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On the definition and properties

of p-harmonious functions

JUAN J. MANFREDI, MIKKO PARVIAINEN AND JULIO D. ROSSI

Abstract. We consider functions that satisfy the identity

uε(x) = α

2

{
sup

Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫

Bε(x)
uε dy

for a bounded domain in Rn . Here ε > 0 and α, and β are suitable nonnega-
tive coefficients such that α + β = 1. In particular, we show that these functions
are uniquely determined by their boundary values, approximate p-harmonic func-
tions for 2 ≤ p < ∞ (for a choice of p that depends on α and β), and satisfy
the strong comparison principle. We also analyze their relation to the theory of
tug-of-war games with noise.

Mathematics Subject Classification (2010): 91A15 (primary); 35B50, 35J25,
35J70, 49N70, 91A24 (secondary).

1. Introduction

The fundamental works of Doob, Hunt, Kakutani, Kolmogorov and many others

have shown the profound and powerful connection between the classical linear po-

tential theory and the corresponding probability theory. The idea behind the clas-

sical interplay is that harmonic functions and martingales share a common origin

in mean value properties. This approach turns out to be useful in the nonlinear

theory as well. The goal of this paper is to study functions that satisfy a nonlinear

generalization of the mean value theorem

uε(x) = α

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫

Bε(x)
uε dy, (1.1)

JM partially supported by NSF award DMS-1001179.
MP partially supported by The Emil Aaltonen Foundation, The Fulbright Center, and The Mag-
nus Ehrnrooth Foundation.
JDR partially supported by project MTM2004-02223, MEC, Spain, by UBA X066 and by CON-
ICET, Argentina.

Received May 15, 2010; accepted November 25, 2010.



216 JUAN J. MANFREDI, MIKKO PARVIAINEN AND JULIO D. ROSSI

with fixed ε > 0 and suitable nonnegative α and β, with α + β = 1.

When u is harmonic, then it satisfies the well known mean value property

u(x) =
∫

Bε(x)
u dy, (1.2)

that is (1.1) with α = 0 and β = 1. On the other hand, functions satisfying (1.1)

with α = 1 and β = 0

uε(x) = 1

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}

(1.3)

are called harmonious functions in [6] and [7]. As ε goes to zero, they approximate
solutions to the infinity Laplacian. To be more precise, Le Gruyer proved in [6]

(see also [15]) that a uniform limit when ε → 0 of a sequence of harmonious

functions is a solution to $∞u = 0, where $∞u = |∇u|−2∑
i j uxi uxi x j ux j =

|∇u|−2 〈D2u ∇u,∇u〉 is the 1−homogeneous infinity Laplacian.
Recall that the p-Laplacian is given by

$pu = div(|∇u|p−2∇u) = |∇u|p−2 {(p − 2)$∞u + $u} . (1.4)

Since the p-Laplace operator can be written as a combination of the Laplace oper-

ator and the infinity Laplacian, it seems reasonable to expect that the combination

(1.1) of the averages in (1.2) and (1.3) give an approximation to a solution to the p-

Laplacian. We will show that this is indeed the case. To be more precise, we prove

that p-harmonious functions are uniquely determined by their boundary values and

that they converge uniformly to the p-harmonic function with the given boundary

data. Furthermore, we show that p-harmonious functions satisfy the strong maxi-

mum and comparison principles. Observe that the validity of the strong compari-

son principle is an open problem for the solutions of the p-Laplace equation in Rn ,

n ≥ 3.

Consider a two-player zero-sum stochastic game in a domain % described as

follows: fix the step size ε > 0 and an initial position x0 ∈ %. The players toss a
biased coin with probabilities α and β, α+β = 1. If the result is heads (probability

α), they play a tug-of-war step ([15]) as follows: a fair coin is tossed and the winner
of the toss is allowed to move the game position to any x1 ∈ Bε(x0); while, if the
result is tails (probability β), the game state moves to a random point in the ball

Bε(x0). They continue playing until the game position leaves the domain%. At this
time Player II pays Player I the amount determined by a pay-off function defined

outside %. Naturally, Player I tries to maximize the payoff while Player II tries
to minimize it. Equation (1.1) describes the expected payoff of the above game.

Intuitively, the expected payoff at the point can be calculated by considering the

three cases: Player I moves, Player II moves, or a random point is chosen, with

their corresponding probabilities. For a more detailed description of the game we

refer to Section 2.
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In this variant of the original tug-of-war with noise formulation of Peres and

Sheffield in [16] the noise is distributed uniformly on Bε(x). This approach allows
us to use the dynamic programming principle in the form (2.3) to conclude that our

game has a value and that the value is p-harmonious. There are indications, see

Barles-Souganidis [3] and Oberman [14], that our results based on the mean value

approach are likely to be useful in applications for example to numerical methods

as well as in problems of analysis, cf. Armstrong-Smart [1, 2] (note that this last

reference does not use tools from probability theory). For a deterministic-control-

based approach see [9] and [10]. On the other hand, one can look at (1.1) as a

nonlocal problem analogous to the local p-Laplacian. For a nonlocal version of the

evolution problem with the p-Laplacian we refer to [8].

1.1. Main results

To begin with, we recall a heuristic argument from [11] to gain insight on (1.1). It

follows from expansion (1.4) that u is a solution to $pu = 0 if and only if

(p − 2)$∞u + $u = 0, (1.5)

because this equivalence can be justified in the viscosity sense even when ∇u = 0

as shown in [5]. Averaging the classical Taylor expansion

u(y) = u(x) + ∇u(x) · (y − x) + 1

2
〈D2u(x)(y − x), (y − x)〉 + O(|y − x |3),

over Bε(x), we obtain

u(x) −
∫

Bε(x)
u dy = − ε2

2(n + 2)
$u(x) + O(ε3), (1.6)

when u is smooth. Here we used the shorthand notation

∫

Bε(x)
u dy = 1

|Bε(x)|

∫

Bε(x)
u dy.

Then observe that gradient direction is almost the maximizing direction. Thus,

summing up the two Taylor expansions roughly gives us

u(x) − 1

2

{
sup
Bε(x)

u + inf
Bε(x)

u

}

≈ u(x) − 1

2

{
u

(
x + ε

∇u(x)
|∇u(x)|

)
+ u

(
x − ε

∇u(x)
|∇u(x)|

)}

= −ε2

2
$∞u(x) + O(ε3).

(1.7)
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Next we multiply (1.6) and (1.7) by suitable constants α and β, α +β = 1, and add

up the formulas so that we have the operator in (1.5) on the right hand side. This

process gives us the choices of the constants

α = p − 2

p + n
, and β = 2+ n

p + n
, (1.8)

and we deduce

u(x) = α

2

{
sup
Bε(x)

u + inf
Bε(x)

u

}
+ β

∫

Bε(x)
u dy + O(ε3)

as ε → 0.

