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Boundary trace of positive solutions

of semilinear elliptic equations

in Lipschitz domains: the subcritical case

MOSHE MARCUS AND LAURENT VERON

Abstract. We study the generalized boundary value problem for nonnegative
solutions of −!u + g(u) = 0 in a bounded Lipschitz domain ", when g is
continuous and nondecreasing. Using the harmonic measure of ", we define a
trace in the class of outer regular Borel measures. We amphasize the case where

g(u) = |u|q−1u, q > 1. When" is (locally) a cone with vertex y, we prove sharp
results of removability and characterization of singular behavior. In the general
case, assuming that " possesses a tangent cone at every boundary point and q
is subcritical, we prove an existence and uniqueness result for positive solutions
with arbitrary boundary trace.

Mathematics Subject Classification (2010): 35K60 (primary); 31A20, 31C15,
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1. Introduction

In this article we study boundary value problems with measure data on the bound-

ary, for equations of the form

−!u + g(u) = 0 in " (1.1)

where" is a bounded Lipschitz domain inRN and g is a continuous nondecreasing

function vanishing at 0 (in short g ∈ G). A function u is a solution of the equation if
u and g(u) belong to L1loc(") and the equation holds in the distribution sense. The
definition of a solution satisfying a prescribed boundary condition is more complex

and will be described later on.

Boundary value problems for (1.1) with measure boundary data in smooth do-

mains (or, more precisely, in C2 domains) have been studied intensively in the

last 20 years. Much of this work concentrated on the case of power nonlinear-

ities, namely, g(u) = |u|q−1u with q > 1. For details we address the reader
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to the following papers and the references therein: Le Gall [17, 18], Dynkin and

Kuznetsov [6–8], Mselati [26] (employing in an essential way probabilistic tools)

and Marcus and Veron [20–24] (employing purely analytic methods).

The study of the corresponding linear boundary value problem in Lipschitz

domains is classical. This study shows that, with a proper interpretation, the basic

results known for smooth domains remain valid in the Lipschitz case. Of course

there are important differences too: in the Poisson integral formula the Poisson

kernel must be replaced by the Martin kernel and, when the boundary data is given

by a function in L1, the standard surface measure must be replaced by the harmonic

measure. The Hopf principle does not hold anymore, but it is partially replaced

by the Carleson lemma and the boundary Harnack principledue to Dahlberg [5]. A

summary of the basic results for the linear case, to the extent needed in the present

work, is presented in Section 2.

One might expect that in the nonlinear case the results valid for smooth do-

mains extend to Lipschitz domains in a similar way. This is indeed the case as long

as the boundary data is in L1. However, in problems with measure boundary data,

we encounter essentially new phenomena.

Following is an overview of our main results on boundary value problems

for (1.1).

A. General nonlinearity and finite measure data

We start with the weak L1 formulation of the boundary value problem

−!u + g(u) = 0 in ", u = µ on ∂" , (1.2)

where µ ∈ M(∂").
Let x0 be a point in ", to be kept fixed, and let ρ = ρ" denote the first eigen-

function of −! in " normalized by ρ(x0) = 1. It turns out that the family of test

functions appropriate for the boundary value problem is

X (") =
{
η ∈ W

1,2
0 (") : ρ−1!η ∈ L∞(")

}
. (1.3)

If η ∈ X (") then sup |η|/ρ < ∞.

LetK[µ] denote the harmonic function in " with boundary trace µ. Then u is
an L1-weak solution of (1.2) if

u ∈ L1ρ("), g(u) ∈ L1ρ(") (1.4)

and ∫

"
(−u!η + g(u)η) dx = −

∫

"
(K[µ]!η) dx ∀η ∈ X ("). (1.5)

Note that in (1.5) the boundary data appears only in an implicit form. In the next

result we present a more explicit link between the solution and its boundary trace.
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A sequence of domains {"n} is called a Lipschitz exhaustion of " if, for every

n, "n is Lipschitz and

"n ⊂ "̄n ⊂ "n+1, " = ∪"n, HN−1(∂"n) → HN−1(∂"). (1.6)

In Lischitz domains, the natural way to represent harmonic functions solutions of

Dirichlet problems with continuous boundary data is use the harmonic measure. Its

definition and mains properties are recalled in Section 2.1. As an illustration of this

notion we prove the following:

Proposition 1.1. Let {"n} be an exhaustion of ", let x0 ∈ "1 and denote by ωn
(respectively ω) the harmonic measure on ∂"n (respectively ∂") relative to x0. If
u is an L1-weak solution of (1.2) then, for every Z ∈ C("̄),

lim
n→∞

∫

∂"n

Zu dωn =
∫

∂"
Z dµ. (1.7)

We note that any solution of (1.1) is in W
1,p
loc (") for some p > 1 and consequently

possesses an integrable trace on ∂"n .

