |(!) .

We will say that a sequence (uk)k ⊂ BVX (!) strictly converges to u ∈ BVX (!) if

uk → u in L1(!) and |Xuk |(!) → |Xu|(!) .

It was proved in [31, 39] that u ∈ L1(!) has bounded X-variation in ! if and only

if there exists a sequence (uk)k ⊂ C∞(!) ∩ BVX (!) such that uk → u strictly.

Strict convergence guarantees upper semicontinuity of the total X-variation on

closed sets; actually, under some additional assumption it provides also the conti-

nuity of the total X-variation on open sets, as stated in the following lemma.

Lemma 2.4. Let ! ⊂ Rn be open and u, uk ∈ BVX (!) (k ∈ N) such that

uk → u in L1(!) and |Xuk |(!) → |Xu|(!)

as k → ∞. Then, for any relatively closed set C ⊂ ! (i.e., if ! \ C is open) we

have

|Xu|(C) ! lim sup
k→∞

|Xuk |(C) .

Moreover, if U ⊂ ! is an open set such that |Xu|(∂U) = 0 we have

|Xu|(U) = lim
k→∞

|Xuk |(U) .

Proof. We have

lim sup
k→∞

|Xuk |(C) = lim sup
k→∞

[
|Xuk |(!) − |Xuk |(! \ C)

]

=|Xu|(!) − lim inf
k→∞

|Xuk |(! \ C)

"|Xu|(!) − |Xu|(! \ C) = |Xu|(C)

and the first part of the statement is proved. Thus, if |Xu|(∂U) = 0 we get also

|Xu|(U) = |Xu|(U ∩ !) ! lim sup
k→∞

|Xuk |(U ∩ !) ! lim inf
k→∞

|Xuk |(U) ! |Xu|(U)

and the proof is accomplished.

It is convenient to introduce also the notion of weak∗ convergence in BVX . A
sequence (uk)k weakly

∗ converges to u ∈ BVX (!) if uk → u in L1(!) and (Xuk)k
weakly∗ converges to Xu in !, i.e.,

lim
k→∞

∫

!
η dXuk =

∫

!
η dXu for any η ∈ C0(!)

where C0(!) is the closure of C0c (!) in the sup norm.
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As the following result shows, strict convergence implies weak∗ convergence. We
use the standard notation Cb(!) to denote the vector space of continuous and
bounded real functions on !.

Lemma 2.5. Assume that u, uk ∈ BVX (!) are such that uk → u in L1(!) and
|Xuk |(!) → |Xu|(!). Then

lim
k→∞

∫

!
η dX+uk =

∫

!
η dX+u for any η ∈ Cb(!) and + = 1, . . . ,m. (2.3)

Proof. We follow the proof of [2, Proposition 3.15] and prove, more generally, that

for any continuous and positively 1-homogeneous function F : Rm → R it holds

lim
k→∞

∫

!
ηF(σuk ) d|X+uk | =

∫

!
ηF(σu) d|X+u| ∀ η ∈ Cb(!), + = 1, . . . ,m .

(2.4)

Equality (2.3) follows on choosing F(σ1, . . . , σm) := σ+.

Possibly splitting F in positive and negative part we can assume with no loss of

generality that F ! 0. By [2, Proposition 1.80] we obtain that

lim
k→∞

∫

!
η d|Xuk | =

∫

!
η d|Xu| for any η ∈ C0(!).

In particular, we can apply Reshetnyak continuity theorem (see [2, Theorem 2.39])

to get

lim
k→∞

∫

!
F(σuk ) d|Xuk | =

∫

!
F(σu) d|Xu| .

More generally: for any !′ ⊂ ! such that |Xu|(∂!′) = 0, we have by Lemma 2.4

that |Xuk |(!′) → |Xu|(!′) and, reasoning as before, we obtain

lim
k→∞

∫

!′
F(σuk ) d|Xuk | =

∫

!′
F(σu) d|Xu| .

Taking into account that any open set !′ ⊂ ! can be approximated from inside by

a sequence (!′
h)h of open sets with |Xu|(∂!′

h) = 0, we get

lim inf
k→∞

∫

!′
F(σuk ) d|Xuk | !

∫

!′
F(σu) d|Xu|

and (2.4) follows from [2, Proposition 1.80].

Following the classical approach to sets of finite perimeter à la Caccioppoli-De

Giorgi, as in [16,30,31,39] we define the X-perimeter measure |∂E |X of a measur-
able set E ⊂ Rn as the X-variation of its characteristic function χE . Namely, for
any open set ! ⊂ Rn we define

|∂E |X (!) := sup

{∫

E

divX g dLn : g ∈ C1c (!, Rm), |g| " 1

}
.
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Clearly, E has finite X-perimeter in! if and only if χE ∈ BVX (!). Open sets with
smooth boundary have locally finite X-perimeter and representation formulae for

the associated measure are available, see e.g. [16, 31, 44]. Notice that the measure

|∂E |X is invariant under modifications of E onLn-negligible sets and that |∂E |X =
|∂(Rn \ E)|X .
If E has finite perimeter in !, then the |∂E |X -measurable function νE := σχE :
! → Sm−1 satisfies

∫

E

divX g dLn = −
∫

!
〈g, νE 〉 d|∂E |X for any g ∈ C1c (!, Rm).

The map νE is called horizontal inward normal to E .
The following coarea formula, which will be used extensively throughout the

paper, was proved in [50].

Theorem 2.6. Suppose that the vector fields X1, . . . , Xm satisfy assumption (2.1).

Let f : Rn → R be Lipschitz continuous with respect to d and let u : Rn →
[0,+∞] be Ln-measurable. Then

∫

Rn

u(x)|X f (x)| dx =
∫ +∞

−∞

∫

{ f=s}
u d|∂Es |X ds,

where Es := { f < s} .

2.4. Regular surfaces in CC spaces

Intrinsic regular surfaces have been introduced in [22, 33, 35], in different settings,

as noncritical level set of C1X functions. We say that S ⊂ Rn is a X-regular surface

if for any x ∈ S there exist a neighbourhood U and f ∈ C1X (U) such that

S ∩U = { f = 0} and X f /= 0 on U.

A Euclidean smooth hypersurface - is X-regular provided it contains no charac-

teristic points, i.e. points x ∈ - such that

span(X1(x), . . . , Xm(x)) ⊂ Tanx -

where Tanx - denotes the Euclidean tangent hyperplane to- at x . On the contrary,

genuine X-regular surfaces can be very far from being Euclidean regular, as they

may have a fractal behaviour (see [42]). The importance of X-regular surfaces

arises evident in the theory of rectifiability (see [33]). The problem of the intrinsic

measure of surfaces in CC spaces has been attacked in several papers like [3, 16,

22, 44, 45, 50], but this list is surely incomplete. Clearly, X-regular surfaces are

X-Lipschitz according to Definition 1.1.

We will say that an open set! ⊂ Rn is a X-regular domain if for any x ∈ ∂! there

exist a neighbourhood U and a function f ∈ C1X (U) such that

• ! ∩U = { f > 0} or ! ∩U = { f < 0}
• X f /= 0 on U.
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3. X-Lipschitz surfaces and intrinsic Lipschitz graphs in Carnot groups

A Carnot groupG of step κ (see e.g. [15,28,29,43,53,56,57,59]) is a n-dimensional
connected and simply connected Lie group whose Lie algebra g admits a step κ
stratification, i.e., there exist linear subspaces V1, . . . , Vκ ⊂ g such that

g = V1 ⊕ · · · ⊕ Vκ , [V1, Vi ] = Vi+1, Vκ /= {0}, [V1, Vκ ] = {0}, (3.1)

where [V1, Vi ] is the subspace of g generated by the commutators [X,Y ] with X ∈
V1 and Y ∈ Vi .

Let mi := dim(Vi ), ni := m1 + · · · + mi (i = 1, . . . , κ) and n0 = 0; clearly,

nκ = n. Choose a basis v1, . . . , vn of g adapted to the stratification, that is, such
that

vni−1+1, . . . , vni is a basis of Vi for any i = 1, . . . , κ.

Let (X1, . . . , Xn) be the family of left invariant vector fields such that Xi (0) =
vi . By (3.1), the family X = (X1, . . . , Xm) (m := m1) Lie generates the whole

algebra g and the Chow-Hörmander condition is satisfied. We endowGwith the CC

structure induced by X ; in this way,G is an equiregular CC space (see Section 4.2).

The homogeneous dimension of G is Q = ∑κ
i=1 imi and this integer coincides

with the Hausdorff dimension of the CC space G (see [48]).

The exponential map is a diffeomorphism from g onto G, i.e. any x ∈ G
can be written in a unique way as x = exp(x1X1 + · · · + xn Xn). Using these
exponential coordinates, we identify x ∈ G with the n-tuple (x1, . . . , xn) ∈ Rn

and, accordingly, G with Rn . In this way, the group identity is the origin of Rn

and the Haar measure ofG is the Lebesgue measure Ln . The explicit expression of
the group operation, which we denote by ·, is determined by the Baker-Campbell-
Hausdorff formula and, in exponential coordinates, takes the form

x · y = x + y + Q(x, y)

for suitable polynomial functions Q1, . . . , Qn . It is well known that Qi (x, y) =
0 for any i = 1, . . . ,m, i.e., the group operation is commutative in the first m
coordinates.

Recall that G is endowed with a one-parameter family (δr )r>0 of dilations
which, in exponential coordinates, read as

δr (x1, . . . , xn) = (r x1, . . . , r
d(i)xi , . . . , r

κ xn) ,

where, for i = 1, . . . , n, d(i) is defined by Xi ∈ Vd(i). A function f : G → R is

homogeneous of degree d (briefly: d-homogeneous) if f ◦ δr = rd f for any r > 0.

If f is d-homogeneous and C1 regular, then X f is (d − 1)-homogeneous.
Let us introduce the pseudo-norm

‖x‖G :=
(

n∑

i=1
|xi |Q/d(i)

)1/Q
, x = (x1, . . . , xn) ∈ G.
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The map x 2→ ‖x‖G is 1-homogeneous, continuous on G and of class C1 on the

open set G \ {0} because Q/d(i) > 1. Consequently, there exists c > 0 such that

1

c
‖x−1 · y‖G " d(x, y) " c‖x−1 · y‖G for any x, y ∈ G . (3.2)

The setW := exp(span {X2, . . . , Xn}) is a normal, 1-codimensional maximal sub-
group of G. For any x ∈ G, there exists a unique xW ∈ W such that x =
xW · x1e1, where for h ∈ R we set he1 := (h, 0, . . . , 0) ∈ G. Clearly, one has
xW = x · (−x1e1) = exp(−x1X1)(x). We also point out that

x · se1 = exp(sX1)(x) for any x ∈ G, s ∈ R .

For α > 0, the homogeneous open cone Cα along X1 of center 0 and aperture 1/α
is defined as

Cα := {x ∈ G : |x1| > α‖xW‖G} ;
we also introduce

C+
α := {x ∈ Cα : x1 > 0} .

Let ω ⊂ W and φ : ω → R; the intrinsic graph (along X1) of φ is the image
2(ω) ⊂ G of the map

2(y) := y · φ(y)e1, y ∈ ω . (3.3)

In a similar way it is possible to define intrinsic graphs along any vector field X j ,

j ∈ {1, . . . ,m}. It turns out that, if S ⊂ G is an intrinsic graph along X j , then for

any x ∈ G the left translation x · S is an intrinsic graph along X j . Without loss

of generality, however, here and in the following we will treat only intrinsic graphs

along X1. For more details, see [37].

According to [5, 36, 38], we say that φ is intrinsic Lipschitz (and that 2(ω) is
an intrinsic Lipschitz graph) if there exists α > 0 such that

2(ω) ∩ x · Cα = {x} for any x ∈ 2(ω) . (3.4)

The Lipschitz constant of φ is defined as the infimum among all positive α > 0 for

which (3.4) is satisfied.

The main result of this section is the equivalence between the notion of X-

Lipschitz surfaces and that of intrinsic Lipschitz graphs in the setting of Carnot

groups. To this end, we will need the following preliminary result.

Lemma 3.1. For any α > 0 there exists a Lipschitz function fα : G → R such that

X1 fα ! 1/2 Ln-a.e. on G and ∂C+
α = {x ∈ G : x1 = α‖xW‖G} = { fα = 0} .

In particular, ∂C+
α is an X-Lipschitz surface.
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Proof. Let us define

fα(x) :=






x1 − α‖xW‖G if |x1| " 2α‖xW‖G
x1/2 if x1 > 2α‖xW‖G
3x1/2 if x1 < −2α‖xW‖G.

The function fα is continuous and ∂C+
α = { fα = 0}. Since Ln(∂C2α) = 0, by the

continuity of fα it is enough to show that

X1 fα ! 1/2 and |X fα| " C on G \ ∂C2α = {x ∈ G : |x1| /= 2α‖xW‖G} .

It is easily seen that

X fα = (1/2, 0, . . . , 0) if x1 > 2α‖xW‖G
X fα = (3/2, 0, . . . , 0) if x1 < −2α‖xW‖G .

Moreover, we have

xW = (x · he1)W = (exp(hX1)(x))W for any x ∈ G, h ∈ R,

thus the map x 2→ ‖xW‖G is constant along integral lines of X1. In particular

X1 fα(x) = 1 if |x1| < 2α‖xW‖G.

Defining g : G → R as g(x) := x1 − α‖xW‖G, we are only left to show that

|Xg| " C on {x ∈ G : |x1| < 2α‖xW‖G} . (3.5)

Taking into account that x 2→ xW is smooth, that ‖ · ‖G is of class C1 on G \ {0}
and that

xW = 0 ⇔ x ∈ L := {(x = (x1, x
′) ∈ R × Rn−1 ≡ G : x ′ = 0} ,

we get that g is of class C1 on G \ L . Moreover, g is 1-homogeneous, thus Xg is
0-homogeneous (i.e., invariant under dilations) and continuous onG\L . Inequality
(3.5) will follow if we prove that

|Xg| " C on ∂B(0, 1) ∩ {x ∈ G : |x1| " 2α‖xW‖G}.

The sets L and ∂B(0, 1) ∩ {x ∈ G : |x1| " 2α‖xW‖G} are compact and disjoint,
thus they have positive distance and in particular

sup
{
|Xg(x)| : x ∈ ∂B(0, 1), |x1| " 2α‖xW‖G

}
< +∞

which allows to conclude.

We can now prove the main result of this section.
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Theorem 3.2. A set S ⊂ G is an X-Lipschitz surface if and only if S is locally

the intrinsic graph of an intrinsic Lipschitz function defined on an open subset of a

maximal subgroup.

Theorem 3.2 is an easy consequence of the following Proposition 3.3 or, more

precisely, of the fact that the latter could be stated also “replacing” X1 with a generic

X j , j = 2, . . . ,m. Namely, one could prove that, if S = { f = 0} is the level set
of a Lipschitz function f : U ⊂ G → R with U open and X j f ! l > 0,

then S is locally an intrinsic Lipschitz graph (defined on an open subset) along X j .

Viceversa, if S is an intrinsic Lipschitz graph (defined on an open subset) along X j ,

then S is locally the level set of a Lipschitz function f : U ⊂ G → R with U open

and X j f ! l > 0.

Given I ⊂ W and J ⊂ R, we adopt from now on the compact notation I · J
to denote the set {p · qe1 ∈ G : p ∈ I, q ∈ J }.

Proposition 3.3. Let S ⊂ G. The following two statements are equivalent:

(i) for any x ∈ S there exist an open neighbourhoodU ⊂ G, a Lipschitz function
f : U → R and l > 0 such that S ∩U = { f = 0} and X1 f ! l Ln-a.e. on
U ;

(ii) for any x ∈ S there exist an open set ω ⊂ W, a, b ∈ R and an intrinsic

Lipschitz map φ : ω → (a, b) such that x ∈ U := ω · (a, b) and S ∩ U =
2(ω), where 2 is defined as in (3.3).

Proof. Step 1. (i)⇒(ii).