Consider a bounded domain % ⊂ Rn and fix ε > 0. To prescribe boundary

values for p−harmonious functions, let us denote the compact boundary strip of
width ε by

&ε = {x ∈ Rn \ % : dist(x, ∂%) ≤ ε}.

Definition 1.1. The function uε is p-harmonious in % with a bounded Borel func-

tion F : &ε → R as boundary values if

uε(x) = α

2

{
sup
Bε(x)

uε + inf
Bε(x)

uε

}
+ β

∫

Bε(x)
uε dy for every x ∈ %,

where α,β are defined in (1.8), and

uε(x) = F(x), for every x ∈ &ε.

The reason for using the boundary strip &ε instead of simply using the boundary

∂% is the fact that for x ∈ % the ball Bε(x) is not necessarily contained in %.
To prove our main results, we assume that 2 ≤ p < ∞. The case p = ∞ is

considered in [6] and [15].

First, with a fixed boundary data, there exists a unique p-harmonious function.

Theorem 1.2. Let % ⊂ Rn be a bounded open set. Then there exists a unique

p-harmonious function in % with given boundary values F .

Furthermore, p-harmonious functions satisfy the strong maximum principle.

Theorem 1.3. Let % ⊂ Rn be a bounded, open, and connected set. If uε is p-

harmonious in % with boundary values F , then

sup
&ε

F ≥ sup
%
uε.

Moreover, if there is a point x0 ∈ % such that uε(x0) = sup&ε
F , then uε is constant

in %.
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In addition, p-harmonious functions with continuous boundary values satisfy

the strong comparison principle. Note that the validity of the strong comparison

principle is not known for the p-harmonic functions in Rn , n ≥ 3.

Theorem 1.4. Let % ⊂ Rn be a bounded, open and connected set, and let uε and

vε be p-harmonious functions with continuous boundary values Fu ≥ Fv in &ε.

Then if there exists a point x0 ∈ % such that uε(x0) = vε(x0), it follows that

uε = vε in %,

and, moreover, the boundary values satisfy

Fu = Fv in &ε.

To prove that p-harmonious functions converge to the unique solution of the Dirich-

let problem for the p-Laplacian in % with fixed continuous boundary values, we

assume that the bounded domain% satisfies the following boundary regularity con-

dition:

Boundary Regularity Condition 1.5. There exists δ′ > 0 andµ ∈ (0, 1) such that
for every δ ∈ (0, δ′] and y ∈ ∂% there exists a ball

Bµδ(z) ⊂ Bδ(y) \ %.

For example, when % satisfies the exterior cone condition it satisfies this require-

ment. This is indeed the case when % is a Lipschitz domain.

Theorem 1.6. Let % be a bounded domain satisfying Condition 1.5 and F be a

continuous function. Consider the unique viscosity solution u to
{
div(|∇u|p−2∇u)(x) = 0, x ∈ %

u(x) = F(x), x ∈ ∂%,
(1.9)

and let uε be the unique p-harmonious function with boundary values F . Then

uε → u uniformly in %

as ε → 0.

The above limit only depends on the values of F on ∂%, and therefore any
continuous extension of F |∂% to &ε0 gives the same limit.

Organization of the paper. The rest of the paper is organized as follows: In

Section 2 we discuss the relation between p-harmonious functions and tug-of-war

games, in Section 3 we prove the maximum principle and the strong comparison

principle of p-harmonious functions, and finally in Section 4, we prove the conver-

gence result as ε goes to zero, Theorem 1.6.

ACKNOWLEDGEMENTS. The authors would like to thank Petri Juutinen for useful

comments.
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2. p-harmonious functions and Tug-of-War games

In this section, we describe the connection between p-harmonious functions and

tug-of-war games. Fix ε > 0 and consider the following two-player zero-sum

game. At the beginning, a token is placed at a point x0 ∈ % and the players toss a

biased coin with probabilities α and β, α + β = 1. If they get heads (probability

α), they play a tug-of-war, that is, a fair coin is tossed and the winner of the toss is
allowed to move the game position to any x1 ∈ Bε(x0). On the other hand, if they
get tails (probability β), the game state moves according to the uniform probability
to a random point in the ball Bε(x0). Then they continue playing the same game
from x1.

This procedure yields a possibly infinite sequence of game states x0, x1, . . .
where every xk is a random variable. We denote by xτ ∈ &ε the first point in &ε in

the sequence, where τ refers to the first time we hit &ε. The payoff is F(xτ ), where
F : &ε → R is a given payoff function. Player I earns F(xτ ) while Player II earns
−F(xτ ).

A history of a game up to step k is a vector of the first k + 1 game states, for

example, (x0, x1, . . . , xk). We denote a set of all histories up to step k by Hk , that
is, it contains all possible sequences of game states of length k. The set of all finite

histories is denoted by

H =
∞⋃

k=0
Hk .

A strategy SI for Player I is a function defined on H that gives the next game posi-

tion

SI(x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

given a history h if Player I wins the toss. Similarly Player II plays according to a

strategy SII
Let %ε = % ∪ &ε ⊂ Rn be equipped with the natural topology, and the σ -

algebra B of the Borel measurable sets. The space of all game sequences

H∞ = %ε × %ε × . . . ,

is a product space endowed with the product topology.

Let {Fk}∞k=0, F0 ⊂ F1 ⊂ . . . ⊂ F∞, denote the following σ -algebras: the
σ -algebra Fk is generated by cylinder sets of the form

A0 × A1 × A2 × . . . × Ak × %ε × . . .

with Ai ∈ B and F∞ is the σ -algebra generated by ∪∞
k=0Fk .

For ω = (ω0,ω1, . . .) ∈ H∞, we define

xk(ω) = ωk, xk : H∞ → Rn, k = 0, 1, . . .
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so that xk is an Fk-measurable random variable. Let

τ (ω) = inf{k : xk(ω) ∈ &ε, k = 0, 1, . . .}.

This τ (ω) is a stopping time relative to the filtration {Fk}∞k=0.
The fixed starting point x0 and the strategies SI and SII determine a unique

probability measure Px0SI ,SII in H
∞ relative to the product σ -algebraF∞. This mea-

sure is built by applying Kolmogorov’s extension theorem to the initial distribution

δx0(A), and the family of transition probabilities

πSI,SII(x0(ω), . . . , xk(ω), A) = πSI,SII(ω0, . . . ,ωk, A)

= β
|A ∩ Bε(ωk)|

|Bε(ωk)|
+ α

2
δSI(ω0,...,ωk)(A) + α

2
δSII(ω0,...,ωk)(A).

(2.1)

To this end, we define probability measures inductively on finite products as

µ
0,x0
SI,SII

(A0) = δx0(A0),

µ
k,x0
SI,SII

(A0 × A1 × . . . × Ak−1 × Ak)

=
∫

A0×A1×...×Ak−1
πSI,SII(ω0, . . . ,ωk−1, Ak) dµ

k−1,x0
SI,SII

(ω0, . . . ,ωk−1).

