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Introduction

The aim of this paper is to provide a positive-mass theorem in the realm of asymp-

totically complex hyperbolic Kähler manifolds, extending previous results by M.

Herzlich [11] and Boualem-Herzlich [7]. Before explaining them, let us recall the

history of the subject.

The classical positive-mass theorem finds its roots in general relativity [3] and

deals with asymptotically Euclidean manifolds, namely complete Riemannian man-

ifolds (Mn, g) whose geometry at infinity tends to that of the flat Euclidean space:
M is diffeomorphic to Rn outside a compact set and g goes to gRn at infinity. Un-

der a non-nengativity assumption on the curvature (Scalg ≥ 0), the positive-mass

theorem roughly asserts that such manifolds possess a global Riemannian invariant,

which is called a mass, which is obtained by computing the limit of integrals over

larger and larger spheres, which is a non-negative number and which vanishes only

when the manifold is isometric to the model flat space. This “Euclidean mass” is

given in some chart at infinity by

µg = −1
4
lim

R−→∞

∫

SR
∗ (div g + d Tr g) , (0.1)

where the sphere, Hodge star, the divergence and the trace are defined with respect

to the Euclidean metric gRn at infinity. It is not obvious that this quantity depends

only on g and not on the chart but [4] proved it. We refer to [4, 16, 22, 23, 25] for
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details and “classical” proofs and to [17] for a more recent and more general treat-

ment. The mathematical interest of such a theorem is the rigidity result it involves:

under a non-negativity assumption on the curvature, it asserts a model metric at in-

finity (the Euclidean metric, here) cannot be approached at any rate, the obstruction

being precisely the mass. Another striking feature of this theorem is its role as a key

step in the first proof of the Yamabe theorem [16]; see also [24] for a nice applica-

tion of the positive-mass theorem to obtain a rigidity result for compact manifolds

with boundary.

It is possible to extend the ideas behind this theorem in several contexts, in-

volving different models at infinity. The authors of [1, 8, 19] studied the case of

manifolds whose model at infinity is the real hyperbolic space RHn . More sophis-

ticated models are also considered in [9, 18]. The notion of real hyperbolic mass

introduced in [8] is at the very root of our work so we need to explain what it looks

like (note that it is more general than what follows). Basically, while the Euclidean

mass (0.1) is a single number, the real hyperbolic mass naturally appears as a linear

functional on some finite-dimensional vector spaceN , attached to the model at in-
finity, RHn . More precisely, [8] defines N as the set of functions u on RHn such

that HessRHn u = ugRHn and the mass linear functional is given by

µg(u) = −1
4
lim

R−→∞

∫

SR
∗
[
(div g+d Tr g) u−Tr(g − gRHn )du

+ (g − gRHn )(grad u, .)

]
,

(0.2)

where the right-hand side is computed with respect to the real hyperbolic metric

gRHn at infinity. It turns out thatN can be interpreted as the set of parallel sections

for some natural vector bundle E , endowed with a natural connection ∇RH preserv-

ing a natural Lorentz metric h: if you see RHn as a hypersurface in Minkowski

space Rn,1, then (E, h) is simply the restriction of the tangent bundle TRn,1 and

∇RH is induced by the flat connection on Minkowki space; from this point of view,

N naturally identifies withRn,1. We will give more details on this picture in the first

section of this text and explain why it is natural that the mass belongs to the dual

of this space N and why the formula above is a relevant geometric invariant. The

basic idea is that any Riemannian manifold carries a natural connection ∇RH that

is flat if and only if the manifold is (locally) hyperbolic; the mass naturally appears

as an obstruction to the construction of parallel sections for this connection.

The model at infinity we wish to consider is the complex hyperbolic space

CHm , which is a counterpart of the real hyperbolic space RHn in complex geom-

etry. Up to scale, it is indeed the unique simply-connected complete Kähler man-

ifold with constant holomorphic sectional curvature. To be concrete, let us recall

that CHm can be seen as the unit ball in Cm , endowed with its standard complex

structure J and with the Kähler metric

gCHm = 1

(1− s2)2

(
ds2 + (Jds)2 + s2(1− s2)gFS

)
,
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where s is the radial coordinate in Cm and gFS is the Fubini-Study metric of

CPm−1, pulled-back to Cm\{0}. Setting s = tanh r , we obtain CHm as the com-

plex manifold Cm endowed with

gCHm = dr2 + (sinh 2r)2η2 + (sinh r)2gFS

where η = − Jdr
sinh 2r

is the standard contact form on S2m−1. This is an Einstein met-
ric with scalar curvature −4m(m + 1), and the holomorphic sectional curvature is
−4. The most useful description ofCHm for us is yet another one. LetCm,1 denote

the vector space Cm+1 endowed with a Hermitian form h of (complex) signature

(m, 1). Then the level set h = −1 in Cm,1, endowed with the induced metric, is a

well-known Lorentz manifold, called Anti-de-Sitter space AdS2m,1. The quotient of

AdS2m,1 by the scalar action of S1 is then a Riemannian manifold and it is precisely
CHm .

In this paper, we define asymptotically complex hyperbolic manifolds as com-

plete Kähler manifolds (M2m, g, J ) such that:

(i) M minus a compact subset is biholomorphic to CHm minus a ball and,

(ii) through this identification, g − gCHm = O(e−ar ) with a > m + 1
2
(in C1,α).

Note that the definition in [11], while apparently weaker, is indeed equivalent (cf.

the remark after Definition 3.1). The papers [7, 11] prove rigidity results about

asymptotically complex hyperbolic manifolds that look like the rigidity part (the

vanishing-mass part) of a positive-mass theorem. What is the mass in this setting?

In complete analogy with the real hyperbolic case, we will see the mass as

a linear functional on some natural finite-dimensional vector space N attached to

the model at infinity, CHm . This vector space N is best described as a set of

parallel sections for some natural connection ∇CH on some natural vector bundle E
over CHm . The vector bundle E is indeed#2

JCHm ⊕ TCHm ⊕R and the relevant

connection comes from the flat connection onCm,1. Details will be given in the text.

To keep this introduction short, let us just point out thatN naturally identifies to the

vector space #2
JCm,1 of J -invariant 2-forms on Cm,1 and also admits a description

as the set of functions u satisfying a natural third-order equation. Then we define

the complex hyperbolic mass by

µg(u) = −1
4
lim

R−→∞

∫

SR
∗

[
(div g + d Tr g) u − 1

2
Tr(g − gCHm )du

]
, (0.3)

where everything on the right-hand side is computed with respect to the complex

hyperbolic metric gCHm at infinity. The following positive-mass theorem holds in

this context.

Theorem 0.1. Let (M, g, J ) be a spin asymptotically complex hyperbolic mani-
fold with Scalg ≥ ScalgCHm . When the complex dimension of M is even, we also

assume that M is contractible. Then µg is a well-defined linear functional, up to

an automorphism of the model. It vanishes if and only if (M, g, J ) is the complex
hyperbolic space.
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The mass also satisfies a non-negativity property: it takes non-negative values

on some distinguished orbits of the action of PU(m, 1). Under these assumptions,
the mass may very well take infinite values: we then decide that is infinite and

the finiteness of the mass does not depend on the choice of the chart at infinity.

A simple criterion for the mass to be finite is that the rate of fall-off to the model

metric at infinity be sufficiently fast: a ≥ 2m + 1. A consequence of the positive-

mass theorem is that if a > 2m + 1, then (M, g, J ) is complex hyperbolic; this is
the object of [7, 11]. Our viewpoint yields a different proof, maybe more direct.

The spin assumption is classical: we need spinors to implement Witten’s tech-

niques [25]. The additional topological assumption in the even-dimensional case

is quite technical but could be weakened; we refer to the text for a more precise

statement. This assumption was already used in [7]. Basically, Witten’s techniques

require some “special” spinors to exist on the model. Complex hyperbolic spaces of

odd dimension possess such distinguished spinors, called Kählerian Killing spinors.

Such spinors do not exist in the even-dimensional case, so we need an extra trick.

This has a cost: an additional assumption.

Let us make a general remark. The previous positive-mass theorems were very

related to – if not completeley immerged into – physical ideas. The asymptotically

complex hyperbolic realm does not share this feature (yet). We feel it is all the

more interesting to observe that the very physical idea of a positive-mass theorem

carries over to purely mathematical settings. It might indicate that there is a general

mechanism, waiting for new applications.