Let x ∈ S be fixed; up to a left translation, we may assume that x = 0. Up to

a localization argument we can suppose that U is of the form U = ω · (−a, a)
for suitable a > 0 and ω ⊂ W open with 0 ∈ ω; we can also assume that f is
continuous on U = ω · [−a, a]. Since f (0) = 0, reasoning as in Lemma 2.2 we

have

f (ae1) = exp(aX1)(0) ! al > 0, f (−ae1) = exp(−aX1)(0) " −al < 0 .

Therefore, by the continuity of f we may assume that ω is such that

f (y · ae1) > 0 and f (y · −ae1) < 0 for any y ∈ ω .

This implies that for any y ∈ ω there exists sy ∈ (−a, a) such that f (y · sye1) =
exp(sy X1)(y) = 0. Such sy is unique by Lemma 2.2 and we can define φ : ω →
(−a, a) by φ(y) := sy . Clearly, S ∩ U = 2(ω) where 2 : ω → G is defined as

in (3.3).

We claim that φ is intrinsic Lipschitz with Lipschitz constant not greater than
α := 2 cL

l
> 0, where L is the Lipschitz constant of f and c > 0 is as in (3.2).

Let x ∈ 2(ω) and x ′ ∈ x · Cα with x
′ /= x : we have to show that x ′ /∈ 2(ω) =

S ∩ U . If x ′ /∈ U there is nothing to prove; if instead x ′ ∈ U ∩ x · Cα , we need
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to show that f (x ′) /= 0. We have x ′ = x · pW · p1e1 for some p1, pW such that

|p1| ! α‖pW‖G. If p1 > 0, by Lemma 2.2 we get

f (x ′) ! f (x · pW)+ lp1 ! f (x)− Ld(x · pW, x)+ lp1 ! −Lc‖pW‖G + lp1 > 0,

where we have used the Lipschitz continuity of f and the fact that f (x) = 0. Notice

also that Lemma 2.2 could be applied because x · pW · he1 ∈ U for any h ∈ [0, p1],
which in turn is due to

(x · pW · he1)W = (x · pW · p1e1)W ∈ ω

(x · pW · he1)1 = x1 + h ∈ (x1, p1) ⊂ (−a, a) .

Similarly, if p1 < 0 we have

f (x ′) " f (x · pW)−l|p1| " f (x)+Ld(x · pW, x)−l|p1| " Lc‖pW‖G−l|p1| < 0

and the claim follows. Notice that the Lipschitz constant of φ depends only on l
and the Lipschitz constant L of f .

Step 2. (ii)⇒(i). Fix α > 0 such that (3.4) holds and let fα be as in Lemma 3.1.

Given y ∈ G let us introduce fα,y(x) := fα(y−1 · x); in this way y ·∂C+
α = { fα,y =

0}. We claim that the map f : G → R defined by

f (x) := sup
y∈2(ω)

fα,y(x)

is Lipschitz continuous with X1 f ! 1/2 Ln-a.e. and 2(ω) = { f = 0} ∩ U . This

would be enough to conclude.

Let us prove our claim. The maps fα,y are uniformly Lipschitz continuous, so

f shares the same Lipschitz continuity. For fixed x ∈ G and ε > 0 let y ∈ 2(ω)
be such that

fα,y(x) ! f (x) − ε;
since X1 fα,y ! 1/2, we have for any h ! 0

f (x · he1) ! fα,y(x · he1) ! fα,y(x) + h/2 ! f (x) − ε + h/2

whence f (x · he1) ! f (x) + h/2 for any x ∈ G and h ! 0. This implies that

X1 f (x) ! 1/2 for Ln-a.e. x ∈ G.
Let us prove that 2(ω) ⊂ { f = 0} ∩ U . Let x ∈ 2(ω) ⊂ U be fixed. For any

y ∈ 2(ω), y /= x , we have x /∈ y · C+
α and so fα,y(x) < 0. Since fα,x (x) = 0 we

obtain by definition f (x) = 0, as claimed.

Finally, we prove that { f = 0}∩U ⊂ 2(ω) by showing that, if x ∈ U \2(ω), then
f (x) /= 0. Notice that, if x ∈ U \2(ω), then πW(x) ∈ ω and x1 /= φ(πW(x)). The
conclusion easily follows from Lemma 2.2 and the fact that X1 f ! 1/2: indeed, if
x1 > φ(πW(x)) we obtain

f (x) = f
(
exp

(
(x1 − φ(πW(x)))X1

)(
2(πW(x))

))

! f
(
2(πW(x))

)
+ (x1 − φ(πW(x)))/2 = (x1 − φ(πW(x)))/2 > 0
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while if x1 < φ(πW(x))

f (x) = f
(
exp

(
(x1 − φ(πW(x)))X1

)(
2(πW(x))

))

" f
(
2(πW(x))

)
− |x1 − φ(πW(x))|/2 = −|x1 − φ(πW(x))|/2 < 0 .

This concludes the proof.

We conclude this section by showing an extension result for intrinsic Lipschitz

graphs; in the Heisenberg group setting this result has already been proved, with a

similar technique, in [38].

Proposition 3.4. Let φ : ω → R be an intrinsic Lipschitz function defined on a

subset ω ⊂ W; assume that α > 0 is such that (3.4) holds. Then there exists an

intrinsic Lipschitz map φ : W → R such that φ|ω = φ. Moreover, the Lipschitz

constant of φ is not greater than a suitable β = β(α).

Proof. The proof is essentially contained in the proof of Proposition 3.3. For y ∈ G
and fα as in Lemma 3.1 define fα,y(x) := fα(y−1 · x) and

f (x) := sup
y∈2(ω)

fα,y(x). (3.6)

As before, it is possible to prove that f is Lipschitz (with Lipschitz constant de-

pending only on α) and such that X1 f ! 1/2 and 2(ω) ⊂ { f = 0}.
Reasoning as in the proof of Proposition 3.3, Step 1, it is not difficult to check

that { f = 0} is the intrinsic graph of a map φ : W → R with φ|ω = φ. As we

noticed, the Lipschitz constant of φ can be controlled in terms of l = 1/2 and the
Lipschitz constant of f , i.e., in terms of α.

Remark 3.5. With the same notation of Proposition 3.4 and its proof: the intrinsic
subgraph of φ

Eφ := {y · se1 : y ∈ ω, s < φ(y)}
is an X-Lipschitz domain. Just check that Eφ = { f < 0} for f as in (3.6).

4. X-Lipschitz domains and X-perimeter

4.1. X-perimeter of X-Lipschitz domains

We begin this section by proving an implicit function theorem for X-Lipschitz sur-

faces. As already said in the Introduction, this result is inspired to [22, Theorem

1.1].

Proposition 4.1 (implicit function theorem for X-Lipschitz surfaces). Let S be

an X-Lipschitz surface given as level set, S = { f = 0}, of a Lipschitz function
f : U → R, U ⊂ Rn open, with

X j f ! l Ln-a.e. on U
for suitable j ∈ {1, . . . ,m} and l > 0. Then, for any x ∈ S there exist
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• an open neighbourhoodQ ⊂ U of x;

• an open bounded domain I ⊂ Rn−1 with 0 ∈ I ;

• a positive real number a;

• a diffeomorphism G : I × (−a, a) → Q with G(0) = x;

• a continuous function φ : I → (−a/2, a/2) with φ(0) = 0

such that dG−1[X j ] = ∂sn , where (s1, . . . , sn) are the coordinates of points in

I × (−a, a) ⊂ Rn−1 × R, and

G−1(S ∩Q) = {(y,φ(y)) : y ∈ I } . (4.1)

Proof. We complete the family X to a system X1, . . . , Xn of vector fields that forms
a basis of Rn in a neighbourhood U ′ ⊂ U of x . Define

G(s1, . . . , sn) :=exp(sn X j) exp(s1X1+· · ·+s j−1X j−1+s j X j+1+· · ·+sn−1Xn)(x).
The map G is a diffeomorphism from some neighbourhood V ⊂ Rn of the origin

to some neighbourhoodU ′′ ⊂ U ′ of x ; by definition, G(0) = x and X j = dG[∂sn ].
We may assume that V = I × (−a, a) for some I and a as in the statement. Set
Q := G(V ).

Let us define the continuous map f̃ := f ◦ G : V → R; we have f̃ (0) =
f (x) = 0 and ∂sn f̃ = (X j f ) ◦ G ! l > 0 a.e. on V . By Lemma 2.2 we have

f̃ (0, . . . , 0, a/2) ! al/2 > 0 and f̃ (0, . . . , 0,−a/2) " −al/2 < 0.

Possibly restricting I , by the continuity of f̃ we may assume that

f̃ (y,−a/2) < 0 < f̃ (y, a/2) for any y ∈ I .

By the continuity of f̃ and Lemma 2.2, for any y ∈ I there exists a unique φ(y) ∈
(−a/2, a/2) such that f̃ (y,φ(y)) = 0. This gives (4.1).

Finally, the continuity of φ follows from that of f̃ : indeed, for any y ∈ I and ε > 0

we have by Lemma 2.2

f̃ (y,φ(y) − ε) " −εl < 0 < εl " f̃ (y,φ(y) + ε)

thus there exists δ > 0 such that

f̃ (y′,φ(y) − ε) < 0 < f̃ (y′,φ(y) + ε) for any y′ ∈ I with |y − y′| < δ .

This gives φ(y) − ε < φ(y′) < φ(y) + ε for any such y′ and proves the continuity
of φ.

For X-regular surfaces, the parameterizing map φ was introduced in [33] (in
the setting of the Heisenberg group), [35] (in Carnot groups) and [22] (in the general

framework of CC spaces). The problem of the optimal regularity of φ is a delicate
matter even for X-regular surfaces, see [3, 12, 13, 22].

A first consequence of Proposition 4.1 is the fact that X-Lipschitz surfaces

have null Lebesgue measure.
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Corollary 4.2. Let S be as in Proposition 4.1; then Ln(S) = 0. In particular, any

X-Lipschitz surface has null Lebesgue measure.

Proof. It is enough to prove that for any x ∈ S there exists a neighbourhoodQ such
that Ln(S ∩Q) = 0. Let then x ∈ S be fixed andQ and G be given by Proposition

4.1. By (4.1) we have Ln(G−1(S∩Q))=0 and this gives Ln(S∩Q)=0.
The following two technical results will be extensively used in the sequel:

roughly speaking, they allow to choose the defining function of X-Lipschitz or

X-regular domains “as smooth as possible”. As already done in the proof of Propo-

sition 4.1, we hereafter agree to use a tilde to denote functions, sets, etc., when

they are considered not in the CC space Rn but in the coordinates given by Propo-

sition 4.1.

Lemma 4.3. An open set ! ⊂ Rn is an X-Lipschitz domain if and only if for any

x ∈ ∂! there exist a neighbourhood U , a Lipschitz function f : U → R and

j ∈ {1, . . . ,m} such that ! ∩U = { f > 0} or ! ∩U = { f < 0} and
f ∈ C∞(U \ ∂!) and inf

U\∂!
X j f > 0.

Proof. One implication is clear: if! is such that for any x ∈ ∂!we can findU, f, j
as in the statement, then ! is an X-Lipschitz domain because of Corollary 4.2.

In order to prove the reverse implication, we assume that ! is X-Lipschitz.

Given x ∈ ∂! there exist an open neighbourhood U0 ⊂ Rn , a Lipschitz function

f0 : U0 → R, l > 0 and j ∈ {1, . . . ,m} such that
! ∩U0 = { f0 > 0} or ! ∩U0 = { f0 < 0} and X j f0 ! l Ln-a.e. on U0 .

LetQ, I, a,G be given by Proposition 4.1 (applied to S = ∂!∩U and with f0 and

U0 in place, respectively, of f and U ). Set f̃0 := f0 ◦ G : I × (−a, a) → R and

Wk := {| f̃0| > 1/k}, k ! 1, so that

Wk ↑ { f̃0 /= 0} =
(
I × (−a, a)

)
\ G−1(∂! ∩Q) .

Let I ′ # I be a fixed open set and define V := I ′ × (−a/2, a/2). One can fix
functions ηk ∈ C∞

c (Wk+2 \ Wk) such that

0 " ηk " 1 and

∞∑

k=0
ηk = 1 on V ∩ { f̃0 /= 0}. (4.2)

We fix a smooth mollification kernel K supported in the Euclidean unit ball

B(0,1) ⊂ Rn and set Kε(z) := ε−nK (z/ε). If εk is smaller than the Euclidean
distance between sptηk and ∂(Wk+2 \Wk), then the function uk : I ×(−a, a) → R
defined by

uk(s) :=(ηk f̃0)∗Kεk(s) if the Euclidean distance between s and spt ηk is less than εk

uk = 0 otherwise
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is of class C∞. We define f̃ : V → R by

f̃ :=
{ ∑∞

k=0 uk on V ∩ { f̃0 /= 0}
0 on V ∩ { f̃0 = 0} = V ∩ G−1(∂! ∩Q) .

Notice that the summation is locally finite, whence f̃ is of class C∞ on V ∩ { f̃0 /=
0}. We claim that, possibly restricting εk, I

′ and a, the statement of the lemma
is fulfilled by U := G(V ) and f := f̃ ◦ G−1 : U → R. To begin with, the
C∞-smoothness of f on U \ ∂! is straightforward.

Step 1. ! ∩U = { f > 0} or ! ∩U = { f < 0}.
It will be enough to show that

V ∩ { f̃0 > 0} = V ∩ { f̃ > 0} and V ∩ { f̃0 < 0} = V ∩ { f̃ < 0} . (4.3)

Notice that Wk is the disjoint union of the two open sets W
+
k := { f̃0 > 1/k} and

W−
k := { f̃0 < −1/k}. Thus we have

Wk+2 \ Wk = (W+
k+2 \ W+

k ) ∪ (W−
k+2 \ W−

k )

and our choice of εk gives

if s ∈ W+
k+2 \ W+

k , then uk ! 0

if s ∈ W−
k+2 \ W−

k , then uk " 0.

This implies that

f̃ ! 0 on { f̃0 > 0} and f̃ " 0 on { f̃0 < 0} . (4.4)

Due to (4.2), for any s ∈ V \ { f̃0 = 0} there exists k̄ ! 1 such that ηk̄(s) > 0. This

gives s ∈ V ∩ Wk̄+2 \ Wk̄ and

uk̄(s) > 0 if s ∈ V ∩ W+
k̄+2 \ W+

k̄

uk̄(s) < 0 if s ∈ V ∩ W−
k̄+2 \ W−

k̄ .
(4.5)

By (4.4) and (4.5), if s ∈ V we have

f̃0(s) > 0 ⇔ f̃ (s) > 0 and f̃0(s) < 0 ⇔ f̃ (s) < 0

which is (4.3).

Step 2. f is continuous on U .
It is enough to show that f̃ is continuous on V . Since f̃ is clearly continuous on

{ f̃0 /= 0}, it suffices to show that for any s0 ∈ V ∩ { f̃0 = 0} = V ∩ G−1(∂! ∩Q)

lim
s→s0

s∈V∩{ f̃0 /=0}
f̃ (s) = 0 = f̃ (s0) .
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If s+ → s0, (s+)+ ⊂ V ∩ { f̃0 /= 0}, we have s+ ∈ Wk++1 \ Wk+ with k+ → ∞;

therefore, it will be enough to show that

| f̃ | " 1

k
+ 1

k − 1
on Wk+1 \ Wk . (4.6)

Since spt ηk ⊂ Wk+2 \ Wk we have

|uk(s)| "
∫

B(0,εk)
ηk(s − h) | f̃0(s − h)| Kεk (h) dLn(h) " 1

k
.

Inequality (4.6) follows because f̃ = uk + uk−1 on Wk+1 \ Wk .

Step 3. f is Lipschitz on U .

We claim that, if each εk is small enough, then |X̃ f̃ | is bounded on V , where
for any i = 1, . . . ,m we set X̃i := dG−1[Xi ] and X̃ := (X̃1, . . . , X̃m). This would
imply that |X f | is uniformly bounded on U and, in turn, that f is locally Lipschitz

continuous on U . The Lipschitz continuity of f on U follows up to restricting I

and a.