Note that

µ
k,x0
SI,SII

(A0 × A1 × . . . × Ak) = µ
k+1,x0
SI,SII

(A0 × A1 × . . . × Ak × %ε).

We only concentrate on the nontrivial case x0 ∈ A0. The first two measures are

µ
1,x0
SI,SII

(A0 × A1) =
∫

A0×A1

dµ
1,x0
SI,SII

(ω0,ω1)

=
∫

A1

dµ
1,x0
SI,SII

(x0,ω1) = πSI,SII(x0, A1)

and

µ
2,x0
SI,SII

(A0 × A1 × A2) =
∫

A1

πSI,SII(x0,ω1, A2) dπSI,SII(x0,ω1).

The expected payoff, when starting from x0 and using the strategies SI, SII, is

Ex0
SI,SII

[F(xτ )] =
∫

H∞
F(xτ (ω)) dPx0SI,SII(ω). (2.2)

Note that, due to the fact that β > 0, or equivalently p < ∞, the game ends almost

surely

Px0SI,SII({ω ∈ H∞ : τ (ω) < ∞}) = 1

for any choice of strategies.
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The value of the game for Player I is given by

uε
I (x0) = sup

SI

inf
SII

Ex0
SI,SII

[F(xτ )]

while the value of the game for Player II is given by

uε
II(x0) = inf

SII
sup
SI

Ex0
SI,SII

[F(xτ )].

The values uε
I (x0) and u

ε
II(x0) are the best expected outcomes each player can guar-

antee when the game starts at x0.

We start by the statement of the Dynamic Programming Principle (DPP) ap-

plied to our game. Given the transition probabilities (2.1) we obtain

Lemma 2.1 (DPP). The value function for Player I satisfies

uε
I (x0) = α

2

{
sup
Bε(x0)

uε
I + inf

Bε(x0)
uε
I

}
+ β

∫

Bε(x0)
uε
I dy, x0 ∈ %,

uε
I (x0) = F(x0), x0 ∈ &ε.

(2.3)

The value function for Player II, uε
II, satisfies the same equation.

Formulas similar to (2.3) can be found in [13, Chapter 7]. A detailed proof

adapted to our case can also be found in [12].

Let us explain intuitively why the DPP holds by considering the expectation

of the payoff at x0. Whenever the players get heads (probability α) in the first coin
toss, they toss a fair coin and play the tug-of-war. If Player I wins the fair coin toss

in the tug-of-war (probability 1/2), she steps to a point maximizing the expectation
and if Player II wins, he steps to a point minimizing the expectation. Whenever

they get tails (probability β) in the first coin toss, the game state moves to a random
point according to a uniform probability on Bε(x0). The expectation at x0 can be
obtained by summing up these different alternatives.

We warn the reader that, in general, the value functions are discontinuous as

the next example shows.

Example 2.2. Consider the case % = (0, 1) and

F(x) = uε
I (x) =

{
1, x ≥ 1

0, x ≤ 0.

In this case the optimal strategies for both players are clear: Player I moves ε to
the right and Player II moves ε to the left. Now, there is a positive probability
of reaching x ≥ 1 that can be uniformly bounded from below in (0, 1) by C =
(2/α)−(1/ε+1). This can be seen by considering the probability of Player I winning
all the time until the game ends with x ≥ 1. Therefore uε

I > C > 0 in the whole
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(0, 1). This implies a discontinuity at x = 0 and hence a discontinuity at x = ε.
Indeed, first, note that uε is nondecreasing and hence

uε
I (ε−) = lim

x↗ε

α

2
sup

|x−y|≤ε
uε
I (y) + β

2ε

∫ 2ε

0

uε
I dy = α

2
uε
I (2ε−) + β

2ε

∫ 2ε

0

uε
I dy,

because sup|x−y|≤ε u
ε
I (y) = uε

I (x + ε) and inf|x−ε|≤ε u
ε
I is zero for x ∈ (0, ε).

However,

uε
I (ε+) ≥ α

2
C + lim

x↘ε

α

2
sup

|x−y|≤ε
uε
I (y) + β

2ε

∫ 2ε

0

uε
I dy ≥ α

2
C + uε

I (ε−)

because sup|x−y|≤ε u
ε
I (y) = uε

I (x+ε) ≥ uε
I (2ε−) and inf|x−ε|≤ε u

ε
I ≥ C for x > ε.

By adapting the martingale methods used in [15], we prove a comparison prin-

ciple. This also implies that uε
I and u

ε
II are respectively the smallest and the largest

p-harmonious function.

Theorem 2.3. Let% ⊂ Rn be a bounded open set. If v is a p-harmonious function
with boundary values Fv in &ε such that Fv ≥ Fuε

I
, then v ≥ uε

I .

Proof. We show that by choosing a strategy according to the minimal values of v,
Player II can make the process a supermartingale. The optional stopping theorem

then implies that the expectation of the process under this strategy is bounded by v.
Moreover, this process provides an upper bound for uε

I .

Player I follows any strategy and Player II follows a strategy S0II such that at

xk−1 ∈ % he chooses to step to a point that almost minimizes v, that is, to a point
xk ∈ Bε(xk−1) such that

v(xk) ≤ inf
Bε(xk−1)

v + η2−k

for some fixed η > 0. We start from the point x0. It follows that

Ex0

SI,S
0
II

[v(xk) + η2−k | x0, . . . , xk−1]

≤ α

2

{
inf

Bε(xk−1)
v + η2−k + sup

Bε(xk−1)
v

}
+ β

∫

Bε(xk−1)
v dy + η2−k

≤ v(xk−1) + η2−(k−1),

where we have estimated the strategy of Player I by sup and used the fact that v is
p-harmonious. Thus

Mk = v(xk) + η2−k
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is a supermartingale. Since Fv ≥ Fuε
I
at &ε, we deduce

uε
I (x0) = sup

SI

inf
SII

Ex0
SI,SII

[Fuε
I
(xτ )] ≤ sup

SI

Ex0

SI,S
0
II

[Fv(xτ ) + η2−τ ]

≤ sup
SI

lim inf
k→∞

Ex0

SI,S
0
II

[v(xτ∧k) + η2−(τ∧k)]

≤ sup
SI

Ex0

SI,S
0
II

[M0] = v(x0) + η,

where τ ∧ k = min(τ, k), and we used Fatou’s lemma as well as the optional
stopping theorem for Mk . Since η was arbitrary this proves the claim.

Similarly, we can prove that uε
II is the largest p-harmonious function: Player

II follows any strategy and Player I always chooses to step to the point where v
is almost maximized. This implies that v(xk) − η2−k is a submartingale. Fatou’s
lemma and the optional stopping theorem then prove the claim.