The structure of the paper is as follows. In the first section we will discuss

the real hyperbolic case and explain how the introduction of a natural hyperbolic

connection gives a slightly different proof of the hyperbolic positive mass theorem

in [8]. This case will also serve as a helpful guide for the complex case. In the sec-

ond section we will introduce the complex hyperbolic connection and describe its

basic features and in particular how it interacts with the so-called Kählerian Killing

spinors. The third section is devoted to the proof of the complex hyperbolic positive

mass theorem in odd complex dimensions. The short fourth section will describe

how to extend these arguments to the even-dimensions. Finally, an appendix de-

scribes an example.

ACKNOWLEDGEMENTS. The authors would like to thankMarc Herzlich for bring-

ing the problem to their attention, but also Olivier Biquard, Elisha Falbel and Paul

Gauduchon for useful discussions.

1. The real hyperbolic case

In this section we briefly review some aspects of [8]. The result mentioned here

is not new, but we feel that the reformulation we propose might be useful. It is

indeed quite simple and turns out to generalize to the complex hyperbolic setting.
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The basic question we address is the following: given a Riemannian manifold that

looks like the hyperbolic space, how can one ensure that it is actually the hyperbolic

space? The approach suggested here consists in finding a connection characterizing

the hyperbolic space, in that it is flat only on a (locally) hyperbolic manifold, and

then try to build parallel sections for this connection.

Let us start with a Riemannian manifold (Mn, g). We consider the vector
bundle E = T ∗M ⊕ R obtained as the sum of the cotangent bundle and of the

trivial real line bundle. It can be endowed with a natural Lorentz metric h: for

α ∈ T ∗
x M and u ∈ R, we set

h(α, u) = |α|2g − u2.

We will say that an element (α, u) of E is future light-like if h(α, u) = 0 and u > 0.

We then define a connection ∇RH on E : if (α, u) is a section of E and X a vector
field on M ,

∇RH
X

(
α
u

)
:=

(
∇g
Xα − ug(X, .)
dXu − α(X)

)
.

This connection is metric with respect to h. Moreover, an easy computation shows

that its curvature vanishes if and only if g has sectional curvature−1, which is why
we call this connection hyperbolic. In case (M, g) is (RHn, gRHn ), this construc-
tion is clear: RHn is embedded into Minkowski space Rn,1 as the hypersurface

{
x ∈ Rn+1 / x21 + · · · + x2n − x2n+1 = −1 and xn+1 > 0

}
;

then E = ERHn identifies with TRn,1|RHn , h is induced by the Minkowski metric

and ∇RH by the flat Minkowski connection.

Remark 1.1. This construction admits an obvious spherical analogue. On the same

vector bundle, one can consider the obvious positive definite metric and change a

sign in the formula for the connection to make it metric, which results in a spherical

connection : it is flat if and only if (M, g) is locally isometric to the sphere with
constant sectional curvature +1.

Observe also that a section (α, u) of E is parallel for this connection if and only
if α = du and Hessg u = ug. We callN the space of parallel sections for ∇RH and

N+ the subset of future light-like elements of N . Observe that in the model case,
NRHn identifies with Rn,1 andN+

RHn is simply the future isotropic half-cone.

Remark 1.2. The spherical analogue yields the equation Hessg u = −ug, which
is called Obata equation and has been much studied ([10, 21]), in relation with the

bottom of the spectrum of Riemannian manifolds with Ric ≥ RicSn . Obata equation
admits a non-trivial solution only on the standard sphere.

We are interested in trying to produce parallel sections of E . To do this, we
follow an indirect path, assuming M to be spin and looking at a related spinorial
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connection. A Killing spinor ψ on a spin Riemannian manifold (M, g) is a section
of the spinor bundle such that

∇gψ + i

2
ψ = 0.

The space of Killing spinors is denoted by K. The following crucial observation
follows from a straightforward computation:

∇gψ + i

2
ψ = 0 ⇒ ∇RH

(
d |ψ |2g
|ψ |2g

)
= 0. (1.1)

In other words, we obtain a map Q : K −→ N by setting Q(ψ) = (d |ψ |2 , |ψ |2).
To understand the relevance of Killing spinors, we must describe them on the

model RHn: basically, they are induced by the constant spinors of Rn,1 and they

trivialize the spinor bundle of RHn [8]. Using explicit formulas (cf. [8]), one can

see thatN+
RHn lies inside QRHn (KRHn ); indeed, it is sufficient to prove that one of

the Killing spinors is mapped into N+
RHn and then use the equivariance of Q with

respect to the natural actions of O+(n, 1), together with the transitivity of O+(n, 1)
onN+

RHn .

Now assume the complete Riemannian manifold (M, g) is asymptotically hy-
perbolic in the following sense: M minus a compact is diffeomorphic toRHn minus

a ball and, through this diffeomorphism, g = gRHn + O(e−ar ) with a > n+1
2
in

C1,α (r is the distance to some point in RHn). We further assume that the scalar

curvature Scalg of (M, g) is greater than or equal to ScalgRHn . Then [8] proves that

for any Killing spinor ψ on RHn , one can find a unique spinor ψ̃ that is asymp-

totic to ψ and harmonic for some natural Dirac operator. A Witten’s like argument,

based on Lichnerowitz formula, then leads to

∫

M

(∣∣∣∣∇gψ̃ + i

2
ψ̃

∣∣∣∣
2

+ 1

4

(
Scalg −ScalgRHn

) ∣∣∣ψ̃
∣∣∣
2
)

= lim
R→∞

∫

SR
. . . (1.2)

The right-hand side can be computed explicitly: it is

µg (QRHn (ψ)) = −1
4
lim

R−→∞

∫

SR
∗
[
(div g + d Tr g) |ψ |2

−Tr(g − gRHn )du + (g − gRHn )(d |ψ |2 , .)
]
,

where the sphere, the Hodge star, the divergence, the trace and the identification

between vectors and forms on the right-hand side are taken with respect to gRHn .

Since N+
RHn ⊂ QRHn (KRHn ), it follows that µ yields a linear functional on the

linear span of N+
RHn , namely on NRHn ∼= Rn,1. In view of (1.2), it is clearly non-

negative on N+
RHn . Besides, if µ vanishes, the left-hand side of (1.2) is zero, so
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that every ψ̃ is a Killing spinor on (M, g); then, in view of (1.1), for any element
σ = QRHn (ψ) ofN+

RHn , there is an element σ̃ = Qg(ψ̃) ofNg that is asymptotic

to σ . As a consequence, Ng has maximal dimension, which implies that (M, g) is
(locally) hyperbolic. In view of its asymptotic, it is bound to be RHn .

Theorem 1.3 ([8]). Let (Mn, g) be an asymptotically hyperbolic spin manifold,
with Scalg ≥ ScalgRHn . Then the linear functional µg on NRHn introduced above

is well-defined up to an automorphism of RHn , it is non-negative on N+
RHn and it

vanishes if and only if (Mn, g) is isometric to RHn .

The fact that the orbit of µg under the action of O
+(n, 1) does not depend

on the chart at infinity is not obvious but is proved in [8]. Under our assump-

tions, µg may take infinite values (i.e. formula (1.2) may be +∞ for some ψ) and
this does not depend on the chart at infinity, so we actually obtain an element of

(NRHn )∗/O+(n, 1) ∪ {∞}.
Remark 1.4. The standard positive-mass theorem, about asymptotically Euclidean

metrics, can be thought of in a similar way. Let M be a spin asymptotically Eu-

clidean manifold with non-negative scalar curvature. Witten’s trick consists in try-

ing to build parallel spinors ψ̃ on M that are asymptotic to the constant spinors ψ
of the Euclidean space Rn . Now every constant one-form on Rn can be written

as X -→ i(X · ψ,ψ). So the rigidity part of the Euclidean positive-mass theorem
can be explained as follows: starting from a constant one-form α on Rn , we pick

a constant spinor ψ such that α(X) = (X · ψ,ψ); an analytical argument (based
on µg = 0) provides a parallel spinor ψ̃ on M asymptotic to ψ , hence a parallel

one-form α̃, given by α̃(X) = (X · ψ̃, ψ̃), that is asymptotic to α; this yields a
parallel trivialization of the cotangent bundle of M , so M is flat and is therefore

Rn , owing to its asymptotic shape. The mass is the obstruction to do this. It is a

single number µ, but if we wish to make it fit into our picture, we might as well
interpret it as a linear functional on the space of parallel sections of the flat bundle

ERn := T ∗Rn ⊕ R: (α, u) -→ µu. The bundle EM := T ∗M ⊕ R, endowed with the
Levi-Civita connection on T ∗M and the flat connection on the R-part, is of course
flat if and only if M is flat, so the formalism described above still works.

