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Abstract framework for John-Nirenberg inequalities

and applications to Hardy spaces

FRÉDÉRIC BERNICOT AND JIMAN ZHAO

Abstract. In this paper, we develop an abstract framework for John-Nirenberg
inequalities associated to BMO-type spaces. This work can be seen as the sequel
of [6], where the authors introduced a very general framework for atomic and
molecular Hardy spaces. Moreover, we show that our assumptions allow us to
recover some already known John-Nirenberg inequalities. We give applications
to the atomic Hardy spaces too.

Mathematics Subject Classification (2010): 42B20 (primary); 46E30 (sec-
ondary).

1. Introduction

The first BMO space (space of functions satisfying a Bounded Mean Oscillation)

was originally introduced by F. John and L. Nirenberg in [17]. This space natu-

rally arises as the class of functions whose deviation from their means over cubes is

bounded. From a point of view of Harmonic Analysis, this space is strictly includ-

ing the L∞ space, and is a good extension of the Lebesgue spaces scale (L p)1<p<∞
for p → ∞. For example, it plays an important role for boundedness of Calderón-

Zygmund operators, real interpolation, Carleson measure, study of paraproducts, ...

Moreover the BMO space can be characterized as the dual space of the Coifman

Weiss space H1. This observation was announced by C. Fefferman in [12] and then

proved in [13].

Here we are interested in one of the most important properties of the BMO

space: the so-called John-Nirenberg inequality (see [17]). This property describes

the exponential integrability of the oscillations for a BMO-function. More precisely,

for Q a ball of the Euclidean space Rn then a function f ∈ BMO satisfies
∣∣∣∣

{
x ∈ Q,

∣∣∣∣ f (x) − −
∫

Q

f

∣∣∣∣ > λ

}∣∣∣∣ ≤ c1|Q|e−c2λ/‖ f ‖BMO,

J. Z. supported by SRF for ROCS, SEM, China, and by NNSF of China No. 10871048,
No. 10931001 and No. 11101020.

Received March 1, 2010; accepted in revised form January 21, 2011.
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for some constants c1, c2 only dependent on the dimension n. Consequently the
oscillation f − −

∫
Q
f , which was initially supposed to belong to L1(Q) (by the

definition of BMO), is indeed exponentially integrable on Q. The BMO-norm gives

rise to a self-improvement of the integrability of the oscillation.

The first consequence of such inequalities was the equivalence between the

spaces BMOq for q ∈ (1,∞) (where BMOq is based on a control of the oscillations

in Lq norm). A second important consequence concerns the Hardy space H1. Since

the duality (H1)∗ = BMO holds, it turns out that the Hardy space defined by p-

atoms, does not depend on the exponent p ∈ (1,∞) (see the work of R. Coifman
and G. Weiss about Hardy spaces [7]).

Our aim in this paper is to extend these properties in an abstract framework.

BMO space has many other properties, and the use of this space in real Har-

monic Analysis has given rise to many works (related to Calderón-Zygmund oper-

ators, Carleson measures, T (1)-theorems, ...). However, there are situations where
the John-Nirenberg space BMO is not the right substitute to L∞, and there have
been recently numerous works whose goal is to define an adapted BMO space ac-

cording to the context (see [10, 14] ...). For example the classical space BMO is

not well adapted to operators such as the Riesz transform on Riemannian mani-

folds. That is why in [14], S. Hofmann and S. Mayboroda develop the theory of

Hardy and BMO spaces associated to second order divergence form elliptic oper-

ators, which also includes the corresponding John-Nirenberg inequality. In recent

works [10] and [9], X. T. Duong and L. Yan studied some new BMO type spaces

and proved an associated version of the John-Nirenberg inequality on these spaces

(with duality results).

In [6], the authors developed an abstract framework for atomic Hardy spaces

(and proved some results about interpolation with Lebesgue spaces). Without more

precise assumptions, it seems to be impossible to get a full characterization of their

dual space as a BMO-type space, although the last one is well-defined. This frame-

work can cover the classical space BMO and those defined in [10] and [14]. Now

let us detail how the setting of Hardy and BMO spaces can be extended to more

abstract situations. The main idea is as follows. In the classical case, Hardy and

BMO spaces are related to the “oscillation” of a function f over a ball Q, given by

f − −
∫

Q

f dµ.

In the setting of a semigroup e−t L (associated to a second order divergence form
operator L , or a positive Laplacian L = −" on a Riemannian manifold), it is not

clear how to describe the action of the semigroup on this oscillation. So in many

situations (recently studied in numerous papers), the oscillation was replaced by

another quantity:

f − e
−rmQ L f or (1− e

−rmQ L)M f,

where m is the order of the operator L , rQ is the radius of the ball Q and M a large

enough integer. In this case, the semigroup e
−rmQ L can be thought as a “smooth

version” of the mean-value operator related to the generator L .
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Aiming to generalize these two situations, the idea in [6] was to define Hardy

and BMO spaces related to a general collection of “oscillation operators” (BQ)Q
indexed by the balls (for details, see Section 2 in the following). According to

the two previous examples, it seems that the operators AQ := I − BQ play an

important role and should be seen as “approaching” the mean-value operators. For

applications, we recover the classical case when AQ is the mean-value operator on

Q and the cases relatively to a semigroup with AQ = e
−rmQ L or AQ = 1 − (1 −

e
−rmQ L)M . For more detailed examples, see Section 3 and [6].
In order to unify all the existing results concerning Hardy and BMO spaces,

this abstract setting also seems to be natural. So there is a large schedule: for

each property concerning classical Hardy and BMO spaces, find what are the good

assumptions to require about these abstract “oscillation operators” BQ to extend the

property in more general situations. For example, we refer the reader to [3, 6] for

the interpolation results between Hardy and Lebesgue spaces. In [4], a new version

of the famous T (1)-theorem is described in this point of view. In [5,15,16], general
self-improving properties for Poincaré type inequalities are proved with this same

approach.

This work fits into this program and aims to build a unified theory. More

precisely, we describe general assumptions implying John-Nirenberg inequalities

relatively to these new BMO spaces. In detail, our paper is organized as follows:

In Section 2, we define our framework of Hardy and BMO spaces, then state

our main results concerning John-Nirenberg inequalities (see Theorems 2.7 and

2.9). We postpone their proofs to Subsection 2.3. In Section 3, we check that our

assumptions are reasonable, therefore our results generalize some already known

particular cases such as the John-Nirenberg inequalities in [13, 17], and [10]. In

Section 4, we present an application of our John-Nirenberg inequalities to the cor-

responding Hardy spaces.

ACKNOWLEDGEMENTS. We are indebted to Professor Steve Hofmann for his valu-

able advices, in particular for his help with Lemma 3.5.