Next we show that the game has a value. This together with the previous

comparison principle proves the uniqueness of p-harmonious functions with given

boundary values.

Theorem 2.4. Let % ⊂ Rn be a bounded open set, and F a given boundary data

in &ε. Then u
ε
I = uε

II, that is, the game has a value.

Proof. Clearly, uε
I ≤ uε

II always holds, so we are left with the task of showing

that uε
II ≤ uε

I . To see this we use the same method as in the proof of the previous

theorem: Player II follows a strategy S0II such that at xk−1 ∈ %, he always chooses
to step to a point that almost minimizes uε

I , that is, to a point xk such that

uε
I (xk) ≤ inf

Bε(xk−1)
uε
I + η2−k,

for a fixed η > 0. We start from the point x0. It follows that from the choice of

strategies and the dynamic programming principle for uε
I that

Ex0

SI,S
0
II

[uε
I (xk) + η2−k | x0, . . . , xk−1]

≤ α

2

{
sup

Bε(xk−1)
uε
I + inf

Bε(xk−1)
uε
I + η2−k

}
+ β

∫

Bε(xk−1)
uε
I dy + η2−k

= uε
I (xk−1) + η2−(k−1).

Thus

Mk = uε
I (xk) + η2−k
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is a supermartingale. We get by Fatou’s lemma and the optional stopping theorem

that

uε
II(x0) = inf

SII
sup
SI

Ex0
SI,SII

[F(xτ )] ≤ sup
SI

Ex0

SI,S
0
II

[F(xτ ) + η2−τ ]

≤ sup
SI

lim inf
k→∞

Ex0

SI,S
0
II

[uε
I (xτ∧k) + η2−(τ∧k)]

≤ sup
SI

Ex0

SI,S
0
II

[uε
I (x0) + η] = uε

I (x0) + η.

Similarly to the previous theorem, we also used the fact that the game ends almost

surely. Since η > 0 is arbitrary, this completes the proof.

Theorems 2.3 and 2.4 imply Theorem 1.2.

Proof of Theorem 1.2. Due to the dynamic programming principle, the values of
the games are p-harmonious functions. This proves the existence part of Theo-

rem 1.2. Theorems 2.3 and 2.4 imply the uniqueness part of Theorem 1.2.

Corollary 2.5. The value of the game with pay-off function F coincides with the

p-harmonious function with boundary values F .

3. Maximum principles for p-harmonious functions

In this section, we show that the strong maximum and strong comparison principles

hold for p-harmonious functions. The latter result is interesting since the strong

comparison principle is not known for p-harmonic functions in Rn for n ≥ 3.

We start with the strong maximum principle: The p-harmonious function uε

attains its maximum at the boundary. Furthermore, if this value is also attained

inside the domain, then uε is constant.

Proof of Theorem 1.3. The proof uses the fact that if the maximum is attained in-
side the domain then all the quantities in the definition of a p-harmonious function

must be equal to the maximum. This is possible in a connected domain only if the

function is constant.

In Section 4 below, we will prove (see Lemma 4.3) that a p-harmonious func-

tion uε with a boundary data F satisfies

sup
%

|uε| ≤ sup
&ε

|F | .

Assume then that there exists a point x0 ∈ % such that

uε(x0) = sup
%
uε = sup

&ε

F.
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Then we employ the definition of a p-harmonious function, Definition 1.1, and

obtain

uε(x0) = α

2

{
sup
Bε(x0)

uε + inf
Bε(x0)

uε

}
+ β

∫

Bε(x0)
uε dy.

Since uε(x0) is the maximum, the terms

sup
Bε(x0)

uε, inf
Bε(x0)

uε, and

∫

Bε(x0)
uε dy

on the right hand side must be smaller than or equal to uε(x0). On the other hand,
when p > 2, it follows that α,β > 0 and thus the terms must equal to uε(x0).
Therefore,

uε(x) = uε(x0) = sup
%
uε (3.1)

for every x ∈ Bε(x0) when p > 2. Now we can repeat the argument for each

x ∈ Bε(x0) and by continuing in this way, we can extend the result to the whole
domain because % is connected. This implies that u is constant everywhere when

p > 2.

Finally, if p = 2, then (3.1) holds for almost every x ∈ Bε(x0) and conse-
quently for almost every x in the whole domain. Then since

uε(x) =
∫

Bε(x)
uε dy

holds at every point in % and uε is constant almost everywhere, it follows that uε is

constant everywhere.

Using similar ideas we prove the strong comparison principle: Let uε and vε

be p-harmonious with boundary data Fu ≥ Fv in &ε. Then if there exists a point

x0 ∈ % with uε(x0) = vε(x0), it follows that

uε = vε in %,

and, moreover, the boundary values satisfy

Fu = Fv in &ε.

The proof heavily uses the fact that p < ∞. Note that it is known that the strong

comparison principle does not hold for infinity harmonic functions.

Proof of Theorem 1.4. According to Corollary 2.5 and Theorem 2.3, Fu ≥ Fv im-

plies uε ≥ vε. By the definition of a p-harmonious function, we have

uε(x0) = α

2

{
sup
Bε(x0)

uε + inf
Bε(x0)

uε

}
+ β

∫

Bε(x0)
uε dy
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and

vε(x0) = α

2

{
sup
Bε(x0)

vε + inf
Bε(x0)

vε

}
+ β

∫

Bε(x0)
vε dy.

Next we compare the right hand sides. Because uε ≥ vε, it follows that

sup
Bε(x0)

uε ≤ sup
Bε(x0)

vε,

inf
Bε(x0)

uε ≤ inf
Bε(x0)

vε, and

∫

Bε(x0)
uε dy ≤

∫

Bε(x0)
vε dy.

(3.2)

Since

uε(x0) = vε(x0),

we must have equalities in (3.2). In particular, we have equality in the third inequal-

ity in (3.2), and thus

uε = vε almost everywhere in Bε(x0).

Again, the connectedness of % immediately implies that

uε = vε almost everywhere in % ∪ &ε.

In particular,

Fu = Fv everywhere in &ε

since Fu and Fv are continuous. Because the boundary values coincide, the unique-

ness result, Theorem 1.2, shows that uε = vε everywhere in %.

4. Convergence to the p-harmonic function as ε → 0

In this section, we show that p-harmonious functions with a fixed boundary data

converge to the unique p-harmonic function. First, we prove a convergence result

under additional assumptions by employing game theoretic arguments from [15]

and [16]. Then we present a different proof that avoids the technical restrictions.

The second proof uses a fact that although p-harmonious functions are, in general,

discontinuous, they are, in a certain sense, asymptotically uniformly continuous.

