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for which equality holds.

Mathematics Subject Classification (2010): 58G30 (primary); 53C17 (sec-
ondary).

1. Introduction

The goal of this note is to determine the best (optimal) constant in the L2 Folland-

Stein inequality on the quaternionic Heisenberg group and the non-negative ex-

tremal functions, i.e., the functions for which equality holds. Alternatively, this

is equivalent to finding the Yamabe constant of the standard quaternionic contact

structure of the sphere.

The proof is inspired by the case λ = Q − 2 of the recent remarkable paper of
Frank and Lieb [11] who obtained the sharp form of the Hardy-Littlewood-Sobolev

(HLS) inequalities [10] with exponent λ, 0 < λ < Q, on the Heisenberg group

Hn of homogeneous dimension Q = 2n + 2 and the standard CR unit sphere

S2n+1 ⊂ Cn+1, together with their limiting cases λ = 0 and λ = Q (see [22]

for the Euclidean version and [11] for other results in the CR setting). Previously,

Branson, Fontana and Morpurgo [6] settled the limiting case λ = 0 and pointed out

that the old idea of Szegö [26] and Hersch [20] can be used to find the sharp form

of the logarithmic HLS inequality and its dual Onofri’s inequality on the Heisen-

berg group. This center of mass technique and the conformal invariance was used

earlier by Onofri [25] on the round two dimensional sphere (see also [2] and [12])

and Chang and Yang [8] who extended it to higher dimension thereby giving an al-

ternative proof of the Beckner-Onofri’s inequality, see [4]. As well known, the case
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λ = Q − 2 is dual to the L2 Sobolev embedding inequality, whose sharp constant

on the Heisenberg group and the CR sphere was found by Jerison and Lee [19].

In fact, [19] found all non-negative solutions to the CR Yamabe equation that is

the Euler-Lagrange functional of the CR Yamabe functional. In comparison, [11]

determines the best constant and all functions for which the minimum is achieved,

by simplifying parts of [19] while answering a less general question. However,

thanks to [11] we have the sharp form of the general Hardy-Littlewood-Sobolev

type inequalities.

The conformal nature of the problem we consider is key to its solution. The

analysis is purely analytical. In this respect, even though the quaternionic con-

tact (qc) Yamabe functional is involved, the qc scalar curvature is used in the proof

without its geometric meaning. Rather, it is the conformal sub-laplacian that plays

a central role and the qc scalar curvature appears as a constant determined by the

Cayley transform and the left-invariant sub-laplacian on the quaternionic Heisen-

berg group. Note that this method does not give all solutions of the qc Yamabe

equation on the quaternionic contact sphere. The complete solution of the latter

problem requires some additional very non-trivial argument and it is at this place

where the geometric nature of the problem becomes even more important. In the

CR setting, the solution of the CR Yamabe problem was achieved with the help

of an ingenious divergence formula by Jerison and Lee [19]. The other known

sub-Riemannian case is that of the qc Yamabe equation on the seven dimensional

standard quaternionic contact sphere [17]. Another relevant result appeared ear-

lier [13], where the sub-Riemannian Yamabe equation was solved in the unifying

setting of groups of Iwasawa type under an additional assumption of partial symme-

try of the solution. This result can be used at the final stage of all known proofs after

such symmetry has been shown to exist. We recall that the groups of Iwasawa type

comprise of the complex (=“usual”), quaternion and octonian Heisenberg groups,

which are defined by (1.4) replacing, correspondingly, the quaternions H with the

complex numbers C, the quaternions H, and the octonians O.
Given a compact quaternionic contact manifold M of real dimension 4n + 3

with an R3-valued contact form η = {η1, η2, η3}, i.e., a codimension three horizon-
tal distribution H determined as the kernel of η such that dη|H are the fundamental
two forms of a quaternionic hermitian structure (g, I1, I2, I3) on H , (dηs)|H =
2g(Is ., .) = 2ωs, s = 1, 2, 3, a natural question is to determine the qc Yamabe
constant of the conformal class [η] of η defined as the infimum

λ(M, [η]) = inf

{
ϒ(u) :

∫

M

u2
∗
Volη = 1, u > 0

}
, (1.1)

where Volη = η1∧η2∧η3∧ (ω1)
2n denotes the volume form determined by η. The

qc Yamabe functional of the conformal class of η is defined by

ϒ(u) =
∫

M

(
4
Q + 2

Q − 2
|∇u|2 + S u2

)
Volη,

∫

M

u2
∗
Volη = 1, u > 0,

denoting by ∇ the Biquard connection [5] of η, and S standing for the qc scalar
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curvature of (M, η). This is the so called qc Yamabe constant problem. In this pa-
per we shall find λ(S4n+3, [η̃]), where η̃ is the standard qc form on the unit sphere
S4n+3, see (2.1). The question is of course related to the solvability of the qc Yam-
abe equation