Write X̃i = ∑n
+=1 b

i
+∂s+ for suitable smooth coefficients b

i
+ : I×(−a, a) → R.

For any k ∈ N and i = 1, . . . ,m it is (see also [40, Lemma 2.6] and [32])

X̃i uk =
(
X̃i (ηk f̃0)

)
∗ Kεk + Rik on V

where for s ∈ V we have defined

Rik(s) := 1

εk

∫

Rn

[
ηk(s + εkh) f̃0(s + εkh)

n∑

+=1

∂Bi+k
∂h+

(s, h)
]
dh

and Bi+k(s, h) :=
(
bi+(s + εkh) − bi+(s)

)
K (h). We have

∂Bi+k
∂h+

(s, h) =εk
∂bi+
∂s+

(s + εkh)K (h) +
(
bi+(s + εkh) − bi+(s)

) ∂K

∂h+
(h)

=εk

[
∂bi+
∂s+

(s)K (h) + 〈∇bi+(s), h〉
∂K

∂h+
(h) + O(εk)

]

thus

Rik(s) =
∫

Rn

ηk(s + εkh) f̃0(s + εkh)
n∑

+=1

[
∂bi+
∂s+

(s)K (h)

+〈∇bi+(s), h〉
∂K

∂h+
(h) + O(εk)

]
dh

= ηk(s) f̃0(s)

∫

B(0,1)

n∑

+=1

[
∂bi+
∂s+

(s)K (h)

+〈∇bi+(s), h〉
∂K

∂h+
(h)

]
dh + o(1) + O(εk)

= o(1) + O(εk)
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where the last equality follows because the integral on B(0, 1) is null due to an
integration by parts. Notice also that, as εk → 0, the quantity o(1) is uniform in

s ∈ V due to the uniform continuity of ηk f̃0. Therefore, if εk is small enough we
may assume |Rik(s)| " 2−k on V .
Recall that uk is supported in Wk+2 \ Wk , thus

X̃i f̃ =
(
X̃i (ηk f̃0)

)
∗Kεk+Rik+

(
X̃i (ηk+1 f̃0)

)
∗Kεk+1+Rik+1 on V∩Wk+2\Wk+1 ,

(4.7)

whence

|X̃i f̃ | " |
(
X̃i (ηk f̃0)

)
∗ Kεk +

(
X̃i (ηk+1 f̃0)

)
∗ Kεk+1 | + 21−k

" |( f̃0 X̃iηk) ∗ Kεk + ( f̃0 X̃iηk+1) ∗ Kεk+1 |
+ |(ηk X̃i f̃0) ∗ Kεk |+|(ηk+1 X̃i f̃0) ∗ Kεk+1 |+ 21−k on V ∩Wk+2\Wk+1.

Since ηk + ηk+1 = 1 on V ∩ Wk+2 \ Wk+1, we have

( f̃0 X̃iηk) ∗ Kεk + ( f̃0 X̃iηk+1) ∗ Kεk+1 −→ f̃0 X̃i (ηk + ηk+1) = 0 (4.8)

uniformly on V ∩ Wk+2 \ Wk+1 as εk, εk+1 → 0. Therefore, if εk and εk+1 are
sufficiently small we have

|X̃i f̃ | " 2‖X̃i f̃0‖L∞(V ) + 22−k " 2‖X f0‖L∞(U0) + 22−k in V ∩ Wk+2 \ Wk+1

and our claim is proved.

Step 4: infU\∂! X j f > 0.

It is enough to estimate X̃ j f̃ from below on V \ G−1(∂! ∩Q) = V ∩ { f̃0 /= 0};
notice that R

j
k = 0 for any k because X̃ j = (0, . . . , 0, 1). We have

X̃ j f̃ = ∂sn f̃ = ∑∞
k=0( f̃0∂snηk)∗Kεk+

∑∞
k=0

(
ηk∂sn f̃0

)
∗Kεk on V ∩ { f̃0 /= 0}.

Reasoning as in (4.8) we may choose each εk so small that for any k
∣∣( f̃0 ∂snηk

)
∗ Kεk +

(
f̃0 ∂snηk+1

)
∗ Kεk+1

∣∣ " l/4 .

Since for any k

∣∣∣
∞∑

k=0

(
f̃0∂snηk

)
∗Kεk

∣∣∣=|( f̃0∂snηk
)
∗Kεk +( f̃0 ∂snηk+1)∗Kεk+1 | on V∩Wk+2\Wk+1

we obtain

X̃ j f̃ = ∂sn f̃ !
∞∑

k=0

(
ηk∂sn f̃0

)
∗ Kεk −

∣∣∣
∞∑

k=0

(
f̃0 ∂snηk

)
∗ Kεk

∣∣∣

! l

∞∑

k=0
(ηk ∗ Kεk ) − l/4 on V ∩ { f̃0 /= 0}.
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By (4.2) we have
∑∞

k=0(ηk ∗ Kεk ) ! 1/2 provided the εk’s are small enough,

whence X̃ j f̃ ! l/4 on V ∩ { f̃0 /= 0}, as desired.
In case! is not only X-Lipschitz but also X-regular, Lemma 4.3 can be refined

as follows.

Lemma 4.4. An open set ! ⊂ Rn is an X-regular domain if and only if for any

x ∈ ∂! there exist a neighbourhood U and a function f : U → R such that

! ∩U = { f > 0} or ! ∩U = { f < 0} and

f ∈ C1X (U) ∩ C∞(U \ ∂!) and X f /= 0 on U.

Proof. As in Lemma 4.3, one implication is clear. For the reverse one, we assume

that ! is X-regular and namely that for any x ∈ ∂! there exists a neighbourhood

U0 and f0 ∈ C1X (U0) such that

! ∩U0 = { f0 > 0} or ! ∩U0 = { f0 < 0} and X f0 /= 0 on U0 .

Up to restrictingU0 and possibly changing the sign of f0, we may assume that there

exists j ∈ {1, . . . ,m} such that X j f0 ! l on U0 for a suitable l > 0. We can then

follow the proof of Lemma 4.3 and define in the same way

f̃0,G,Q ⊂ U0, X̃i , X̃ ,Wk, V, ηk, εk, f̃ , f,U .

We have only to check that X f is continuous on U , i.e., that X̃ f̃ exists and is

continuous on V . Due to the smoothness of f̃ on V \ G−1(∂! ∩Q), it is enough

to prove that for any s0 ∈ V ∩ G−1(∂! ∩Q) = V ∩ { f̃0 = 0}

lim
s→s0

s∈V \{ f̃0=0}
X̃ f̃ (s) = X̃ f̃0(s0) . (4.9)

Indeed, this would imply that X̃ f̃ exists at s0 and coincides with X̃ f̃0(s0); more-

over, the continuity of X̃ f̃ would be now straightforward.

Reasoning as in (4.7) and (4.8), we may assume that the εk’s are small enough to
have for any i = 1, . . . ,m

|X̃i f̃ − X̃i f̃0|
"|

(
X̃i (ηk f̃0)

)
∗ Kεk +

(
X̃i (ηk+1 f̃0)

)
∗ Kεk+1 − X̃i f̃0| + |Rik + Rik+1|

"|
(
ηk X̃i f̃0

)
∗ Kεk +

(
ηk+1 X̃i f̃0

)
∗ Kεk+1 − X̃i f̃0|

+ |
(
f̃0 X̃iηk

)
∗ Kεk +

(
f̃0 X̃iηk+1

)
∗ Kεk+1 | + 21−k

"|
(
ηk X̃i f̃0

)
∗ Kεk +

(
ηk+1 X̃i f̃0

)
∗ Kεk+1− X̃i f̃0| + 22−k on V ∩ Wk+2\Wk+1.

The continuity of X̃ f̃0 ensures that

(ηk X̃i f̃0) ∗ Kεk + (ηk+1 X̃i f̃0) ∗ Kεk+1 → X̃i f̃0 uniformly on V ∩Wk+2 \Wk+1
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as εk, εk+1 → 0. Therefore we may assume that

|X̃i f̃ − X̃i f̃0| " 23−k on V ∩ Wk+2 \ Wk+1 .

Using the continuity of X̃ f̃0 and the fact that, if s+ → s0 and s+ ∈ V \{ f̃0 = 0} then
s+ ∈ V ∩Wk++2 \Wk++1 with k+ → ∞, we get that for any s0 ∈ V ∩G−1(∂!∩Q)
it holds

lim
s→s0

s∈V \{ f̃0=0}
|X̃ f̃ (s) − X̃ f̃0(s0)| = 0 .

Equality (4.9) follows and the proof is concluded.

We can now prove that X-Lipschitz domains have locally finite X-perimeter.

Theorem 1.2 will follow quite easily from the next result, where we provide an

explicit representation formula for the X-perimeter in the local coordinates given

by Proposition 4.1. Similar formulae have been obtained for X-regular surfaces

in [3, 22, 33, 35].

Proposition 4.5. Let S be an X-Lipschitz surface given as level set S = { f = 0}
of a Lipschitz function f : U → R, U ⊂ Rn open, such that f ∈ C∞(U \ S) and

l := inf
U\S

X j f > 0 for a suitable j ∈ {1, . . . ,m} .

Let x ∈ S and ! := { f > 0} ⊂ U . Then the open neighbourhood Q ⊂ U of x

given by Proposition 4.1 can be chosen so that

ν! |∂!|X Q = (G ◦ 2)#(ρLn−1 I ) (4.10)

for a suitable ρ ∈ L∞(I, Rm). Here I, a,G,φ are as in Proposition 4.1 and 2 is

the map defined by I 9 y 2→ 2(y) := (y,φ(y)) ∈ I × (−a/2, a/2).
In particular

|∂!|X Q = (G ◦ 2)#(|ρ|Ln−1 I ) (4.11)

and |∂!|X (Q) < ∞.

Proof. Let us define f̃ := f ◦ G : I × (−a, a) → R and !̃ := G−1(! ∩Q) =
{ f̃ > 0}. We also set

!ε := { f > ε} and !̃ε := G−1(!ε ∩Q) = { f̃ > ε} .

Since ∂sn f̃ = (X j f ) ◦ G ! l, the classical implicit function theorem ensures

that (possibly restricting I ) for small enough ε > 0 there exists a smooth map

φε : I → (−a, a) such that

{ f̃ = ε} = {(y,φε(y)) : y ∈ I } .



962 DAVIDE VITTONE

Since ∂sn f̃ ! l > 0 we have that !̃ and !̃ε are the epigraphs of φ,φε :

!̃ = {(s1, . . . , sn) ∈ I × (−a, a) : sn > φ(s1, . . . , sn−1)}
!̃ε = {(s1, . . . , sn) ∈ I × (−a, a) : sn > φε(s1, . . . , sn−1)}. (4.12)

Moreover, φε > φδ > 0 for any ε > δ > 0. For any y ∈ I we have by Lemma 2.2

ε = f̃ (y,φε(y)) − f̃ (y,φ(y))

= f̃
(
exp((φε(y) − φ(y))∂sn )(y,φ(y))

)
− f̃ (y,φ(y)) ! l(φε(y) − φ(y)) > 0,

whence φε → φ uniformly on I .
Let g ∈ C1c (Q, Rm) be fixed; since ∂!ε is smooth we have

−
∫

!
divX g dLn = − lim

ε→0

∫

!ε

divX g dLn = lim
ε→0

∫

∂!ε

〈
n!ε ,

∑m
k=1 gk Xk

〉
dHn−1 ,

(4.13)

where n!ε is the Euclidean inner normal to ∂!ε . Taking into account the classical

area formula (see e.g. [55]) we obtain

∫

∂!ε

〈
n!ε ,

∑m
k=1 gk Xk

〉
dHn−1 =

∫

Q∩∂!ε

〈
n!ε ,

∑m
k=1 gk Xk

〉
dHn−1

=
∫

∂!̃ε

〈
n!ε ◦ G,

(∑m
k=1 gk Xk

)
◦ G

〉
| det JG|Tan ∂!̃ε

| dHn−1 ,

(4.14)

where JG|Tan ∂!̃ε
denotes the Jacobian matrix of G restricted to the tangent plane

Tan ∂!̃ε to ∂!̃ε . If g̃ := g ◦ G and X̃k := dG−1[Xk], then
∑m

k=1 gk Xk = dG[∑m
k=1 g̃k X̃k] = dG[Y +

〈∑m
k=1 g̃k X̃k, n!̃ε

〉
n!̃ε

] on ∂!̃ε

for a suitable Y ∈ Tan ∂!̃ε = n
⊥
!̃ε
, n!̃ε

being the Euclidean inner normal to ∂!̃ε .

In particular 〈n!ε ◦ G, dG[Y ]〉 = 0 (because dG[Y ] ∈ Tan ∂!ε) and so

〈
n!ε ◦ G,

(∑m
k=1 gk Xk

)
◦ G

〉
=

〈
n!ε ◦ G, dG[Y ] + dG

[〈∑m
k=1 g̃k X̃k, n!̃ε

〉
n!̃ε

]〉

=
〈∑m

k=1 g̃k X̃k, n!̃ε

〉〈
n!ε ◦ G, dG[n!̃ε

]
〉
on ∂!̃ε .

From (4.14) one obtains

∫

∂!ε

〈
n!ε ,

∑m
k=1 gk Xk

〉
dHn−1

=
∫

∂!̃ε

〈∑m
k=1 g̃k X̃k, n!̃ε

〉〈
n!ε ◦ G, dG[n!̃ε

]
〉
| det JG|Tan ∂!̃ε

| dHn−1

=
∫

∂!̃ε

〈∑m
k=1 g̃k X̃k, n!̃ε

〉
| det JG| dHn−1

(4.15)



LIPSCHITZ SURFACES AND TRACES OF BV FUNCTIONS IN CC SPACES 963

where we have also used the fact that 〈n!ε ◦ G, dG[n!̃ε
]〉 > 0, this inequality

holding because n!̃ε
points inward !̃ε and thus dG[n!̃ε

] points inward !ε .

Let 2ε : I → ∂!̃ε be the parametrization of ∂!̃ε defined by 2ε(y) :=
(y,φε(y)); clearly, 2ε → 2 uniformly on I . By (4.12) we have

n!̃ε
◦ 2ε = ∇ f̃

|∇ f̃ |
◦ 2ε = (−∇φε, 1)√

1+ |∇φε |2
on I (4.16)

whence

∂sn f̃

|∇ f̃ |
◦ 2ε = 1

√
1+ |∇φε |2

, i.e.,

√
1+ |∇φε |2
|∇ f̃ | ◦ 2ε

= 1

(X̃ j f̃ ) ◦ 2ε

on I . (4.17)

From (4.15), (4.16), (4.17) and the area formula we obtain

∫

∂!ε

〈
n!ε ,

∑m
k=1 gk Xk

〉
dHn−1

=
∫

I

( m∑

k=1
g̃k

〈
X̃k,

∇ f̃

|∇ f̃ |
〉
| det JG|

)
◦ 2ε

√
1+ |∇φε |2 dLn−1

=
∫

I

( m∑

k=1
g̃k | det JG| X̃k f̃

X̃ j f̃

)
◦ 2ε dLn−1 .

and, recalling (4.13), we end up with

−
∫

!
divX g dLn = lim

ε→0

∫

I

〈
g̃ ◦ 2ε,

(
| det JG| X̃ f̃

X̃ j f̃

)
◦ 2ε

〉
dLn−1, (4.18)

The functions

ρε :=
(

| det JG| X̃ f̃

X̃ j f̃

)
◦ 2ε

are uniformly bounded in L∞(I, Rm) and, up to subsequences, we have ρε
∗
⇀ ρ in

L∞(I, Rm) = L1(I, Rm)∗. Moreover g̃ ◦ 2ε → g̃ ◦ 2 uniformly on I and from

(4.18) we get

∫

Q
〈ν!, g〉 d|∂!|X = −

∫

!
divX g dLn

=
∫

I

〈
g̃ ◦ 2, ρ

〉
dLn−1 =

∫

I

〈
g ◦ G ◦ 2, ρ

〉
dLn−1

for any g ∈ C1c (Q, Rm). Equality (4.10) follows and the proof is concluded.
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We warn the reader that the notation of Proposition 4.5 will be extensively

utilized throughout the paper. We can now prove one of our main results.