2. A complex hyperbolic connection

2.1. The connection

Let (Mm, g, J ) be a Kähler manifold of complex dimension m. We wish to in-
troduce a “complex hyperbolic connection” characterizing the complex hyperbolic

geometry, in complete analogy with the real hyperbolic connection ∇RH described

in section 1. This is given by the following definition. The Kähler form is denoted

by & := g(., J.). We will often identify vectors and covectors thanks to the met-
ric g. With our convention, if (e1, Je1, . . . , em, Jem) is an orthonormal basis, then
& = ∑m

k=1 Jek ∧ ek .



882 DANIEL MAERTEN AND VINCENT MINERBE

Definition 2.1. Let E := #2
J M ⊕ T ∗M ⊕ R be the vector bundle obtained as the

direct sum of the bundle #2
J M of J -invariant 2-forms, of the cotangent bundle and

of the trivial (real) line bundle. We endow E with the connection ∇CH defined by

∇CH
X




ξ
α
u



 :=



∇g
Xξ + 1

2
(X ∧ α + J X ∧ Jα)

∇g
Xα + 2ιX (ξ + u&)
dXu + Jα(X)



 .

The connection ∇CH preserves a pseudo-Riemannian structure h on E , with signa-
ture (m2 + 1, 2m) and given by h(ξ,α, u) = |ξ |2g + u2 − |α|2g

2
.

This connection ∇CH is very related to the study of Hamiltonian two-forms

in [2], where a similar but more sophisticated connection is introduced. Let us

explain why this connection is natural. In analogy with section 1, we expect its

curvature to measure the deviation from the complex hyperbolic geometry (in the

spirit of Cartan’s connections). In order to write down an explicit formula for the

curvature, we introduce an algebraic operation: if X and Y are two vectors and γ is
an exterior form, we set:

CX,Y (γ ) := (X ∧ ιY γ − Y ∧ ιXγ ) + (J X ∧ ιJY γ − JY ∧ ιJ Xγ ).

Proposition 2.2. The curvature of ∇CH is given by

Rm∇CH

X,Y =



Rm∇

X,Y −CX,Y 0 0

0 Rm∇
X,Y −

[
2&(X,Y )J + CX,Y

]
0

0 0 0



 .

It follows that Rm∇CH
vanishes if and only if the holomorphic sectional curvature

is −4. In other words, (EM,∇CH ) is flat if and only if the universal cover of
(Mm, g, J ) is the complex hyperbolic space CHm of holomorphic sectional curva-

ture −4.
The proof of this formula is a straightforward computation, which we omit.

The link with the curvature of the complex hyperbolic space is explained in [14,

Paragraph IX.7] (where the sign convention is the opposite of ours).

Remark 2.3. By changing ∇g
Xα + 2ιX (ξ + u&) into ∇g

Xα − 2cιX (ξ + u&) in the
formula for the connection, it is possible to obtain a family of connections charac-

terizing every constant holomorphic curvature 4c (in particular: complex projective

spaces).

The parallel sections (ξ,α, u) for ∇CH obey α = Jdu and ξ = −1
2
∇gα − u&

so that they are determined by their third component u, which satisfies the third

order equation

∀ X ∈ T M, ∇g
X Hessg u = 2du(X) + X 0 du + J X 0 Jdu,
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where a 0 b means a ⊗ b + b ⊗ a. We will denote by N the space of parallel

sections of (E,∇CH ). We will also need the subspace

N0 := {(ξ,α, u) ∈ N / g(ξ,&) = u} (2.1)

whose relevance will be clear from Paragraph 2.2.

Remark 2.4. The complex projective analogue (c = +1 in Remark 2.3) of this
third order equation appears in Obata’s work [21]: on a simply-connected manifold,

it possesses a solution if and only if the manifold is the complex projective space of

holomorphic sectional curvature 4.

2.2. The model case

We wish to describe the case where M = CHm . We start from the complex vector

space Cm+1, m ≥ 2, endowed with the Hermitian form 〈 · , · 〉 defined by

〈z, z〉 =
m∑

k=1
|zk |2 − |zm+1|2 .

We denote this space by Cm,1 or R2m,2 (whose metric structure is preserved by

the standard complex structure J ). The level set 〈z, z〉 = −1, endowed with the
restriction of 〈, 〉 is by definition the Anti-de-Sitter space, AdS2m,1, a Lorentz mani-

fold with constant sectional curvature−1, invariant under the natural (scalar) action
of S1 on Cm+1. The complex hyperbolic space CHm is the quotient AdS2m,1/S1,
endowed with the induced metric:

AdS2m,1 ⊂ Cm,1

↓
CHm

Let ν be the position vector field in Cm+1, identified also with the dual one-form
〈ν, · 〉. By definition of AdS2m,1, 〈ν, ν〉 = −1 along AdS2m,1 and the tangent bundle

T AdS2m,1 is exactly the orthogonal subspace to ν for 〈 · , · 〉. Besides, the vector
field Jν is tangent to the action of S1 and obeys 〈Jν, Jν〉 = −1. If π is the

projection of AdS2m,1 onto CHm , it follows that at each point of AdS2m,1, dπ is an
isometry between {ν, Jν}⊥ and the tangent space of CHm .

To understand E = E(CHm), we pick a point z in AdS2m,1 and look at the

map θz : Eπ(z) −→
(
#2
JR2m,2

)
z
given by

θz(ξ,α, u) = (dπz)
∗ξ + u(π(z)) Jν ∧ ν + ν ∧ (dπz)

∗α + Jν ∧ J (dπz)
∗α

2
.

It is a R-linear isomorphism and we have

〈θz(ξ,α, u), θz(ξ,α, u)〉 = |ξ |2π(z) + u(π(z))2 − 1

2
|α|2π(z) = hπ(z) (ξ,α, ν).
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Setting -z := θ−1
z we obtain a bundle map - that is S1-invariant and satisfies the

commutative diagram

#2
JR2m,2 -−−−−→ E

:
:

AdS2m,1 π−−−−→ CHm

In this way, in the case ofCHm , the metric h preserved by∇CH simply comes from

〈, 〉, via -. At the level of sections, - yields an isomorphism

.(E) ∼= .
(
#2
JR2m,2|AdS2m,1

)S1

where the right-hand side denotes the S1-invariant sections of the bundle obtained
by restricting #2

JR2m,2 to AdS2m,1. This isomorphism identifies σ = (ξ,α, u) ∈
.(E) with the S1-invariant 2-form

-∗σ = π∗ξ + π∗u Jν ∧ ν + ν ∧ π∗α + Jν ∧ Jπ∗α
2

.

The bundle #2
JR2m,2|AdS2m,1 carries a natural connection D, inherited from the

standard flat connection on R2m,2. The real and imaginary parts of the differen-

tial forms dzk ∧ dz̄l , restricted to AdS
2m,1, trivialize the bundle #2

JR2m,2|AdS2m,1 ,

are S1-invariant and D-parallel. D therefore induces, via -, a flat connection on E
and the reader might expect the following result.

Proposition 2.5. The morphism- identifies D and∇CH : for every horizontal vec-

tor field H on AdS2m,1 and for every section σ of E , ∇CH
π∗Hσ = -∗ DH -∗σ .

In this statement, “horizontal” means “orthogonal to both ν and Jν”. The proof
of this is a direct computation, involving only two obvious facts: Dν is the identity
at each point and the Levi-Civita connection of the hyperbolic space is induced

by D.

Note it is very important to work here with J -invariant 2-forms. For instance,

there is no flat S1-invariant trivialization of the bundle #1R2m,2|AdS2m,1 .

We therefore obtain an isomorphism NCHm ∼= #2
JR2m,2. Let #2

J,0R2m,2 be

the subspace of primitive J -invariant 2-forms on R2m,2. Since the Kähler form ω
of Cm,1, restricted to AdS2m,1, is given by ω = −Jν ∧ ν + π∗&, where & is the

Kähler form of CHm , we also have (cf. (2.1)):

NCHm ,0
∼= #2

J,0R2m,2.
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2.3. Kählerian Killing spinors

Let (Mm, g, J ) be a spin Kähler manifold. As in the hyperbolic space, a class of
special spinors somehow characterizes the the complex hyperbolic space. It turns

out that there is a dimension issue, so we first assume the complex dimension m is

odd: m = 2l − 1. The even-dimensional case will be discussed in Section 4.

