
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XI (2012), 395-406

Twisted Alexander polynomials for irreducible

SL(2, C)-representations of torus knots

TERUAKI KITANO AND TAKAYUKI MORIFUJI

Abstract. We prove that the twisted Alexander polynomial of a torus knot with
an irreducible SL(2, C)-representation is locally constant. In the case of a (2, q)
torus knot, we can give an explicit formula for the twisted Alexander polynomial
and deduce Hirasawa-Murasugi’s formula for the total twisted Alexander polyno-
mial. We also give examples which address a mis-statement in a paper of Silver
and Williams.

Mathematics Subject Classification (2010): 57M27.

1. Introduction

Let K be a knot in the 3-sphere S3 and G(K ) = π1(S
3 − K ) its knot group.

In this paper, we consider the twisted Alexander polynomial "K ,ρ(t), which is
defined as a rational expression over C with one variable t , for a knot K associated

with an irreducible representation ρ : G(K ) → SL(2, C). The twisted Alexander
polynomial for a knot with a linear representation was originally introduced by Lin

in [9]. It was generalized and developed by Wada in [12] for finitely presentable

groups which include link groups. If we put t = 1, it is known that "K ,ρ(1) equals
the Reidemeister torsion of the exterior of a knot K for the same representation ρ,
under the acyclicity condition [6].

When ρ is a nonabelian representation, the twisted Alexander polynomial

"K ,ρ(t) becomes a Laurent polynomial over C (see [7]). Since an irreducible rep-

resentation is nonabelian, "K ,ρ(t) is a Laurent polynomial and all the coefficients
of"K ,ρ(t) are complex valued functions on the space of irreducible representations
in SL(2, C). We then obtain the following.

Theorem 1.1. If K is a torus knot, then every coefficient of "K ,ρ(t) is a locally
constant function, that is, a constant function on each connected component of the

space of irreducible SL(2, C)-representations.
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Remark 1.2. (1) Johnson [3] proved that the Reidemeister torsion of a torus knot

is a locally constant function on the space of irreducible SL(2, C)-representations.
More generally, it is known that the Reidemeister torsion is locally constant for a

Seifert fibered manifold [5].

(2) Kitayama observed in [8, Example 5.11] that every coefficient of the twisted

Alexander polynomial of a torus knot is locally constant for SU(2)-representations.

This paper is organized as follows. In the next section, we review the definition

for the twisted Alexander polynomial associated with SL(2, C)-representations. In
Section 3, we describe the representation space of a torus knot (Proposition 3.7) ac-

cording to Johnson’s lecture note [3]. In the last section, we give two kinds of proofs

for Theorem 1.1 and an explicit formula for the twisted Alexander polynomial for

(2, q) torus knots (Theorem 4.2). We also discuss the total twisted Alexander poly-
nomial, due to Silver-Williams [11]. Hirasawa-Murasugi’s formula [2] for the to-

tal twisted Alexander polynomial corresponding to parabolic representations of a

(2, q) torus knot is shown very easily (Corollary 4.5). In particular, we present an
example for the twisted Alexander polynomial which cannot be written as a product

of cyclotomic polynomials (Example 4.7). The example addresses a mis-statement

in a paper of Silver and Williams [11].

We shall give a self-contained description through the paper, so we determine

the representation space of a torus knot in detail (although it seems to be known to

experts).

2. Twisted Alexander polynomials

In this section, we review the definition of "K ,ρ(t) for an SL(2, C)-representation
ρ. There are several versions for the twisted Alexander polynomial, but in this paper
we adopt the one due to Wada [12].

For a given knot K , we fix a presentation of its knot group G(K ):

P = 〈x1, . . . , xn | u1, . . . , un−1〉.

We may assume its deficiency is one, but it might not be a Wirtinger presentation.