In general problem (1.2) does not possess a solution for every µ. We denote
by Mg(∂") the set of measures µ ∈ M(∂") for which such a solution exists.
The following statements are established in the same way as in the case of smooth

domains:

(i) If a solution exists it is unique. Furthermore the solution depends monotoni-

cally on the boundary data.

(ii) If u is an L1-weak solution of (1.2) then |u| (respectively u+) is a subsolution
of this problem with µ replaced by |µ| (respectively µ+).

A measure µ ∈ M(∂") is g-admissible if g(K[|µ|]) ∈ L1ρ("). When there is
no risk of confusion we shall simply write “admissible” instead of “g-admissible”.

The following provides a sufficient condition for existence.

Theorem 1.2. If µ is g-admissible then problem (1.2) possesses a unique solution.

B. The boundary trace of positive solutions of (1.1); general nonlinearity
We say that u ∈ L1loc(") is a regular solution of the equation (1.1) if g(u) ∈ L1ρ(").

Proposition 1.3. Let u be a positive solution of the equation (1.1). If u is regular

then u ∈ L1ρ(") and it possesses a boundary trace µ ∈ M(∂"). Thus u is the
solution of the boundary value problem (1.2) with this measure µ.

As in the case of smooth domains, a positive solution possesses a boundary

trace even if the solution is not regular. The boundary trace may be defined in

several ways; in every case it is expressed by an unbounded measure. A definition

of trace is “good” if the trace uniquely determines the solution. A discussion of the
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various definitions of boundary trace, for boundary value problems in C2 domains,

with power nonlinearities, can be found in [6,24] and the references therein. In [20]

the authors introduced a definition of trace – later referred to as the “rough trace”

by Dynkin [6] – which proved to be “good” in the subcritical case, but not in the

supercritical case (see [21]). Mselati [26] obtained a “good” definition of trace

for the problem with g(u) = u2 and N ≥ 4, in which case this non-linearity is

supercritical. His approach employed probabilistic methods developed by Le Gall

in a series of papers. For a presentation of these methods we refer the reader to

his book [18]. Following this work the authors introduced in [24] a notion of trace,

called “the precise trace”, defined in the framework of the fine topology associated

with the Bessel capacity C2/q,q ′ on ∂". This definition of trace turned out to be
“good” for all power nonlinearities g(u) = uq , q > 1, at least in the class of σ -
moderate solutions. In the subcritical case, the precise trace reduces to the rough

trace. At the same time Dynkin [7] extended Mselati’s result to the case (N +
1)/(N − 1) ≤ q ≤ 2. Finally, Marcus [19] proved that, for g(u) = uq and arbitrary

qε(N + 1) = (N − 1), every positive solution of (1.1) is σ -moderate. This result,
combined with [24], implies that every positive solution (for any q > 1) is uniquely

determined by its precise boundary trace.

In the present paper we confine ourselves to boundary value problems with

rough trace data and in the subcritical case (see the definitions below). In a forth-

coming paper we shall study equations with power non-linearities in polyhedral

domains. In this case we obtain necessary and su cient condi- tions for removabil-

ity of singular sets [25]. Using these results it is possible to extend the precise trace

theory [24] to the case of polyhedral domains.

Here are the main results of the present paper, including the relevant defini-

tions.

Definition 1.4. Let u be a positive supersolution, respectively subsolution, of (1.1).

A point y ∈ ∂" is a regular boundary point relative to u if there exists an open

neighborhood D of y such that g ◦u ∈ L1ρ("∩D). If no such neighborhood exists

we say that y is a singular boundary point relative to u.

The set of regular boundary points of u is denoted by R(u); its complement
on the boundary is denoted by S(u). EvidentlyR(u) is relatively open.