The spinor bundle0 decomposes into the orthogonal sum of the eigenspaces of

the natural action of the Kähler form& = g(., J.): 0 = ⊕m
k=00k , where0k corre-

sponds to the eigenvalue i(m−2k) ([13] for instance). We will write π&
k (ψ) or sim-

ply ψk for the k-th component of the spinor ψ in this decomposition. From another

point of view, spinors may be seen as twisted forms: 0 = ⊕m
k=0#0,k ⊗

√
#m,0

and then 0k = #0,k ⊗
√

#m,0. Through this identification, the Clifford product

“·” is merely
√
2 times the difference between the exterior product and the interior

product ((1, 0)-vectors are identified with (0, 1)-covectors by the Hermitian inner
product). As a consequence,

T 1,0 · 0k ⊂ 0k+1 and T 0,1 · 0k ⊂ 0k−1. (2.2)

The following formula defines a connection ∇̂ on the vector bundle 0:

∇̂Xψ = ∇Xψ + ic(X1,0)ψl−1 + ic(X0,1)ψl

= ∇Xψ + i

2
c(X)(ψl−1 + ψl) + 1

2
c(J X)(ψl−1 − ψl).

The sections of0l−1⊕0l that are parallel for the connection ∇̂ are calledKählerian
Killing spinors. The dimension of the spaceK of Kählerian Killing spinors is there-
fore at most Cl

2l . This bound is attained on CHm , as we will see in detail after

Corollary 2.9. First, we make a number of general useful remarks.

For future reference, let us introduce the (modified) Dirac operator ˆ7D which is
naturally associated with the connection ∇̂: if (ε j ) j is any g-orthonormal frame, it
is given by

ˆ7Dψ :=
2m∑

j=1
c(ε j )∇̂ε jψ.

In [11], another modified Dirac operator D is used, for analytical reasons:

Dψ := ˆ7Dψ − i(m + 1)(ψ − ψl−1 − ψl) = 7Dψ − i(m + 1)ψ,

where 7D is the standard Dirac operator. It should be noticed that Kählerian Killing
spinors are canceled by both ˆ7D and D.

Given a spinor φ = φl−1 + φl ∈ 0l−1 ⊕ 0l , we will use the notation φ̃ :=
φl−1 − φl ; φ̃ is (−1)l+1 times the conjugate φ+ − φ− with respect to the usual

decomposition into half-spinors. The Kählerian Killing equation can then be written

∇Xφ = − i

2
X · φ − 1

2
(J X) · φ̃ or ∇X φ̃ = i

2
X · φ̃ + 1

2
(J X) · φ.

The following lemma is easy but very useful.
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Lemma 2.6. If φ is a Kählerian Killing spinor then

(X · φ,φ) = −
(
X · φ̃, φ̃

)
= 2i Im

(
X1,0 · φl−1,φl

)

(X · φ̃,φ) = −
(
X · φ, φ̃

)
= 2Re

(
X1,0 · φl−1,φl

)
.

In particular, ((J X) · φ,φ) = i(X · φ̃,φ).

Proof. The first statement follows from the computation

(X · φ,φ) = (X · (φl + φl−1),φl + φl−1) = (X · φl ,φl−1) + (X · φl−1,φl)
= 2i Im (X · φl−1,φl) = 2i Im

(
X1,0 · φl−1,φl

)

and the other ones are similar.

In complete analogy with the real hyperbolic case, the squared norm |φ|2 of a
Kählerian Killing spinor φ will induce a ∇CH -parallel section of E . To see this, we
first compute two derivatives of this function.

Lemma 2.7. Any Kählerian Killing spinor φ obeys

d |φ|2 (X) = −2i(X · φ,φ) (2.3)

∇Xd |φ|2 (Y ) = 2(X,Y ) |φ|2 − 2 Im
(
Y · (J X) · φ̃,φ

)
. (2.4)

Proof. The definition of Kählerian Killing spinors readily yields

d |φ|2 (X) = − i

2
(X · φ,φ) − 1

2
(J X · φ̃,φ) + i

2
(φ, X · φ) − 1

2
(φ, J X · φ̃),

which leads to d |φ|2 (X) = −2i(X · φ,φ), thanks to Lemma 2.6. Differentiating
once more, we find

∇Xd |φ|2 (Y )=−2i(Y · ∇Xφ,φ) − 2i(Y · φ,∇Xφ)

=−(Y ·X · φ,φ)+ i(Y · J X ·φ̃,φ)+ (Y · φ, X · φ) + i(Y · φ, J X · φ̃)

and the result follows from elementary properties of the Clifford product.

At this point, it is useful to introduce the following notation: for every

Kählerian Killing spinor φ, we define:

uφ := |φ|2 , αφ := Jduφ, ξφ(X,Y ) := Im(X · Y · φ̃,φ).

Lemma 2.8. ξφ is a J -invariant two-form satisfying:
∇Zαφ = −2ιZ (ξφ + uφ&),

(ξφ,&) = uφ,

∇Zξφ = −1
2

(
Z ∧ αφ + J Z ∧ Jαφ

)
.
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Proof. First, it is easy to check that ξφ is skew-symmetric, as a consequence of the

definition of φ̃. The J -invariance of ξφ stems from the following reformulation of

its definition:

ξφ(X,Y ) := Im(X1,0 · Y 0,1 · φ̃,φ) + Im(X0,1 · Y 1,0 · φ̃,φ).

Then formula (2.4) readily yields

∇Xαφ(Y ) = −2(X, JY )uφ + 2ξφ(JY, J X) = −2uφ &(X,Y ) − 2ξφ(X,Y ),

which justifies the first formula.

Let (e1, Je1, . . . , em, Jem) be an orthonormal basis. Then we have

(ξφ,&) =
m∑

k=1
ξφ(Jek, ek) =

m∑

k=1
Im(Jek · ek · φ̃,φ) = Im(& · φ̃,φ).

Now we use the spectral decomposition of the action of the Kähler form:

(& · φ̃,φ) = (& · φl−1 − & · φl ,φ) = (iφl−1 + iφl ,φ) = i |φ|2 .

This ensures (ξφ,&) = |φ|2 = uφ .

Finally, to obtain the third equation, we introduce θ(X,Y ) := 2(X · Y · φ̃,φ)
and differentiate:

∇Zθ(X,Y )

= 2(X · Y · ∇Z φ̃,φ) + 2(X · Y · φ̃,∇Zφ)

= i(X ·Y ·Z · φ̃,φ)+ (X ·Y ·(J Z)· φ,φ)+ i(X ·Y · φ̃,Z · φ)− (X ·Y · φ̃, (J Z)· φ̃)

= i([X · Y · Z − Z · X · Y ] · φ̃,φ) + ([X · Y · (J Z) − (J Z) · X · Y ] · φ,φ).

The identity ABC − CAB = 2(A,C)B − 2(B,C)A in Clifford algebra leads to

∇Zθ(X,Y )

=2i(X,Z)(Y · φ̃,φ)−2i(Y,Z)(X · φ̃,φ)+2(X,J Z)(Y ·φ,φ)−2(Y,J Z)(X ·φ,φ).

Lemmata 2.6 and 2.7 then yield:

∇Zθ(X,Y )

= i(X, Z)duφ(JY ) − i(Y, Z)duφ(J X) + i(X, J Z)duφ(Y ) − i(Y, J Z)duφ(X)

= −i(X, Z)αφ(Y ) + i(Y, Z)αφ(X) − i(X, J Z)Jαφ(Y ) + i(Y, J Z)Jαφ(X)

and the result follows.

The above computations result in the following proposition (recall (2.1)).
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Corollary 2.9. If φ is a Kählerian Killing spinor, then Q(φ) := (ξφ,αφ, uφ) is an
element ofN0. So we have a map Q : K −→ N0.

When m = 2l − 1 for some integer l ≥ 2, the complex hyperbolic space

CHm is known to carry a space of Kählerian Killing spinors of maximal dimen-

sion, Cl
2l [13]. Where do they come from? Briefly, constant spinors on Cm,1 admit

a restriction as spinors on AdS2m,1 (cf. [5, Lemma 3]). These are the so-called imag-

inary Killing spinors; they trivialize the spinor bundle of AdS2m,1. Among them,

thanks to the parity of m, some are S1-invariant (it can be seen on the graduation
coming from the Kähler structure ofCm,1) and admit a projection into spinors along

CHm ([20]). These “projected” spinors are exactly the Kählerian Killing spinors.