2. An abstract framework for John-Nirenberg inequalities

2.1. Hardy and BMO spaces

Let (X, d, µ) be a space of homogeneous type. So d is a quasi-distance on the
space X, and µ is a Borel measure which satisfies the doubling property: there

exist constants A, δ > 0, such that for all x ∈ X , r > 0 and t ≥ 1

µ(B(x, tr)) ≤ Atδµ(B(x, r)), (2.1)

where B(x, r) is the open ball with center x ∈ X and radius r > 0. We call δ the
homogeneous dimension of X . For Q a ball, and i ≥ 0, we write Ci (Q) the scaled
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corona around the ball Q:

Ci (Q) :=
{
x, 2i ≤ 1+ d(x, c(Q))

rQ
< 2i+1

}
,

where rQ is the radius of the ball Q and c(Q) its center. Note that C0(Q) corre-

sponds to the ball Q and Ci (Q) ⊂ 2i+1Q for i ≥ 1, where λQ is as usual the ball
with center c(Q) and radius λrQ . For p ∈ [1,∞], we denote the Lebesgue space
by L p = L p(X) . We writeM for the Hardy-Littlewood maximal operator and for

p ∈ [1,∞), we denote its L p-version by

Mp( f )(x) :=M(| f |p)(x)1/p.
Let us denote byQ the collection of all balls:

Q := {B(x, r), x ∈ X, r > 0} .

Let B := (BQ)Q∈Q be a collection of linear operators, indexed by the collection
Q. We write AQ := I d − BQ and B

∗
Q for its adjoint operator. We assume that

these operators BQ are uniformly bounded in some Lebesgue space: there exist two

exponents p1 < p0 belonging to (1,∞] and a constant 0 < A′ < ∞ so that: for all

p ∈ [p1, p0]
∀ f ∈ L p, ∀Q ball, ‖BQ( f )‖L p ≤ A′‖ f ‖L p . (2.2)

In the rest of the paper, we allow the constants to depend on A, A′ and δ.
For convenience, we first recall the definition of atoms, molecules and the cor-

responding Hardy spaces introduced in [6].

Definition 2.1. ([6]) Let ε > 0 and p ∈ [p1, p0] be fixed parameters. A function
m ∈ L1loc is called an (ε, p)-molecule associated to a ball Q if there exists a real

function fQ such that

m = BQ( fQ),

with

∀i ≥ 0, ‖ fQ‖L p(Ci (Q)) ≤
(
µ(2i Q)

)−1+1/p
2−εi .

We callm = BQ( fQ) a p-atom if in addition we have supp( fQ) ⊂ Q. So a p-atom

is exactly an (∞, p)-molecule.

Definition 2.2. ([6]) Ameasurable function h belongs to the molecular Hardy space

H1p,ε,mol if there exists a decomposition:

h =
∑

i∈N
λimi µ − a.e, (2.3)

where for all i , mi is an (ε, p)-molecule and (λi )i are real numbers satisfying
∑

i∈N
|λi | < ∞.
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Here, we assume that the infinite sum in (2.3) is absolutely convergent for almost

every point x ∈ X .

We define the norm:

‖h‖H1p,ε,mol := inf
h=∑

i∈N λimi

∑

i

|λi |.

Similarly we define the atomic space H1p,ato replacing (ε, p)-molecules by p-atoms.

For more details about these notations and these abstract Hardy spaces, see [6]

(and [2] for extension about Hardy-Sobolev spaces). Also in [6] and [3], interpola-

tion results are described. Moreover in [6] the authors have described weak results

concerning duality results H1−BMO. In the following, we define the BMO spaces.
Definition 2.3. For q ∈ [p′

0, p
′
1], a function f ∈ Lq belongs to the space Bmoq if

‖ f ‖BMOq := sup
Q ball

(
1

µ(Q)

∫

Q

∣∣B∗
Q( f )

∣∣q dµ

)1/q
< ∞,

where we denote B∗
Q for the adjoint operator of BQ . We write BMOq for the com-

pletion of Bmoq with the corresponding norm.

We will see that it could be interesting to define other “molecular” BMO spaces

as follows:

Definition 2.4. For ε > 0 and q ∈ [p′
0, p

′
1], a function f ∈ Lq belongs to the

molecular space Bmoε,q if

‖ f ‖BMOε,q
:= sup

Q ball

sup
j≥0

2 jε

(
1

µ(2 j Q)

∫

C j (Q)

∣∣B∗
Q( f )

∣∣q dµ

)1/q
< ∞.

Remark 2.5. Obviously we have BMOε,q ↪→ BMOq for every ε > 0. The ques-

tion of a reverse property is open in such an abstract framework.

After these definitions, we can state our main results in the following subsec-

tion.

2.2. John-Nirenberg inequalities

In order to get John-Nirenberg inequalities, first we have to make some assumptions

on the operators (BQ)Q . Now let us describe the required properties.

Assumptions. We set q0 = p′
0 and q1 = p′

1 such that 1 ≤ q0 < q1 < ∞.

We assume Lq0 − Lq1 off-diagonal decay for operators A∗
Q : there exist coeffi-

cients γ j such that for every ball Q and every function h ∈ Lq0,

(
1

µ(Q)

∫

Q

∣∣A∗
Q(h)

∣∣q1 dµ

)1/q1
!

∑

j

γ j

(
1

µ(2 j Q)

∫

C j (Q)
|h|q0 dµ

)1/q0
, (2.4)
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with the property ∑

j

γ j < ∞. (2.5)

Remark 2.6. Let us note that the off-diagonal decay (2.4) is slightly stronger than

the following maximal inequality: for all x ∈ X

sup
Q,x

(
1

µ(Q)

∫

Q

∣∣A∗
Q(h)

∣∣q1 dµ

)1/q1
!Mq0(| f |)(x).

This comparison between maximal operators is exactly the assumption, required in

our previous works [3, 6], in order to get interpolation results between our Hardy

spaces and L p0 . It is interesting that the similar assumption seems to be important

for both interpolation results and John-Nirenberg inequalities.

Moreover we make the following assumption: there exists a constant c such

that

sup
R ball
R⊂2Q

(
1

µ(R)

∫

R

∣∣B∗
R(A∗

Q( f ))
∣∣q1 dµ

)1/q1
≤ c‖ f ‖BMOq0 . (2.6)

In some cases, we will require the following stronger assumption, which describes

that the operators A∗
Q continuously act on the Bmo spaces: there is a constant c

such that

‖A∗
Q( f )‖BMOq1 ≤ c‖ f ‖BMOq0 . (2.7)

Then we have the following results.

Theorem 2.7. Let us first assume that the operators (BQ)Q depend only on the

radius rQ of the ball and that (2.4), (2.5) and (2.6) hold. Then the space Bmoq0
satisfies a John-Nirenberg inequality: there exist constants ρ1, ρ2 > 0 such that for

all function f ∈ Bmoq0 and every ball Q ⊂ X,

µ
({
x ∈ Q,

∣∣B∗
Q( f )(x)

∣∣ > λ‖ f ‖BMOq0
})

≤ ρ1µ(Q)

[
e−ρ2λ + 1q1<∞

λq1

]
.

Corollary 2.8. If we are working on the Euclidean space Rn , we can just require

sup
R ball
R⊂Q

(
1

µ(R)

∫

R

∣∣B∗
R(A∗

Q( f ))
∣∣q1 dµ

)1/q1
≤ c‖ f ‖BMOq0 . (2.8)

instead of (2.6), see Remark 2.14.

Let us now consider general operators BQ , which could depend on the ball Q.
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Theorem 2.9. Let ε > 0 and suppose that the coefficients (γ j ) j given by (2.4)
satisfy

sup
j

γ j < ∞

instead of the stronger inequality (2.5).

Under (2.7), the space Bmoε,q0 satisfies a John-Nirenberg inequality: there

exist constants ρ1, ρ2 > 0 such that for all function f ∈ Bmoε,q0 every ball Q ⊂ X

and integer l ≥ 0

µ
({
x ∈ Cl(Q),

∣∣B∗
Q( f )(x)

∣∣ > λ‖ f ‖BMOε,q0

})

≤ ρ12
−εlµ(2l Q)

[
e−ρ2λ + 1q1<∞

λq1

]
.