We take the abelianization homomorphism α : G(K ) → Z = 〈t〉.
Given representations ρ : G(K ) → SL(2, C) and α : G(K ) → 〈t〉, they

naturally induce two ring homomorphisms ρ̃ and α̃ from the group ring ZG(K )
to M(2, C) and Z[t, t−1] respectively, where M(2, C) is the matrix algebra of
2 × 2 matrices over C. Then ρ̃ ⊗ α̃ defines a ring homomorphism ZG(K ) →
M

(
2, C[t, t−1]

)
. Let Fn denote the free group on generators x1, . . . , xn and

% : ZFn → M
(
2, C[t, t−1]

)

the composite of the surjection ZFn → ZG(K ) induced by the presentation P and
the ring homomorphism ρ̃ ⊗ α̃.
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Let us consider the (n − 1) × n matrix A whose (i, j) component is the 2× 2

matrix

%

(
∂ui

∂x j

)
∈ M

(
2, C[t, t−1]

)
,

where ∂
∂x j

( j = 1, . . . , n) denotes the free differential calculus (see [1]). This

matrix A is called the Alexander matrix of the presentation P associated with ρ.

For 1 ≤ j ≤ n, let us denote by A j the (n− 1)× (n− 1)matrix obtained from
A by removing the j th column. We regard A j as a 2(n− 1) × 2(n− 1) matrix with
coefficients in C[t, t−1].

The following two lemmas are the foundations of the definition for the twisted

Alexander polynomial (see [12] for the proof).

Lemma 2.1. det%(x j − 1) )= 0 for some j .

Lemma 2.2. det A j det%(xk − 1) = det Ak det%(x j − 1) for 1 ≤ j < k ≤ n.

From the above two lemmas, we can define the twisted Alexander polynomial

of G(K ) associated with the representation ρ : G(K ) → SL(2, C) to be a rational
expression

"K ,ρ(t) = det A j

det%(x j − 1)

provided det%(x j − 1) )= 0.

Remark 2.3. Up to a factor of tk (k ∈ Z), this is an invariant of G(K ) with ρ
(see [12, Theorem 1]). Namely, it does not depend on the choices of a presentation

P . Hence we can consider it as a knot invariant.

In general, the twisted Alexander polynomial"K ,ρ(t) depends on ρ. However
the following proposition is known.

Proposition 2.4. If ρ and ρ′ are conjugate as an SL(2, C)-representation, then
"K ,ρ(t) = "K ,ρ′(t).

Here a representation ρ is conjugate to a representation ρ′ if there exists S ∈
SL(2, C) such that ρ(g) = Sρ′(g)S−1 for any g ∈ G(K ).

Under a generic assumption on ρ, the twisted Alexander polynomial becomes
a Laurent polynomial (see [7, Theorem 3.1]).

Proposition 2.5. If ρ : G(K ) → SL(2, C) is a nonabelian representation, then
"K ,ρ(t) is a Laurent polynomial with coefficients in C.

In this paper, we consider that each coefficient of"K ,ρ(t) is a complex valued
function on the space of conjugacy classes of irreducible SL(2, C)-representations.
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3. Representation space of a (p, q) torus knot

In this section, we recall a parametrization of the space of conjugacy classes of

irreducible SL(2, C)-representations of a torus knot. This was demonstrated in the
unpublished lecture notes [3] by Johnson.

Let (p, q) be a pair of coprime natural numbers. Hereafter let K = T (p, q)
be the (p, q) torus knot and G(p, q) be its knot group. We take the following
presentation of G(p, q):

G(p, q) = 〈x, y | x p y−q〉.

First we quickly review some terminologies of a linear representation in SL(2, C).
A representation ρ : G(p, q) → SL(2, C) is called irreducible if there does
not exist a nontrivial proper invariant subspace of C2 under the natural action of
ρ(G(p, q)). A representation ρ : G(p, q) → SL(2, C) is called reducible if ρ
is not irreducible. That is, there is an invariant 1-dimensional subspace of C2. A
representation ρ is called abelian if ρ(G(p, q)) is an abelian subgroup of SL(2, C).
It is easy to see that an abelian representation is reducible.