Lu ≡ 4
Q + 2

Q − 2
'u − S u = − S u2

∗−1, (1.2)

where' is the horizontal sub-Laplacian,'u = trg(∇du), S and S are the qc scalar
curvatures correspondingly of (M, η) and (M, η̄), η̄ = u4/(Q−2)η, and 2∗ = 2Q

Q−2 .
Here, and throughout the paper, Q = 4n + 6 is the homogeneous dimension. The

natural question is to find all solutions of the qc Yamabe equation. This is the so

called qc Yamabe problem, which is equivalent to finding all qc structures conformal

to a given structure η (of constant qc scalar curvature) which also have constant qc
scalar curvature. As usual the two problems are related by noting that on a compact

quaternionic contact manifold M with a fixed conformal class [η] the qc Yamabe
equation characterizes the non-negative extremals of the qc Yamabe functional.

The 4n+3 dimensional sphere is an important example of a locally quternionic
contact conformally flat qc structure characterized locally in [18] with the vanishing

of a curvature-type tensor invariant. From the point of view of the qc Yamabe

problem the sphere plays a role similar to its Riemannian and CR counterparts. A

solution of the qc Yamabe problem on the seven dimensional sphere equipped with

its natural quaternionic contact structure was given in [17] where more details on

the qc Yamabe problem can be found. The main result of [17] is the following:

Theorem ([17]). Let η̃ = 1
2h

η be a conformal deformation of the standard qc-

structure η̃ on the quaternionic unit sphere S7. If η has constant qc scalar cur-

vature, then up to a multiplicative constant η is obtained from η̃ by a conformal

quaternionic contact automorphism. In particular, λ(S7) = 48 (4π)1/5 and this
minimum value is achieved only by η̃ and its images under conformal quaternionic
contact automorphisms.

Another motivation for studying the qc Yamabe equation and the qc Yam-

abe constant of the qc sphere comes from its connection with the determination of

the norm and extremals in a relevant Sobolev-type embedding on the quaternionic

Heisenberg group [13] and [27] and [28]. As well known, the sub-Riemannian

Yamabe equation is also the Euler-Lagrange equation of the extremals for the L2

case of such embedding results. Recall the following Theorem due to Folland and

Stein [10].

Theorem (Folland and Stein). Let & ⊂ G be an open set in a Carnot group G

of homogeneous dimension Q and Haar measure dH . For any 1 < p < Q there

exists Sp = Sp(G) > 0 such that for u ∈ C∞
o (&)

(∫

&
|u|p∗

dH(g)

)1/p∗

≤ Sp

(∫

&
|Xu|p dH(g)

)1/p
, (1.3)
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where |Xu| = ∑m
j=1 |X ju|2 with X1, . . . , Xm denoting a basis of the first layer of

G and p∗ = pQ
Q−p

.

Let Sp be the best constant in the Folland-Stein inequality, i.e., the smallest constant

for which (1.3) holds.

In [17] we determined all extremals, i.e., solutions of the qc Yamabe equation,

and the best constant in Folland and Stein’s theorem when p = 2 in the case of

the seven dimensional quaternionic Heisenberg group. In the case of the complex

(i.e. ”usual”) Heisenberg group this was done earlier by Jerison and Lee [19] who

determined all solutions to the CR Yamabe equation on the CR sphere.

Following the idea of [11], the main result of this paper determines the best

constant in the Folland and Stein’s theorem when p = 2 and the functions for

which it is achieved in the case of the quaternionic Heisenberg group G of any

dimension.

As a manifold G = Hn × ImH with the group law given by

(q ′,ω′) = (qo,ωo) ◦ (q,ω) = (qo + q,ω + ωo + 2 Im qo q̄), (1.4)

where q, qo ∈ Hn and ω,ωo ∈ ImH. The standard quaternionic contact(qc)
structure is defined by the left-invariant quaternionic contact form

'̃ = ('̃1, '̃2, '̃3) = 1

2
(dω − q ′ · dq̄ ′ + dq ′ · q̄ ′),

where · denotes the quaternion multiplication. The purpose of the present note is to
prove the next

Theorem 1.1. a) Let G = Hn × ImH be the quaternionic Heisenberg group. The

best constant in the L2 Folland-Stein embedding inequality (1.3) is

S2 =
[
23 ω4n+3

]−1/(4n+6)

2
√
n(n + 1)

,

where ω4n+3 = 2π2n+2/(2n + 1)! is the volume of the unit sphere S4n+3 ⊂ R4n+4.
The non-negative functions for which (1.3) becomes an equality are given by the

functions of the form

F = γ
[
(1+ |q|2)2 + |ω|2

]−(n+1)
, γ = const, (1.5)

and all functions obtained from F by translations (3.2) and dilations (3.3).

b) The qc Yamabe constant of the standard qc structure of the sphere is

λ(S4n+3, [η̃]) = 16 n(n + 2)
[
((2n)!)ω4n+3

]1/(2n+3)
. (1.6)
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These constants are in complete agreement with the ones obtained in [17] and