(2.9)

Remark 2.10. Indeed, we prove a more accurate result in the particular case of

non-increasing coefficients γ j . In this case, we can work with the smaller norm

‖ f ‖
B̃MOε,q

:= sup
Q ball

sup
j≥0

γ j -=0

2 jε

(
1

µ(2 j Q)

∫

C j (Q)

∣∣B∗
Q( f )

∣∣q dµ

)1/q

and prove (2.9). We leave the details to the reader as it just suffices to follow the

contribution of coefficients γ j in the proof.

As usual, a John-Nirenberg inequality allows us to prove some equivalence in

BMO spaces (with estimating the oscillation in Lq for different exponents q).

Corollary 2.11. Under the assumptions of Theorem 2.7 (respectively Theorem 2.9),

the norms BMOq (respectively BMOε,q for some ε > 0) for q ∈ (q0, q1) are
equivalent and consequently the spaces BMOq are equal.

Proof. We only treat the case of the BMOq spaces, as the proof for the spaces

BMOε,q is similar, on using Theorem 2.9 instead of Theorem 2.7. We take two

exponents r > q belonging to the range (q0, q1) and a function φ ∈ Bmor ∩Bmoq .
First using Hölder inequality, we have for every ball Q

(
1

µ(Q)

∫

Q

∣∣B∗
Q(φ)

∣∣q dµ

)1/q
≤

(
1

µ(Q)

∫

Q

∣∣B∗
Q(φ)

∣∣r dµ

)1/r
≤ ‖φ‖BMOr ,

therefore we deduce the inclusion Bmor ⊂ Bmoq .
Then it remains to check that Bmoq ⊂ Bmor .Using John-Nirenberg inequality

(obtained in Theorem 2.7), we get a weak inequality for every ball Q

1

µ(Q)1/q1

∥∥B∗
Q(φ)

∥∥
Lq1,∞ ! ‖φ‖BMOq0 ! ‖φ‖BMOq .
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By invoking Kolmogorov’s inequality, we get

(
1

µ(Q)

∫

Q

∣∣B∗
Q(φ)

∣∣r dµ

)1/r
≤

(
q1

q1 − r

)1/r
1

µ(Q)1/q1

∥∥B∗
Q(φ)

∥∥
Lq1,∞ ,

which finally yields

(
1

µ(Q)

∫

Q

∣∣B∗
Q(φ)

∣∣r dµ

)1/r
! ‖φ‖BMOq .

2.3. Proof of Theorems 2.7 and 2.9

The following proof has been written with abstract operators BQ (depending on the

ball), as we will refer to it in Theorem 2.9 which requires this abstract framework.

Proof of Theorem 2.7. We follow the ideas of [10].

Without loss of generality, we can assume that ‖ f ‖BMOq0 = 1 and we also

have to prove that for any fixed ball Q

µ
({
x ∈ Q,

∣∣B∗
Q( f )(x)

∣∣ > λ
})

≤ ρ1µ(Q)

[
e−ρ2λ + 1q1<∞

λq1

]
. (2.10)

Obviously (2.10) holds for λ ≤ 1 with ρ2 = 1 and ρ1 = e. So we only consider

λ > 1 and set

f0 := 1QB∗
Q( f ).

Then we get

‖ f0‖L1 ≤
∫

Q

|B∗
Q( f )|dµ ≤ ‖ f ‖BMOq0µ(Q) ≤ µ(Q).

Using a constant β > 1 (later chosen) and the Hardy-Littlewood maximal operator

M, we set

F := {x, M( f0)(x) ≤ β} and * := Fc = {x, M( f0)(x) > β}.

Let us consider a Whitney decomposition of *: a collection of balls (Q1,i )i such
that

a−) * = ⋃
i Q1,i

b−) each point is contained in at most a finite number N of balls Q1,i

∑

i

1Q1,i ≤ N

c−) there exists κ > 1 such that for all i , κQ1,i ∩ F -= ∅.
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From a−), it comes for all x ∈ Q \ (∪i Q1,i )

|B∗
Q( f )(x)| = | f0(x)| ≤M( f0)(x) ≤ β. (2.11)

The weak-type (1, 1) of the Hardy-Littlewood maximal operator yields

∑

i

µ(Q1,i ) ≤ Nµ(*) ! 1

β
‖ f0‖L1 ≤ c1

β
µ(Q) (2.12)

for some numerical constant c1 > 0.

We choose β such that for every ball Q1,i with Q1,i ∩Q -= ∅, then Q1,i ⊂ 2Q.

Let us check that this is possible. If rQ1,i ≥ rQ then Q ⊂ 2Q1,i thus (2.12) implies

µ(Q) ≤ µ(2Q1,i ) ! µ(Q1,i ) ≤ c3

β
µ(Q),

for some numerical constant c3. So we can choose β > c3, then the previous
inequality does not hold, because every ball has a non vanishing measure (due to

the doubling property of the space X). Consequently, we deduce that the condition

rQ1,i ≤ rQ yields Q1,i ⊂ 2Q.

Then we will use the following Lemma.

Lemma 2.12. There exists a numerical constant c2 ≥ 1, such that for all i:

(
1

µ(Q1,i )

∫

Q1,i

∣∣∣B∗
Q( f ) − B∗

Q1,i
( f )

∣∣∣
q1
dµ

)1/q1
≤ c2β. (2.13)

For the readability, we postpone the proof to the end of this theorem. Now let us

come back to the proof of our main Theorem. For each index i , we repeat the

procedure as follows: denote

f1,i := 1Q1,i B∗
Q1,i

( f ).

Then we consider a collection of balls (Q2,i,m)m such that

• for all x ∈ Q1,i \
(
∪mQ2,i,m

)
, we have

∣∣∣B∗
Q1,i

( f )(x)
∣∣∣ ≤ β

• the weak-type (1, 1) of the maximal function yields

∑

m

µ(Q2,i,m) ≤ c1

β
µ(Q1,i )
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• and for all balls Q2,i,m intersecting Q1,i , it comes that
(

1

µ(Q2,i,m)

∫

Q2,i,m

∣∣∣B∗
Q1,i

( f ) − B∗
Q2,i,m

( f )
∣∣∣
q1
dµ

)1/q1
≤ c2β.

Then we put together all families (Q2,i,m)m for all indices i and we get a new family

(Q2,m)m :=
⋃

i

(Q2,i,m)m .

We also have

∑

m

µ(Q2,m) ≤ c1

β

∑

i

µ(Q1,i ) ≤
(
c1

β

)2
µ(Q).

Moreover for all x ∈ Q \
(
∪i Q1,i

)
, we already know from (2.11) that

∣∣B∗
Q( f )(x)

∣∣ ≤ β.

For all x belonging to Q ∩ Q1,i but not in the associated collection (Q2,i,m)m , we
have ∣∣∣B∗

Q1,i
( f )(x)

∣∣∣ ≤ β,

consequently

∣∣B∗
Q( f )(x)

∣∣ ≤ β +
∣∣∣B∗

Q( f )(x) − B∗
Q1,i

( f )(x)
∣∣∣ .

According to (2.13), we get:

(
1

µ(Q1,i )

∫

Q1,i\(∪mQ2,i,m)

∣∣B∗
Q( f )

∣∣q1 dµ

)1/q1
≤ (c2 + 1)β ≤ 2c2β.