Let R be the set of irreducible SL(2, C)-representations of G(p, q). Fixing the
generators x and y, R can be embedded into SL(2, C) × SL(2, C) by the map R +
ρ ,→ (ρ(x), ρ(y)) ∈ SL(2, C) × SL(2, C). From this embedding, the topology

of R can be induced from SL(2, C) × SL(2, C). Let R̂ be the space of conjugacy
classes of irreducible representations, that is, the quotient space of R by conjugate

action of SL(2, C). In general R̂ has some connected components. For a given
representation ρ, we write ρ̂ for its conjugacy class.

From now on, we start to describe the structure of R̂. Choosing a pair (r, s) of
natural numbers satisfying ps − qr = 1, then m = x−r ys ∈ G(p, q) represents a
meridian of T (p, q). Let ρ : G(p, q) → SL(2, C) be an irreducible representation.
For simplicity, we write a capital letter X for the image ρ(x) of x , Y for ρ(y) and
so on.

Now we put z = x p = yq ∈ G(p, q) which lies in the center of G(p, q). Re-
call that the center of SL(2, C) is {±E}, where E is the identity matrix of degree 2.
Lemma 3.1. Z = ±E .
Proof. Assume that Z )= ±E . We take an eigenvalue λ of Z and its eigenspace
Vλ ⊂ C2. Because z is a center element of G(p, q), Z can be commuted with any
matrix S ∈ ρ(G(p, q)). For any vector v ∈ Vλ,

Z(Sv) = S(Zv) = λSv.

Hence Sv ∈ Vλ and it implies Vλ is an invariant subspace of ρ. By the irreducibility

of ρ, Vλ is the full space C2. Therefore λ = λ−1 = ±1. Here we may put Z =( ±1 t
0 ±1

)
up to conjugation. If t )= 0, then the above eigenspace Vλ is not the full

space C2. This contradicts the irreducibility of ρ and then Z = ±E .
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Since Z = X p = Yq = ±E , it holds that X2p = Y 2q = E . On the other hand,

we have the following.

Lemma 3.2. Xr )= ±E, Y s )= ±E .

Proof. Assuming Xr = ±E , we have X2r = E . Since ps−qr = 1, 2ps = 2qr+2
holds. Thus X2ps = X2qr+2. Hence we have E = X2 and then X = ±E . It means
that the representation ρ is abelian, but this is a contradiction. It is similarly proved
that Y s )= ±E .

Here we let

α±1 = exp(±
√

−1πa/p) and β±1 = exp(±
√

−1πb/q)

to be the eigenvalues of X and Y respectively, where we can assume that 0 < a < p

and 0 < b < q. Since

X p = (−E)a = Yq = (−E)b,

it holds that

a ≡ b mod 2.

From now on, let us fix tr X and trY . We consider a conjugacy class of the repre-

sentation ρ, so that we may assume X =
(

α 0
0 α−1

)
and Y is conjugate to

(
β 0

0 β−1

)

in SL(2, C).

Remark 3.3. We remark that a is fixed but b is not. In fact, there are two choices

of b (0 < b < q), namely b or −b mod q. Both of them give the same trace

trY = 2 cos (πb/q).

If Y is an upper triangle matrix, then ρ is a reducible representation. In this
case, the trace of the meridian image

M = X−rY s

=
(

α 0

0 α−1

)−r (
β ∗
0 β−1

)s

or

(
α 0

0 α−1

)−r (
β−1 ∗
0 β

)s

is given by

trM = α−rβ±s + αrβ∓s = 2 cosπ(ra/p ± sb/q).

Namely we obtain the following lemma.
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Lemma 3.4. ρ is an irreducible representation if trM )= α−rβ±s + αrβ∓s .

Now Y s is conjugate to
(

βs 0

0 β−s

)
in SL(2, C), so that Y s has the form of

(
βs + δ ∗

∗ β−s − δ

)
or

(
β−s + δ ∗

∗ βs − δ

)
,

where δ is any complex number. Therefore

trM = tr (X−rY s)

= α−rβ±s + αrβ∓s + δ(α−r − αr ).

Hence we can assume

trM = α−rβs + αrβ−s + δ(α−r − αr )

by replacing β if necessary. We note that b has been fixed. This value of trM can

be any complex number because δ can be so.