[13] taking into account the next Remark and the well known formulas involving

the gamma function

)(n + 1) = n!, )(z + n) = z(z + 1) . . . (z + n − 1))(z), n ∈ N,

)(2z) = 22z−1 π−1/2 )(z))

(
z + 1

2

)
– the Legendre formula,

ωm = 2π (m+1)/2/) ((m + 1)/2) =






2(m+2)/2πm/2

(m − 1)!! , m-even ,

2π (m+1)/2
(
m − 1

2

)
!
, m-odd ,

where ωm is the volume of the unit m–dimensional sphere in Rm+1. Our result
partially confirms the Conjecture made after [13, Theorem 1.1]. In addition, the

fact that any function of the described form is a solution of Yamabe problem was

first noted in [14] in the setting of groups of Heisenberg type. Of course, this class

of groups is much wider than the class of groups of Iwasawa type.

Remark 1.2. With the left-invariant basis of Theorem 1.1 the quaternionic Heisen-

berg group is not a group of Heisenberg type. If we consider it as a group of Heisen-

berg type then the best constant in the L2 Folland-Stein embedding theorem is,

cf. [13, Theorem 1.6],

S2 = 1√
4n(4n + 4)

43/(4n+6) π−(4n+3)/2(4n+6)
(

)(4n + 3)

)((4n + 3)/2)

)1/(4n+6)
.

and extremals are given by dilations and translations of the function

F(q,ω) = γ
[
(1+ |q|2)2 + 16|ω|2)

]−(n+1)
, (q,ω) ∈ G.

It is worth pointing that the Yamabe extremals in the sub-Riemannian setting have

applications to sharp inequalities in the Euclidean setting. For example, in the pa-

per [29] the extremals are determined of some Euclidean Hardy-Sobolev inequali-

ties involving the distance to a n − k dimensional coordinate subspace of Rn . This

is achieved by relating extremals on the Heisenberg groups to extremals in the Eu-

clidean setting. In the particular case when k = n one obtains the Caffarelli-Kohn-

Nirenberg inequality, see [7], for which the optimal constant was found in [15].

Convention 1.3. We use the following conventions:

• the abbreviation qc will stand for quaternionic contact;
• G will denote the qc Heisenberg group;
• η̃ will denote the standard qc form on the unit sphere S4n+3, see (2.1). Note that
this form is actually twice the 3-Sasakain qc form on S4n+3;
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• Volη will denote the volume form determined by the qc form η, thus Volη =
η1 ∧ η2 ∧ η3 ∧ (ω1)

2n , see [16, Chapter 8].

ACKNOWLEDGEMENTS. The authors thank the referee for useful comments con-

cerning the references to some previous work.

2. The model quaternionic contact structures

In this section we review the standard quaternionic contact structure on the quater-

nionic Heisenberg group and the 4n+3-dimensional unit sphere. We will rely heav-
ily on [16], but prefer to repeat some key points in order to make the current paper

somewhat self-contained. Besides serving as a background, this section will supply

some key numerical constants - the qc scalar curvature and the first eigenvalue of

the sub-laplacian of the standard qc form of the sphere. This will be achieved using

the conformal sub-laplacian and the properties of the Cayley transform.

First let us recall the quaternionic Heisenberg group [16, Section 5.2]. We

remind the following model of the quaternionic Heisenberg group G. Define G =
Hn × ImH with the group law given by (q ′,ω′) = (qo,ωo) ◦ (q,ω) = (qo +
q,ω + ωo + 2 Im qo q̄),where q, qo ∈ Hn and ω,ωo ∈ ImH. In coordinates, with
ω = i x+ j y+kz and qα = tα+i xα+ j yα+kzα , α = 1, . . . n, a basis of left-invariant
horizontal vector fields Tα, Xα = I1Tα,Yα = I2Tα, Zα = I3Tα,α = 1 . . . , n is
given by

Tα = ∂tα + 2xα∂x + 2yα∂y + 2zα∂z Xα = ∂xα − 2tα∂x − 2zα∂y + 2yα∂z

Yα = ∂yα + 2zα∂x − 2tα∂y − 2xα∂z Zα = ∂zα − 2yα∂x + 2xα∂y − 2tα∂z .

The above vectors generate the horizontal space, denoted as usual by H . In ad-

dition, by declaring them to be an orthonormal basis we obtain a metric on the

horizontal space, which is the so called horizontal metric. The central (vertical)

vector fields ξ1, ξ2, ξ3 are described as follows

ξ1 = 2∂x ξ2 = 2∂y ξ3 = 2∂z .