We iterate this procedure and then having obtain the collection (Qk,i )i for some
integer k ≥ 1, we build for all i a collection (Qk+1,i,m)m and also a collection
(Qk+1,m)m = ∪i (Qk+1,i,m)m satisfying:

• for all x ∈ Qk,i \
(
∪mQk+1,i,m

)

∣∣∣B∗
Qk,i

( f )(x)
∣∣∣ ≤ β (2.14)

• we have ∑

m

µ(Qk+1,i,m) ≤ c1

β
µ(Qk,i )



ABSTRACT FRAMEWORK FOR JOHN-NIRENBERG INEQUALITIES 485

• for all balls Qk+1,i,m intersecting Qk,i , we have
(

1

µ(Qk+1,i,m)

∫

Qk+1,i,m

∣∣∣B∗
Qk,i

( f ) − B∗
Qk+1,i,m ( f )

∣∣∣
q1
dµ

)1/q1
≤ c2β. (2.15)

So for all integer k ≥ 1,

∑

m

µ(Qk,m) ≤ c1

β

∑

i

µ(Qk−1,i ) ≤ · ≤
(
c1

β

)k

µ(Q). (2.16)

First case: If q1 < ∞.

We have seen at the beginning of the proof that (2.10) holds for λ ! 1, so we are

only interested in large enough λ. We choose an integer K0 and a constant γ < 1,
such that for all large enough λ, there exists an integer K ≥ K0 satisfying

γ Kλ 1 2β and

(
c1

β

)K

≤ λ−q1 .

This is possible by choosing for example γ q1 = lc1/β with l ≥ (2β)q1/K0 (β > c1,
β being chosen large enough, we can find an integer K0 such that l0 := (2β)q1/K0 >
1 satisfies l0c1/β < 1).

So the integer K allows us to parameterize the scale of λ by a logarithmic scale
K 1 log(λ).

In particularly, we have
1

γ q1

c1

β
< 1. (2.17)

Then we can obtain

µ
({
x ∈Q, |B∗

Q( f )(x)|>λ
})

≤
∑

i

µ
({
x ∈ Q1,i , |B∗

Q( f )(x)| > λ
})

≤
∑

i

µ
({
x ∈Q1,i , |B∗

Q( f )(x)−B∗
Q1,i

( f )(x)|>(1− γ )λ
})

+
∑

i

µ
({
x ∈ Q1,i , |B∗

Q1,i
( f )(x)| > γ λ

})
.

The first term is bounded by
∑

i

µ
({
x ∈ Q1,i , |B∗

Q( f )(x) − B∗
Q1,i

( f )(x)| > (1− γ )λ
})

≤ (1− γ )−q1λ−q1
∑

i

∫

Q1,i

|B∗
Q( f ) − B∗

Q1,i
( f )|q1dµ

≤
(

c2β

(1− γ )λ

)q1 ∑

i

µ(Q1,i )

≤
(

c2β

(1− γ )λ

)q1 c1

β
µ(Q).
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Then we repeat the procedure with B∗
Q1,i

( f ) instead of B∗
Q( f ):

∑

i

µ
({
x ∈ Q1,i , |B∗

Q1,i
( f )(x)| > γ λ

})

≤
∑

i, j

µ
({
x ∈ Q2,i, j , |B∗

Q1,i
( f )(x)| > γ λ

})

≤
∑

i, j

µ
({
x ∈ Q2,i, j , |B∗

Q1,i
( f )(x) − B∗

Q2,i, j
( f )(x)| > (1− γ )γ λ

})

+
∑

i, j

µ
({
x ∈ Q2,i, j , |B∗

Q2,i, j
( f )(x)| > γ 2λ

})
.

The first term (in the last inequality) is controlled by

∑

i, j

µ
({
x ∈ Q2,i, j , |B∗

Q1,i
( f )(x) − B∗

Q2,i, j
( f )(x)| > (1− γ )γ λ

})

≤ [(1− γ )γ λ]−q1
∑

i, j

∫

Q2,i, j

|B∗
Q1,i

( f ) − B∗
Q2,i, j

( f )|q1dµ

≤
(

c2β

(1− γ )γ λ

)q1 ∑

i, j

µ(Q2,i, j )

≤
(

c2β

(1− γ )γ λ

)q1
(
c1

β

)2
µ(Q)

and the second one is equal to

∑

i

µ
({
x ∈ Q2,i , |B∗

Q2,i
( f )(x)| > γ 2λ

})
.

Thus, by iterating this reasoning, we deduce that

µ
({
x ∈ Q, |B∗

Q( f )(x)| > λ
})

≤ µ(Q)

λq1

K−1∑

k=0

(
c2β

(1− γ )γ k

)q1
(
c1

β

)k+1

+
∑

i

µ
({
x ∈ QK ,i , |B∗

QK ,i
( f )(x)|>γ Kλ

})
.

Consequently, (2.16) yields

µ
({
x ∈ Q, |B∗

Q( f )(x)| > λ
})

≤ µ(Q)

λq1

K−1∑

k=0

(
c2β

(1− γ )γ k

)q1
(
c1

β

)k+1

+
(
c1

β

)K

µ(Q).
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With the choice of the constant γ and the integer K , we deduce from (2.17) that

µ
({
x ∈ Q, |B∗

Q( f )(x)| > λ
})

! λ−q1µ(Q)

which corresponds to the desired inequality (2.10) when q1 < ∞.

Second case: If q1 = ∞.

In this case, we repeat the proof of [10]. For λ large enough, we denote K ≥ K0 an

integer such that

Kc2β < λ ≤ (K + 1)c2β.

Then, since (2.13) and (2.15), it follows that on Q1,i \ (∪ j Q2,i, j ), |B∗
Q( f )| ≤ β,

on Q1,i1 ∩ Q2,i2 \ (∪ j Q2,i2, j )

|B∗
Q( f )| ≤ |B∗

Q( f ) − B∗
Q1,i

( f )| + |B∗
Q1,i1

( f )| ≤ (1+ c2)β ≤ 2c2β

and by iterating on Q1,i1 ∩ · · · ∩ QK−1,iK−1 \ (∪ j QK ,iK−1, j ),

|B∗
Q( f )|≤ |B∗

Q( f )−B∗
Q1,i

( f )|+
K−2∑

l=1
|B∗

Ql+1,il
( f )−B∗

Ql+1,il+1
( f )|+|B∗

QK−1,iK−1
( f )|

≤ (1+ (K − 1)c2)β ≤ Kc2β < λ.

Hence {
x ∈ Q, |B∗

Q( f )(x)| > λ
}

⊂
⋃

i

QK ,i ,

which yields ( thanks to (2.16))

µ
({
x ∈ Q, |B∗

Q( f )(x)| > λ
})

≤
(
c1

β

)K

.

As c1/β is a constant smaller than 1 and K 1 λ, this allows us to obtain the desired
inequality.

It remains us to prove Lemma 2.12. We recall the statement with the notations

of the previous proof.