Lemma 3.5. If we put U = X−r and V = Y s , then X = ZsUq and Y = Z−r V p.

Proof. Direct calculations.

Lemma 3.6. For any irreducible representation ρ : G(p, q) → SL(2, C), if tr X ,
trY and trM are fixed, then ρ is uniquely determined up to conjugation.

Proof. We fix tr X , trY and trM . Then we prove that X and Y are uniquely deter-

mined in SL(2, C) up to mutual conjugation. First the value of tr X determines

tr Z and trU , because Z = X p and U = X−r . Hence Z can be determined

since Z = ±E . Similarly trY determines tr V . Here trM = trUV is fixed and

U, V do not commute, so that U and V are determined in SL(2, C) up to mu-
tual conjugation. Therefore X and Y are uniquely determined up to conjugation by

Lemma 3.5.

Proposition 3.7 (Johnson [3]). Each connected component R̂a,b of R̂ is determined

by the following data:

(1) 0 < a < p, 0 < b < q.

(2) a ≡ b mod 2.

(3) tr X = 2 cos (πa/p), trY = 2 cos (πb/q) and Z = (−E)a .
(4) trM )= 2 cosπ(ra/p ± sb/q).

In particular, R̂a,b is parametrized by trM and has complex dimension one.
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4. A formula for the (2, q) torus knot

We start to compute the twisted Alexander polynomial of the (p, q) torus knot from
the presentation

G(p, q) = 〈x, y | x p y−q〉.
Let us denote the relator by u = x p y−q . In this case, we easily see that

∂u

∂x
= 1+ x + · · · + x p−1

holds. Then by definition we have

"K ,ρ(t) =
det%

(
∂u

∂x

)

det%(y − 1)

= det(E + tq X + t2q X2 + · · · + t (p−1)q X p−1)
det(t pY − E)

=
(
1+ αtq + · · · + α p−1t (p−1)q

) (
1+ α−1tq + · · · + α−(p−1)t (p−1)q

)

1−
(
β + β−1) t p + t2p

,

where we have assumed that X =
(

α 0
0 α−1

)
and Y is conjugate to

(
β 0

0 β−1

)
for

α = exp
(√

−1πa/p
)
, β = exp

(√
−1πb/q

)
. From the above description, it is

easy to see that "K ,ρ(t) can be determined by the fixed a and b. This completes
the proof of Theorem 1.1.

Remark 4.1. For a reducible nonabelian representation ρ : G(p, q) → SL(2, C),
the twisted Alexander polynomial "K ,ρ(t) is expressed via the classical Alexander
polynomial. More precisely, the following holds:

"K ,ρ(t) = "K (µt)"K (µ−1t)
t2 − (trM) t + 1

= (t pq − µpq)
(
t pq − µ−pq

)

(t p − µp)
(
t p − µ−p

)
(tq − µq)

(
tq − µ−q) ,

where µ ∈ C satisfies "K (µ2) = 0 and µ + µ−1 = trM (see [7, Theorem 3.1]).

Theorem 1.1 also can be shown by the following argument. We now put K =
T (p, q) on the standard torus T 2 in S3. Here S3 cut along T 2 consists of two solid
tori U1 and U2. Let π : (S3 − K )∞ → S3 − K be the infinite cyclic covering

associated with α : G(p, q) → Z = 〈t〉. For simplicity, we write U ′
i to Ui − K ,

and set Ũ ′
i = π−1(U ′

i ) for i = 1, 2. Then we have (S3 − K )∞ = Ũ ′
1 ∪ Ũ ′

2. For the

union we obtain the Mayer-Vietoris exact sequence with twisted coefficients:

→H1(Ũ
′
1∪Ũ ′

2;C2ρ)→H0(Ũ
′
1∩Ũ ′

2;C2ρ)→⊕i H0(Ũ
′
i ; C2ρ)→H0(Ũ

′
1∪Ũ ′

2; C2ρ)→0,
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whereC2ρ isZG(p,q)-module defined by the representation ρ :G(p,q)→SL(2,C).
The twisted Alexander polynomial "K ,ρ(t) is given by the ratio of the orders of