The standard quaternionic contact form, written as a purely imaginary quaternion

valued form '̃ = i'̃1 + j'̃2 + k'̃3), is

2'̃ = dω − q ′ · dq̄ ′ + dq ′ · q̄ ′,

where · denotes the quaternion multiplication. The Biquard connection coincides
with the flat left-invariant connection on G, in particular the qc scalar curvature

vanishes.
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Following [16], we give another model of the Heiseneberggroup, which is the

one we will use in this paper. Let us identify G with the boundary - of a Siegel

domain in Hn × H,

- = {(q ′, p′) ∈ Hn × H : . p′ = |q ′|2},
by using the map (q ′,ω′) /→ (q ′, |q ′|2 − ω′). Since dp′ = q ′ · dq̄ ′ + dq ′ ·
q̄ ′ − dω′, under the identification of G with - we have also 2'̃ = −dp′ +
2dq ′ · q̄ ′. Taking into account that '̃ is purely imaginary, the last equation can

be written also in the following form

4 '̃ = (d p̄′ − dp′) + 2dq ′ · q̄ ′ − 2q ′ · dq̄ ′.

Now, consider the Cayley transform, see [21] and [9], as the map C : S /→ - from

the sphere S = {|q|2 + |p|2 = 1} ⊂ Hn × H minus a point to the Heisenberg

group -, with C defined by

(q ′, p′) = C
(
(q, p)

)
, q ′ = (1+ p)−1 q, p′ = (1+ p)−1 (1− p)

and with an inverse map (q, p) = C−1((q ′, p′)
)
given by

q = 2(1+ p′)−1 q ′, p = (1+ p′)−1 (1− p′).

The Cayley transform maps S4n+3 \ {(−1, 0)}, (−1, 0) ∈ Hn × H, to - since

. p′ = .(1+ p̄)(1− p)

|1+ p |2 = . 1− |p|
|1+ p |2 = |q|2

|1+ p |2 = |q ′|2.

Writing the Cayley transform in the form (1+ p)q ′ = q, (1+ p)p′ = 1− p,
gives

dp · q ′ + (1+ p) · dq ′ = dq, dp · p′ + (1+ p) · dp′ = −dp,
from where we find

dp′ = −2(1+ p)−1 · dp · (1+ p)−1

dq ′ = (1+ p)−1 · [dq − dp · (1+ p)−1 · q].
The Cayley transform is a conformal quaternionic contact diffeomorphism between

the quaternionic Heisenberg group with its standard quaternionic contact structure

'̃ and the sphere minus a point with its standard structure η̃. In fact, by [16, Section
8.3] we have

'
def= λ · (C−1)∗ η̃ · λ̄ = 8

|1+ p′ |2 '̃.

where λ = |1+ p | (1+ p)−1 is a unit quaternion and η̃ is the standard contact
form on the sphere,

η̃ = dq · q̄ + dp · p̄ − q · dq̄ − p · d p̄. (2.1)
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Lemma 2.1. The qc scalar curvature S̃ of the standard qc structure (2.1) on S4n+3 is

S̃ = 1

2
(Q + 2)(Q − 6) = 8n(n + 2). (2.2)

Remark 2.2. Notice that the standard qc contact form we consider here is twice the

3-Sasakian form on S4n+3, which has qc scalar curvature equal to 16n(n + 2) [16].

Proof. Let us introduce the functions

h = 1

16
|1+ p′|2 = 1

16

[
(1+ |q ′|2)2 + |ω′|2

]
,

(q ′, p′) ∈ - ⊂ Hn × H, p′ = |q ′|2 + ω′,
and

. = (2h)−(Q−2)/4 = 8(Q−2)/4
[
(1+ |q ′|2)2 + |ω′|2

]−(Q−2)/4
,

(2.3)

so that now we have

' = 1

2h
'̃ = .4/(Q−2)'̃.

With the help of [16, Section 5.2] a small calculation shows that the sub-laplacian

of h w.r.t. '̃ is given by 'h = Q−6
4

+ Q+2
4

|q ′|2 and thus . is a solution of the qc

Yamabe equation on the Heisenberg group -

'. = −K .2∗−1, K = (Q − 2)(Q − 6)/8, (2.4)

where ' is the sub-laplacian on the quaternionic Heisenberg group. Denoting with

L and L̃ the conformal sub-laplacians of ' and '̃, respectively, we have

.−1L(.−1u) = .−2∗L̃u.

We remind, cf. [5] and [17], that for a qc contact form ' the conformal sublapla-

cian is,

L = a'' − S', a = 4
Q + 2

Q − 2
,

where '' is the sub-laplacian associated to ', i.e., ''u = tr(∇'du)–the hori-
zontal trace of the Hessian of u, using the Biquard connection ∇' of ', and S' is

the qc scalar curvature of '. Thus, letting u = . we come to L(1) = .1−2∗L̃.,

which shows −S' = −4 Q+2
Q−2K . The latter is the same as that of η̃ since the two

structures are isomorphic via the diffemorphism C, or rather its extension, since
we can consider C as a quaternionic contact conformal transformation between the
whole sphere S4n+3 and the compactification -̂∪∞ of the quaternionic Heisenberg

group by adding the point at infinity, cf. [17, Section 5.2].
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We turn to the task of determining the first eigenvalue of the sub-laplacian on

S4n+3. In fact, we shall need only the fact that the restriction of every coordinate
function is an eigenvalue. The proof of this fact can be seen directly without any

reference to the Biquard connection. Alternatively, we can invoke [1] where spher-

ical harmonics are studied on the homogeneous space (sphere) S = K/M which

is 1-quasiconformal [3] to the group of Iwasawa type N via the Cayley transform,

where G = N AK is the Iwasawa decomposition of the rank one simple Lie group

G and M is the centralizer of A in K . Since this will require setting a lot of notation

unnecessary for the current goals, we prefer to use a result from [16].