Let % be a bounded open set. We assume below that u is p-harmonic in an

open set %′ such that % ∪ &ε ⊂ %′. In addition, we assume that ∇u 3= 0 in %′.
This assumption guarantees that u is real analytic according to a classical theorem

of Hopf [4], and thus equation (4.1) below holds with a uniform error term in %.
Later we show how to deal directly with the Dirichlet problem without this extra

assumption.
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Theorem 4.1. Let u be p-harmonic with nonvanishing gradient ∇u 3= 0 in %′ as
above and let uε be the p-harmonious function in % with the boundary values u in

&ε. Then

uε → u uniformly in %

as ε → 0.

Proof. The proof uses some ideas from the proof of [16, Theorem 2.4]. As stated

at the end of Section 2, the p-harmonious function with boundary values coincides

with the value of the game and thus we can use a game theoretic approach.

Recall from the introduction (see also [11]) that u satisfies

u(x) = α

2

{
sup
Bε(x)

u + inf
Bε(x)

u

}
+ β

∫

Bε(x)
u dy + O(ε3) (4.1)

with a uniform error term for x ∈ % as ε → 0. The error term is uniform due to our

assumptions on u.

Assume, for the moment, that p > 2 implying α > 0 so that the strategies are

relevant. Now, Player II follows a strategy S0II such that at a point xk−1 he chooses
to step to a point that minimizes u, that is, to a point xk ∈ Bε(xk−1) such that

u(xk) = inf
Bε(xk−1)

u(y).

Choose C1 > 0 such that
∣∣O(ε3)

∣∣ ≤ C1ε
3. Under the strategy S0II

Mk = u(xk) − C1kε
3

is a supermartingale. Indeed,

Ex0

SI,S
0
II

(u(xk) − C1kε
3 | x0, . . . , xk−1)

≤ α

2

{
sup

Bε(xk−1)
u + inf

Bε(xk−1)
u

}
+ β

∫

Bε(xk−1)
u dy − C1kε

3

≤ u(xk−1) − C1(k − 1)ε3.

(4.2)

The first inequality follows from the choice of the strategy and the second from

(4.1). Now we can estimate uε
II(x0) by using Fatou’s lemma and the optional stop-
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ping theorem for supermartingales. We have

uε
II(x0) = inf

SII
sup
SI

Ex0
SI,SII

[F(xτ )]

≤ sup
SI

Ex0

SI,S
0
II

[u(xτ )]

= sup
SI

Ex0

SI,S
0
II

[u(xτ ) + C1τε3 − C1τε3]

≤ sup
SI

(
lim inf
k→∞

Ex0

SI,S
0
II

[u(xτ∧k) − C1(τ ∧ k)ε3] + C1ε
3Ex0

SI,S
0
II

[τ ]
)

≤ u(x0) + C1ε
3 sup

SI

Ex0

SI,S
0
II

[τ ].

This inequality and the analogous argument for Player I implies for uε = uε
II = uε

I
that

u(x0) − C1ε
3 inf
SII

Ex0

S0I ,SI I
[τ ] ≤ uε(x0) ≤ u(x0) + C1ε

3 sup
SI

Ex0

SI,S
0
II

[τ ]. (4.3)

Letting ε → 0 the proof is completed if we prove that there exists C such that

Ex0

SI,S
0
II

[τ ] ≤ Cε−2. (4.4)

To establish this bound, we show that

M̃k = −u(xk)2 + u(x0)
2 + C2ε

2k

is a supermartingale for small enough ε > 0. If Player II wins the toss, we have

u(xk) − u(xk−1) ≤ −C3ε

because ∇u 3= 0, as we can choose for example C3 = infx∈% |∇u| /2. It follows
that

Ex0

SI,S
0
II

[
(
(u(xk) − u(xk−1)

)2 | x0, . . . , xk−1]

≥ α

2

(
(−C3ε)2 + 0

)
+ β · 0 = αC3

2

2
ε2.

(4.5)

We calculate

Ex0

SI,S
0
II

[M̃k − M̃k−1 | x0, . . . , xk−1]

= Ex0

SI,S
0
II

[−u(xk)2 + u(xk−1)2 + C2ε
2 | x0, . . . , xk−1]

= Ex0

SI,S
0
II

[−
(
u(xk) − u(xk−1)

)2 | x0, . . . , xk−1]

− Ex0

SI,S
0
II

[2
(
u(xk) − u(xk−1)

)
u(xk−1) | x0, . . . , xk−1] + C2ε

2.

(4.6)
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By subtracting a constant if necessary, we may assume that u < 0. Moreover,

u(xk−1) is determined by the point xk−1, and thus, we can estimate the second term
on the right hand side as

− Ex0

SI,S
0
II

[2
(
u(xk) − u(xk−1)

)
u(xk−1) | x0, . . . , xk−1]

= −2u(xk−1)
(

Ex0

SI,S
0
II

[u(xk) | x0, . . . , xk−1] − u(xk−1)
)

≤ 2 ||u||∞ C1ε
3.

The last inequality follows from (4.1) similarly as estimate (4.2). This together with

(4.5) and (4.6) implies

Ex0

SI,S
0
II

[M̃k − M̃k−1 | x0, . . . , xk−1] ≤ 0,

when

−ε2αC3
2/2+ 2 ||u||∞ C1ε

3 + C2ε
2 ≤ 0.

This holds if we choose, for example, C2 such that C3 ≥ 2
√
C2/α and take ε <

C2/(2 ||u||∞ C1). Thus, M̃k is a supermartingale. Recall that we assumed that

p > 2 implying α > 0.

According to the optional stopping theorem for supermartingales

Ex0

SI,S
0
II

[M̃τ∧k] ≤ M̃0 = 0,

and thus

C2ε
2Ex0

SI,S
0
II

[τ ∧ k] ≤ Ex0

SI,S
0
II

[u(xτ∧k)2 − u(x0)
2].

The result follows by passing to the limit with k since u is bounded in %.

Finally, if p = 2, then the mean value property holds without a correction for

u due to the classical mean value property for harmonic functions and the claim

immediately follows by repeating the beginning of the proof till (4.3) without the

correction term.

Above we obtained the convergence result for p-harmonious functions under

the extra assumption that ∇u 3= 0. Now we show how to deal directly with the

Dirichlet problem and give a different proof for the uniform convergence without

using this hypothesis. The proof is based on a variant of the classical Arzela-

Ascoli’s compactness lemma, Lemma 4.2. The functions uε are not continuous,

in general, as shown in Example 2.2. Nonetheless, the jumps can be controlled

and we will show that the p-harmonious functions are asymptotically uniformly

continuous as shown in Theorem 4.6.
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Lemma 4.2. Let {uε : % → R, ε > 0} be a set of functions such that
(1) there exists C > 0 so that |uε(x)| < C for every ε > 0 and every x ∈ %,
(2) given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any

x, y ∈ % with |x − y| < r0 it holds

|uε(x) − uε(y)| < η.

Then, there exists a uniformly continuous function u : % → R and a subsequence

still denoted by {uε} such that

uε → u uniformly in %,

as ε → 0.