H1(Ũ
′
1 ∪ Ũ ′

2; C2ρ) = H1(S
3 − K ; C[t, t−1]2ρ⊗α)

and

H0(Ũ
′
1 ∪ Ũ ′

2; C2ρ) = H0(S
3 − K ; C[t, t−1]2ρ⊗α),

so that it is determined by H0(Ũ
′
1 ∩ Ũ ′

2; C2ρ), H0(Ũ
′
i ; C2ρ) and H0(Ũ

′
1 ∪ Ũ ′

2; C2ρ).
However these twisted homology groups depend only on the traces of X,Y and

X pYq , because all the spaces U ′
1, U

′
2 and U

′
1 ∩ U ′

2 are homotopic to S
1 and the

core curves are corresponding to x, y and x p yq respectively. Namely the twisted
Alexander polynomial is locally constant.

Now in the case of p = 2, we can give an explicit formula for the twisted

Alexander polynomial. In this case, a must be 1 and then R̂ consists of
q−1
2
com-

ponents R̂1,b (0 < b < q, b is odd).

Theorem 4.2. Let K be the (2, q) torus knot and ρb an irreducible representation

with ρ̂b ∈ R̂1,b, Then the twisted Alexander polynomial is given by

"K ,ρb(t) =
(
t2 + 1

) ∏

0<k<q, k:odd, k )=b

(
t2 − ξk

) (
t2 − ξ̄k

)
,

where ξk = exp(
√

−1πk/q).

Proof. Here we have α =
√

−1. The numerator of "K ,ρb(t) is 1+ (α + α−1)tq +
t2q = 1 + t2q . On the other hand, the denominator is (t2 − ξb)(t

2 − ξ̄b), because
β = exp(

√
−1πb/q). The polynomial t2q + 1 has the factorization

t2q + 1 =
(
t2 + 1

) ∏

0<k<q, k:odd
(t2 − ξk)(t

2 − ξ̄k)

over C[t], so that we can obtain the desired formula.

Example 4.3. Let K = T (2, 3), the trefoil knot. In this case, there is just one

connected component R̂1,1 and we see that

"K ,ρ(t) = t6 + 1

t4 − t2 + 1
= t2 + 1

holds for any ρ with ρ̂ ∈ R̂1,1 (see [10, Theorem 4.1]).

A representation ρ : G(K ) → SL(2, C) is called parabolic if the image of
any meridian is a matrix with trace 2. For a torus knot T (p, q), we can show the
following.
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Proposition 4.4. There exists uniquely a conjugacy class of a parabolic represen-

tation on any connected component R̂a,b.

Proof. This is a straightforward consequence of Proposition 3.7, namely 2 is a value

allowed by Proposition 3.7 (4). In fact we can easily show that 2 cosπ(ra/p±sb/q)
never coincides with 2.

The (2, q) torus knot is one of 2-bridge knots. For a parabolic representation of
a 2-bridge knot, Silver-Williams introduced the total twisted Alexander polynomial,

which is denoted by DK ,ρ(t). It is defined by taking the product of "K ,ρ(t) over
parabolic representations corresponding to the roots of the Riley polynomial (see

[11] for details).

As an immediate corollary of Theorem 4.2 and Proposition 4.4, we have Hira-

sawa-Murasugi’s formula of DK ,ρ(t) for the (2, q) torus knot.

Corollary 4.5 (Hirasawa-Murasugi [2]). For the(2,q) torus knot, the total twisted
Alexander polynomial DK ,ρ(t) is given by

DK ,ρ(t) =
∏

0<b<q, b:odd
"K ,ρb(t)

=
(
t2 + 1

) (
t2q + 1

) q−3
2

,

where ρ̂b ∈ R̂1,b.

Proof. Since each connected component R̂1,b contains just one class of a parabolic

representation, we can calculate the total twisted Alexander polynomial as follows.