Proof of Theorem 1.2. By Lemma 4.3, for any x ∈ ∂! there exist a neighbourhood

U ⊂ Rn , a Lipschitz function f : U → R and j ∈ {1, . . . ,m} such that ! ∩U =
{ f > 0} or ! ∩U = { f < 0} and

f ∈ C∞(U \ ∂!), inf
U\∂!

X j f > 0 .

If ! ∩ U = { f > 0}, then Proposition 4.5 (applied to S := ∂! ∩ U ) provides a

neighbourhood Q of x such that |∂!|X (Q) < +∞. If ! ∩ U = { f < 0}, then
Proposition 4.5 provides a neighbourhood Q of x such that |∂(Rn \ !)|X (Q) <
+∞. Recalling Corollary 4.2 we have Ln(∂!) = 0 and thus

|∂!|X (Q) = |∂(Rn \ !)|X (Q) = |∂(Rn \ !)|X (Q) < ∞ .

We have proved that for any x ∈ ∂! there exists a neighbourhood Q such that

|∂!|X (Q) < +∞ and this concludes the proof.

An easy consequence of Theorem 1.2 is the fact that intrinsic Lipschitz sub-

graphs in Carnot groups have locally finite X-perimeter. We use the same notation

of Section 3.

Corollary 4.6. Let ω ⊂ W be a bounded open set and φ : ω → R an intrinsic

Lipschitz function. Let Eφ := {y · se1 : y ∈ ω, s < φ(y)} be the intrinsic subgraph
of φ. Then |∂Eφ|X (ω · R) < ∞.

Proof. By Proposition 3.4 there exists an intrinsic Lipschitz function φ : W → R
such that φ|ω = φ. Since φ is continuous, φ is bounded on ω, say a < φ < b for

suitable real numbers a, b. Thus we have

|∂Eφ|X (ω · R) = |∂Eφ|X (ω · (a, b)) < ∞

because Eφ := {y · se1 : y ∈ W, s < φ(y)} is an X-Lipschitz domain (see Re-
mark 3.5).

Some remarks are in order.

Remark 4.7. Using the same notation of Proposition 4.5 and its proof, we explic-
itly notice that, for sufficiently small ε > 0, the vector functions ρε belong to

L∞(I ) ∩ C∞(I ) and

ν!ε |∂!ε |X Q = (G ◦ 2ε)#(ρεLn−1 I ). (4.19)

When ∂! is also X-regular, it follows from Lemma 4.4 that the function f can

be chosen in the class C∞(U \ S) ∩ C1X (U). This implies that X̃ f̃ is continuous,

whence ρε converges locally uniformly on I to the continuous function

ρ =
(
X̃ f̃

X̃ j f̃
| det JG|

)
◦ 2.
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In particular, from (4.10) one obtains that the measure theoretic normal is continu-

ous and coincides with the horizontal normal to ∂!,

ν! = X f

|X f | |∂!|X -a.e. on ∂!.

Remark 4.8. Using the same notation of Proposition 4.5, it is easily seen that c "
|ρε | " C for some positive constants c,C independent of ε. This implies that
c " |ρ| " C and, in particular, that a function w belongs to L1(∂! ∩Q, |∂!|X )
if and only if w ◦ G ◦ 2 belongs to L1(I,Ln−1). Moreover, a sequence (wk)k
converges to w in L1(∂! ∩Q, |∂!|X ) if and only if wk ◦ G ◦ 2 → w ◦ G ◦ 2 in

L1(I,Ln−1).
Remark 4.9. It is interesting to interpret Propositions 4.1 and 4.5 in the setting of
Carnot groups. Assume S ⊂ G is an X-Lipschitz surface and x ∈ S. Without loss

of generality, we may assume that S is the intrinsic Lipschitz graph of φ : ω → R,
for some ω ⊂ W open, and that x = 0, whence φ(0) = 0. It is easily seen that the

diffeomorphism G provided by Proposition 4.1 takes the form

G : ω × R → G
(y, h) 2→ y · he1;

in other words, one can take I = ω ⊂ W ≡ Rn−1 and the implicit function
provided by Proposition 4.1 is exactly φ. Moreover, Proposition 4.5 implies that

|∂Eφ|X = 2#(ρLn−1 ω)

for a suitable ρ ∈ L∞(ω).
Assume now that S is also X-regular, i.e., S = { f = 0} for some f of class

C1X with X1 f > 0. It turns out that det JG = 1 and by Remark 4.7 we recover

|∂Eφ|X = |X f |
X1 f

2#(Ln−1 ω) ,

which is one of the main results of [35].

4.2. Ahlfors regularity of the X-perimeter for X-Lipschitz domains in equire-
gular CC spaces

Let Rn be a CC space whose structure is induced by a family X = (X1, . . . , Xm).
Given x ∈ Rn and i ∈ N we define Li (x) as the linear span (at x) of all the
commutators of X1, . . . , Xm up to order i . We say that (Rn, X) is an equiregular
CC space if ni := dimLi (x) does not depend on x and nκ = n for some κ; we
assume κ to be minimal and call it step of the CC space. In particular, rankLκ(x) =
n for any x and the Chow-Hörmander condition is satisfied together with (2.1). Let

us set also n0 := 0 andmi := ni −ni−1, so thatm1 = m; it is well-known (see [48])

that the Hausdorff dimension of (Rn, d) is Q := ∑κ
i=1 imi .
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It is worth mentioning that the CC distance is locally 1κ -Hölder continuous with

respect to the Euclidean distance in Rn (see [52]); namely, for any K # Rn there

exists M = M(K ) > 0 such that

d(x, x ′) " M|x − x ′|1/κ for any x, x ′ ∈ K .

This fact provides the key tool in the proof of the following result, where we show

that X-Lipschitz surfaces in equiregular spaces are locally (and up to a diffeomor-

phism of the ambient space) graphs of 1κ -Hölder continuous functions.

Proposition 4.10. Under the same assumptions of Proposition 4.1. If (Rn, X) is
an equiregular space, thenQ, I, a,G,φ in Proposition 4.1 can be chosen so that φ
is 1κ -Hölder continuous on I .

Proof. Let

Q, I, a,G,φ, f̃ , l

be defined as in Proposition 4.1 and its proof. Up to a localization argument we

may assume that

d(x, x ′) " M|x − x ′|1/κ for any x, x ′ ∈ Q

for some positive M . Let y, y′ ∈ I be fixed; for τ ∈ (0, a/2) we have2

f̃ (y,φ(y) + τ ) = f̃
(
exp(τ∂sn )(y,φ(y))

)
! f̃ (y,φ(y)) + τ l = τ l,

where we have used the inequality ∂sn f̃ ! l and Lemma 2.2. If L > 0 is the

Lipschitz constant of f we get

f̃ (y′,φ(y) + τ ) = f (G(y′,φ(y) + τ ))

! f (G(y,φ(y) + τ )) − L d
(
G(y′,φ(y) + τ ),G(y,φ(y) + τ )

)

! f̃ (y,φ(y) + τ ) −L M |G(y′,φ(y) + τ ) −G(y,φ(y) + τ )|1/κ

! τ l − L M ‖∇G‖1/κ∞ |y − y′|1/κ .

If |y − y′| is small enough, in such a way that the number

τ̄ := L M ‖∇G‖1/κ∞
l

|y − y′|1/κ

is smaller than a/2, we get f̃ (y′,φ(y) + τ̄ ) ! 0, i.e.,

φ(y′) " φ(y) + τ̄ = φ(y) + L M ‖∇G‖1/κ∞
l

|y − y′|1/κ .

2 The assumption τ < a/2 gives |φ(y) + τ | < a for any y ∈ I , so that the following quantities
are well defined.
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A similar argument gives the other inequality

φ(y′) ! φ(y) − τ̄ = φ(y) − L M ‖∇G‖1/κ∞
l

|y − y′|1/κ

and the proof is accomplished.

We will need in the sequel a variant of the classical Ball-Box Theorem by

Nagel, Stein and Wainger [52] proved by D. Morbidelli in [51]. Before stating it,

let us introduce some preliminary notation.

Denote by Y1, . . . ,Yq a fixed enumeration of all the commutators of the vec-
tors X1, . . . , Xm of length at most κ; let d(Yk) ∈ {1, . . . , κ} denote the length of
the commutator Yk . We will need the notion of “almost exponential” map, exp

∗,
introduced in [51], to which we refer for the precise definition. Here we only recall

that

• for any z ∈ Rn there exists t0 = t0(z) > 0 such that (−t0, t0) 9 t 2→
exp∗(tYk)(z) ∈ Rn defines a piecewise smooth horizontal curve. Moreover,

t0 = t0(z) is continuous with respect to z;
• the map z 2→ exp∗(tYk)(z) is smooth (when defined);
• if d(Yk) = 1, then exp∗(tYk)(z) = exp(tYk)(z).

Given a multi-index I = (i1, . . . , in) ∈ {1, . . . , q}n , define

d(I) := d(Yi1) + · · · + d(Yin )
λI(z) := det[Yi1(z), . . . ,Yin (z)]
‖h‖I := maxk=1,...,n |hk |1/d(Yik ), h ∈ Rn

and the map

EI(z, h) := exp∗(h1Yi1) exp
∗(h2Yi2) . . . exp∗(hnYin )(z).

We denote by B(z, r) the set {EI(z, h) : ‖h‖I < r}; the sets B(z, r) play the
role of pseudo-balls according to the following result (see [51, Theorem 3.1 and

Lemma 3.3]).

Theorem 4.11. Let K ⊂ Rn be a compact set; then, there exist positive numbers

r̂,α,β, β < α < 1, such that the following holds. For any z ∈ K , r ∈ (0, r̂) and I
such that

|λI(z)|rd(I) > 1
2
max
J

|λJ (z)|rd(J ), (4.20)

one has

(1) if ‖h‖I " αr , then EI(z, ·) is differentiable at h and
1
4
|λI(z)| " |Jh EI(z, h)| " 4|λI(z)|,

where Jh EI(z, h) denotes the Jacobian determinant of EI(z, ·);
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(2) B(z,βr) ⊂ B(z,αr) ⊂ B(z, r);
(3) EI(z, ·) is one-to-one on {‖h‖I < αr}.
Remark 4.12. The precise statement of Theorem 4.11 (2) given in [51] is

Bρ(z,βr) ⊂ B(z,αr) ⊂ B(z, r) ,

where ρ is a suitable distance defined in [51, p. 217]. Such a distance is equivalent
to the CC distance d and ρ " d, thus B(z,βr) ⊂ Bρ(z,βr) and our statement
follows.

Theorem 4.11 can be refined in equiregular CC spaces. In this case, in fact, if

z ∈ Rn is fixed and r is small enough, inequality (4.20) may hold only if |λI(z)| /=
0 and d(I) is minimal, i.e., d(I) = Q. Using also the continuity of the λJ ’s, it is
not difficult to show that

for any x ∈ Rn there exist a bounded open neighbourhood U of

x , a multi-index I and r0 > 0 such that d(I) = Q and (4.20)

holds for any z ∈ U and r ∈ (0, r0).
(4.21)

Possibly restricting this number r0, we may assume that it is smaller than the num-

ber r̂ provided by Theorem 4.11 (applied to K := U ).

We can now prove the Ahlfors regularity of the X-perimeter measure for X-

Lipschitz domains in equiregular CC spaces.

Proof of Theorem 1.3. Let x ∈ ∂!; due to the compactness of ∂!, it will be enough
to prove that there exists a suitable neighbourhood A of x such that (1.1) holds for

any z ∈ ∂! ∩A. Let I = (i1, . . . , in),U and r0 be as in (4.21) and set Zk := Yik ;

up to reordering I and restricting U we may assume that

Li (z) = span {Z1(z), . . . , Zni (z)} for any z ∈ U and i = 1, . . . , κ.

In particular, {Z1, . . . , Zm} = {X1, . . . , Xm}. Possibly restrictingU , by Lemma 4.3
we may assume that there exist a Lipschitz function f : U → R and j ∈ {1, . . . ,m}
such that

• ! ∩U = { f > 0} or ! ∩U = { f < 0};
• f ∈ C∞(U \ ∂!) and l := infU\∂! X j f > 0.

Since |∂!|X = |∂(Rn \ !)|X = |∂(Rn \ !)|X (because Ln(∂!) = 0), we may

assume without loss of generality that ! ∩U = { f > 0}. Let Q ⊂ U be the open

neighbourhood of x given by Proposition 4.5 (applied to S := ∂! ∩ U ). We also

define Z̃k := dG−1[Zk]; since it is not restrictive to assume Z1 = X j , we have

Z̃1 = ∂sn . Let

I, a,G,φ,2, f̃ , !̃, ρ

be defined as in Proposition 4.5 and its proof. We also fix an open set I ′ # I

and, up to restricting r0, we may assume that B(z, r0) ⊂ Q for any z ∈ A :=
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G(I ′ × (−a/2, a/2)) # Q. Let L be the Lipschitz constant of f and α,β be given
by Theorem 4.11 (applied to K := U ). Set

r̄ := min
{
βr0,

r0

α(1+ l
L
)

}
< r0 .

We claim that (1.1) holds for any z ∈ ∂! ∩A and any r < r̄ ; this would conclude

the proof.

We begin by proving the second inequality in (1.1) for such z, r . We set πI :
I × (−a, a) → I to be the canonical projection and

B̃(G−1(z), r) := G−1(B(z, r)) and B̃(G−1(z), r) := G−1(B(z, r)).

Since r/β < r0 " r̂ , by Theorem 4.11 (2) we have

B(z, r) ⊂ B(z, α
β r) ⊂ B(z, r0) ⊂ Q

whence, on considering the images of these sets under the map πI ◦ G−1,

πI (B̃(G−1(z), r)) ⊂ πI (B̃(G−1(z), α
β r)) = πI

(
G−1({EI(z, h) : ‖h‖I < α

β r})
)
.

(4.22)

Writing h = (h1, h
′) ∈ R × Rn−1, we can decompose the map EI as EI(z, h) =

exp(h1Z1)E
′
I(z, h

′) where

E ′
I(z, h

′) = exp∗(h2Z2) . . . exp∗(hn Zn)(z) .

Since dG−1[Z1] = ∂sn we obtain

πI (G
−1(EI(z, h))) = πI

(
exp(h1∂sn )G

−1(E ′
I(z, h

′))
)

= πI (G
−1(E ′

I(z, h
′)))

and from (4.22) one gets

πI (B̃(G−1(z), r)) ⊂ πI
(
G−1({E ′

I(z, h
′) : ‖h′‖I < α

β r})
)

= Pz({h′ ∈ Rn−1 : ‖h′‖I < α
β r})

(4.23)

where we have set Pz := (πI ◦G−1◦E ′
I)(z, ·) : Rn−1 → I and ‖h′‖I := ‖(0, h′)‖I

for h′ ∈ Rn−1. The map EI(z, ·) is differentiable on {‖h‖I < αr}; moreover,
EI(·, h) is smooth. Therefore, also

h 2−→ G−1 ◦ EI(z, h) = exp(h1∂sn )G
−1(E ′

I(z, h
′))

is differentiable on {‖h‖I < αr} and smooth with respect to z. From Theorem 4.11
(1) we obtain

1
4
| detG−1(z)||λI(z)|" |Jh(G−1◦EI)(z, h)|"4| detG−1(z)||λI(z)| if ‖h‖I < αr
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and, in particular, there exist positive constants C1,C2 such that

C1 " |Jh(G−1 ◦ EI)(z, h)| " C2 for any h ∈ Rn with ‖h‖I < αr .