Theorem 1.5. Let u be a positive solution of (1.1) in ". Then u possesses a trace
onR(u), given by a Radon measure ν.

Furthermore, for every compact set F ⊂ R(u),

∫

"
(−u!η + g(u)η) dx = −

∫

"
(K[νχF ]!η) dx (1.8)

for every η ∈ X (") such that supp η ∩ ∂" ⊂ F and νχF ∈ Mg(∂").

Definition 1.6. Let g ∈ G. Let u be a positive solution of (1.1) with regular bound-
ary setR(u) and singular boundary set S(u). The Radon measure ν inR(u) associ-
ated with u as in Theorem 1.5 is called the regular part of the trace of u. The couple



BOUNDARY TRACE IN LIPSCHITZ DOMAINS 917

(ν,S(u)) is called the boundary trace of u on ∂". This trace is also represented by
the (possibly unbounded) Borel measure ν̄ given by

ν̄(E) =
{

ν(E), if E ⊂ R(u)

∞, otherwise.
(1.9)

The boundary trace of u in the sense of this definition will be denoted by tr∂"u.

Let

Vν := sup{uνχF : F ⊂ R(u), F compact} (1.10)

where uνχF denotes the solution of (1.2) with µ = νχF . Then Vν is called the

semi-regular component of u.

Definition 1.7. A compact set F ⊂ ∂" is removable relative to (1.1) if the only

non-negative solution u ∈ C("̄ \ F) which vanishes on "̄ \ F is the trivial solution
u = 0.

An important subclass of G is the class of functions g satisfying the Keller-
Osserman condition, that is

∫ ∞

a

ds√
G(s)

< ∞ where G(s) =
∫ s

0

g(τ )dτ, (1.11)

for some a > 0. It is proved in [16,27] that, if g satisfies this condition, there exists

a non-increasing function h from R+ to R+ with limits

lim
s→0

h(s) = ∞ lim
s→∞ h(s) = a+ := inf{a > 0 : g(a) > 0} (1.12)

such that any solution u of (1.1) satisfies

u(x) ≤ h (dist (x, ∂")) ∀x ∈ ". (1.13)

Lemma 1.8. Let g ∈ G and assume that g satisfies the Keller-Osserman condition.
Let F ⊂ ∂" be a compact set and denote by UF the class of solutions u of (1.1)

which satisfy the condition,

u ∈ C("̄ \ F), u = 0 on ∂" \ F . (1.14)

Then there exists a function UF ∈ UF such that

u ≤ UF ∀u ∈ UF .

Furthermore, S(UF ) =: F ′ ⊂ F; F ′ need not be equal to F .

Definition 1.9. UF is called the maximal solution associated with F . The set F
′ =

S(UF ) is called the g-kernel of F and denoted by kg(F).
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Theorem 1.10. Let g ∈ G and assume that g is convex and satisfies the Keller-

Osserman condition.

EXISTENCE. The following set of conditions is necessary and sufficient for exis-

tence of a solution u of the generalized boundary value problem

−!u + g(u) = 0 in ", tr∂"u = (ν, F), (1.15)

where F ⊂ ∂" is a compact set and ν is a Radon measure on ∂" \ F .
(i) For every compact set E ⊂ ∂" \ F , νχE ∈ Mg(∂").
(ii) If kg(F) = F ′, then F \ F ′ ⊂ S(Vν).

When this holds,

Vν ≤ u ≤ Vν +UF . (1.16)

Furthermore if F is a removable set then (1.2) possesses exactly one solution.

UNIQUENESS. Given a compact set F ⊂ ∂", assume that

UE is the unique positive solution with trace (0, kg(E)) (1.17)

for every compact E ⊂ F . Under this assumption:
(a) If u is a solution of (1.15) then

max(Vν,UF ) ≤ u ≤ Vν +UF . (1.18)

(b) Equation (1.1) possesses at most one solution satisfying (1.18).

(c) Condition (1.17) is necessary and sufficient in order that (1.15) possess at most

one solution.

MONOTONICITY.

(d) Let u1, u2 be two positive solutions of (1.1) with boundary traces (ν1, F1) and
(ν2, F2) respectively. Suppose that F1 ⊂ F2 and that ν1 ≤ ν2χF1 =: ν′

2. If

(1.17) holds for F = F2 then u1 ≤ u2.