Lemma 2.3. If ζ is any of the (real) coordinate functions inR4n+4 = Hn×H, then

'̃ζ = −λ1ζ, λ1 = S̃

Q + 2
= 2n (2.5)

for the horizontal trace of the Hessian, where '̃ is the sub-laplacian of the standard

qc form η̃ of S4n+3.

Proof. It is enough to furnish a proof for the sub-laplacian on the 3-Sasakain sphere

since the two qc forms differ by a constant. We can see that every ζ of the consid-
ered type is an eigenfunction by using [16, Corollary 6.24]. It will be enough to

see this for one coordinate function since the sub-laplacian on the sphere is rotation

invariant. Thus, let us take ζ = t1. Notice that ζ is a quaternionic pluri-harmonic
function [16, Definition 6.7] since it is the real part of the anti-regular function

t1 + i x1 − j y1 − kz1. Thus, its restriction to the 3-Sasakain sphere is the real

part of an anti-CRF function. Therefore we apply [16, Corollary 6.24] which gives

tr(∇dζ ) = 4λn for the sub-laplacian of the 3-sasakain qc structure on the sphere.
Next, we compute λ, which can be found in [16, Theorem 6.20]. Using that the

sphere is 3-Sasakian it follows the Reeb vector fields are obtained from the outward

pointing unit normal vector N as follows, ξ1 = i N , ξ2 = j N and ξ3 = kN , where

for a point on the sphere we have N (q) = q ∈ Hn+1. Therefore λ = −t1 = −ζ .
To make this more apparent notice that only the first four coordinates of N matter.

So, if we assume n = 0 (i.e. N (q) = q ∈ H1) we have i N = −x + i t + ky − j z,

j N = −y+ i z+ j t − kx and kN = −z− iy+ j x + kt , so we need to sum the real

dot product of these vectors with i , j and k, respectively, which gives−t . Thus, for
the sub-laplacian on the 3-Sasakian sphere we have

tr(∇dζ ) = −4nζ,

where ζ is the restriction any of the coordinate functions of R4n+4 = Hn × H.
Since the qc contact form '̃ is twice the 3-Sasakain qc contact form on the sphere

it follows '̃ is 1/2 of the 3-Sasakain sub-laplacian. Thus

'̃ = −2nζ,

which shows λ1 = 2n = 1
2
(Q − 6) = S̃/(Q + 2).



644 STEFAN IVANOV, IVAN MINCHEV AND DIMITER VASSILEV

We finish this section with a simple lemma which will be used to relate the

various explicit constants. Its claim also follows from the conformal invariance of

the Yamabe equation, but we prefer to give a proof, which is independent of the

notion of qc scalar curvature. We recall, see [16, Chapter 8], that Volη will denote

the volume form determined by the qc form η, thus Volη = η1 ∧ η2 ∧ η3 ∧ (ω1)
2n .

Also, for a qc form η we let |∇ηF |2 = ∑4n
α=1 |dF(eα)|2 be the square of the length

of the horizontal gradient of a function F taken with respect to an orthonormal basis

of the horizontal space H = Ker η and the metric determined by η.

Lemma 2.4. Let F∈
o

D 1,2(G), cf. (3.1), be a positive function with
∫
G
F2

∗
Vol'̃ =1.

Then we have
∫

G

a|∇'̃F |2 Vol'̃ =
∫

S4n+3

(
a|∇ η̃g|2 + S̃g2

)
Volη̃, a = 4(2∗ − 1), (2.6)

and ∫

G

g2
∗
Volη̃ = 1,

where

g = C∗(F.−1), (2.7)

and, as before, C : S4n+3 → - is the Cayley transform, ' = .4/(Q−2)'̃, cf. (2.3).

Remark 2.5. Notice that Vol'̃ = 2−3 (2n)! dH , where dH is the Lebesgue mea-

sure in R4n+3, which is a Haar measure on the group.