To be more explicit, we can adapt the computations of [13]. The manifold

CHm carries global coordinates w1, . . . , wm , such that π∗wk = zk
zm+1

(along

AdS2m,1, where zm+1 does not vanish). These coordinates induce a trivialization
of the canonical bundle, by

√
dw := √

dw1 ∧ · · · ∧ dwm . We will use multi-index

a = (a1, . . . , ak) with 1 ≤ a1 < · · · < ak ≤ m and set dza := dza1 ∧ · · · ∧ dzak .

The computations of [13] say that, if a is a multi-index of length l − 1, the spinor

ϕa = ϕal−1 + ϕal defined by

ϕal−1 = c(l)
dw̄a

(1− |w|2)l ⊗
√
dw and ϕal = c(l)

2il
∂̄

(
dw̄a

(1− |w|2)l
)

⊗
√
dw

is a Kählerian Killing spinor. In this expression, c(l) is a normalization constant,

which we choose to be c(l) =
√
2
5
2−3l . Another family of Kählerian Killing

spinors is described by spinors ϕ̆b = ϕ̆bl−1 + ϕ̆bl where b is a multi-index of length
l and

ϕ̆bl−1 = c(l)
ιR̄dw̄b

(1− |w|2)l ⊗
√
dw and ϕ̆bl = c(l)

2il
∂̄

(
ιR̄dw̄b

(1− |w|2)l
)

⊗
√
dw

where R = ∑
k wk∂wk

. These families together form a basis for the Kählerian

Killing spinors of CHm . What we are interested in here is their squared norms. Let

us introduce the notation ă for the multi-index that is complementary to a (namely,

a and ă have no common index and the sum of their lengths is m), and also the

notation |wa|2 :=
∣∣wa1

∣∣2 + · · · +
∣∣wak

∣∣2. An adaptation of the computations at the
end of [13] yields

∣∣ϕal−1
∣∣2 = |ϕ̆ăl |2 = 1− |wa|2

1− |w|2 and
∣∣ϕal

∣∣2 = |ϕ̆ăl−1|2 = |wă|2
1− |w|2 ,

hence
∣∣ϕa

∣∣2 = |ϕ̆ă|2 = 1− |wa|2 + |wă|2
1− |w|2 .

It follows that π∗uϕa = − |za|2 + |ză|2 + |zm+1|2 (we forget the ϕ̆’s since they do
not yield new squared norms). Now αϕa and ξϕa are determined by uϕa (since these
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are the components of an element of N ). Denoting the real part of zk by xk , one
can check that the corresponding element ofN0(CHm) ∼= #2

J,0R2m,2 is

βϕa = −
l−1∑

j=1
Jdxa j ∧ dxa j +

l∑

j=1
Jdxă j ∧ dxă j + Jdxm+1 ∧ dxm+1.

(To see this, it is sufficient to compute the scalar product of the right-hand side with

Jν ∧ν and observe that it coincides with π∗uϕa .) In particular, 〈βϕa ,βϕa 〉 = m+1.
All these two-forms belong to the same orbit of the isometric and holomorphic ac-

tion of PU(m, 1). We will denote this orbit byN+
0,CHm . Note that, since#2

J,0R2m,2

is an irreducible representation of PU(m, 1), the linear span ofN+
0,CHm is the whole

#2
J,0R2m,2.

3. Toward a mass

3.1. The “mass integral” at infinity

Let us give a precise definition for the class of manifolds we are interested in.

Definition 3.1. A complete Kähler manifold (Mm, g, J ) is called asymptotically
complex hyperbolic if there is a compact subset K of M and a ball B in CHm such

that:

(i) (M\K , J ) is biholomorphic to CHm\B and,
(ii) through this identification, ear (g − gCHm ) is bounded in C1,α , with respect to

the complex hyperbolic metric gCHm . Here, r denotes the distance to some

point in CHm and we assume a > m + 1
2
.

In [11], it is only assumed that the complex structure J of M is asymptotic to the

complex structure J0 of CHm (instead of J = J0, as in our definition). It turns

out that, if J is asymptotic to J0, then they are related by a biholomorphism, de-

fined outside a compact set and asymptotic to the identity. To justify this, let us

see J and J0 as two complex structures on a neighborhood U of S2m−1 in the unit
ball of Cm . Under our assumptions, they induce the same CR structure on the unit

sphere, the standard CR structure of S2m−1. The restriction of any J0-holomorphic
coordinate zk to the sphere is a CR function. Since the standard sphere is strictly-

pseudo-convex, Lewy’s extension theorem makes it possible to extend this function

into a J -holomorphic function wk on U (shrinking U if necessary). This yields a

holomorphic map w = (w1, . . . , wm) from & to Cm . Since z = (z1, . . . , zm) is a
diffeomorphism onto its range and coincide with w on the sphere, we may shrink

U to ensure w is also a diffeomorphism onto its range, hence a biholomorphism be-

tween two neighborhoods of S2m−1 in the unit ball of Cm , one endowed with J and

the other one with the standard complex structure. The promised biholomorphism

is z−1 ◦ w.
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In this section, we assume (M, g, J ) is an asymptotically complex hyperbolic
manifold of odd complex dimension m = 2l− 1 and with scalar curvature bounded
from below by −4m(m + 1) (the scalar curvature of CHm). In this setting, the

spinor bundle0|M\K can be identified with the spinor bundle of CHm\B. We may
therefore extend any Kählerian Killing spinor φ on CHm\B into a spinor φ on M .
Our aim is to understand to what extent we can make it into a Kählerian Killing

spinor. In the spirit of [25], we first check that we can choose an extension in the

kernel of a Dirac operator.

Lemma 3.2. There is a smooth spinor ψ := φ + φerr such that Dψ = 0 and φerr
decays as e−br in C1,α with b > m + 1

2
.

Proof. We first observe that

DD∗ = 7D2+(m + 1)2 = ∇∗∇ + 1

4
Scal+(m + 1)2 ≥ ∇∗∇ + m + 1.

A slight adaptation in [6, Proposition I.3.5] then shows that the operator

DD∗ : ebrC2,α −→ ebrC0,α

is an isomorphism for every b such thatm−
√
m2 + m + 1<b<m+

√
m2 + m + 1.

Since Dφ = (Dg − DCHm )φ = O(e−(a−1)r ), with a > m + 1
2
, we can pick a

b > m + 1
2
such that the equation DD∗σ = −Dφ0 admits a solution σ in ebrC2,α .

Then φerr := D∗σ is convenient.

We then invoke a Weitzenböck formula, proved in [11, Paragraph 3] (modulo

two misprints, indeed: in the formula stated, an i should be added at the second

and third lines and the coefficient m − 2q and the fourth one should be replaced by

2(m − q)):

∫

SR

∗ζψ,ψ =
∫

BR

∣∣∣∇̂ψ
∣∣∣
2
+ 1

4

∫

BR

(Scal+4m(m + 1)) |ψ |2

+ (m + 1)

∫

BR

(
|ψ |2 −

∣∣π&
l−1ψ

∣∣2 −
∣∣π&
l ψ

∣∣2
)

,

where SR denotes the sphere {r = R}, bounding the domain BR , and ζσ,τ is the

1-form defined by

ζσ,τ (X) = (∇̂Xσ + c(X)Dσ, τ ).

In view of this formula, the obstruction for ψ to be a Kählerian Killing spinor is

precisely the “mass integral at infinity” limR→∞
∫
SR

∗ζψ,ψ , which a well defined

element of [0,+∞], because the integrand on the right-hand side is non-negative.
Lemma 3.3. limR→∞

∫
SR

∗ζψ,ψ = limR→∞
∫
SR

∗ζφ,φ .
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Proof. Since Re ζσ,τ is symmetric up to a divergence term (as noticed in [11, page

651]), we only need to check that

lim
R→∞

∫

SR

∗(ζφ,φerr + ζφerr ,φerr ) = 0.

This follows from the following estimates: vol SR = O(e2mr ), ∇̂φ = O(e(1−a)r )
(beware φ grows in er ), φerr = O(e−br ), ∇̂φerr = O(e−br ) (cf. Lemma 3.2), with
a > m + 1

2
and b > m + 1

2
.

In order to compare the metrics g and g0 := gCHm , we introduce the sym-

metric endomorphism A such that g0 = g(A., A.). Since A maps g0-orthonormal
frames to g-orthonormal frames, it identifies the spinor bundles defined with g and

g0 (cf. [8] for instance). The associated Clifford products cg and cg0 are related by

cg(AX)σ = cg0(X)σ . Note we will also write X · for cg0(X) (and not for cg(X)).