Notice that ∂
∂h1

(G−1 ◦ EI) = dG−1[Z1] = ∂sn , thus the first row of ∇h(G
−1 ◦

EI)(z, h) (namely, the one corresponding to derivatives with respect to h1) is

(0, . . . , 0, 1). It follows that

C1 " | detM(z, h′)| " C2 for any h
′ ∈ Rn−1 with ‖h′‖I < αr (4.24)

where M(z, h′) is the (n − 1) × (n − 1) minor of the Jacobian matrix ∇h(G
−1 ◦

EI)(z, (0, h′)) obtained by erasing the first row and the last column (the one corre-
sponding to the n-th coordinate in I × (−a, a)). It is easily seen that
M(z,h′)=∇h′(πI ◦G−1◦E ′

I)(z,h
′)=∇h′Pz(h

′) for any h′ ∈Rn−1 with ‖h′‖I<αr

so that C1 " Jh′Pz(h
′) " C2. By the area formula

Ln−1(πI (∂!̃ ∩ B̃(G−1(z), r))) "Ln−1(πI (B̃(G−1(z), r)))

"Ln−1(Pz({‖h′‖I < α
β r})) (by (4.23))

"C2Ln−1({‖h′‖I < α
β r}) = C3r

Q−1 .

and from (4.11) we get

|∂!|X (B(z, r)) =
∫

πI (∂!̃∩B̃(G−1(z),r))
|ρ| dLn−1 " C4r

Q−1

as desired.

Let us prove the first inequality in (1.1) for z ∈ ∂!∩A and r < r̄ . It is enough

to show that for

C5 := min
{
α,

α2l

L
,
r0

r̄
,
α2lr̂

2Lr̄

}

it holds

Pz({h′ ∈ Rn−1 : ‖h′‖I < C5r}) ⊂ πI (∂!̃ ∩ B̃(G−1(z), r)) . (4.25)

Indeed, from (4.25) and (4.24) it would follow that

Ln−1(πI (∂!̃ ∩ B̃(G−1(z), r))) !Ln−1(Pz({‖h′‖I < C5r}))
!C1Ln−1({‖h′‖I < C5r}) = C6r

Q−1 ,

where we have used area formula and the fact, which will be proved later, that Pz is

one-to-one on {‖h′‖I < C5r}. By Remark 4.8

|∂!|X (B(z, r)) !
∫

πI (∂!̃∩B̃(G−1(z),r))
|ρ| dLn−1 ! C7r

Q−1

as desired.
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To prove (4.25), it is sufficient to show the implication

h′ ∈ Rn−1, ‖h′‖I < C5r

⇒ ∃h1 = h1(h
′) ∈ (−αr,αr) such that EI(z, (h1, h

′)) ∈ ∂!;
(4.26)

in fact, from (4.26) one would get the chain of implications

h′ ∈ Rn−1, ‖h′‖I < C5r

⇒EI(z, (h1, h
′))) ∈ ∂! ∩ B(z,αr) (because ‖(h1, h′)‖I < αr)

⇒EI(z, (h1, h
′))) ∈ ∂! ∩ B(z, r) (by Theorem 4.11 (2))

⇒G−1(EI(z, (h1, h′))) ∈ G−1(∂! ∩ B(z, r)) = ∂!̃ ∩ B̃(G−1(z), r)

⇒Pz(h
′) = πI (G

−1(E ′
I(z, h

′)))

= πI (G
−1(EI(z, (h1, h′)))) ∈ πI (∂!̃ ∩ B̃(G−1(z), r))

which is (4.25).

Let us prove (4.26). Fix h′ ∈ Rn−1 with ‖h′‖I < C5r . By Theorem 4.11 (2)

(which can be applied because C5r < C5r̄ " r0 " r̂) one gets d(z, E ′
I(z, h

′)) <
C5
α r " α l

L
r , whence

| f (E ′
I(z, h

′))| " | f (z)| + L d(z, E ′
I(z, h

′)) < αlr

because f (z) = 0. Since X j f = Z1 f ! l onQ we deduce by Lemma 2.2

f (EI(z, (αr, h
′))) = f (exp(αr Z1)E

′
I(z, h

′)) ! f (E ′
I(z, h

′)) + αlr > 0

f (EI(z, (−αr, h′))) = f (exp(−αr Z1)E
′
I(z, h

′)) " f (E ′
I(z, h

′)) − αlr < 0 .

(4.27)

Notice that Lemma 2.2 can be applied because for any t ∈ (−αr,αr)

d(z, EI(z, (t, h
′))) " |t | + d(z, E ′

I(z, h
′)) " αr + α l

L
r < r̄α(1+ l

L
) " r0,

i.e., EI(z, (t, h′)) ∈ B(z, r0) ⊂ Q for any such t .

By (4.27) and the continuity of t 2→ f (EI(z, (t, h′))), there exists h1 ∈
(−αr,αr) such that f (EI(z, (h1, h′))) = 0. This means that EI(z, (h1, h′)) ∈ ∂!
and (4.26) follows.

It is only left to prove that Pz is one-to-one on {‖h′‖I < C5r}. Assume not:
then there exist h′ /= h′′ in Rn−1 such that ‖h′‖I < C5r , ‖h′′‖I < C5r and

Pz(h
′) = Pz(h

′′), i.e.,

G−1(E ′
I(z, h

′)) = (y, t ′) and G−1(E ′
I(z, h

′′)) = (y, t ′′)

for suitable y ∈ I and t ′, t ′′ ∈ (−a, a). We have t ′ /= t ′′ because, due to Theorem
4.11 (3) and the inequality C5 " α, E ′

I (as well as G
−1 ◦ E ′

I) is one-to-one on
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{‖h′‖I < C5r}. Since (y, t ′) = exp((t ′ − t ′′)∂sn )(y, t
′′) we have by Lemma 2.2 and

Theorem 4.11 (2)

|t ′ − t ′′| " 1
l
| f̃ (y, t ′) − f̃ (y, t ′′)| " L

l
d(E ′

I(z, h
′), E ′

I(z, h
′′))

" L
l
d(E ′

I(z, h
′), z) + L

l
d(z, E ′

I(z, h
′′))

" 2 L
l
C5r
α < αr̂ .

Thus ‖(t ′ − t ′′, h′′)‖I < αr̂ and

E ′
I(z, h

′) = exp((t ′ − t ′′)X j )(E
′
I(z, h

′′)) = EI(z, (t
′ − t ′′, h′′))

which contradicts Theorem 4.11 (3).

The following result is an immediate consequence of Theorem 1.3.

Corollary 4.13. Let ! be an X-Lipschitz domain with compact boundary in an

equiregular CC space (Rn, X). Then the X-perimeter measure |∂!|X is doubling,
i.e., there exists C > 0 such that

|∂!|X (B(z, 2r))

|∂!|X (B(z, r))
" C for any z ∈ ∂!, r > 0.

A second interesting consequence of Theorem 1.3 is the following result, that ob-

viously could be stated for both HQ−1
d and SQ−1

d . We opted for the formulation

with the spherical Hausdorff measure because it is the measure that more naturally

arises when trying to represent the X-perimeter in terms of Hausdorff measures (see

e.g. [21, 33–35,44]). A very close result has been proved in [1].

Corollary 4.14. Let ! be an X-Lipschitz domain with compact boundary in an

equiregular CC space (Rn, X). Then there exists C = C(!) such that

1
C
SQ−1
d ∂! " |∂!|X " CSQ−1

d ∂!.

In particular, there exists a SQ−1
d -measurable function θ : ∂! → [ 1

C
,C] such that

|∂!|X = θSQ−1
d ∂!.

Proof. The first part of the statement is an immediate consequence of (1.1) and of

classical theorems on densities of measures, see e.g. [55, Theorem 3.2]. The second

part follows from the Radon-Nikodym theorem.

We conclude this section with two further results that will be useful in the

sequel.

Lemma 4.15. Let! be an X-Lipschitz domain in an equiregular CC space (Rn, X)
and x ∈ ∂!. Then there exist positive constants C, R such that

Ln(! ∩ B(x, r)) ! CrQ for any r ∈ (0, R) .
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Proof. Let U,I and r0 be as in (4.21). Up to restricting U we may find a Lipschitz

function f : U → R and j ∈ {1, . . . ,m} such that
• ! ∩U = { f > 0} or ! ∩U = { f < 0};
• f ∈ C∞(U \ ∂!) and l := infU\∂! X j f > 0.

We assume to fix ideas that ! ∩ U = { f > 0} and give only some hint about
how to adapt the argument to the case ! ∩ U = { f < 0}. Up to restricting r0 we
have B(x, r0) ⊂ U . Since d(I) is minimal we may assume that Yi1 = X j , so that

exp∗(tYi1) = exp(t X j ).
Let L be the Lipschitz constant of f and α be given by Theorem 4.11 (with

K := U ). Consider r < R := r0 and set δ := min{ αl
3L

, α
5
}. We claim that

EI(x, h) ∈ ! ∩ B(x, r) (4.28)

whenever h = (h1, h
′) ∈ R×Rn−1 is such that ‖h′‖I := ‖(0, h′)‖I < δr and h1 ∈

(r/2, 3r/4) (if!∩U = { f < 0} we should instead consider h1 ∈ (−r/2,−3r/4)).
This would be enough to conclude because by Theorem 4.11 (1), (3)

Ln(! ∩ B(x, r)) !
∫

{h∈Rn :h1∈(r/2,3r/4),‖h′‖I<δr}
|Jh EI(x, h)| dLn

!C1Ln{h ∈ Rn : h1 ∈ (r/2, 3r/4), ‖h′‖I < δr} = C2r
Q .

Let us prove (4.28). We have EI(x, (0, h′)) ∈ B(x, δr) ⊂ B(x, δr/α) and so

d(x,EI(x,h))"d(x, EI(x, (0, h
′)))+ d

(
EI(x, (0, h

′)), exp(h1X j )EI(x, (0,h
′))

)

< δr
α + |h1| < (1

5
+ 3

4
)r < r .

Thus EI(x, h) ∈ B(x, r0) ⊂ Q and (4.28) follows if we show that f (EI(x, h)) >
0 (if ! ∩U = { f < 0} one would prove that f (EI(x, h)) < 0). We have

f (EI(x, (0, h
′))) ! f (x) − L

δr

α
= −L δr

α
,

and by Lemma 2.2 (whose assumptions can be easily checked)

f (EI(x, h)) = f
(
exp(h1X j )EI(x, (0, h

′))
)

! f (EI(x, (0, h
′))) + lh1 ! −L δr

α + l r
2

! lr/6 > 0 .

It follows that EI(x, h) ∈ ! ∩ B(z, r) and (4.28) follows.

Lemma 4.16. Let ! be an X-Lipschitz domain with compact boundary in an

equiregular CC space (Rn, X) and µ a finite Borel measure in !. Then

lim
r→0+

µ(B(x, r) ∩ !)

r Q−1 = 0 for |∂!|X -a.e. x ∈ ∂!.
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Proof. By virtue of (1.1), it is enough to prove that

lim
r→0+

µ(B(x, r) ∩ !)

|∂!|X (B(x, r))
= 0 for |∂!|X -a.e. x ∈ ∂!.

In turn, it is sufficient to show that |∂!|X (Ak) = 0 for any k ∈ N, where

Ak :=
{
x ∈ ∂! : lim sup

r→0+

µ(B(x, r) ∩ !)

|∂!|X (B(x, r))
>
1

k

}
.

Let ε > 0 be fixed; by Vitali covering theorem (see e.g. [55, Theorem 3.3]) there

exist (xi ) ⊂ Ak and ri < ε such that

µ(B(x, ri ) ∩ !)

|∂!|X (B(x, ri ))
>
1

k
for any i

B(xi , ri ) are pairwise disjoint and Ak ⊂ ⋃
i B(xi , 5ri ) .

By Theorem 1.3

|∂!|X (Ak) "
∑

i

|∂!|X (B(xi , 5ri )) "
∑

i

5Q−1λr Q−1
i

"5Q−1λ2
∑

i

|∂!|X (B(xi , ri )) " 5Q−1λ2k µ
(
! ∩ ⋃

i B(xi , ri )
)

"5Q−1λ2k µ((∂!)ε)

where (∂!)ε := {z ∈ ! : d(z, ∂!) < ε}. The desired equality |∂!|X (Ak) = 0

now follows because µ((∂!)ε) → 0 as ε → 0.

5. Trace theorems for BVX functions on X-Lipschitz domains

The theory of traces for Euclidean BV functions is well established; for a more

general account on this subject, we address the interested reader to [4, 46, 47] and

the monographs [2, 41].

5.1. Existence of traces

We begin this section by proving the existence of traces for BVX functions on X-

Lipschitz domains with compact boundary.

Proof of Theorem 1.4. We claim that for any x ∈ ∂! there exist Cx > 0 and a

neighbourhood Q = Qx such that the following holds. For any u ∈ BVX (!) such
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that {u /= 0} # Q, there exists Tu ∈ L1(∂!, |∂!|X ) such that

(1.2) holds for any g ∈ C1(Rn, Rm); (5.1)

Tu = 0 on ∂! \Q; (5.2)

u 2→ Tu is linear on the vector space {u ∈ BVX (!) : {u /= 0} # Q}; (5.3)

‖Tu‖L1(∂!,|∂!|X ) " Cx |Xu|(!). (5.4)

This would be enough to conclude. Indeed, since ∂! is compact we can find

x1, . . . , xq ∈ ∂!, together with the associated neighbourhood Q1, . . . ,Qq (Qi :=
Qxi ), such that ∂! ⊂ ⋃q

i=1Qi . We also consider an open set Q0 with ! \⋃q

i=1Qi ⊂ Q0 # !. Let (ψi )i=0,...,q be smooth functions such that

ψi ∈ C∞
c (Qi ), 0 " ψi " 1,

q∑

i=0
ψi = 1 on ! .

Thus, for a generic u ∈ BVX (!) we have ψi u ∈ BVX (!), {ψi u /= 0} # Qi and

X (ψi u) = u(Xψi )Ln + ψi Xu on ! (5.5)

in the sense of distributions. Let g ∈ C1(Rn, Rm) be fixed; our claim implies that
for any i = 1, . . . , q

∫

!
(ψi u) divX g dLn

= −
∫

!
ψi 〈σu, g〉 d|Xu| −

∫

!
u〈Xψi , g〉 dLn +

∫

∂!
〈ν!, g〉 T (ψi u) d|∂!|X

(5.6)

while
∫

!
(ψ0u) divX g dLn = −

∫

!
ψ0〈σu, g〉 d|Xu| −

∫

!
u〈Xψ0, g〉 dLn . (5.7)

Taking into account that
∑q

i=0 Xψi = 0 on!, on summing (5.6) (for i = 1, . . . , q)

and (5.7) we obtain (1.2) with Tu := ∑q

i=1 T (ψi u).
The linearity of the trace operator T stems from (5.3). As for the boundedness

of T , we have from (5.4) that for any i = 1, . . . , q

‖T (ψi u)‖L1(∂!,|∂!|X ) " Cxi |X (ψi u)|(!) " C ′
xi

[
|Xu|(!) + ‖u‖L1(!)

]
, (5.8)

where we have used the fact that, by (5.5) and |ψi | " 1,

|X (ψi u)|(!) " ‖Xψi‖L∞‖u‖L1(!) + |Xu|(!) .

From (5.8) it is easy to get the existence of C = C(!) such that

‖Tu‖L1(∂!,|∂!|X ) " C
[
|Xu|(!) + ‖u‖L1(!)

]
.

This would conclude the proof.
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For the reader’s convenience, we divide the proof of the claim into several

steps.

Step 1. Let x ∈ ∂! be fixed. By Lemma 4.3, there exist a neighbourhood U = Ux ,

a Lipschitz function f : U → R and j ∈ {1, . . . ,m} such that
• ! ∩U = { f > 0} or ! ∩U = { f < 0};
• f ∈ C∞(U \ ∂!) and l := infU\∂! X j f > 0.