Proof. It will be convenient for the remaining of this proof to denote by small letters

the pull-back by the Cayley transform of a function denoted with the corresponding

capital letter. Thus, f = C∗F = F ◦C, φ = C∗(.) and g = f φ−1. By the
conformality of the qc structures on the group and the sphere we have

Vol' = .2∗Vol'̃ (2.8)

By (2.8) we have F2
∗
Vol'̃ = f 2

∗
φ−2∗Volη̃, which motivates the definition (2.7)

of the function g which is defined on the sphere and should be regarded as corre-

sponding to the function F . Thus, we have for example F = G.. By definition we
have ∫

G

g2
∗
Volη̃ = 1,

so our next task is to see that the Yamabe integral is preserved

∫

G

|∇'̃F |2 Vol'̃ =
∫

S4n+3

(
|∇ η̃g|2 + Kg2

)
Volη̃. (2.9)

Here is where we shall exploit that a power of the conformal factor of the

Cayley transform is a solution of the Yamabe equation. Let
〈
∇'.,∇'G

〉
=
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∑4n
a=1(ea.) (eaG) where {e1, . . . , e4n} is an orthonormal basis of the horizontal

space H . Using the divergence formula from [16, Section 8.1] we find
∫

G

|∇̃'F |2 Vol'̃ =
∫

G

|∇'̃(G.)|2 Vol'̃

=
∫

G

(
G2|∇'̃.|2 + .2|∇'̃G|2 +

〈
.∇'̃.,∇'̃G2

〉 )
Vol'̃

=
∫

G

(
.2|∇'̃G|2 − G2.''̃.

)
Vol'̃.

Now, the Yamabe equation (2.4) gives
∫

G

|∇'̃F |2 Vol'̃ =
∫

G

(
.2|∇'̃G|2 + KG2.2∗

)
Vol'̃

=
∫

S4n+3

(
φ2−2

∗
(|∇'̃G| ◦C)2 + Kg2

)
Volη̃

=
∫

S4n+3

(
|∇ η̃g|2 + Kg2

)
Volη̃,

taking into account that C is a qc conformal map. Finally, a glance at (2.4) and (2.2)
shows S̃/K = 4(2∗ − 1) = (4(Q + 2)/(Q − 2) which allows to put (2.9) in the
form (2.6).

3. The best constant in the Folland-Stein inequality

In this section, following [11], we prove the main Theorem. It is important to

observe that a suitable adaptation of the method of concentration of compactness

due to P. L. Lions [23, 24] allows to prove that in any Carnot group the Yamabe

constant and optimal constant in the Folland-Stein inequality is achieved in the

space
o

D 1,2(G), see [27] and [28]. Here

o

D 1,2(G) = C∞
o (G)

||·|| o
D 1,2(G) .

The space
o

D 1,2(G) is endowed with the norm

||u|| o
D 1,2(G)

= || |∇u| ||L2∗ (G), (3.1)

where ∇u is the horizontal gradient of u and |∇u|2 = ∑4n
a=1(eau)

2 for an orthonor-

mal basis {e1, . . . , e4n} of horizontal left-invariant vector fields.
In this regard an elementary, yet crucial observation, is that if u is an entire

solution to the Yamabe equation, then such are also the two functions

τhu
def= u ◦ τh, h ∈ G, (3.2)
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where τh : G → G is the operator of left-translation τh(g) = hg, and

uλ
def= λ(Q−2)/2 u ◦ δλ, λ > 0. (3.3)

The Heisenberg dilations are defined by

δλ

(
(q ′,ω′)

)
=

(
(λq ′, λ2ω′)

)
, (q ′,ω′) ∈ G

It is also well known, [27] and [28], that there are smooth positive minimizer of the

Folland-Stein inequality on the quaternionic Heisenberg group G. These facts will

be used without further notice on regularity and existence.

We start with the ”new” key, see [6, 11] and also [25] and [8], allowing the

ultimate solution of the considered problem.

Lemma 3.1. For every v ∈ L1(S4n+3) with
∫
S4n+3 v Volη̃ = 1 there is a quater-

nionic contact conformal transformation ψ such that

∫

S4n+3
ψ v Volη̃ = 0.

Proof. Let P ∈ S4n+3 be any point of the quaternionic sphere and N be its antipodal
point. Let us consider the local coordinate system near P defined by the Cayley

transform CN from N . It is known that CN is a quaternionic contact conformal
transformation between S4n+3 \ N and the quaternionic Heisenberg group. Notice
that in this coordinate system P is mapped to the identity of the group. For every

r , 0 < r < 1, let ψr,P be the qc conformal transformation of the sphere, which

in the fixed coordinate chart is given on the group by a dilation with center the

identity by a factor δr . If we select a coordinate system in R4n+4 = Hn × H so that

P = (1, 0) and N = (−1, 0) and then apply the formulas for the Cayley transform
from [16, Section 8.2] the formula for (q∗, p∗) = ψr,P(q, p) becomes

q∗ = 2r
(
1+ r2(1+ p)−1(1− p)

)−1
(1+ p) q

p∗ =
(
1+ r2(1+ p)−1(1− p)

)−1 (
1− r2(1+ p)−1(1− p)

)
, i.e,

We can define then the map 4 : B → B̄, where B ( B̄ ) is the open (closed) unit

ball in R4n+4, by the formula

4(r P) =
∫

S4n+3
ψ1−r,P v Volη̃.