Lemma 2.13. There exists a numerical constant c2 ≥ 1, such that for all i with

Q1,i ∩ Q -= ∅:
(

1

µ(Q1,i )

∫

Q1,i

∣∣∣B∗
Q( f ) − B∗

Q1,i
( f )

∣∣∣
q1
dµ

)1/q1
≤ c2β. (2.18)
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Proof. The desired result corresponds to a “local version” of inequality (3.3) in [10]

(extended in our abstract framework), which essentially rests on Proposition 2.6

of [10]. We know that Q1,i ⊂ 2Q and we have

B∗
Q( f ) − B∗

Q1,i
( f ) = A∗

Q( f ) − A∗
Q1,i

( f )

=
[
A∗
Q( f ) − A∗

Q1,i
A∗
Q( f )

]
(2.19)

+
[
A∗
Q1,i

A∗
Q( f ) − A∗

Q1,i
( f )

]

= B∗
Q1,i

A∗
Q( f ) − A∗

Q1,i
B∗
Q( f ).

Let us study the first term. As Q1,i ⊂ 2Q, Assumption (2.6) implies:

(
1

µ(Q1,i )

∫

Q1,i

∣∣∣B∗
Q1,i

A∗
Q( f )( f )

∣∣∣
q1
dµ

)1/q1
! ‖ f ‖BMOq0 ! 1 ≤ β,

as β is chosen large enough.
So it remains to study the second term A∗

Q1,i
B∗
Q( f ). To estimate it, we have to

use (Lq0 − Lq1)-off diagonal decays of AQ1,i as follows. Let P be the first integer

such that 2Q ⊂ 2P+1Q1,i and 2Q ∩ (2P Q1,i )
c -= ∅. Then with Assumption (2.4),

we have (
1

µ(Q1,i )

∫

Q1,i

∣∣∣A∗
Q1,i

B∗
Q( f )

∣∣∣
q1
dµ

)1/q1
! I + I I

where

I :=
P+1∑

j=0
γ j

(
1

µ(2 j Q1,i )

∫

C j (Q1,i )

∣∣B∗
Q( f )

∣∣q0 dµ

)1/q0

and

I I :=
∞∑

j=P+2
γ j

(
1

µ(2 j Q1,i )

∫

C j (Q1,i )

∣∣B∗
Q( f )

∣∣q0 dµ

)1/q0
.

It follows from the property of the ball Q1,i (property c−) in the proof of Theorem
2.7), that there exists another constant κ ′, for j ≤ P + 1,

(
1

µ(2 j Q1,i )

∫

C j (Q1,i )

∣∣B∗
Q( f )

∣∣q0dµ

)1/q0
≤ κ ′

(
1

µ(2 jκQ1,i )

∫

2 jκQ1,i

| f0|q0 dµ

)1/q0

≤ κ ′β.

So it yields

I ≤
P+1∑

j=0
γ jκ

′β ! β.
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To estimate the second term I I . For any j ≥ P + 1, we know that 2 j Q1,i contains

the ball Q and so 2 j rQ1,i ≥ rQ . So we choose (Q̃
j
k )k a bounded covering of

C j (Q1,i ) with balls of radius rQ and as previously, we get (using that the operators
BQ only depend on the radius of the ball Q)

I I ≤
∞∑

j=P+2
γ j

(
1

µ(2 j Q1,i )

∑

k

∫

Q̃
j
k

∣∣B∗
Q( f )

∣∣q0 dµ

)1/q0

!
∞∑

j=P+2
γ j

(
1

µ(2 j Q1,i )

∑

k

∫

Q̃
j
k

∣∣∣∣B
∗
Q̃
j
k

( f )

∣∣∣∣
q0

dµ

)1/q0
(2.20)

! β
∞∑

j=P+2
γ j

(
1

µ(2 j Q1,i )

∑

k

µ(Q̃
j
k )

)1/q0

! β
∞∑

j=P+2
γ j ! β.

So finally, the estimates of I and I I imply (2.18), which concludes the proof.

Remark 2.14. Let us show how we can obtain Corollary 2.8. As explained in the

proof of Theorem 2.7, we use a Whitney decomposition of the set

* := {x, M
(
1QB

∗
Q( f )

)
(x) > β},

for a ball Q and some fixed parameter β > 1 . Using the dyadic structure of Rd ,

let us deal with a dyadic cube Q. We can choose a Whitney decomposition of *
with dyadic (relatively to Q) cubes Q1,i – see Theorem 5.2 of [15] for a detailed

construction –. Then the proof is based on such balls Q1,i such that

Q1,i ∩ Q -= ∅, and Q1,i ⊂ cQ,

for some constant c > 1. We have chosen c = 2 for simplicity, but we can consider

c = 3/2 for example. Then the dyadic structure of the Euclidean space, implies that
Q1,i is included in Q. We can now reproduce the same arguments and Assumption

(2.8) is sufficient to conclude.

Let us now consider general operators BQ , which could depend on the ball Q.

To get a result concerning abstract operators BQ (they now depend on the ball

and not only on the radius), we have to require some extra properties. In the pre-

vious proof, the only one point where we used the property of dependence (on the

radii) of the operators BQ is the inequality (2.20). So let us just take the notations

of the previous proof and recall the problem: for j ≥ P+1, C j (Q1,i ) ⊂ C j−P(Q),
and we have to estimate ∫

C j (Q1,i )

∣∣B∗
Q( f )

∣∣q0 dµ.
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From the BMO-norm, we only have information about B∗
Q( f ) on the ball Q, so

we do not know how we can control this term. In order to get around this lack of

information, we use the BMOε associated to molecules (see Theorem 2.9).

Proof of Theorem 2.9. We have to prove that

µ
({
x ∈Cl(Q),

∣∣BQ( f )(x)
∣∣>λ‖ f ‖BMOε,q0

})
≤ ρ12

−εlµ(2l Q)

[
e−ρ2λ+ 1q1<∞

λq1

]

(2.21)

for all integer l ≥ 0 and Q a ball of X .

So let us fix the ball Q and the function f .

For l = 0, we follow the proof of Theorem 2.7. In this case, the only one point

where we used the property of dependence (on the radii) of the operators BQ is the

inequality (2.20). So let us keep the same notations of the previous proof. We have

an integer j ≥ P + 1 (so C j (Q1,i ) ⊂ C j−P(Q)) and we have to estimate
∫

C j (Q1,i )

∣∣B∗
Q( f )

∣∣q0 dµ.

We also have
∫

C j (Q1,i )

∣∣B∗
Q( f )

∣∣q0 dµ ≤
∫

C j−P (Q)

∣∣B∗
Q( f )

∣∣q0 dµ ! 2−ε( j−P).

Consequently, we get

I I ≤
∞∑

j=P+1
γ j2

−ε( j−P)

!
∞∑

j=P+2
2−ε( j−P) ! 1 ! β.

This estimate permits to conclude the proof of Lemma 2.13 and by this way the

proof of (2.21) for l = 0.

For l ≥ 1, we produce the same reasoning by starting with the function f0 :=
1Cl (Q)B

∗
Q( f ) which satisfies

‖ f0‖L1 ≤
∫

Cl (Q)
|B∗

Q( f )|dµ ≤ ‖ f ‖BMOε,q0
2−εlµ(2l Q).

We reproduce the same proof (using Assumption (2.7)), which we leave it to the

reader.

3. Verification of our assumptions in some usual cases

In this section we verify that our results generalize the already known particular

cases, and more precisely that our assumptions are satisfied.
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3.1. The John-Nirenberg space

Consider the Euclidean space X = Rn and the usual BMO space. In [17], the first

John-Nirenberg inequalities was proved using a Calderón-Zygmund decomposition.