We assume that ! ∩ U = { f > 0}; we will treat the case ! ∩ U = { f < 0} later
in Step 3. Let thenQx = Q ⊂ U be the open neighbourhood given by Proposition

4.5 (applied to S := ∂! ∩U ). We will also consider

I, a,G,φ,φε,2,2ε, f̃ ,!ε, !̃, !̃ε, X̃i , X̃ , ρ, ρε

as in Proposition 4.5 and its proof.

Let u ∈ BVX (!) be such that {u /= 0} # Q. We initially work under the
additional assumption u ∈ C∞(! ∩Q). Let g ∈ C1(Rn, Rm) be fixed; since ∂!ε

is smooth and !ε = { f > ε} we have
∫

!
u divX g dLn = lim

ε→0+

∫

!ε∩Q
u divX g dLn

= lim
ε→0+

(
−

∫

!ε∩Q
〈Xu, g〉 dLn +

∫

∂!ε∩Q
u〈ν!ε , g〉 d|∂!ε |X

)

= −
∫

!
〈Xu, g〉 dLn + lim

ε→0+

∫

I

(ũ ◦ 2ε)〈g̃ ◦ 2ε, ρε〉 dLn−1

(5.9)

where we have set ũ := u ◦G : I × (−a, a) → R, g̃ := g ◦G : I × (−a, a) → R
and used (4.19). As in Proposition 4.5, we hereafter agree that ε is small enough,
so that φε is defined on the whole I .

We claim that

vε := ũ ◦ 2ε is a Cauchy sequence in L
1(I ) as ε → 0+. (5.10)

Assume (5.10): then, there would exist v ∈ L1(I ) such that vε → v in L1(I ) and,
taking into account the uniform convergence2ε → 2 and the weak-∗ convergence
ρε

∗
⇀ ρ in L∞(I, Rm), one would get

lim
ε→0+

∫

I

(ũ ◦ 2ε)〈g̃ ◦ 2ε, ρε〉 dLn−1 =
∫

I

v〈g̃ ◦ 2, ρ〉 dLn−1

=
∫

∂!
Tu 〈g, ν!〉 d|∂!|X .

(5.11)

Here we have used (4.10) and defined Tu ∈ L1(∂!, |∂!|X ) as

Tu =
{

v ◦ 2−1 ◦ G−1 on ∂! ∩Q
0 on ∂! \Q .
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From (5.9) and (5.11) we would achieve

∫

!
u divX g dLn = −

∫

!
〈Xu, g〉 dLn +

∫

∂!
〈ν!, g〉Tu d|∂!|X

and (5.1) would be proved for such u.

Let us prove (5.10). For y ∈ I and 0 < δ < ε we have

vε(y) − vδ(y) = ũ(y,φε(y)) − ũ(y,φδ(y)) =
∫ φε(y)

φδ(y)
(∂sn ũ)(y, t) dt . (5.12)

Setting

Rε := {(y, t) : y ∈ I,φ(y) < t < φε(y)} = {0 < f̃ < ε}
from (5.12) we obtain

∫

I

|vε(y) − vδ(y)|dy"
∫

I

∫ φε(y)

φδ(y)
|X̃ j ũ(y, t)| dt dy "

∫

Rε

|X̃ ũ| dLn

=
∫

G(Rε)
|Xu|| det JG−1| dLn"C1

∫

G(Rε)
|Xu| dLn .

(5.13)

Then, (5.10) follows thanks to the absolute integrability of |Xu| and the fact that⋂
ε>0 G(Rε) = ∅.
We observe also that (5.2) and (5.3) are straightforward (of course, the linearity

of T in (5.3) is for the moment understood on the subspace {u ∈ BVX (!)∩C∞(!∩
Q) : {u /= 0} # Q}), while

vε(y) = −
∫ a

φε(y)
(∂sn ũ)(y, t) dt ∀y ∈ I

gives the inequality

∫

I

|v| dLn−1 = lim
ε→0+

∫

I

|vε | dLn−1 "
∫

I×(−a,a)\Rε

|X̃ ũ| dLn

=
∫

G(Rε)
|Xu|| det JG−1| dLn " C1|Xu|(!),

whence (5.4).

Step 2. We now consider the case of a generic function u ∈ BVX (!) such that
{u /= 0} # Q. Let us fix a sequence (uk)k ⊂ BVX (!) ∩ C∞(!) such that

uk → u in L1(!) and |Xuk |(!) → |Xu|(!) .

It is not restrictive to assume that {uk /= 0} # Q; this is possible because the
approximating sequence (uk) is essentially obtained by mollification, see the proof
of [31, Theorem 2.2.2] for more details.
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We claim that (Tuk)k is a Cauchy sequence in L
1(∂!, |∂!|X ). This would be suf-

ficient to conclude: in fact, after setting Tu := L1-limk→∞ Tuk ∈ L1(∂!, |∂!|X ),
on passing to the limit as k → ∞ in the equality

∫

!
uk divX g dLn = −

∫

!
〈Xuk, g〉 dLn +

∫

∂!
〈ν!, g〉 Tuk d|∂!|X

we obtain (5.1). Statements (5.2), (5.3) and (5.4) are straightforward.

Let us prove our claim or, equivalently, that the sequence (vk)k , vk := (Tuk) ◦
G ◦ 2, is a Cauchy sequence in L1(I,Ln−1). Set ũk := uk ◦G : I × (−a, a) → R
and vk,ε := ũk ◦ 2ε : I → R; recall that vk,ε → vk in L

1(I ) as ε → 0+. From
(5.13) we deduce

∫

I

|vk − vk,ε |Ln−1 " C1|Xuk |(G(Rε))

and, setting vε
k := 1

ε

∫ ε
0 vk,t dt , one gets

∫

I

|vk − vε
k | dLn−1 " 1

ε

∫

I

∫ ε

0

|vk − vk,t | dt dLn−1 " C1|Xuk |(G(Rε)) . (5.14)

Therefore∫

I

|vk − v+| dLn−1

"
∫

I

|vk − vε
k | dLn−1 +

∫

I

|v+ − vε
+ | dLn−1 +

∫

I

|vε
k − vε

+ | dLn−1

"C1|Xuk |(G(Rε))+ C1|Xu+|(G(Rε)) + 1

ε

∫ ε

0

∫

I

|vk,t − v+,t | dLn−1 dt .

(5.15)

Taking into account that inf
{
|ρt (y)| : y ∈ I, t ∈ (0, ε)

}
> 0 (see Remark 4.8), by

(4.19) one achieves

1

ε

∫ ε

0

∫

I

|vk,t − v+,t | dLn−1 dt "C2

ε

∫ ε

0

∫

I

|ũk ◦ 2t − ũ+ ◦ 2t | |ρt | dLn−1 dt

=C2

ε

∫ ε

0

∫

∂!t∩Q
|uk − u+| d|∂!t |X dt

=C2

ε

∫

G(Rε)
|uk − u+||X f | dLn ,

(5.16)

where, in the last equality, we have used Theorem 2.6. By (5.15) we obtain
∫

I

|vk − v+| dLn−1 "C1|Xuk |(G(Rε)) + C1|Xu+|(G(Rε))

+ C3

ε

∫

G(Rε)
|uk − u+| dLn

"C1|Xuk |(Kε) + C1|Xu+|(Kε) + C3

ε

∫

G(Rε)
|uk − u+| dLn
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where Kε := G(Rε) ∩ ! ⊂ Q ∩ !. By Lemma 2.4 we get

lim sup
k,+→∞

∫

I

|vk − v+| dLn−1 " 2C1|Xu|(Kε) ∀ε > 0 . (5.17)

SinceQ ∩ ⋂
ε Kε = ∅ we have⋂

ε Kε ⊂ ∂Q ∩ ! whence

|Xu|(⋂ε Kε) " |Xu|(∂Q ∩ !) = 0

because u = 0 in a neighbourhood of ∂Q ∩ !. From (5.17) we get

lim sup
k,+→∞

∫

I

|vk − v+| dLn−1 = 0

and our claim follows.

For future references we also observe what follows. If we set vε := ũ ◦ 2ε :
I → R and vε := 1

ε

∫ ε
0 vt dt , we have

∫

I

|vε
k−vε |dLn−1 " 1

ε

∫ ε

0

∫

I

|vk,t−vt |dLn−1 dt " C2

ε

∫

G(Rε)
|uk−u| |X f | dLn ,

where the second inequality may be justified just like (5.16). This implies that for

any ε

vε
k → vε in L1(I ) as k → ∞ . (5.18)

Since vk → v in L1(I ), from (5.14) and (5.18) we obtain as k → ∞
∫

I

|v − vε | dLn−1 " C1|Xu|(Kε) (5.19)

where we have used Lemma 2.4 again.

Step 3. We now go back to Step 1 and analyze the case!∩U = { f < 0}. Set f̂ =
− f and X̂ = (X1, . . . , X j−1,−X j , X j+1, . . . , Xm); notice that |∂!|

X̂
= |∂!|X ,

|∂!|
X̂
denoting the perimeter measure of ! induced by the family X̂ . Then

! = { f̂ > 0}, f̂ ∈ C∞(U \ ∂!) and l := inf
U\∂!

X̂ j f̂ > 0 .

Reasoning as in Steps 1 and 2 we can find C > 0 and a neighbourhoodQ of x such

that the following holds. For any u ∈ BVX (!) = BV
X̂
(!)with {u /= 0} # Q there

exists T̂ u ∈ L1(∂!, |∂!|
X̂
) = L1(∂!, |∂!|X ) such that

for any g ∈ C1(Rn, Rm) (5.20)
∫

!
u div

X̂
g dLn = −

∫

!
〈σ̂u, g〉 d|X̂u| +

∫

∂!
〈ν̂!, g〉T̂ u d|∂!|

X̂
;

T̂ u = 0 on ∂! \Q; (5.21)

u 2→ T̂ u is linear on the vector space {u ∈ BV
X̂
(!) : {u /= 0} # Q}; (5.22)

‖T̂ u‖L1(∂!,|∂!|
X̂
) " C|X̂u|(!). (5.23)
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Here, σ̂u and ν̂! are such that X̂u = σ̂u |X̂u| and X̂χ! = ν̂!|∂!|
X̂
. It is easily seen

that |X̂u| = |Xu| and

σ̂u =
(
(σu)1, . . . ,−(σu) j , . . . , (σu)m

)

ν̂! =
(
(ν!)1, . . . ,−(ν!) j , . . . , (ν!)m

)
,

whence (5.1), (5.2), (5.3) and (5.4) follow (with Tu := T̂ u), respectively, from

(5.20), (5.21), (5.22) and (5.23). This concludes the proof.

Remark 5.1. If u ∈ C0(!) ∩ BVX (!), then Tu = u|∂!. Using the same notation

of the previous proof, it suffices to notice that T (ψi u) = ψi u for any i = 1, . . . , q
because of (5.19).

Remark 5.2. Under the assumptions of Theorem 1.4: the trace operator T is lo-

cal, i.e., if u1, u2 ∈ BVX (!) are such that u1 = u2 on some open set U , then

(Tu1)|∂!∩U = (Tu2)|∂!∩U .

When ! ⊂ Rn is an X-Lipschitz domain with compact boundary and u ∈
L1(Rn) is such that

u|! ∈ BVX (!) and u|Rn\! ∈ BVX (Rn \ !),

one can define the “inner” and “outer” traces T+u, T−u ∈ L1(∂!, |∂!|X ) of u on
∂!, respectively, as

T+u := T!(u|!), T−u := TRn\!(u|Rn\!).

We denoted by T!, TRn\!, respectively, the trace operators

T! : BVX (!) → L1(∂!, |∂!|X )

TRn\! : BVX (Rn \ !) → L1(∂(Rn \ !), |∂(Rn \ !)|X ) ≡ L1(∂!, |∂!|X ) .

We are going to prove that such a u is actually of bounded X-variation on the whole

Rn; we will also characterize the measure Xu.

Theorem 5.3. Let ! ⊂ Rn be an X-Lipschitz domain with compact boundary and

u ∈ L1(Rn) such that u|! ∈ BVX (!) and u|Rn\! ∈ BVX (Rn \ !). Then u ∈
BVX (Rn) and

Xu ∂! = (T+u − T−u)ν!|∂!|X (5.24)

In particular, Xu = Xu ! + Xu (Rn \ !) + (T+u − T−u)ν!|∂!|X .
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Proof. For any g ∈ C1c (Rn, Rm) with |g| " 1 we have by Theorem 1.4 and Corol-

lary 4.2

∫

Rn

u divX g dLn =
∫

Rn∩!
u divX g dLn +

∫

Rn\!
u divX g dLn

= −
∫

Rn∩!
〈σu, g〉 d|Xu| +

∫

∂!
〈ν!, g〉T+u d|∂!|X

−
∫

Rn\!
〈σu, g〉 d|Xu| +

∫

∂!
〈νRn\!, g〉T−u d|∂!|X

= −
∫

Rn\∂!
〈σu, g〉 d|Xu| +

∫

∂!
〈ν!, g〉(T+u − T−u) d|∂!|X

where we have used the fact that νRn\! = −ν! |∂!|X -a.e. This gives (5.24) and
concludes the proof.

5.2. Extension of BVX functions

The most part of this section is devoted to the proof of Theorem 1.5.

Proof of Theorem 1.5. Let Q1, . . . ,Qq be the open sets considered in the proof of

Theorem 1.4. We will prove that, if δ > 0 and w is such that

sptw ⊂ ∂! ∩Qi for a suitable i ,

then there exists u ∈ C∞(!)∩W 1,1
X (!) such that (1.3) holds for some C = Ci and,

if ∂! is X-regular, (1.4) holds as well. This would be enough to conclude. Indeed,

let w be a generic function in L1(∂!, |∂!|X ) and consider functions ψi such that

ψi ∈ C∞
c (Qi ), 0 " ψi " 1,

q∑

i=1
ψi = 1 on ∂! .

Then for any i = 1, . . . , q we could choose ui ∈ C∞(!) ∩ W
1,1
X (!) such that

Tui = ψiw,

∫

!
|ui | dLn " δ

q
,

∫

!
|Xui | dLn " Ci‖ψiw‖L1(∂!,|∂!|X )

and (1.3) would follow, with u := u1 + · · · + uq and C := supi Ci , because ψi are

nonnegative and thus

‖w‖L1(∂!,|∂!|X ) = ‖ψ1w‖L1(∂!,|∂!|X ) + · · · + ‖ψqw‖L1(∂!,|∂!|X ) .

If ! is X-regular, (1.4) follows provided we choose ui such that

∫

!
|Xui | dLn " (1+ δ)‖ψiw‖L1(∂!,|∂!|X ) .
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Step 1. Let i ∈ {1, . . . , q} and w ∈ L1(∂!, |∂!|X ) with spt w ⊂ Q := Qi be

fixed. Let f , j and l be as in the proof of Theorem 1.4, Step 1. We first assume that

! ∩Q = { f > 0} and define

I, a,G,φ,φε,2,2ε, f̃ ,!ε, !̃, !̃ε, X̃+, X̃ , ρ, ρε

as in the proof of Theorem 1.4, Step 1. By η = η(δ, w) ∈ (0, 1) we denote a
suitable constant to be chosen later.

Let v := w ◦ G ◦ 2 ∈ L1(I ) and I ′ # I be an open set such that spt v ⊂ I ′.
If v ≡ 0 (i.e., w ≡ 0) it is enough to choose u := 0. If v /≡ 0 we fix a sequence

(vk)k ⊂ C∞
c (I ) such that

v0 ≡ 0, vk → v in L1(I ) and spt vk ⊂ I ′ ∀k.