Notice that 4 can be continuously extended to B̄ since for any point P on the

sphere, where r = 1, we have ψ1−r,P(Q) → P when r → 1. In particular, 4 = id

on S4n+3. Since the sphere is not a homotopy retract of the closed ball it follows
that there are r and P ∈ S4n+3 such that4(r P) = 0, i.e.,

∫
S4n+3 ψ1−r,P v Volη̃ = 0.

Thus, ψ = ψ1−r,P has the required property.
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In the next step we prove that we can assume that the minimizer of the Folland-

Stein inequality satisfies the zero center of mass condition. A number of well known

invariance properties of the Yamabe functional will be exploited.

Lemma 3.2. Let v be a smooth positive function on the sphere with
∫
S4n+3 v

2∗Volη̃ =
1. There is a smooth positive function u such that

∫
S4n+3

(
4 Q+2
Q−2 |∇u|2 + S̃ u2

)
Volη̃ =

∫
S4n+3

(
4 Q+2
Q−2 |∇v|2 + S̃ v2

)
Volη̃ and

∫
S4n+3 u

2∗ Volη̃ = 1. In addition,

∫

S4n+3
P u2

∗
(P)Volη̃ = 0, P ∈ R4n+4 = Hn × H. (3.4)

In particular, the Yamabe constant

λ(S4n+3, [η̃])

= inf

{∫

S4n+3

(
4
Q + 2

Q − 2
|∇v|2 + S̃ v2

)
Volη̃ :

∫

S4n+3
v2

∗
Volη̃ = 1, v>0

}
(3.5)

is achieved for a positive function u with a zero center of mass, i.e., for a function

u satisfying (3.4).

Proof. By [16, Section 8.1], Volη = η1 ∧ η2 ∧ η3 ∧ (ω1)
2n is a volume form on a

qc manifold with contact form η. Thus if η is a qc structure on the sphere which is
qc conformal to the standard qc structure η̃, η = φ4/(Q−2)η̃, then Volη = φ2

∗
Volη̃.

This allows to cast equation (1.2) in the form

φ−1vL(φ−1v) Volη = vL̃(v) Volη̃.

Therefore, if we take a positive function v on the sphere
∫
S4n+3 v2

∗
Volη̃ = 1 and

then consider the function

u = φ−1(v ◦ψ−1), (3.6)

where ψ is the qc conformal map of Lemma 3.1, η ≡ (ψ−1)∗η̃, and φ is the

corresponding conformal factor of ψ , we can see that u achieves the claim of the
lemma.

We shall call a function u on the sphere a well centered function when (3.4)

holds true. In the next step, following [11], we show that a well centered minimizer

has to be constant using the products of the coordinate functions with the optimizer.

Lemma 3.3. If u is a well centered local minimum of the problem (3.5), then u ≡
const.

Proof. Let ζ be a smooth function on the sphere S4n+3. After applying the diver-
gence formula [16, Section 8] we obtain the formula

ϒ(ζu)

=
∫

S4n+3
ζ 2

(
4
Q + 2

Q − 2
|∇̃u|2 + S̃ u2

)
Volη̃ − 4

Q + 2

Q − 2

∫

S4n+3
u2ζ '̃ζVolη̃.

(3.7)
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This suggests to take as a test function ζ an eigenfunction of the sub-laplacian '̃
of the standard qc structure. In particular, we can let ζ be any of the coordinate

functions in Hn × H in which case '̃ζ = −λ1ζ .

It will be useful to introduce the functional N (v) =
(∫

S4n+3 v2
∗
Volη̃

)2/2∗
so

that

λ(S4n+3, [η̃]) = inf{E(v) : v ∈ D (S4n+3)}, E(v)
def= ϒ(v)/N (v). (3.8)

Computing the second variation δ2E(u)v = d2

dt2
E(u + tv)|t=0 of E(u) we see that

the local minimum condition δ2E(u)v ≥ 0 implies

ϒ(v) − (2∗ − 1)ϒ(u)

∫

S4n+3
u2

∗−2v2 Volη̃ ≥ 0

for any function v such that
∫
S4n+3 u

2∗−1v Volη̃ = 0. Therefore, for ζ being any of
the coordinate functions in Hn × H we have

ϒ(ζu) − (2∗ − 1)ϒ(u)

∫

S4n+3
u2

∗
ζ 2 Volη̃ ≥ 0,

which after summation over all coordinate functions taking also into account (3.7)

gives

ϒ(u) − (2∗ − 1)ϒ(u) + 4λ1(2
∗ − 1)

∫

S4n+3
u2 Volη̃ ≥ 0,

which implies, recall 2∗ − 1 = (Q + 2)/(Q − 2),

0 ≤ 4(2∗ − 1)
(
2∗ − 2

) ∫

S4n+3
|∇̃u|2 Volη̃

≤
(
4λ1(2

∗ − 1) −
(
2∗ − 2

)
S̃
) ∫

S4n+3
u2

∗
Volη̃.