Proof. First, we find a candidate to be the uniform limit u. Let X ⊂ % be a dense

countable set. Because functions are uniformly bounded, a diagonal procedure pro-

vides a subsequence still denoted by {uε} that converges for all x ∈ X . Let u(x)
denote this limit. Note that at this point u is defined only for x ∈ X .

By assumption, given η > 0, there exists r0 such that for any x, y ∈ X with

|x − y| < r0 it holds

|u(x) − u(y)| < η.

Hence, we can extend u to the whole % continuously by setting

u(z) = lim
X5x→z

u(x).

Our next step is to prove that {uε} converges to u uniformly. We choose a finite
covering

% ⊂
N⋃

i=1
Br (xi )

and ε0 > 0 such that

|uε(x) − uε(xi )| , |u(x) − u(xi )| < η/3

for every x ∈ Br (xi ) and ε < ε0 as well as

|uε(xi ) − u(xi )| < η/3,

for every xi and ε < ε0. To obtain the last inequality, we used the fact that N < ∞.

Thus for any x ∈ %, we can find xi so that x ∈ Br (xi ) and

|uε(x) − u(x)|
≤ |uε(x) − uε(xi )| + |uε(xi ) − u(xi )| + |u(xi ) − u(x)|
< η,

for every ε < ε0, where ε0 is independent of x .
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Next we show that for fixed F , a family of p-harmonious functions, with

ε as the parameter, satisfies the conditions of Lemma 4.2. First observe that p-
harmonious functions are bounded since

min
y∈&ε

F(y) ≤ F(xτ ) ≤ max
y∈&ε

F(y)

for any xτ ∈ &ε implies:

Lemma 4.3. A p-harmonious function uε with boundary values F satisfies

min
y∈&ε

F(y) ≤ uε(x) ≤ max
y∈&ε

F(y). (4.7)

Next we will show that p-harmonious functions are asymptotically uniformly con-

tinuous. We give two proofs for this result. The first proof applies Theorem 2.3

and a comparison with solutions for the p-Dirichlet problem in annular domains.

We also use Theorem 4.1 for these solutions, which satisfy the conditions of the

theorem. The proof utilizes some ideas from [16] but does not explicitly employ

probabilistic tools.

Lemma 4.4. Let {uε} be a family of p-harmonious functions in% with a fixed con-

tinuous boundary data F . Then this family satisfies condition (4.2) in Lemma 4.2.

Proof. Observe that the case x, y ∈ &ε readily follows from the continuity of F ,

and thus we can concentrate on the cases x ∈ %, y ∈ &ε, and x, y ∈ %.
We divide the proof into three steps: First for x ∈ %, y ∈ &ε, we employ

comparison with a p-harmonious function close to a solution for the p-Dirichlet

problem in an annular domain. It follows that the p-harmonious function with the

boundary data F is bounded close to y ∈ &ε by a slightly smaller constant than the

maximum of the boundary values. Second, we iterate this argument to show that

the p-harmonious function is close to the boundary values near y ∈ &ε when ε is
small. Third, we extend this result to the case x, y ∈ % by translation, by taking the

boundary values from the strip already controlled during the previous steps.

To start, we choose Bµδ(z) ⊂ Bδ(y)\%, δ < δ′, by Condition 1.5, and consider
a problem






div(|∇u|p−2∇u)(x) = 0, x ∈ B4δ(z) \ Bµδ(z),

u(x) = supB5δ(y)∩&ε
F, x ∈ ∂Bµδ(z),

u(x) = sup&ε
F, x ∈ ∂B4δ(z).

(4.8)

We denote r = |x − z|. This problem has an explicit, radially symmetric solution
of the form

u(r) = ar−(n−p)/(p−1) + b (4.9)

when p 3= n and

u(r) = a log(r) + b, (4.10)
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when p = n. We extend the solutions to B4δ+2ε(z) \ Bµδ−2ε(z) and use the same
notation for the extensions. Now because ∇u 3= 0, Theorem 4.1 shows that for the

p-harmonious functions {uε
fund}, which are defined as the values of the game in the

set B4δ+ε(z) \ Bµδ−ε(z) with boundary values u, it holds that

uε
fund → u, uniformly in B4δ+ε(z) \ Bµδ−ε(z)

as ε → 0.

It follows that

∣∣uε
fund − u

∣∣ = o(1) in B4δ+ε(z) \ Bµδ−ε(z),

where o(1) → 0 as ε → 0. For small enough ε, the comparison principle, The-
orem 2.3, and the explicit solutions above imply that in Bδ(y) ∩ % ⊂ B2δ(z) ∩ %
there is θ ∈ (0, 1) such that

uε ≤ uε
fund + o(1) ≤ u + o(1) ≤ sup

B5δ(y)∩&ε

F + θ

(
sup
&ε

F − sup
B5δ(y)∩&ε

F

)
.

Observe that by writing down explicitly a and b in (4.9) or (4.10) above, we see

that 0 < θ < 1 does not depend on δ.
To prove the second step, we solve the p-harmonic function in Bδ(z)\Bµδ/4(z)

with boundary values supB5δ(y)∩&ε
F at ∂Bµδ/4(z) and from the previous step

sup
B5δ(y)∩&ε

F + θ

(
sup
&ε

F − sup
B5δ(y)∩&ε

F

)

at ∂Bδ(z). Again the explicit solution and the comparison principle implies for
small enough ε > 0 that

uε ≤ sup
B5δ(y)∩&ε

F + θ2

(
sup
&ε

F − sup
B5δ(y)∩&ε

F

)
in Bδ/4(y) ∩ %.

Continuing in this way, we see that for small enough ε > 0 that

uε ≤ sup
B5δ(y)∩&ε

F + θk

(
sup
&ε

F − sup
B5δ(y)∩&ε

F

)
in Bδ/4k (y) ∩ %.

This gives an upper bound for uε. The argument for the lower bound is similar. We

have shown that for any η > 0, we can choose small enough δ > 0, large enough

k, and small enough ε > 0 above so that for x ∈ %, y ∈ &ε with |x − y| < δ/4k it
holds

|uε(x) − F(y)| < η. (4.11)

This shows that the second condition in Theorem 4.2 holds when y ∈ &ε.
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Next we extend the estimate to the interior of the domain. First choose small

enough δ and large enough k so that

∣∣F(x ′) − F(y′)
∣∣ < η (4.12)

whenever
∣∣x ′ − y′∣∣ < δ/4k , and ε > 0 small enough so that (4.11) holds.

Next we consider a slightly smaller domain

%̃ = {z ∈ % : dist(z, ∂%) > δ/4k+2}

with the boundary strip

&̃ = {z ∈ % : dist(z, ∂%) ≤ δ/4k+2}.

Suppose that x, y ∈ % with |x − y| < δ/4k+2. First, if x, y ∈ &̃, then we can
estimate

|uε(x) − uε(y)| ≤ 3η (4.13)

by comparing the values at x and y to the nearby boundary values and using (4.11).