We refer the reader to [19, Chapter IV 1.3] for another proof based on the duality

H1 − BMO.

The first BMO space is defined by the operators:

B∗
Q( f ) := f −

(
1

µ(Q)

∫

Q

f

)
1Q .

So A∗
Q is the mean value operator and obviously off diagonal decays (2.4) hold with

q1 = ∞ and q0 = 1. In this case, Assumption (2.7) does not hold. However for

such operators, the coefficients γ j = 0 as soon as j ≥ 1. So to apply Theorem 2.9,

we only have to check Assumption (2.8), thanks to Corollary 2.8 and Remark 2.10

(in this particular case, the spaces B̃MOε,q are equal to BMOq because γ j = 0 for

j ≥ 1), which is

sup
R ball
R⊂Q

(
1

µ(R)

∫

R

∣∣B∗
R(A∗

Q( f ))
∣∣q1 dµ

)1/q1
≤ c‖ f ‖BMOq0 .

This last property is true since for R ⊂ Q, we have:

1RB
∗
R(A∗

Q( f )) =
(

1

µ(Q)

∫

Q

f

)
[1R − 1R] = 0.

Conclusion: In the framework of the classical BMO space, our Assumptions (2.4)

and (2.8) are satisfied. We recover the John-Nirenberg inequality (see [17]).

3.2. The Morrey-Campanato spaces

Consider the set X = [0, 1] with its Euclidean structure. For works related to
Morrey-Campanato spaces and associated John-Nirenberg inequalities, we refer the

reader to [18] and [8].

Let us first define these spaces.

Definition 3.1. For β ≥ 0, s ∈ N and q ∈ (1,∞), we say that a locally integrable
function f ∈ L1(X) belongs to the Morrey-Campanato spaces L(β, q, s) if

‖ f ‖L(β,q,s) := sup
Q∈Q

|Q|−β

[
−
∫

Q

∣∣ f (x) − PQ( f )(x)
∣∣q dx

]1/q
< ∞,

where for Q a ball (an interval) of X , PQ( f ) is the only one polynomial function
of degree at most s such that for all i ∈ {0, .., s}

∫

Q

xi
(
f (x) − PQ( f )(x)

)
dx = 0.
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Remark 3.2. L(β, q, 0) exactly corresponds to the previous BMO space (of John
and Nirenberg) as in this case PQ( f ) = −

∫
Q
f .

In this framework, we set AQ := P∗
Q in order that L(0, q, s) can be identified to

our BMO space. An easy computation shows that PQ( f ) is a polynomial function
whose coefficients are given by the quantities

∫

Q

f (x)xidx,

for i ∈ {0, .., s}. So A∗
Q = PQ can be written as follows

A∗
Q( f )(x) =

s∑

j=0
c j x

j1Q(x),

with coefficients c j satisfying

∣∣c j
∣∣ !

∫

Q

| f (x)|dx,

since we are working on X = [0, 1]. It comes out that off- diagonal decays (2.4)
hold with q1 = ∞ and q0 = 1. As previously since we are working on the Eu-

clidean space and coefficients γ j = 0 as soon as j ≥ 1, it is sufficient to check

that

sup
R ball
R⊂Q

(
1

µ(R)

∫

R

∣∣B∗
R(A∗

Q( f ))
∣∣q1 dµ

)1/q1
≤ c‖ f ‖BMOq0 .

This property is satisfied since for R ⊂ Q, we have

B∗
R(A∗

Q( f )) = PQ( f ) − PRPQ( f ) = 0.

The last equality is due to the fact that PQ( f ) is a polynomial function of degree at
most s, so by uniqueness (in the definition of PR): PR[PQ( f )] = PQ( f ).

Conclusion: In the framework of the classical Morrey-Campanato spaces L(0,q,s),
our Assumptions (2.4) and (2.8) are satisfied. We also recover the John-Nirenberg

inequality for all q ∈ (1,∞) (see [18]). For β > 0, we refer the reader to a

forthcoming work of the first author and J. M. Martell [5] (and [15, 16]), dealing

with more general self-improvement properties of inequalities.

3.3. General case of semigroup

Let us recall the framework of [10].

Consider a space of homogeneous type (X, d, µ) with a family of operators
(Ar )r>0 satisfying the following properties:
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• For every r > 0, the linear operatorAr is given by a kernel ar satisfying

|ar (x, y)| ! 1

µ(B(x, r1/m))

(
1+ d(x, y)

r1/m

)−n−2N−ε

,

where m is a parameter, n is the homogeneous dimension of the space X , and N

another “dimensional parameter” due to the homogeneous type (N ≥ 0 could

be equal to 0).

• (Ar )r>0 is a semigroup: for all t, s > 0 thenAsAt = As+t .

Related to such a collection, we build the following operator: for Q a ball

B∗
Q( f ) = f −ArmQ ( f ).

Let us check that our assumptions hold with q1 = ∞ and q0 = 1.

By considering a ball Q, it comes that

∥∥A∗
Q( f )

∥∥
L∞(Q)

! 1

µ(Q)
sup
x∈Q

∑

j≥0

∫

C j (Q)

(
1+ d(x, y)

rQ

)−n−2N−ε

| f (y)|dµ(y)

! 1

µ(Q)

∑

j≥0
2−(n+2N+ε) j

∫

C j (Q)
| f (y)|dµ(y)

!
∑

j≥0
γ j

(
1

µ(2 j Q)

∫

C j (Q)
| f |dµ

)

with

γ j ! 2−(n+2N+ε) j µ(2 j Q)

µ(Q)
! 2−(2N+ε) j ! 2−ε j .

So Assumption (2.4) is satisfied.

Then it remains to check Assumption (2.6). Indeed it corresponds to a local

version of Proposition 2.6 of [10] for K = 2. Let us consider a ball Q and another

one R ⊂ 2Q, we have to estimate

∥∥B∗
R(A∗

Q( f ))
∥∥
L∞(R)

.

By writing rR and rQ for the radii of R and of Q, the semigroup property yields

B∗
R A

∗
Q( f ) = ArmQ ( f ) −ArmR +rmQ ( f ).

Then as rR ≤ 2rQ , Proposition 2.6 of [10] proves that this quantity is bounded by

‖ f ‖BMO1. Consequently we deduce that Assumption (2.6) is satisfied too.
Conclusion: In the framework of [10], our Assumptions (2.4) and (2.7) are sat-

isfied. We can apply Theorem 2.7 and obtain a John-Nirenberg inequality for the

BMOq spaces with q ∈ (1,∞). We also recover the results of Section 3 in [10].
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3.4. The BMO space for a second order divergence form operator

The aim of this subsection is to compare the John-Nirenberg inequalities of [14]

(associated to a divergence form operator) to ours.

Let us first recall the framework of [14]. Consider the Euclidean space X = Rn

and A be an n × n matrix-valued function satisfying the ellipticity condition: there

exist two constants , ≥ λ > 0 such that

∀ξ, ζ ∈ Cn, λ|ξ |2 ≤ Re
(
Aξ · ξ

)
and |Aξ · ζ | ≤ ,|ξ ||ζ |.

We define the second order divergence form operator

L( f ) := −div(A∇ f ).