Thus, our task of showing that u is constant will be achieved once we see that

4λ1(2
∗ − 1) −

(
2∗ − 2

)
S̃ ≤ 0, i.e, λ1 ≤ S̃/(Q + 2). (3.9)

By Lemma 2.5 we have actually equality λ1 = S̃/(Q + 2), which completes the
proof. It is worth observing that inequality (3.9) can be written in the form

λ1 a ≤ (2∗ − 2) S̃,

where a is the constant in front of the (sub-)laplacian in the conformal (sub-)lapla-

cian, i.e., a = 4 Q+2
Q−2 in our case.

At this point the proof of our main Theorem 1.1 is easily deduced as follows.
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Proof of Theorem 1.1. Let F be a minimizer (local minimum) of the Yamabe func-

tional E on G and g the corresponding function on the sphere defined in Lemma
2.4. By Lemma 3.2 and (3.6) the function g0 = φ−1(g ◦ψ−1) will be well centered
and a minimizer (local minimum) of the Yamabe functional E on S4n+3. The latter
claim uses also the fact that the map v /→ u of equation (3.6) is one-to-one and

onto on the space of smooth positive functions on the sphere. Now, from Lemma

3.3 we conclude that go = const . Looking back at the corresponding functions on

the group we see that

F0 = γ
[
(1+ |q ′|2)2 + |ω′|2

]−(Q−2)/4

for some γ = const. > 0. Furthermore, the proof of Lemma 3.1 shows that F0
is obtained from F by a translation (3.2) and dilation (3.3). Correspondingly, any

positive minimizer (local maximum) of problem (3.11) is given up to dilation or

translation by the function

F = γ
[
(1+ |q ′|2)2 + |ω′|2

]−(Q−2)/4
, γ = const. > 0. (3.10)

Of course, translations (3.2) and dilations (3.3) do not change the value of E . In-
cidentally, this shows that any local minimum of the Yamabe functional E on the
sphere or the group has to be a global one.

We turn to the determination of the best constant. Let us define the constants

5'̃
def= inf






∫

G

|∇v|2 Vol'̃ : v ∈
o

D 1,2(G), v ≥ 0,

∫

G

|v|2∗ Vol'̃ =1






and

5
def= inf






∫

G

|∇v|2 dH : v ∈
o

D 1,2(G), v ≥ 0,

∫

G

|v|2∗ dH = 1




 .

(3.11)

Clearly,5'̃ = S−2
'̃
, where S'̃ is the best constant in the L

2 Folland-Stein inequality

(∫

G

|u|2∗ Vol'̃
)1/2∗

≤ S'̃

(∫

G

|∇'̃u|2 Vol'̃
)1/2

, (3.12)

while 5 = S−2
2 is the best constant in the L2 Folland-Stein inequality (1.3) (taken

with respect to the Lebesgue measure!). By Remark 2.5 we have

5'̃ =
[
2−3(2n)!

]1/(2n+3)
5.
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Furthermore, by Lemma 3.3 and equations (2.6) and (2.7) with g = const , we have

5'̃ = 1

S22

=
∫
G

|∇'̃F |2 Vol'̃[∫
G

|F |2∗ Vol'̃
]2/2∗

=
∫
S4n+3

(
|∇ η̃g|2 + S̃

a
g2

)
Volη̃

[∫
S4n+3 |g|2∗ Volη̃

]2/2∗ = 4n(n + 1)
[
((2n)!)ω4n+3

]1/(2n+3)
.

Here

ω4n+3 = 2π2n+2/)(2n + 2) = 2π2n+2/(2n + 1)!
is the volume of the unit sphere S4n+3 ⊂ R4n+4 and we also took into account
Remark 2.2 which shows that Volη̃ gives 2

2n+3 ((2n)!)ω4n+3 for the volume of
S4n+3. Thus,

S'̃ =
(
4n(n + 1)

[
((2n)!)ω4n+3

]1/(2n+3))−1/2
=

[
((2n)!)ω4n+3

]−1/(4n+6)

2
√
n(n + 1)

,

which completes the proof of part a).

b) The Yamabe constant of the sphere is calculated immediately by taking a

constant function in (3.8)

λ(S4n+3, [η̃]) = a5'̃, a = 4
Q + 2

Q − 2
= 4

n + 2

n + 1
. (3.13)

This completes the proof of Theorem 1.1.

Remark 3.4. In view of the above lemmas it follows that in the conformal class

of the standard qc structure on the sphere (or the quaternionic Heisenberg group)

there is an extremal qc contact form for problem (1.1) which is also qc-Einstein,

see [16, Definition 4.1], and has partial symmetry, see [13, Definition 1.2], if viewed

as a qc structure on the group. Thus, the above precise constants and extremals can

also be taken directly from [16, Theorem 1.1 and 1.2] or the result of [13]. However,

the functions (3.10) depend on one more arbitrary multiplicative parameter γ since
in the current paper we are dealing with the functions realizing the infimum of (3.8)

rather than with the qc Yamabe equation with a fixed qc scalar curvature.
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