For the sake of efficiency, we will write u ≈ v when u − v = o(e−2mr ); the terms
we neglect in this way will indeed not contribute to the integral at infinity. Before

computing the “mass integral at infinity”, we point out a few elementary facts.

Lemma 3.4. A−1 J A ≈ J .

Proof. The definition g0 = g(A, A) and the compatibility of J with g0 yield

g(AJ, AJ ) = g(A, A). Since A and J are respectively g-symmetric and g-anti-
symmetric, we deduce: J A2 J = −A2. If A = 1 + H , this implies J H J ≈ −H .

Since J 2 = −1, we obtain J H ≈ H J and then J A ≈ AJ , hence the result.

Corollary 3.5. We have cg(&) ≈ cg0(&0) and π&
k ≈ π

&0
k .

Proof. Given a g0-orthonormal basis (e1, Je1, . . . , em, Jem), the Clifford action of
the Kähler form &0 reads cg0(&0) = ∑

k Jek · ek · while the Kähler form & of g

acts by

cg(&) =
∑

cg(J Aek)cg(Aek) =
∑

(A−1 J Aek) · ek · .
The first statement is therefore a straightforward consequence of Lemma 3.4.

The second one follows from general considerations. We observe that the skew-

Hermitian endomorphisms P := cg(&) and P0 := cg0(&0) act on each fiber of the
spinor bundle with the same spectrum. If λ is one of the eigenvalues, the corre-
sponding spectral projectors9 and90 (for P and P0) obey the formulas

9 = 1

2π

∫

C

(z − P)−1dz and 90 = 1

2π

∫

C

(z − P0)
−1dz

where C is a circle in the complex plane, centered in λ and with small radius δ. We
deduce

9 − 90 = 1

2π

∫

C

(z − P)−1(P − P0)(z − P0)
−1dz
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and then

|9 − 90| ≤ δδ−1 |P − P0| δ−1 = δ−1 |P − P0| .
The result follows at once.

The rest of this section is devoted to the proof of the following statement.

Proposition 3.6. The “mass integral at infinity” is

lim
R→∞

∫

SR

∗ζψ,ψ

= lim
R→∞

∫

SR

∗
(

−1
4

(
d Trg0 g + divg0 g

) |φ|2 + 1

8
Trg0(g − g0) d |φ|2

)
.

Proof. To begin with, in view of Corollary 3.5, we may write

ζφ,φ(Y ) = (∇̂g
Yφ + cg(Y ) ˆ7Dφ,φ) − i(m + 1)

(
cg(Y )(1− π&

l−1 − π&
l )φ,φ

)

≈ (∇̂g
Yφ + cg(Y ) ˆ7Dφ,φ).

Given a g0-orthonormal frame (e1, . . . , e2m) and a g0-unit vector X , since φ is a
Kählerian Killing spinor with respect to (g0, J0), we may therefore write outside K
(as in [8, 18] for instance):

ζφ,φ(AX) ≈ 1

2

2m∑

j=1
([cg(AX), cg(Ae j )]∇̂g

Ae j
φ,φ)

≈ 1

2

2m∑

j=1
([cg(AX), cg(Ae j )](∇̂g

Ae j
− ∇̂g0

Ae j
)φ,φ)

≈ 1

2

2m∑

j=1
([X ·, e j ·](∇̂g

Ae j
− ∇̂g0

Ae j
)φ,φ),

which expands into

1

2

2m∑

j=1

(
[X ·, e j ·](∇g

Ae j
− ∇g0

Ae j
)φ,φ

)

+ i

4

2m∑

j=1

(
[X ·, e j ·]

(
cg(Ae j − i J Ae j )π

&
l−1 − cg0(Ae j − i J Ae j )π

&0
l−1

)
φ,φ

)

+ i

4

2m∑

j=1

(
([X ·, e j ·]

(
cg(Ae j + i J Ae j )π

&
l − cg0(Ae j + i J Ae j )π

&0
l

)
φ,φ

)
,
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that is

1

2

2m∑

j=1

(
[X ·, e j ·](∇g

Ae j
− ∇g0

Ae j
)φ,φ

)

+ i

4

2m∑

j=1

(
[X ·, e j ·]

(
(e j − i A−1 J Ae j ) · π&

l−1 − (Ae j − i J Ae j ) · π&0
l−1

)
φ,φ

)

+ i

4

2m∑

j=1

(
([X ·, e j ·]

(
(e j + i A−1 J Ae j ) · π&

l − (Ae j + i J Ae j ) · π&0
l

)
φ,φ

)
.

In view of Lemma 3.4 and Corollary 3.5, we are left with:

ζφ,φ(AX) ≈ 1

2

2m∑

j=1

(
[X ·, e j ·](∇g

Ae j
− ∇g0

Ae j
)φ,φ

)

+ i

4

2m∑

j=1

(
[X ·, e j ·]((e j − i Je j ) − (Ae j − i J Ae j )) · π&0

l−1φ,φ
)

+ i

4

2m∑

j=1

(
[X ·, e j ·]((e j + i Ae j ) − (Ae j + i J Ae j )) · π&0

l φ,φ
)

.

With A = 1+ H we can there therefore write ζφ,φ(AX) ≈ I + I I + I I I , with:

I := 1

2

2m∑

j=1

(
[X ·, e j ·](∇g

Ae j
− ∇g0

Ae j
)φ,φ

)

I I := − i

4

2m∑

j=1

(
[X ·, e j ·]He j · φ,φ

)

I I I := −1
4

2m∑

j=1

(
[X ·, e j ·]J He j · φ̃,φ

)
.

The computation of the real part of the first term is classical (cf. [8] or in [18, Lemma

10], for instance):

Re I ≈ −1
4

(
d Trg0 g + divg0 g

) |φ|2 .

The second term is basically computed in [8]. Indeed, since H is symmetric, we

use the identity [X ·, e j ·] = 2X j + 2X · e j · to obtain

Re I I = − i

2
(HX · φ,φ) − i

2

2m∑

j,l=1
Hjl

(
X · e j · el · φ,φ

)

= − i

2
(HX · φ,φ) + i

2
Tr H (X · φ,φ) .
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In the same way, the third term can be written as

I I I = −1
2

(
(J H X · φ̃,φ

)
− 1

2

2m∑

j=1

(
X · e j · J He j · φ̃,φ

)
.

Lemma 3.7. Re
∑2m

j=1
(
X · e j · J He j · φ̃,φ

)
≈ −2

(
J H X · φ̃,φ

)
.

Proof. Let us set M := J H and Mi j := (ei ,Mej ), so that

2m∑

j=1

(
X · e j · J He j · φ̃,φ

)
=

∑

j,k,p

Mkj X p

(
ep · e j · ek · φ̃,φ

)
.

Lemma 3.4 ensures J H ≈ H J . Since H is symmetric and J antisymmetric, we

deduce that M is antisymmetric up to a negligible term. In particular, Mkj ≈ 0

when k = j , hence

2m∑

j=1

(
X · e j · J He j · φ̃,φ

)
≈

∑

j 7=k

∑

p

Mkj X p

(
ep · e j · ek · φ̃,φ

)
.

Given three distinct indices j, k, p we consider the expression

(
ep · e j · ek · φ̃,φ

)
=

(
ep · e j · ek · (φl−1 − φl), (φl−1 + φl)

)
.

Property (2.2) reduces it to

(
ep · e j · ek · φ̃,φ

)
=

(
ep · e j · ek · φl−1,φl

)
−

(
ep · e j · ek · φl ,φl−1

)

and since the indices are distinct, this is imaginary. So

Re

2m∑

j=1

(
X · e j · J He j · φ̃,φ

)

≈ Re
∑

j 7=k
Mkj X j

(
e j · e j · ek · φ̃,φ

)
+ Re

∑

j 7=k
Mkj Xk

(
ek · e j · ek · φ̃,φ

)

≈ −Re
∑

j 7=k
Mkj X j

(
ek · φ̃,φ

)
+ Re

∑

j 7=k
Mkj Xk

(
e j · φ̃,φ

)

≈ −2Re
∑

j 7=k
Mkj X j

(
ek · φ̃,φ

)

≈ −2Re
(
MX · φ̃,φ

)

≈ −2
(
MX · φ̃,φ

)
.
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This lemma leads to

Re I I I ≈ −1
2

(
J H X · φ̃,φ

)
+

(
J H X · φ̃,φ

)
= 1

2

(
J H X · φ̃,φ

)
.