The semigroup associated to such operators satisfies some “Gaffney estimates”:

Proposition 3.3 (Lemma 2.5 [14] and [1]). There exist exponents 1 ≤ pL < 2 <
p̃L < ∞, such that for every p and q with pL < p ≤ q < p̃L , the semigroup
(e−t L)t>0 satisfies L p − Lq off-diagonal estimates, i.e. for arbitrary closed sets

E, F ⊂ Rn:

‖e−t L f ‖Lq (F) ! t
n
2

(
1
q
− 1

p

)

e−
d(E,F)2

t ‖ f ‖L p(E),

for every t > 0 and every function f ∈ L p(E).

In [14], S. Hofmann and S. Mayboroda define a Hardy space H1L ,p associated

to this operator and give several characterizations, where p ∈ (pL , p̃L). For f ∈
L1, we have the equivalence of the following norms:

‖ f ‖H1L ,p
:= ‖ f ‖L1 +

∥∥∥∥∥∥

(∫∫

t>0, y∈Rn
|x−y|≤t

∣∣∣t2Le−t
2L f (y)

∣∣∣
2 dtdy

tn+1

)1/2∥∥∥∥∥∥
L1

1 ‖ f ‖L1 +

∥∥∥∥∥∥
sup

t>0, y∈Rn
|x−y|≤t

(
1

tn

∫

B(y,t)

∣∣∣e−t
2L f (z)

∣∣∣
2
dz

)1/2
∥∥∥∥∥∥
L1

.

In addition, they prove a molecular decomposition with the following definition: let

ε > 0 and M > n/4 be fixed, a function m ∈ L2 is a (p, ε,M)-molecule, if there
exists a ball Q ⊂ Rn such that:

∀i ≥ 0,∀k ∈ {0, ...,M},
∥∥∥∥
(
r−2
Q L−1

)k
m

∥∥∥∥
L p(Ci (Q))

≤ 2−iε |2i+1Q|−1+
1
p . (3.1)

Moreover they prove that these spaces H1L ,p do not depend on p ∈ (pL , p̃L), and

they identify the dual spaces as a BMO space. For a ball Q, they consider operators

(BQ)Q given by the radius of the balls according to

BQ( f ) :=
(
I − e

−r2QL
)M

( f ),

with a large enough integer M > n/4.
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Let us check that our assumptions are satisfied in this case.

The operator AQ is given by the semigroup as follows

A∗
Q( f ) := f −

(
I − e

−r2QL∗)M
( f ).

By expanding the power M , it comes that A∗
Q is a finite sum of semigroups:

A∗
Q( f ) =

M∑

k=0

(
M

k

)
(−1)ke−kr2QL∗

( f ).

So Gaffney estimates (see Proposition 3.3) give us some coefficients γ j (depending
on M) such that Assumption (2.4) holds, for q1 = p′

L − ε, q0 = p̃L
′ + ε with ε > 0

as small as we want. It remains to check Assumption (2.6), which is the goal of the

following proposition (in fact we prove the stronger assumption (2.7)).

Proposition 3.4. In this framework, for t > 0 the semigroup e−t L
∗
acts continu-

ously in BMO spaces. Let us write for a parameter (as small as we want) τ > 0,

q1 = p′
L − τ and q0 = p̃L

′ + τ .

• There is a constant c such that for all t > 0 and all exponent q ∈ [q0, q1],
∥∥∥e−t L

∗
f

∥∥∥
BMOq

≤ c‖ f ‖BMOq

• Assumption (2.6) holds:

sup
R ball

r2
R

≤4t

(
1

|R|

∫

R

∣∣∣B∗
R(e−t L

∗
)
∣∣∣
q1

)1/q1
≤ c‖ f ‖BMOq0 .

Proof. Indeed we can prove a more precise result using duality. Thanks to [14,

Theorem 1.3], the desired result is equivalent to the following: there is a constant c

such that for all t > 0 and p ∈ [q ′
1, q

′
0]

∥∥∥e−t L f
∥∥∥
H1L ,p

≤ c‖ f ‖H1L ,p

and ∥∥∥e−t L f
∥∥∥
H1
L ,q′

0

≤ c‖ f ‖H1
L ,q′

1
,t

,

where H1
L ,q ′

1,t
is the Hardy space built by (q ′

1, ε) molecules associated to balls of

radius lower than 2
√
t . This will be achieved by invoking the following lemma and

the fact that the space H1L ,q does not depend on the integer M .
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Lemma 3.5. If p ∈ [q ′
1, q

′
0] and f is a (p, ε, 2M)-molecule adapted to a ball Q,

then for every t ≥ 0, e−t L( f ) is a (p, ε,M) molecule adapted to the same cube. If
f is a (q ′

1, ε, 2M)-molecule adapted to a ball Q (with rQ ! √
t), then e−t L( f ) is

a (q ′
0, ε,M) molecule adapted to the same cube.

Proof. Let us first check the first claim. We need to show that e−t L( f ) satisfies
(3.1) for p, up to some multiplicative constant that is uniform for t . We fix the

indices i and k and consider two cases.

Case 1: t ≤ 2i r2Q .

If i ≤ 3, then we have
∥∥∥(r2QL)−ke−t L

2

( f )
∥∥∥
L p(Ci (Q))

=
∥∥∥e−t L

2

(r2QL)−k( f )
∥∥∥
L p(Ci (Q))

!
∥∥∥(r2QL)−k( f )

∥∥∥
L p

! |Q|−1+
1
p ,

as desired, where we have used the L p-boundedness of the semigroup and the nor-

malization of the molecule f in (3.1).

Suppose i > 3. We split

(r2QL)−k( f ) = g1 + g2

with

g1 := (r2QL)−k( f )12i−2Q g2 := (r2QL)−k( f )1(2i−2Q)c .

We then have
∥∥∥(r2QL)−ke−t L

2

( f )
∥∥∥
L p(Ci (Q))

=
∥∥∥e−t L

2

(r2QL)−k( f )
∥∥∥
L p(Ci (Q))

≤
∥∥∥e−t L

2

g1

∥∥∥
L p(Ci (Q))

+
∥∥∥e−t L

2

g2

∥∥∥
L p(Ci (Q))

! e−
4i r2

Q
t |Q|−1+1/p +

∞∑

j=i−1
2− j (n/2+ε)|Q|−1+1/p

where in the last step we have used the Gaffney estimate (Proposition 3.3), L p-

boundedness of the semigroup and (3.1). The desired bound follows in the present

case.

Case 2: t≥2i r2Q .
In this case, we have
∥∥∥(r2QL)−ke−t L

2

( f )
∥∥∥
L p(Ci (Q))

=
∥∥∥(r2QL)Me−t L

2

(r2QL)−k−M( f )
∥∥∥
L p(Ci (Q))

=
(
r2Q

t

)M ∥∥∥(t L)Me−t L
2

(r2QL)−k−M( f )
∥∥∥
L p(Ci (Q))

! 2−iM |Q|−1+1/p
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where in the last line we have used L p-boundedness of (t L)Me−t L
2
, along the fact

that (3.1) holds with k + M ≤ 2M instead of k, for f is a (p, ε, 2M)-molecule.
Since we can choose M > n/p, the desired bound follows.

Second claim.

It remains us to check the second claim, stated in the lemma. The proof is the same

one as the first claim with the following modification. Now we have to use the off-

diagonal decay Lq
′
1 − Lq

′
0 of the semigroup and the global boundedness (instead of

the L p − L p ones used before). Using Proposition 3.3, this operation makes appear

an extra factor: (
tn/2

|Q|

) 1

q′
1

− 1

q′
0

.