Finally, let x, y ∈ %̃ and define

F̃(z) = uε(z − x + y) + 3η in &̃.

We have

F̃(z) ≥ uε(z) in &̃

by (4.11), (4.12), and (4.13). Solve the p-harmonious function ũε in %̃ with the

boundary values F̃ in &̃. By the comparison principle and the uniqueness, we de-
duce

uε(x) ≤ ũε(x) = uε(x − x + y) + 3η = uε(y) + 3η in %̃.

The lower bound follows by a similar argument.

The second proof for Lemma 4.4 is based on the connection to games and

a choice of a strategy. In Lemma 4.6, we prove a slightly stronger estimate that

implies Lemma 4.4. The proof of this lemma avoids the use of Theorem 4.1 but we

assume a stronger boundary regularity condition instead.

At each step, we make a small correction in order to show that the process

is a supermartingale. To show that the effect of the correction is small also in the

long run, we need to estimate the expectation of the stopping time τ . We bound τ
by the exit time τ∗ for a random walk in a larger annular domain with a reflecting
condition on the outer boundary.

Lemma 4.5. Let us consider an annular domain BR(z)\ Bδ(z) and a random walk

such that when at xk−1, the next point xk is chosen according to a uniform distribu-

tion at Bε(xk−1) ∩ BR(z). Let

τ∗ = inf{k : xk ∈ Bδ(z)}.
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Then

Ex0(τ∗) ≤ C(R/δ) dist(∂Bδ(z), x0) + o(1)

ε2
, (4.14)

for x0 ∈ BR(z) \ Bδ(z). Here o(1) → 0 as ε → 0.

Proof. We will use a solution to a corresponding Poisson problem to prove the

result. Let us denote

gε(x) = Ex (τ∗).

The function gε satisfies a dynamic programming principle

gε(x) =
∫

Bε(x)∩BR(z)
gε dy + 1

because the number of steps always increases by one when making a step to one of

the neighboring points at random. Further, we denote vε(x) = ε2gε(x) and obtain

vε(x) =
∫

Bε(x)∩BR(z)
vε dy + ε2.

This formula suggests a connection to the problem






$v(x) = −2(n + 2), x ∈ BR+ε(z) \ Bδ(z),

v(x) = 0, x ∈ ∂Bδ(z),
∂v

∂ν
= 0, x ∈ ∂BR+ε(z),

(4.15)

where ∂v
∂ν refers to the normal derivative. Indeed, when Bε(x) ⊂ BR+ε(z) \ Bδ(z),

the classical calculation shows that the solution of this problem satisfies the mean

value property

v(x) =
∫

Bε(x)
v dy + ε2. (4.16)

The solution of problem (4.15) is positive, radially symmetric, and strictly increas-

ing in r = |x − z|. It takes the form v(r) = −ar2 − br2−n + c, if n > 2 and

v(r) = −ar2 − b log(r) + c, if n = 2.

We extend this function as a solution to the same equation to Bδ(z) \ Bδ−ε(z)
and use the same notation for the extension. Thus, v satisfies (4.16) for each
Bε(x) ⊂ BR+ε(z) \ Bδ−ε(z). In addition, because v is increasing in r , it holds
for each x ∈ BR(z) \ Bδ(z) that

∫

Bε(x)∩BR(z)
v dy ≤

∫

Bε(x)
v dy = v(x) − ε2.
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It follows that

Ex0[v(xk) + kε2 | x0, . . . , xk−1]=
∫

Bε(xk−1)
v dy + kε2=v(xk−1) + (k − 1)ε2,

if Bε(xk−1) ⊂ BR(z) \ Bδ−ε(z), and if Bε(xk−1) \ BR(z) 3= ∅, then

Ex0[v(xk) + kε2 | x0, . . . , xk−1] =
∫

Bε(xk−1)∩BR(z)
v dy + kε2

≤
∫

Bε(xk−1)
v dy = v(xk−1) + (k − 1)ε2.

Thus v(xk) + kε2 is a supermartingale, and the optional stopping theorem yields

Ex0[v(xτ∗∧k) + (τ∗ ∧ k)ε2] ≤ v(x0). (4.17)

Because xτ∗ ∈ Bδ(z) \ Bδ−ε(z), we have

0 ≤ −Ex0[v(xτ∗)] ≤ o(1).

Furthermore, the estimate

0 ≤ v(x0) ≤ C(R/δ) dist(∂Bδ(z), x0)

holds for the solutions of (4.15). Thus, by passing to the limit on k in (4.17), we

obtain

ε2Ex0[τ∗] ≤ v(x0) − E[u(xτ∗)] ≤ C(R/δ)(dist(∂Bδ(z), x0) + o(1)).

This completes the proof.

Next we derive an estimate for the asymptotic uniform continuity of the family

of p-harmonious functions which implies Lemma 4.4. For simplicity, we assume

that% satisfies an exterior sphere condition: For each y ∈ ∂%, there exists Bδ(z) ⊂
Rn \ % such that y ∈ ∂Bδ(z). With this assumption, the iteration used in the first
proof of Lemma 4.4 can be avoided. To simplify the notation and to obtain an

explicit estimate, we also assume that F is Lipschitz continuous in &ε.

Lemma 4.6. Let F and % be as above. The p-harmonious function uε with the

boundary data F satisfies

|uε(x) − uε(y)| ≤ 2Lip(F)δ + C(R/δ)(|x − y| + o(1)), (4.18)

for every small enough δ > 0 and for every two points x, y ∈ % ∪ &ε.
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Proof. As in the first proof of Lemma 4.4, the case x, y ∈ &ε is clear. Thus, we can

concentrate on the cases x ∈ % and y ∈ &ε as well as x, y ∈ %.

We utilize the connection to games. Suppose first that x ∈ % and y ∈ &ε. By

the exterior sphere condition, there exists Bδ(z) ⊂ Rn \ % such that y ∈ ∂Bδ(z).
Player I chooses a strategy of pulling towards z, denoted by SzI . Then

Mk = |xk − z| − Cε2k

is a supermartingale for a constant C large enough independent of ε. Indeed,

Ex0
SzI ,SII

[|xk − z| | x0, . . . , xk−1]

≤ α

2
{|xk−1 − z| + ε + |xk−1 − z| − ε} + β

∫

Bε(xk−1)
|x − z| dx

≤ |xk−1 − z| + Cε2.

The first inequality follows from the choice of the strategy, and the second from the

estimate ∫

Bε(xk−1)
|x − z| dx ≤ |xk−1 − z| + Cε2.