Eventually, summing I , I I and I I I , we get:

Re ζφ,φ(AX) ≈ − 1

4

(
d Trg0 g + divg0 g

) |φ|2

− i

2
(HX · φ,φ) + i

2
Tr H (X · φ,φ)

+ 1

2

(
J H X · φ̃,φ

)
.

Lemmata 2.6 and 2.7 simplify this to

Re ζφ,φ(AX) ≈ −1
4

(
d Trg0 g + divg0 g

) |φ|2 + i

2
Tr H (X · φ,φ)

≈ −1
4

(
d Trg0 g + divg0 g

) |φ|2 − 1

4
Tr H d |φ|2 (X).

Since g − g0 ≈ −2g0(H., .), we have Tr(g − g0) ≈ −2Tr H , hence:

Re ζφ,φ(AX) ≈ −1
4

(
d Trg0 g + divg0 g

)
(X) |φ|2 + 1

8
Trg0(g − g0) d |φ|2 (X),

which yields the formula of Proposition 3.6.

3.2. The mass linear functional

We consider the formula

µg(ξ,α, u)=−1
4
lim
R→∞

∫

SR

∗
((
d Trg0 g + divg0 g

)
u + 1

2
Trg0(g − g0)Jα

)
. (3.1)

If (ξ,α, u) belongs to QCHm (KCHm ), the considerations of the previous paragraph
imply that µg(ξ,α, u) is an element of [0,+∞]. If it is infinite at some point of
QCHm (KCHm ), we decide that the mass is infinite: µg = ∞. Otherwise, this de-

fines a linear functional µg on the linear span of QCHm (KCHm ) ⊂ NCHm ,0, which

is NCHm ,0, for it is PU(m, 1)-invariant and the action of this group on #2
J,0R2m,2

is irreducible.

The previous paragraph also indicates that µg takes non-negative values on

(the convex cone generated by) QCHm (KCHm ); since QCHm (KCHm ) is PU(m, 1)-
invariant and contains one element of N+

CHm ,0 (from the explicit computations in

2.3), it containsN+
CHm ,0. So µg is non-negative onN+

CHm ,0.

Assume µg vanishes on NCHm ,0. Then Lemma 3.2, coupled to the Bochner

formula, ensures that for every ψ inKCHm , there is a Kählerian Killing spinor φ on
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(M, g), namely φ ∈ Kg, that is asymptotic to ψ . In particular, for any element β =
QCHm (ψ) of N+

CHm ,0, there is an element β̃ = Qg(φ) of Ng,0 that is asymptotic

to β. Since the linear span of N+
CHm ,0 is the whole NCHm ,0, we deduce that Ng,0

has maximal dimension, which implies that Ng has maximal dimension (add the

Kähler form): (M, g) is (locally) complex hyperbolic. In view of its asymptotic, it
is bound to be CHm .

The holomorphic chart at infinity in Definition 3.1 is of course not unique.

Any two relevant charts -1 and -2 differ by a biholomorphism f := -2 ◦ -−1
1

of CHm such that f ∗g0 is asymptotic to g0. The map f therefore induces a CR-

automorphism of the sphere at infinity, so that f is asymptotic to an element of

PU(m, 1). As in the remark after Definition 3.1, we conclude f is an element of

PU(m, 1). So the model at infinity is unique up to its natural automorphism group
PU(m, 1). If φ1 is a Kählerian Killing spinor in the chart -1, then φ2 := f∗φ1 is a
Kählerian Killing spinor in the chart -2 (by naturality). We claim the following:

Lemma 3.8. µ-1
g (βφ1) = µ-2

g (βφ2).

Proof. Recall that in the notations introduced in the previous paragraph,

µ-1
g (βφ1) = lim

R→∞

∫

S
-1
R

∗ζφ1,φ1 = lim
R→∞

∫

S
-1
R

∗ζψ1,ψ1 .

This quantity is equal to the well-defined integral

∫

M

∣∣∣∇̂ψ1

∣∣∣
2
+ 1

4

∫

M

(Scal+4m(m + 1)) |ψ1|2

+(m + 1)

∫

M

(
|ψ1|2 −

∣∣π&
l−1ψ1

∣∣2 −
∣∣π&
l ψ1

∣∣2
)

,

so that we can compute it with another family of spheres:

µ-1
g (βφ1) = lim

R→∞

∫

f (S
-1
R )

∗ζψ1,ψ1 = lim
R→∞

∫

f (S
-1
R )

∗ζφ1,φ1 .

Since f ∗g0 = g0 and f (S
-1
R ) = S

-2
R , we therefore obtain

µ-1
g (βφ1)= lim

R→∞

∫

f (S
-1
R )

∗g0
(
−1
4

(
d Trg0 g+divg0 g

)|φ1|2g0+
1

8
Trg0(g− g0) d |φ1|2g0

)

= lim
R→∞

∫

S
-2
R

∗g0
(

−1
4

(
d Trg0 g + divg0 g

) ∣∣ f ∗φ2
∣∣2
g0

+ 1

8
Trg0(g − g0) d

∣∣ f ∗φ2
∣∣2
g0

)
.

= lim
R→∞

∫

S
-2
R

∗g0
(

−1
4

(
d Trg0 g + divg0 g

) |φ2|2g0 + 1

8
Trg0(g − g0) d |φ2|2g0

)

= µ-2
g (βφ2).
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In other words, changing the chart at infinity by an automorphism f ∈ PU(m,1)
results in turning µg to f ∗µg. So µg is well-defined up to the natural action of

PU(m, 1). We have proved the following result:

Theorem 3.9. Let (Mm, g, J ) be a spin asymptotically complex hyperbolic Kähler
manifold with odd complex dimension, and Scalg ≥ ScalCHm . Then the linear

functional µg on NCHm ,0 is well-defined up to the natural action of PU(m, 1), it

is non-negative on N+
CHm ,0 and vanishes if and only if (Mm, g, J ) is the complex

hyperbolic space.

4. The case of even-dimensional manifolds

4.1. The twisted Kählerian Killing spinors

To extend the above ideas to the even-dimensional case, it seems that we need

Kählerian Killing spinors on even-dimensional complex hyperbolic spaces. Unfor-

tunately, such Kählerian Killing spinors do not exist. To overcome this cruel reality,

we follow [7] and turn to the spinc realm. We refer to [15] for basic definitions about

spinc structures.

We consider a Kähler manifold (M, g, J ) with even complex dimension m =
2l. As in [7], we further assume that the cohomology class of &

iπ is integral, i.e.

in the image of H2(M, Z) → H2(M, R). This determines a complex line bundle
L endowed with a Hermitian metric and a unitary connection with curvature F =
−2i&; the Chern class of L is c1(L) = i

2π [F] = 1
π [&]. We also assume that

(M, L) defines a spinc structure, in that the bundle T M⊗ L admits a spin structure.

We then introduce the corresponding spinor bundle 0c, endowed with a Clifford

action c and a connection ∇. The Kähler form & acts on this bundle, with the

eigenvalues i(m− 2k), 0 ≤ k ≤ m. The eigenspaces yield subbundles 0c
k . We may

therefore define a connection ∇̂ on 0c by requiring that

∇̂Xψ := ∇Xψ + ic(X1,0)ψl−1 + ic(X0,1)ψl ,

where ψk is the component of ψ in 0c
k . The parallel sections of 0

c
l−1 ⊕ 0c

l for this

connection will be called twisted Kählerian Killing spinors and the corresponding

subspace will be denoted by Kc.

Every computation of Section 2.3 (but one) can be carried out with twisted

Kählerian Killing spinors, leading to the same formulas. In particular, one can

define uψ , αψ , ξψ for any ψ in Kc as in Section 2.3 and this yields a map Qc :
Kc → N . The only difference is that we do not get elements of N0: (ξψ ,&) is
no longer uψ , basically because the eigenvalues of the Kähler form are now even

(compare with the proof of Lemma 2.8).

Let us describe the model case, where (M, g, J ) is the complex hyperbolic
space CHm , m = 2l, with holomorphic sectional curvature −4. With this normal-
ization, we have RicCHm = −2(m + 1)gCHm . Since the Ricci form ρ = Ric(., J.)
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is i times the curvature of the canonical line bundle, this implies:

c1(#
m,0) = i

2π
[−iρ] = i

2π
[2i(m + 1)&] = −m + 1

π
[&] = −(m + 1)c1(L).

So L ∼=
(
#m,0

)− 1
m+1 in this case. It follows that

0c
k

∼= 0k ⊗ L ∼= #0,k ⊗
(
#m,0

) 1
2− 1

m+1 ∼= #0,k ⊗
(
#m,0

) l
2l+1

.