DK ,ρ(t) =
∏

0<b<q, b:odd
"K ,ρb(t)

= t2q + 1

(t2 − ξ1)(t2 − ξ̄1)
· t2q + 1

(t2 − ξ3)(t2 − ξ̄3)
· · · t2q + 1

(t2 − ξq−2)(t2 − ξ̄q−2)

= (t2q + 1)
q−1
2

t2q + 1

t2 + 1

=
(
t2 + 1

) (
t2q + 1

) q−3
2

.

This completes the proof.

Example 4.6. Let K = T (2, 5). Then there exist two connected components R̂1,1
and R̂1,3 in the irreducible SL(2, C)-representation space of G(2, 5). A direct cal-
culation shows that

"K ,ρ±(t) = t6 + 1±
√
5

2
t4 + 1±

√
5

2
t2 + 1
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holds for any ρ̂+ ∈ R̂1,1 and ρ̂− ∈ R̂1,3. If we take the product of them, we obtain

the total twisted Alexander polynomial

DK ,ρ(t) = "K ,ρ+(t) · "K ,ρ−(t) =
(
t2 + 1

) (
t10 + 1

)
.

The result reveals that DK ,ρ(t) is a product of cyclotomic polynomials, although
the twisted Alexander polynomial is not (see [2, Proposition 10.4] and [11, Theo-

rem 6.1]).

Finally, let us consider the ρ-twisted Alexander polynomial"
ρ
1 defined in [11,

Section 3] (see also [4, Theorem 4.1]). It is related to our twisted Alexander poly-

nomial "K ,ρ(t) as follows:

"
ρ
1 = "K ,ρ(t) · "ρ

0 ,

where "
ρ
0 is the order of the cokernel of ∂1 for the chain complex

0 −→ +2 ∂2−→
(
+2

)2 ∂1−→ +2 −→ 0.

Here + = C[t, t−1] and the differentials are given by

∂2 =
(

%

(
∂u

∂x

)
%

(
∂u

∂y

))
, ∂1 =

(
%(x − 1)
%(y − 1)

)
.

Then "
ρ
0 equals the greatest common divisor of the 2 × 2 subdeterminants of the

matrix representing ∂1.

In [11, Corollary 6.3] Silver and Williams stated that the ρ-twisted Alexan-
der polynomial corresponding to a parabolic representation of a torus knot is a

product of cyclotomic polynomials. The next example shows that it is a false

statement.

Example 4.7. Let K = T (4, 3). There are three connected components R̂1,1, R̂2,2
and R̂3,1. Let us focus on the component R̂1,1. In this case, α = exp(

√
−1π/4) and

β = exp(
√

−1π/3). Thus for any representation ρ̂ ∈ R̂1,1, we obtain

"K ,ρ(t) = 1+
√
2t3 + t6 + t12 +

√
2t15 + t18

1− t4 + t8

=
(
1+ t4

) (
1+

√
2t3 + t6

)
.
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To get "
ρ
1 for the knot K = T (4, 3), we calculate "

ρ
0 for a representation ρ :

G(4, 3) → SL(2, C) defined by

ρ(x) =
(

α 0

0 α−1

)
and ρ(y) =

(
β +

√
−1 −γ

γ β−1 −
√

−1

)
,

where γ =
√

−1−
√
3. We then obtain

∂1 =
(

ρ(x)t3 − E

ρ(y)t4 − E

)

and "
ρ
0 = 1 by a direct calculation. In fact, there are two subdeterminants

f13(t) = −γ t4
(
αt3 − 1

)
and f24(t) = −γ t4

(
α−1t3 − 1

)

such that gcd( f13, f24) = 1, where fi j (t) is the determinant of the 2 × 2 matrix

consisting of the i th and the j th rows of ∂1.
Therefore the ρ-twisted Alexander polynomial is given by

"
ρ
1 = "K ,ρ(t) · "ρ

0

=
(
1+ t4

) (
1+

√
2t3 + t6

)

and not an integral polynomial. In particular, it is not a product of cyclotomic poly-

nomials. Of course this formula is valid for a parabolic SL(2, C)-representation in

R̂1,1, because of Theorem 1.1 and Proposition 4.4.
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