By the optional stopping theorem, this implies that

Ex0
SzI ,SII

[|xτ − z|] ≤ |x0 − z| + Cε2Ex0
SzI ,SII

[τ ]. (4.19)

Next we estimate Ex0
SzI ,SII

[τ ] by the stopping time of Lemma 4.5. Player I pulls
towards z and Player II uses any strategy. The expectation of |xk − z| when at xk−1
is at the most |xk−1 − z| when we know that the tug-of-war occurs. On the other
hand, if the random walk occurs, then we know that the expectation of |xk − z| is
greater than or equal to |xk−1 − z|. Therefore we can bound the expectation of the
original process by considering a suitable random walk in BR(z) \ Bδ(z) for BR(z)
such that % ⊂ BR/2(z). When xk ∈ BR(z) \ Bδ(z), the successor xk+1 is chosen
according to a uniform probability in Bε(x)∩ BR(z). The process stops when it hits
Bδ(z). Thus, by (4.14),

ε2Ex0
SzI ,SII

[τ ] ≤ ε2Ex0
SzI ,SII

[τ∗] ≤ C(R/δ)(dist(∂Bδ(z), x0) + o(1)).

Since y ∈ ∂Bδ(z),

dist(∂Bδ(z), x0) ≤ |y − x0| ,
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and thus, (4.19) implies

Ex0
SzI ,SII

[|xτ − z|] ≤ C(R/δ)(|x0 − y| + o(1)) + δ.

We get

F(z) − C(R/δ)(|x − y| + o(1)) − Lip(F)δ ≤ Ex0
SzI ,SII

[F(xτ )]
≤ F(z) + C(R/δ)(|x − y| + o(1)) + Lip(F)δ.

Thus, we obtain

sup
SI

inf
SII

Ex0
SI,SII

[F(xτ )] ≥ inf
SII

Ex0
SzI ,SII

[F(xτ )]

≥ F(z) − C(R/δ)(|x0 − y| + o(1)) − Lip(F)δ

≥ F(y) − 2Lip(F)δ − C(R/δ)(|x0 − y| + o(1)).

The upper bound can be obtained by choosing for Player II a strategy where he

points to z, and thus, (4.18) follows.

We can then translate the estimate inside the domain similarly as at the end

of the proof of Lemma 4.4. For completeness, we also give a probabilistic proof

from [16] for this fact.

Let x, y ∈ % and fix the strategies SI, SII for the game starting at x . We
define a virtual game starting at y: we use the same coin tosses and random steps

as the usual game starting at x . Furthermore, the players adopt their strategies

Sv
I , S

v
II from the game starting at x , that is, when the game position is yk−1 a player

chooses the step that would be taken at xk−1 in the game starting at x . We proceed
in this way until for the first time xk ∈ &ε or yk ∈ &ε. At that point we have

|xk − yk | = |x − y|, and we may apply the previous steps that work for xk ∈ %,
yk ∈ &ε or for xk, yk ∈ &ε.

Note that, thanks to Lemmas 4.3 and 4.4 (or alternatively Lemma 4.6), the

family uε satisfies the hypothesis of the compactness Lemma 4.2.

Corollary 4.7. Let {uε} be a family of p-harmonious functions with a fixed contin-
uous boundary data F . Then there exists a uniformly continuous u and a subse-

quence still denoted by {uε} such that

uε → u uniformly in %.

Next we prove that the limit u in Corollary 4.7 is a solution to (1.9). The idea

is to work in the viscosity setting and to show that the limit is a viscosity sub-

and supersolution. To accomplish this, we utilize some ideas from [11], where p-

harmonic functions were characterized in terms of asymptotic expansions. We start

by recalling the viscosity characterization of p-harmonic functions, see [5].
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Definition 4.8. For 1 < p < ∞ consider the equation

−div
(
|∇u|p−2∇u

)
= 0.

(1) A lower semi-continuous function u is a viscosity supersolution if for every

φ ∈ C2 such that φ touches u at x ∈ % strictly from below with ∇φ(x) 3= 0,

we have

−(p − 2)$∞φ(x) − $φ(x) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for every φ ∈ C2 such

that φ touches u at x ∈ % strictly from above with ∇φ(x) 3= 0, we have

−(p − 2)$∞φ(x) − $φ(x) ≤ 0.

(3) Finally, u is a viscosity solution if it is both a sub- and supersolution.

Theorem 4.9. Let F and % be as in Theorem 1.6. Then the uniform limit u of

p-harmonious functions {uε} is a viscosity solution to (1.9).
Proof. First, u = F on ∂% due to Lemma 4.4, and we can focus attention on

showing that u is p-harmonic in% in the viscosity sense. To this end, we recall from
[11] an estimate that involves the regular Laplacian (p = 2) and an approximation

for the infinity Laplacian (p = ∞). Choose a point x ∈ % and a C2-function φ
defined in a neighborhood of x . Let xε

1 be the point at which φ attains its minimum

in Bε(x)
φ(xε

1) = min
y∈Bε(x)

φ(y).

It follows from the Taylor expansions in [11] that

α

2

{
max

y∈Bε(x)
φ(y) + min

y∈Bε(x)
φ(y)

}
+ β

∫

Bε(x)
φ(y) dy − φ(x)

≥ βε2

2(n + 2)

(
(p − 2)

〈
D2φ(x)

(
xε
1 − x

ε

)
,

(
xε
1 − x

ε

)〉
+ $φ(x)

)

+ o(ε2).

(4.20)

Suppose that φ touches u at x strictly from below and that ∇φ(x) 3= 0. Observe

that according to Definition 4.8, it is enough to test with such functions. By the

uniform convergence, there exists sequence {xε} converging to x such that uε − φ
has an approximate minimum at xε, that is, for ηε > 0, there exists xε such that

uε(x) − φ(x) ≥ uε(xε) − φ(xε) − ηε.

Moreover, considering φ̃ = φ−uε(xε)−φ(xε), we can assume that φ(xε) = uε(xε).
Thus, by recalling the fact that uε is p-harmonious, we obtain

ηε ≥ −φ(xε) + α

2

{
max
Bε(xε)

φ + min
Bε(xε)

φ

}
+ β

∫

Bε(xε)
φ(y) dy,
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and thus, by (4.20), and choosing ηε = o(ε2), we have

0 ≥ βε2

2(n + 2)
((p − 2)

〈
D2φ(xε)

(
xε
1 − xε

ε

)
,

(
xε
1 − xε

ε

)〉
+ $φ(xε))

+ o(ε2).

Since ∇φ(x) 3= 0, letting ε → 0, we get

0 ≥ β

2(n + 2)
((p − 2)$∞φ(x) + $φ(x)) .

Therefore u is a viscosity supersolution.

To prove that u is a viscosity subsolution, we use a reverse inequality to (4.20)

by considering the maximum point of the test function and choose a function φ that
touches u from above.

The above theorem gives the existence of a viscosity solution to (1.9).

End of the proof of Theorem 1.6. We just have to observe that since the viscosity
solution of (1.9) is unique, then we have convergence for the whole family {uε} as
ε → 0.
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