It turns out that the sections ofKc trivialize the bundle0c
l−1⊕0c

l , as noticed in [7].

Indeed, using the same notations as in Section 2.3, we can define two families of

twisted Kählerian Killing spinors in the following way. First, if a is a multi-index

of length l − 1, we set ϕa = ϕal−1 + ϕal with

ϕal−1 = c(l)
dw̄a

(1− |w|2)l ⊗ dw
l

2l+1 and ϕal = c(l)

2il
∂̄

(
dw̄a

(1− |w|2)l
)

⊗ dw
l

2l+1 .

The normalization we choose is c(l) = 21−l−
l2

2l+1 . We also introduce ϕ̆b = ϕ̆bl−1 +
ϕ̆bl where b is a multi-index of length l and

ϕ̆bl−1 = c(l)
ιR̄dw̄b

(1− |w|2)l ⊗ dw
l

2l+1 and ϕ̆bl = c(l)

2il
∂̄

(
ιR̄dw̄b

(1− |w|2)l
)

⊗ dw
l

2l+1

where R = ∑
k wk∂wk

as before. These families together form a basis for Kc on

CHm . One can again compute the squared norms of these spinors, like in [13]. If a

is a multi-index of length l − 1 and b a multi-index of length l, we have

∣∣ϕal−1
∣∣2= 1− |wa|2

1− |w|2 ,
∣∣ϕal

∣∣2= |wă|2
1− |w|2 ,

∣∣∣ϕ̆bl−1
∣∣∣
2
= |wb|2
1− |w|2 ,

∣∣∣ϕ̆bl
∣∣∣
2
= 1−

∣∣wb̆

∣∣2

1− |w|2 ,

hence
∣∣ϕa

∣∣2 = 1− |wa|2 + |wă|2
1− |w|2 ,

∣∣∣ϕ̆b
∣∣∣
2

= 1−
∣∣wb̆

∣∣2 + |wb|2
1− |w|2 .

Exactly as in the odd-dimensional case, we see that the corresponding elements of

N (CHm) ∼= #2
JR2m,2 are

Qc(ϕa) = βϕa = −
l−1∑

j=1
Jdxa j ∧ dxa j +

l+1∑

j=1
Jdxă j ∧ dxă j + Jdxm+1 ∧ dxm+1,

Qc(ϕ̆b) = βϕ̆b = −
l∑

j=1
Jdxb j ∧ dxb j +

l∑

j=1
Jdxb̆ j

∧ dxb̆ j
+ Jdxm+1 ∧ dxm+1.
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It follows that 〈βϕa ,βφa 〉=〈βϕ̆b ,βϕ̆b〉=m+1, 〈βϕa ,ω〉=1 and 〈βϕ̆b ,ω〉= −1.
The βϕa ’s all belong to the same orbit under the action of PU(m, 1): let N+1

CHm be

this orbit. The βϕ̆b ’s also belong to the same orbit under the action of PU(m, 1)

and we denote it byN−1
CHm .

4.2. The positive-mass theorem

Theorem 4.1. Let (Mm, g, J ) be an asymptotically complex hyperbolic Kähler

manifold with even complex dimension, and Scalg ≥ ScalCHm . We assume that

the cohomology class of &
iπ is integral, providing a line bundle L as above, and

that (M, L) defines a spinc structure. Then the formula (3.1) defines a (possibly
infinite) linear functional µg onNCHm , which is well-defined by g up to the natural

action of PU(m, 1), is non-negative onN+1
CHm ∪N−1

CHm and vanishes if and only if

(Mm, g, J ) is the complex hyperbolic space.

Note that the assumptions on [&] and L are of course satisfied when M is

contractible.

Proof. The proof is nearly the same as in the odd-dimensional case. The analyti-

cal part is completely similar, cf. [7]. So, for every element φ of Kc
CHm , one may

find an harmonic spinor ψ on M that is asymptotic to φ (harmonic means in the
kernel of some Dirac operator, cf. [7]). We may then proceed to the same compu-

tation, leading to the same mass integral at infinity, µg, defined on the linear span

of Qc(Kc) in N . From the computations above we know that Qc(Kc) contains

N+1
CHm ∪ N−1

CHm . Using the PU(m, 1) invariance, it is easy to see that this is the
wholeNCHm . The non-negativity statement is automatic and the fact that µg, up to

PU(m, 1), depends only on g is like in the odd case.
We are left to justify the rigidity part. If the mass µg vanishes, we know by

construction that every element φ of Kc
CHm gives rise to an element ψ of Kc

g that

is asymptotic to φ. In particular, for any element β = Qc
CHm (φ) ofN±1

CHm , there is

an element β̃ = Qc
g(ψ) of Ng that is asymptotic to β. As a consequence, Ng has

maximal dimension: (M, g) is complex hyperbolic.

Appendix: an example

To build a non-trivial example of asymptotically complex hyperbolic Kähler mani-

fold, we use the symplectic point of view of [12]. We work on Cm , m ≥ 2 and let

ρ = et be the Euclidean distance to the origin. Then ddct = ωFS is the pull-back

to Cm\ {0} of the Fubini-Study form on CPm−1. Every U(m)-invariant Kähler
structure on Cm\ {0} admits a Kähler form reading

ω = ψ ′(t)dt ∧ dct + ψ(t)ωFS,
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whereψ is simply the derivative of a radial Kähler potential with respect to the vari-

able t . The function ψ and ψ ′ must of course be positive. In fact ψ can be seen as a

moment map for the standard action of S1 onCm\ {0} endowed with the symplectic
form ω. If I denotes the range of the function ψ , we define the “momentum pro-
file” < as the positive function < := ψ ′ ◦ ψ−1 on I =] infψ, supψ[. The Kähler
metric smoothly extends near 0 if and only if infψ = 0 and < is smooth near 0

with <(0) = 0 and <′(0) = 2. Setting x := ψ(t) ∈ I , the Kähler form is given by

ω = ω< = dx ∧ dcx

<(x)
+ x ωFS

and its scalar curvature is

s<(x) = 2m(m − 1)

x
− ∂xx (x

m−1<(x))

xm−1 .

The flat metric corresponds to <(x) = 2x , x ∈ R+, the complex hyperbolic metric
to <(x) = 2x + 2x2, x ∈ R+ and the Fubini-Study metric on CPm to <(x) =
2x − 2x2, x ∈ [0, 1].

Let <0(x) = 2x2 + 2x be the momentum profile of the complex hyperbolic

metric. We wish to build a U(m)-invariant Kähler metric with complex hyperbolic
asymptotic and scalar curvature bounded from below by the scalar curvature of the

complex hyperbolic model. We therefore need to find a positive function< defined

on R+, such that <(0) = 0, <′(0) = 2, <(x) is asymptotic to 2x + 2x2 as x goes

to infinity and s< ≥ s<0
. Setting <(x) = <0(x) − α(x), we are lead to find a non

zero function α such that <0 − α is non-negative, α(0) = α′(0) = 0, α = o(x2) as
x goes to infinity and ∂xx (x

m−1α(x)) ≥ 0. Such a function α can be obtained by
choosing

α(x) := x1−m
∫ x

0

∫ y

0

χ(z)dzdy,

where χ is a bump function with support inside [1,+∞[ and with unit integral.
One can then observe that α(x) vanishes on [0, 1] and is equivalent to x2−m as
x goes to infinity, while satisfying the desired differential inequality; besides, the

normalization of χ ensures α(x) ≤ x for every x ≥ 0, which guarantees<0−α ≥ 0.

The Kähler form is then

ω< = ω<0
+

(
<0(x)

<(x)
− 1

)
dx ∧ dcx

<0(x)

with
<0(x)
<(x) − 1 ∼ x−m

2
. To understand the asymptotic of this, we relate x to the

initial variable t0 on the complex hyperbolic space. The properties
dt0
dx

= 1
<0(x)

and

t0(x = +∞) = 0 yield t0 ∼ − 1
2x
. The geodesic distance r to 0 in the complex

hyperbolic model is given by r = tanh et0 so that x ∼ e2r

4
at infinity. So our Kähler

metric satisfies ω = ω0 +O(e−2m r ).
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Remark. The rate of the falloff to the model at infinity that we obtained is optimal

in the radial case. In other words, a function α satisfying the desired properties can-
not decay faster at infinity. This is due to the fact that the function x -→ xm−1α(x)
must be convex on R+ with zero first order jet at 0; so either it vanishes identically
or it grows at least linearly.
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