We require the following technical assumptions: (vk)k is “rapidly converging”, pre-
cisely

∞∑

k=1
‖vk+1 − vk‖L1(I ) " η ; (5.25)

v1 approximates “very well” v in L1(I ), so that

∫

I

|v1 − v||ρ| dLn−1 " η ; (5.26)

and

‖vk‖L1(I ) " 2‖v‖L1(I ) for any k. (5.27)

We also fix, in a way we will specify along the proof, a decreasing infinitesimal

sequence (tk)k . For any k ∈ N we consider a smooth function hk : [tk+1, tk] →
[0, 1] such that

0 " h′
k " 1+ η

tk − tk+1
and

hk ≡ 0 in a neighbourhood of tk+1, hk ≡ 1 in a neighbourhood of tk . (5.28)

Define ũ ∈ C∞(!̃) by

ũ(p) :=
{
0 if f̃ (p) > t0

hk( f̃ (p)) vk(πI (p)) +
(
1−hk( f̃ (p))

)
vk+1(πI (p)) if tk+1< f̃ (p)" tk ,

where πI : I × (−a, a) → I is the canonical projection. We can choose t0 so that

sup
y∈I ′,t∈(0,t0]

|φt (y)| = max{sup
I ′

|φ|, sup
I ′

|φt0 |} < a/2 ;
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this is possible because

φ < φt < φt0 ∀t ∈ (0, t0], sup
I ′

|φ| < a/2, φt → φ uniformly on I ′.

This choice implies spt ũ ⊂ I ′ × (−a/2, a/2).
We point out that ũ = vk ◦ πI on ∂!̃tk = { f̃ = tk}: roughly speaking, ũ is defined
on {tk+1 < f̃ < tk} by interpolation between vk+1 ◦ πI (on ∂̃!tk+1 = { f̃ = tk+1})
and vk ◦ πI (on ∂̃!tk ).

By definition, ũ is smooth on the open set {tk+1 < f̃ < tk} for any k and, by (5.28),
it coincides with vk ◦ πI (that is smooth) on a neighbourhood of ∂!̃tk = { f̃ = tk}.
This implies that ũ ∈ C∞(!̃)with ũ = 0 out of I ′×(−a/2, a/2) and we can define
u ∈ C∞(!) by

u := ũ ◦ G−1 on ! ∩Q, u := 0 on ! \Q .

We are going to prove that (1.3) holds for such u. To begin with, we notice that

Tu = w because

ũ ◦ 2t → v in L1(I )

and, since the trace of a smooth function u with support in Q is defined by the L1-

limit of ũ ◦ 2t (see Step 1 in the proof of Theorem 1.4), we get precisely Tu = w.

Step 2. Let us prove that
∫
! |u| " δ. By the coarea formula, the inclusion ! ∩

spt u ⊂ {0 < f < t0} ∩Q and the inequality |X f | ! l

∫

!
u dLn =

∫

!∩Q
u dLn " C1

∫

!∩Q
u|X f |Ln = C1

∫ t0

0

∫

∂!t∩Q
u d|∂!t |Xdt

=C1
∫ t0

0

∫

I

(ũ ◦ 2t ) |ρt | dLn−1dt " C2

∫ t0

0

∫

I

|ũ ◦ 2t | dLn−1dt

"C2
∞∑

k=0

∫ tk

tk+1

∫

I

(
hk(t)|vk | + (1− hk(t))|vk+1|

)
dLn−1 dt

"C2
∞∑

k=0

∫ tk

tk+1

∫

I

(|vk | + |vk+1|) dLn−1 dt

"4C2t0‖v‖L1(I )dt,

where we also used Remark 4.8, the fact that f̃ ◦2t = t and (5.27). The right hand

side is smaller than δ provided t0 is small enough.

Step 3. In order to derive the last inequality in (1.3), let us compute the horizontal

derivatives of ũ. If p is such that tk+1 < f̃ (p) < tk we have

X̃ j ũ(p) = ∂sn ũ(p) = h′
k( f̃ (p))

[
vk(πI (p)) − vk+1(πI (p))

]
X̃ j f̃ (p) (5.29)
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while for + /= j

X̃+ũ(p) =h′
k( f̃ (p))

[
vk(πI (p)) − vk+1(πI (p))

]
X̃+ f̃ (p)

+ hk( f̃ (p))
〈
∇vk(πI (p)), dπI [X̃+(p)]

〉

+
(
1− hk( f̃ (p))

) 〈
∇vk+1(πI (p)), dπI [X̃+(p)]

〉
.

(5.30)

By the smoothness of ũ, equalities (5.29) and (5.30) hold also if f̃ (p) = tk or

f̃ (p) = tk+1. In particular

X̃ ũ = (h′
k ◦ f̃ )

(
vk ◦ πI − vk+1 ◦ πI

)
X̃ f̃ + R on !̃, (5.31)

where R j ≡ 0 and

R+(p) = hk( f̃ (p))
〈
∇vk(πI (p)), dπI [X̃+(p)]

〉

+
(
1− hk( f̃ (p))

) 〈
∇vk+1(πI (p)), dπI [X̃+(p)]

〉 (5.32)

for + /= j . The coarea formula gives

∫

!
|Xu| dLn =

∫

!∩Q
|Xu| dLn =

∫ t0

0

∫

∂!t∩Q

|Xu|
|X f | d|∂!t |Xdt

=
∞∑

k=0

∫ tk

tk+1

∫

I

|(X̃ ũ) ◦ 2t |
|(X̃ f̃ ) ◦ 2t |

|ρt | dLn−1 dt

and, by (5.31) and the equality f̃ ◦ 2t = t ,

∫

!
|Xu| dLn"

∞∑

k=0

∫ tk

tk+1

∫

I

[
h′
k(t)

∣∣vk−vk+1
∣∣ + |R ◦ 2t |

|X̃ f̃ ◦ 2t |

]
|ρt | dLn−1 dt

"
∞∑

k=0

∫ tk

tk+1

∫

I

[
1+ η

tk−tk+1
|vk − vk+1| + |R ◦ 2t |

|X̃ f̃ ◦ 2t |

]
|ρt | dLn−1 dt.

(5.33)

Our strategy is the following: we are going to prove that the second addend in the

right hand side of (5.33) gives a small contribution, while the first one is comparable

to

∫

∂!
|w| d|∂!|X =

∫

I

|v||ρ| dLn−1 =
∫ t0

t1

∫

I

|v|
t0 − t1

|ρ| dLn−1 dt. (5.34)

For + /= j set

κ+ := sup
p∈!̃

∣∣dπI (p)[X̃+(p)]
∣∣ " sup

p∈!̃

|X̃+(p)| < ∞ ;
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by (5.32) one can estimate

|R+ ◦ 2t | " (hk ◦ f̃ ◦ 2t )κ+|∇vk | + (1− hk+1 ◦ f̃ ◦ 2t )κ+|∇vk+1|
" κ+(|∇vk | + |∇vk+1|).

Since |X̃ f̃ | ! l, by Remark 4.8

∫ tk

tk+1

∫

I

|R ◦ 2t |
|(X̃ f̃ ) ◦ 2t |

|ρt | dLn−1 dt "C3
∫ tk

tk+1

∫

I

(|∇vk | + |∇vk+1|) dLn−1 dt

=C3(tk − tk+1)
(
‖∇vk‖L1(I ) + ‖∇vk+1‖L1(I )

)
.

In particular, if tk − tk+1 is small enough we may assume that

∫ tk

tk+1

∫

I

|R ◦ 2t |
|(X̃ f̃ ) ◦ 2t |

|ρt | dLn−1 dt " 2−k−1η .

Recalling (5.33) we achieve

∫

!
|Xu| dLn " (1+ η)

∞∑

k=0

∫ tk

tk+1

∫

I

|vk − vk+1|
tk − tk+1

|ρt | dLn−1 dt + η.

In order to compare the series on the right hand side with (5.34), we are going to

show that the summands can be made small whenever k ! 1, so that one has to

handle only the one corresponding to k = 0. By Remark 4.8 and (5.25)

∞∑

k=1

∫ tk

tk+1

∫

I

|vk − vk+1|
tk − tk+1

|ρt | dLn−1 dt "C4
∞∑

k=1

∫ tk

tk+1

∫

I

|vk − vk+1|
tk − tk+1

dLn−1 dt

=C4
∞∑

k=1

∫

I

|vk − vk+1| dLn−1 " C4η

and since v0 ≡ 0

∫

!
|Xu| dLn "(1+ η)

∫ t0

t1

∫

I

|v0 − v1|
t0 − t1

|ρt | dLn−1 dt + (1+ η)C4η + η

"(1+ η)

∫ t0

t1

∫

I

|v1|
t0 − t1

|ρt | dLn−1 dt + C5η .

(5.35)
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By Remark 4.8, there exists C6 > 0 such that |ρt | " C6|ρ| for any t . Using (5.26),
(5.34) and the fact that η < 1 we obtain

∫

!
|Xu| dLn " C7

∫ t0

t1

∫

I

|v1|
t0 − t1

|ρ| dLn−1 dt + C5η

= C7

∫

I

|v1||ρ| dLn−1 + C5η

" C7

[∫

I

|v||ρ| dLn−1 + η

]
+ C5η

= C7

∫

∂!
|w| d|∂!|X + C8η

and (1.3) follows for η small enough. Notice that C7 does not depend on w.

Step 4. We have to prove (1.4) in case ∂! is X-regular. By Remark 4.7, |ρt | →
|ρ| locally uniformly on I and in particular (we are using again the fact that ρ is
bounded away from 0)

|ρt | " (1+ η)|ρ| on I ′ ∀ t ∈ (0, t0)

provided t0 is small enough. From (5.35) and recalling that v and v1 are supported
on I ′ one gets

∫

!
|Xu| dLn "(1+ η)2

∫ t0

t1

∫

I

|v1|
t0 − t1

|ρ| dLn−1 dt + C5η

=(1+ η)2
∫

I

|v1| |ρ| dLn−1 dt + C5η

"(1+ η)2
∫

I

|v| |ρ| dLn−1 + C9η

=(1+ η)2
∫

∂!
|w| d|∂!|X + C9η,

where we have used again (5.26) and (5.34). Inequality (1.4) follows for small

enough η.

Step 5. We now go back to Step 1 and consider the case ! ∩Q = { f < 0}. As in
the proof of Theorem 1.4, Step 3, we introduce

f̂ = − f, X̂ = (X1, . . . ,−X j , . . . , Xm).

Reasoning as before we can find u ∈ C∞(!)∩W 1,1

X̂
(!) (notice that W 1,1

X̂
= W

1,1
X )

with support inQ and such that

T̂ u = w,

∫

!
|u| dLn " δ and

∫

!
|X̂u| dLn " C‖w‖L1(∂!,|∂!|

X̂
)
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and, in case ∂! is X-regular (or, which is the same, X̂-regular),

∫

!
|X̂u| dLn " (1+ δ)‖w‖L1(∂!,|∂!|

X̂
) .

As in the proof of Theorem 1.4, Step 3, we have denoted by T̂ u the trace of u on

∂! with respect to the CC structure induced by X̂ . It is now easy to prove that u

satisfies (1.3) and (1.4) (because T̂ u = Tu) and this concludes the proof.

The following result is now an easy consequence of Theorems 1.5 and 5.3. The

last part of the statement, loosely speaking, corresponds to choosing the number t0,

appearing in the proof of Theorem 1.5, “very small”.

Corollary 5.4. Let! ⊂ Rn be an X-Lipschitz domain with compact boundary and

u ∈ BVX (!). Then there exists ū ∈ BVX (Rn) such that ū|! = u and

Tu = T+ū = T−ū |∂!|X -almost everywhere on ∂! .

In particular, |Xū|(∂!) = 0.

Moreover, for any compact set!′ ⊂ Rn with! # !′ it is possible to choose ū with
support in !′.

We point out another interesting consequence of Theorem 1.5.

Corollary 5.5. Let! ⊂ Rn be an X-Lipschitz domain with compact boundary and

u ∈ BVX (!). Then there exists a sequence (uk)k ⊂ C∞(!) ∩ C0(!) ∩ BVX (!)
such that, as k → ∞,

uk → u in L1(!) and

∫

!
|Xuk | dLn → |Xu|(!) . (5.36)

Proof. By Corollary 5.4, there exists ū ∈ BVX (Rn) such that ū = u on ! and

|Xū|(∂!) = 0. If we fix a sequence (ūk)k ⊂ C∞(Rn) ∩ BVX (Rn) such that

ūk → ū in L1(Rn) and

∫

Rn

|Xūk | dLn → |Xū|(Rn)

then, by Lemma 2.4, (5.36) holds with uk := ūk|!.

5.3. Continuity of the trace operator

As already mentioned in the introduction, the trace operator T : BVX (!) →
L1(∂!, |∂!|X ) is not continuous if BVX (!) is endowed with the topology of
weak∗ convergence, see e.g. [2, page 181]. We are going to prove that, as in the
classical case (see [2, Theorem 3.88]), T is continuous when BVX (!) is endowed
with the topology induced by strict convergence. More precisely, we prove the

following result.
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Theorem 5.6. Let ! ⊂ Rn be an X-Lipschitz domain with compact boundary and

u, uk ∈ BVX (!) such that

lim
k→∞

∫

!
|uk − u| dLn = 0 and lim

k→∞
|Xuk |(!) = |Xu|(!) .

Then Tuk → Tu in L1(∂!, |∂!|X ).

The proof of Theorem 5.6, which follows the approach of [2, Theorem 3.88],

will require some preliminary result. Given ! (which we fix for the rest of this

section) as in the statement of Theorem 5.6, let Q1, . . . ,Qq be the open sets con-

sidered in the proof of Theorem 1.4. Since ∂! ⊂ ∪qi=1Qi , it will be enough to

prove that for any i = 1, . . . , q

(Tuk)|Qi
→ (Tu)|Qi

in L1(∂!, |∂!|X ) . (5.37)

We then fix i ∈ {1, . . . , q} andQ = Qi together with the associated f, j considered
in the proof of Theorem 1.4, Step 1. We assume to fix ideas that!∩Q = { f > 0};
the case ! ∩Q = { f < 0} will be treated later. With this assumption we can fix
also

I, a,G,φ,φε,2,2ε, f̃ ,!ε, !̃, !̃ε, X̃+, X̃ , ρ, ρε, Rε

as in the proof of Theorem 1.4.

Lemma 5.7. Let u, uk ∈ BVX (!) be such that uk → u ∈ L1(!). Set ũ := u ◦ G
and ũk := uk ◦ G and assume that ε is small enough3 to define vε, vε

k : I → R as

vε := 1

ε

∫ ε

0

ũ ◦ 2t dt, vε
k := 1

ε

∫ ε

0

ũk ◦ 2t dt .

Then vε
k → vε in L1(I ) as k → ∞ .

Proof. By Remark 4.8 and Theorem 2.6

∫

I

|vε
k − vε | dLn−1 "1

ε

∫ ε

0

∫

I

|ũk ◦ 2t − ũ ◦ 2t | dLn−1 dt

"C

ε

∫ ε

0

∫

I

|ũk ◦ 2t − ũ ◦ 2t ||ρt | dLn−1 dt

=C

ε

∫ ε

0

∫

∂!t∩Q
|uk − u| d|∂!t |X dt

"C

ε

∫

!∩Q
|uk − u||X f | dLn .

The claim follows by the convergence of uk to u in L
1(!) and the boundedness of

|X f |.

3 Precisely, we require that φt is defined on the whole I for any t ∈ (0, ε).
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Lemma 5.8. Let u ∈ BVX (!) and set ũ := u ◦ G, v := (Tu) ◦ G ◦ 2 : I → R.
Assume that ε is small enough to define vε := 1

ε

∫ ε
0 ũ ◦ 2t dt . Then there exists

C = C(Q) > 0 such that
∫

I

|v − vε | " C|Xu|(G(Rε)) (5.38)

Proof. If u ∈ C∞(!) ∩ C0(!) ∩ BVX (!), then Tu = u|∂! and

∫

I

|v − vε | dLn−1 "1
ε

∫ ε

0

∫

I

|ũ ◦ 2 − ũ ◦ 2t | dLn−1 dt

"1
ε

∫ ε

0

∫

I

∫ φt (y)

φ(y)
|∂sn ũ(y,φτ (y))| dτ dLn−1(y) dt

"
∫

Rε

|X̃ ũ| dLn " C1|Xu|(G(Rε)) .