The exponent 1
q ′
1

− 1
q ′
0

is negative, so tn/2

|Q| should be bounded below in order that this

new coefficient be bounded. That is why we require rQ ! √
t .

Remark 3.6. To prove that the semigroup of operators e−t L continuously acts on
the Hardy space H1L ,p, we refer the reader to the work [11] of J. Dziubański and

M. Preisner. It is obvious that the function x → e−t x satisfies the main assumption
in [11] and so the associated multiplier e−t L is bounded on the Hardy space (or at
least on the molecules).

Conclusion: In the framework of [14], our Assumptions (2.4) and (2.7) are sat-

isfied. We can also apply Theorem 2.7 and obtain John-Nirenberg inequalities for

the BMOq spaces with q ∈ ( p̃L
′, p′

L). The precise inequality seems to be new,
however we emphasize that the authors in [14] have already obtained an implicit

John-Nirenberg inequalities in order to identify their BMO spaces, with various

exponents q ∈ ( p̃L
′, p′

L) (see [14, Section 10]).

4. Application to Hardy spaces

We devote this section to an application of John-Nirenberg inequalities in the theory

of Hardy spaces. We refer the reader to Subsection 2.1 for definitions of atoms and

Hardy spaces. We only deal with the atomic Hardy spaces for simplicity but a

molecular version of the following results can be obtained too.

First let us give a “Hardy spaces”-point of view of our main Assumption (2.7).

Remark 4.1. Assumption (2.7) is equivalent to a H1p1,ato− H1p0,ato boundedness of

operators AQ .

Now we assume that B = (BQ)Q satisfies some L
p − L p decay estimates: for

p ∈ [p1, p0] and M ′′ a large enough exponent, there exists a constant C such that

∀k ≥ 0, ∀ f ∈ L p, supp( f ) ⊂ Q
∥∥BQ( f )

∥∥
L p(Ck(Q))

≤ C2−Mk‖ f ‖L p(Q).

(4.1)

Using (4.1) we get the following properties about Hardy spaces and BMO spaces.
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Proposition 4.2. The Hardy space H1p,ato is included in L
1 .

Proof. Since its atomic decomposition, we only have to control the L1-norm of

each atom m = BQ( fQ) ∈ H1p,ato, by a uniform bound.

By (4.1), the estimates for fQ , the doubling property of µ and the fact that M
is large enough (M > δ/p′ works), we have

∥∥BQ( fQ)
∥∥
L1

≤
∑

k≥0

∥∥BQ( fQ)
∥∥
L1(Ck(Q))

!
∑

k≥0
µ(Q)1/p

′
2−Mkµ(Q)1/p−12kδ/p

′ !1.

So we obtain that each p-atom is bounded in L1, which permits to complete the

proof.

Corollary 4.3. For p ∈ [p1, p0], the space H1p,ato is a Banach space.

Proof. The proof is already written in [6]. We reproduce it here for an easy refer-

ence.

We only verify the completeness: H1p,ato is a Banach space if for all sequences

(hi )i∈N of H1p,ato satisfying

∑

i≥0
‖hi‖H1p,ato < ∞,

the series
∑
hi converges in the Hardy space H

1
p,ato.

For such sequence in H1p,ato, we say that
∑

i hi ∈ L1, because each atom de-

composition is absolutely convergent in L1-sense (since the previous proposition).

If we denote f = ∑
i hi ∈ L1, then using the condition that

∑
i≥0 ‖hi‖H1p,ato < ∞,

we have

‖ f −
n∑

i=0
hi‖H1p,ato ≤

∞∑

i=n+1
‖hi‖H1p,ato −−−→

n→∞ 0.

We now come to our main result of this section: the Hardy space H1p,ato does not

depend on p ∈ (p1, p0].

Theorem 4.4. Under the above assumptions of Theorem 2.7 and (4.1), the Hardy

space H1p,ato does not depend on the exponent p ∈ (p1, p0].

Proof. The proof is based on duality and the property that the BMO spaces are not

depending on the exponent, see Corollary 2.11.

We recall duality results and we refer to [6, Section 8] for more details. Fix

an exponent p ∈ (p1, p0]. We cannot have a precise characterization of the dual
space of our atomic Hardy space. However, we have the following results. Since

the operator BQ are acting on a function (with a bounded support) to the Hardy
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space, we know that we can define and extend B∗
Q from (H1p,ato)

∗ to L p
′
loc. Then, we

claim that for φ ∈ (H1p,ato)
∗

‖φ‖BMOp′ 1 ‖φ‖(H1p,ato)
∗ . (4.2)

First step: Proof of (4.2).

For each φ ∈ BMOp′ ∩ (H1p,ato)
∗, for each atom m ∈

(
H1p,ato

)
, where m =

BQ( fQ), by Hölder inequality, we have

|〈φ,m〉| =
∣∣∣∣

∫

Q

B∗
Q(φ) fQdµ

∣∣∣∣

≤
(∫

Q

|B∗
Q(φ)|p′

dµ

) 1
p′

(∫

Q

| f |pdµ

) 1
p

≤ ‖φ‖BMOp′ .

(4.3)

Therefore by atomic decomposition, we deduce the first inequality ‖φ‖(H1p,ato)
∗ ≤

‖φ‖BMOp′ . It remains us to check the reverse inequality.

For arbitrary f ∈ L p(Q) satisfying ‖ f ‖L p(Q) = 1, we set gQ := µ(Q)
1
p
−1

f,
then m = BQ(gQ) is a p-atom. Therefore

∣∣∣∣

∫

Q

B∗
Q(φ) f dµ

∣∣∣∣ = µ(Q)
1− 1

p |〈φ, BQ(gQ)〉| ≤ µ(Q)
1
p′ ‖φ‖(H1p,ato)∗.

This holds for every L p(Q)-normalized function f . By duality, we deduce the

reverse inequality, which concludes the proof of (4.2).

Second step: End of the proof.

Let choose two exponents p, r in the above range [p1, p0]. By symmetry, it is just
sufficient to prove that

‖ f ‖H1p,ato ! ‖ f ‖H1r,ato (4.4)

for every function f ∈ H1p,ato ∩ H1r,ato (since it is easy to check that H
1
p,ato ∩ H1r,ato

is dense into both Hardy spaces). So let us fix such a function f . The Hardy spaces

are Banach spaces (Corollary 4.3), so Hahn-Banach Theorem implies that there is

φ ∈ (H1p,ato)
∗ normalized such that

‖ f ‖H1p,ato = 〈φ, f 〉.

We know that for every ball Q, B∗
Q(φ) belongs to L p

′
(Q) and satisfies

(
1

µ(Q)

∫

Q

|B∗
Q(φ)|p′

dµ

) 1
p′ ≤ 1.
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We can apply John-Nirenberg inequality: Theorem 2.7 1. We also obtain that for

all ball Q, B∗
Q(φ) belongs to Lr

′
(Q) and satisfies

(
1

µ(Q)

∫

Q

|B∗
Q(φ)|r ′

dµ

) 1
r ′

! 1.

Then as f ∈ H1p,ato ∩ H1r,ato ⊂ H1r,ato, it follows by the previous reasoning (step 1)

that

‖ f ‖H1p,ato = 〈φ, f 〉 !
∑

i

|λi 〈φ,mi 〉| ! ‖ f ‖H1r,ato,

where we have used an “extremizing” decomposition f = ∑
i λimi with r-atoms.

The proof of (4.4) is also achieved.
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