(5.39)

For a generic u ∈ BVX (!), thanks to Corollary 5.5 we can fix a sequence (uk)k ⊂
C∞(!) ∩ C0(!) ∩ BVX (!) such that

uk → u in L1(!) and |Xuk |(!) → |Xu|(!) .

Set ũk := uk ◦ G and

vk := (Tuk) ◦ G ◦ 2, vε
k := 1

ε

∫ ε

0

ũk ◦ 2t dt .

By Lemma 5.7 we have vε
k → vε in L1(I ), thus for any + = 1, . . . ,m

vε
kρ+ → vερ+ in L

1(I ) as k → ∞ (5.40)

because ρ+ ∈ L∞(I ). Moreover, for any g ∈ C1c (Rn, Rm), |g| " 1 we have by

Lemma 2.5

lim
k→∞

∫

!
〈g, σuk 〉 d|Xuk | =

∫

!
〈g, σu〉 d|Xu|

and by (1.2)

lim
k→∞

∫

∂!
〈g, ν!〉Tuk d|∂!|X = lim

k→∞

[ ∫

!
ukdivX g dLn +

∫

!
〈g, σuk 〉 d|Xuk |

]

=
∫

!
u divX g dLn +

∫

!
〈g, σu〉 d|Xu|

=
∫

∂!
〈g, ν!〉Tu d|∂!|X

This implies that for any + = 1, . . . ,m

(ν!)+ Tuk |∂!|X → (ν!)+ Tu|∂!|X as k → ∞



990 DAVIDE VITTONE

in the sense of distributions, whence, as k → ∞,

vkρ+ converge to vρ+ in the sense of distributions on I . (5.41)

Indeed, for any ψ ∈ C∞
c (I ) one can find hψ ∈ C∞

c (I × (−a, a)) such that

ψ = hψ ◦ 2 on I

thus

lim
k→∞

∫

I

ψ vkρ+ dLn−1 = lim
k→∞

∫

I

(hψ ◦ 2) vkρ+ dLn−1

= lim
k→∞

∫

∂!∩Q
(hψ ◦ G−1)(ν!)+ Tuk d|∂!|X

=
∫

∂!∩Q
(hψ ◦ G−1)(ν!)+ Tu d|∂!|X

=
∫

I

ψ vρ+ dLn−1 .

By (5.40) and (5.41) we get that, for any + = 1, . . . ,m, (vk − vε
k )ρ+ converges to

(v − vε)ρ+ in the sense of distributions on I . This implies that

∫

I

|v − vε ||ρ| dLn−1 = sup
ψ∈C∞

c (I,Rm)
|ψ |!1

∫

I

(v − vε)〈ρ,ψ〉 dLn−1

" lim inf
k→∞

∫

I

|vk − vε
k ||ρ| dLn−1

whence by (5.39) and Lemma 2.4

∫

I

|v − vε | "C2
∫

I

|v − vε ||ρ| dLn−1 " C2 lim inf
k→∞

∫

I

|vk − vε
k ||ρ| dLn−1

"C3 lim inf
k→∞

∫

I

|vk − vε
k | dLn−1 " C4 lim inf

k→∞
|Xuk |(G(Rε))

"C4|Xu|(G(Rε)) .

We can now prove the continuity of the trace operator under strict convergence.

Proof of Theorem 5.6. As we said, it is enough to prove (5.37) for any fixed i =
1, . . . , q. For ε > 0 small enough we define the real functions on I

v := Tu ◦ G ◦ 2 vk := Tuk ◦ G ◦ 2,

vε := 1
ε

∫ ε
0 u ◦ G ◦ 2t dt, vε

k := 1
ε

∫ ε
0 uk ◦ G ◦ 2t dt .
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We have
∫

I

|v − vk | dLn−1 "
∫

I

|v − vε | dLn−1+
∫

I

|vε − vε
k | dLn−1+

∫

I

|vε
k − vk | dLn−1

and by (5.38), Lemma 5.7 and Lemma 2.4

lim sup
k→∞

∫

∂!∩Q
|Tu − Tuk | d|∂!|X "C1 lim sup

k→∞

∫

I

|v − vk | dLn−1

"C2|Xu|(G(Rε)) + lim sup
k→∞

C2|Xuk |(G(Rε))

"2C2|Xu|(G(Rε)) .

(5.42)

Notice that, if ! ∩Q = { f < 0}, one could reason as before to get

lim sup
k→∞

∫

∂!∩Q
|Tu − Tuk | d|∂!|

X̂
" 2C2|X̂u|(G(Rε)) = 2C2|Xu|(G(Rε))

where X̂ = (X1, . . . ,−X j , . . . , Xm) (see also the proof of Theorem 1.4, Step 3).
Thus (5.42) holds also in this second case and (5.37) follows as ε → 0.

5.4. Traces vs. approximate limits in equiregular CC spaces

This final part of the paper is devoted to the proof of Theorem 1.6.

Proof of Theorem 1.6. Let Q1, . . . ,Qq be the open sets considered in the proof of

Theorem 1.4. We can fix open subsetsQ′
i # Qi such that

∂! ⊂ ⋃q

i=1Q′
i . (5.43)

Fix i ∈ {1, . . . , q} and write Q = Qi ,Q′ = Q′
i . By (5.43), it will be enough to

prove that (1.5) holds for |∂!|X -a.e. z ∈ ∂! ∩Q′.
Let f, j be as in the proof of Theorem 1.4, so that

∂! ∩Q = { f = 0}, f ∈ C∞(Q \ ∂!), l := inf
Q\∂!

X j f > 0 .

As usual we assume that ! ∩Q = { f > 0} and consider later the case ! ∩Q =
{ f < 0}. With this assumption we can fix the corresponding

I, a,G,φ,φε,2,2ε, f̃ ,!ε, !̃, !̃ε, X̃+, X̃ , ρ, ρε

considered in the proof of Theorem 1.4. Without loss of generality we may assume

that Q′ = G(I ′ × (−b, b)) for suitable open set I ′ # I and b ∈ (a/2, a). Let L
be the Lipschitz constant of f , πI the canonical projection I × (−a, a) → I and

consider R > 0 such that B(z, (1+ L
l
)R) ⊂ Q for any z ∈ Q′.
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Let z ∈ ∂! ∩Q′ be fixed. Since |X f | ! l, for any r < R one has

∫

!∩B(z,r)
|u − Tu(z)| dLn "C1

∫

!∩B(z,r)
|u − Tu(z)||X f | dLn

=C1
∫ Lr

0

∫

∂!t∩B(z,r)
|u − Tu(z)|d|∂!t |Xdt,

(5.44)

where we have used the coarea formula and the fact that f < Lr on B(z, r) which,
in turn, is due to the Lipschitz continuity of f and the equality f (z) = 0. Let us

define

z̃ := G−1(z) = (z′,φ(z′)) ∈ ∂!̃, where z′ := πI (G
−1(z)),

B̃(z̃, r) := G−1(B(z, r)),
ũ := u ◦ G,

v := (Tu) ◦ G ◦ 2 ∈ L1(I ).

Then, by (5.44), Proposition 4.5 and Remark 4.8

∫

!∩B(z,r)
|u − Tu(z)| dLn "C1

∫ Lr

0

∫

πI (∂!̃t∩B̃(z̃,r))
|ũ ◦ 2t − v(z′)||ρt | dLn−1 dt

"C2
∫ Lr

0

∫

πI (∂!̃t∩B̃(z̃,r))
|ũ ◦ 2t − v(z′)| dLn−1 dt

"C2
∫ Lr

0

∫

πI (∂!̃t∩B̃(z̃,r))
|ũ ◦ 2t − v| dLn−1 dt

+ C2

∫ Lr

0

∫

πI (∂!̃t∩B̃(z̃,r))
|v − v(z′)| dLn−1 dt.

(5.45)

We are going to estimate separately the two integrals on the right hand side.

Step 1. Let us estimate the first integral in the right hand side of (5.45) assuming
first that u ∈ BVX (!) ∩ C∞(!) ∩ C0(!), so that v = ũ ◦ 2. For any t ∈ (0, Lr)
we have

∫

πI (∂!̃t∩B̃(z̃,r))
|ũ ◦ 2t − v| dLn−1

"
∫

πI (∂!̃t∩B̃(z̃,r))

∫ φt (y)

φ(y)
|∂sn ũ(y, σ )| dσ dLn−1(y)

"
∫

{0< f̃<t}∩π−1
I (πI (∂!̃t∩B̃(z̃,r)))

|X̃ ũ| dLn.

(5.46)
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Notice that, if s ∈ {0 < f̃ < t} ∩ π−1
I (πI (∂!̃t ∩ B̃(z̃, r))), then s = (y,φτ (y)) =

2τ (y) for some y ∈ πI (∂!̃t ∩ B̃(z̃, r)) and τ ∈ (0, t). We have by Lemma 2.2

Lr > t − τ = f̃ (2t (y)) − f̃ (2τ (y))

= f̃ (2t (y)) − f̃
(
exp((φτ (y) − φt (y))∂sn )(2t (y))

)

! l(φt (y) − φτ (y)) > 0 .

(5.47)

Since G(2τ (y)) = exp
(
(φτ (y) − φt (y))X j

)(
G(2t (y))

)
, by (5.47) and the defini-

tion of Carnot-Carathéodory distance

d
(
G(2t (y)),G(2τ (y))

)
" |φt (y) − φτ (y)| " L

l
r .

Since y ∈ πI (∂!̃t ∩ B̃(z̃, r)) we have

G(2t (y)) ∈ B(z, r), i.e., d(z,G(2t (y))) < r

and in particular

G(2τ (y)) ∈ B
(
z, (1+ L

l
)r

)
. (5.48)

This implies that s = 2τ (y) ∈ B̃(z̃, (1+ L
l
)r) and thus

{0 < f̃ < t} ∩ π−1
I (πI (∂!̃t ∩ B̃(z̃, r))) ⊂ !̃ ∩ B̃(z̃, (1+ L

l
)r) .

From (5.46) and a change of variable we obtain

∫

πI (∂!̃t∩B̃(z̃,r))
|ũ ◦ 2t − v| dLn−1 "

∫

!̃∩B̃(z̃,(1+L/ l)r)
|X̃ ũ| dLn

"C3
∫

!∩B(z,(1+L/ l)r)
|Xu| dLn

whence

∫ Lr

0

∫

πI (∂!̃t∩B̃(z̃,r))
|ũ◦2t−v|dLn−1 dt " C4r |Xu|

(
!∩B(z, (1+ L

l
)r)

)
. (5.49)

Step 2. We have proved in Step 1 that, if t ∈ (0, Lr), y ∈ πI (∂!̃t ∩ B̃(z̃, r)) and
τ ∈ (0, t), then

d(z,G(2τ (y))) < (1+ L
l
)r .

One could check that the same argument works also for τ = 0 (it suffices to inspect

the steps between (5.47) and (5.48) reading φ0 = φ and 20 = 2) and gives

d(z,G(2(y))) < (1+ L
l
)r ,
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i.e., (y,φ(y)) ∈ ∂!̃ ∩ B̃(z̃, (1+ L
l
)r). This implies that

πI (∂!̃t ∩ B̃(z̃, r)) ⊂ πI (∂!̃ ∩ B̃(z̃, (1+ L
l
)r))) .

Therefore we can estimate the second integral in the right hand side of (5.45) with
∫ Lr

0

∫

πI (∂!̃t∩B̃(z̃,r))
|v − v(z′)| dLn−1 dt

"Lr

∫

πI (∂!̃∩B̃(z̃,(1+ L
l
)r))

|v − v(z′)| dLn−1

"C5r
∫

πI (∂!̃∩B̃(z̃,(1+ L
l
)r))

|v − v(z′)||ρ| dLn−1

=C5r
∫

∂!∩B(z,(1+ L
l
)r))

|Tu − Tu(z)| d|∂!|X .

(5.50)

Step 3. It follows from (5.45), (5.49) and (5.50) that, if u ∈ BVX (!) ∩ C∞(!) ∩
C0(!), then

∫

!∩B(z,r)
|u − Tu(z)| dLn

"C6r
[
|Xu|

(
! ∩ B(z, (1+ L

l
)r)

)
+

∫

∂!∩B(z,(1+ L
l
)r))

|Tu − Tu(z)| d|∂!|X
]

(5.51)

for any r < R. For a generic u ∈ BVX (!) consider a sequence (uk)k ⊂ BVX (!)∩
C∞(!) ∩ C0(!) such that

uk → u in L1(!) and |Xuk |(!) → |Xu|(!) .

By Theorem 5.6 it follows that Tuk → Tu in L1(∂!, |∂!|X ) and, in particular,
Tuk → Tu pointwise |∂!|X -a.e. on ∂!. If z ∈ ∂! ∩Q′ is such that Tuk(z) →
Tu(z), we obtain by (5.51) and Lemma 2.4

1

r Q

∫

!∩B(z,r)
|u − Tu(z)| dLn = 1

r Q
lim
k→∞

∫

!∩B(z,r)
|uk − Tuk(z)| dLn

" C6

r Q−1 lim sup
k→∞

[
|Xuk |

(
! ∩ B(z, (1+ L

l
)r)

)

+
∫

∂!∩B(z,(1+ L
l
)r))

|Tuk − Tuk(z)| d|∂!|X
]

" C6

r Q−1

[
|Xu|

(
! ∩ B(z, (1+ L

l
)r)

)
+

∫

∂!∩B(z,(1+ L
l
)r))

|Tu − Tu(z)| d|∂!|X
]

" C6

r Q−1

[
|Xu|

(
! ∩ B(z, 2(1+ L

l
)r)

)
+

∫

∂!∩B(z,(1+ L
l
)r))

|Tu − Tu(z)| d|∂!|X
]
.

(5.52)
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It is a good point to notice that, in case ! ∩ Q = { f < 0}, we would get for
|∂!|

X̂
-a.e. point z ∈ ∂! ∩Q′

1

r Q

∫

!∩B̂(z,r)
|u − Tu(z)| dLn

" C6

r Q−1

[
|X̂u|

(
! ∩ B̂(z, 2(1+ L

l
)r)

)
+

∫

∂!∩B̂(z,(1+ L
l
)r))

|Tu − Tu(z)| d|∂!|
X̂

]

where as usual X̂ = (X1, . . . ,−X j , . . . , Xm) and we denote by B̂ open balls with

respect to the CC distance induced by X̂ . The previous inequality implies (5.52)

because this distance obviously coincides with the one induced by X . See also the

proof of Theorem 1.4, Step 3.

By Lemma 4.16 we obtain that for |∂!|X -a.e. z ∈ ∂! ∩Q′

lim
r→0+

|Xu|
(
! ∩ B(z, 2(1+ L

l
)r)

)

r Q−1 = 0 (5.53)

while from the Ahlfors regularity of |∂!|X and Lebesgue Theorem (see e.g. [27,

Corollary 2.9.9]) one has for |∂!|X -a.e. z ∈ ∂! ∩Q′

lim
r→0+

1

r Q−1

∫

∂!∩B(z,(1+ L
l
)r))

|Tu − Tu(z)| d|∂!|X

" lim
t→0+

∫
!

∂!∩B(z,(1+ L
l
)r))|Tu − Tu(z)| d|∂!|X = 0 .

(5.54)

Equality (1.5) follows from (5.52), (5.53) and (5.54), while (1.6) is a consequence

of (1.5) and Lemma 4.15.
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Carathéodory spaces, J. Geom. Anal. 16 (2006), 455–497.

[18] L. CAPOGNA, N. GAROFALO and D.-M. NHIEU, A version of a theorem of Dahlberg for
the subelliptic Dirichlet problem, Math. Res. Lett. 5 (1998), 541–549.

[19] L. CAPOGNA, N. GAROFALO and D.-M. NHIEU, Properties of harmonic measures in the
Dirichlet problem for nilpotent Lie groups of Heisenberg type, Amer. J. Math. 124 (2002),
273–306.

[20] L. CAPOGNA, N. GAROFALO & D.-M. NHIEU, Mutual absolute continuity of harmonic
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