In the remaining part of this paper we consider equation (1.1) with power nonlin-

earity:

−!u + |u|q−1u = 0 (1.19)

with q > 1.

C. Classification of positive solutions in a conical domain possessing an isolated

singularity at the vertex

Let C
S
be a cone with vertex 0 and opening S ⊂ SN−1, where S is a Lipschitz

domain. Put " = CS ∩ B1(0). Denote by λS the first eigenvalue and by φS the first

eigenfunction of −!′ in W 1,2
0 (S) normalized by maxφ

S
= 1. Put

αS = 1

2
(N − 2+

√
(N − 2)2 + 4λS)
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and

/1(x) = 1

γ
|x |−α

Sφ
S
(x/ |x |)

where γS is a positive number. /1 is a harmonic function in CS vanishing on

∂CS \ {0} and γ is chosen so that the boundary trace of /1 is δ0 (=Dirac measure
on ∂CS with mass 1 at the origin). Further denote "S = CS ∩ B1(0).

It was shown in [9] that, if q ≥ 1+ 2
αS
there is no solution of (1.19) in " with

isolated singularity at 0. We obtain the following result.

Theorem 1.11. Assume that 1 < q < 1 + 2
αS
. Then δ0 is admissible for " and

consequently , for every real k, there exists a unique solution of this equation in "
with boundary trace kδ0. This solution, denoted by uk satisfies

uk(x) = k/1(x)(1+ o(1)) as x → 0. (1.20)

The function

u∞ = lim
k→∞

uk

is the unique positive solution of (5.1) in "S which vanishes on ∂" \ {0} and is
strongly singular at 0, i.e., ∫

"
u
q
∞ρ dx = ∞ (1.21)

where ρ is the first eigenfunction of −! in " normalized by ρ(x0) = 1 for some

(fixed) x0 ∈ ". Its asymptotic behavior at 0 is given by,

u∞(x) = |x |−
2

q−1ωS(x/|x |)(1+ o(1)) as x → 0 (1.22)

where ω is the (unique) positive solution of

−!′ω − λ
N ,qω + |ω|q−1 ω = 0 (1.23)

on SN−1 with

λ
N ,q = 2

q − 1

(
2q

q − 1
− N

)
. (1.24)

As a consequence one can state the following classification result.

Theorem 1.12. Assume that 1 < q < q
S

= 1+ 2/α
S
and denote

α̃S = 1

2

(
2− N +

√
(N − 2)2 + 4λS

)
.

If u ∈ C("̄S \{0}) is a positive solution of (1.19) vanishing on (∂C
S
∩ Br0(0))\{0},

the following alternative holds:
Either

lim sup
x→0

|x |−α̃
S u(x) < ∞
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or

there exist k > 0 such that (1.20) holds,

or

(1.22) holds.

In the first case u ∈ C("̄); in the second, u possesses a weak singularity at the
vertex while in the last case u has a strong singularity there.

D. Criticality in Lipschitz domains

Let" be a Lipschitz domain and let ξ ∈ ∂". We say that qξ is the critical value for

(1.19) at ξ if, for 1 < q < qξ , the equation possesses a solution with boundary trace

δξ while, for q > qξ no such solution exists. We say that q
3
ξ is the secondary critical

value at ξ if for 1 < q < q
3
ξ there exists a non-trivial solution of (1.19) which

vanishes on ∂" \ {ξ} but for q > q
3
ξ no such solution exists. Thus, if qξ < q < q

3
ξ

there exist solutions with isolated singularity at ξ but these solutions do not possess
a nite boundary trace.

In the case of smooth domains, qξ = q
3
ξ and qξ = (N + 1)/(N − 1) for

every boundary point ξ . Furthermore, if q = qξ there is no solution with isolated

singularity at ξ , i.e., an isolated singularity at ξ is removable.

In Lipschitz domains the critical value depends on the point. Clearly qξ ≤ q
3
ξ ,

but the question whether, in general, qξ = q
3
ξ remains open. However we prove

that, if " is a polyhedron, qξ = q
3
ξ at every point and the function ξ → qξ obtains

only a finite number of values. In fact it is constant on each open face and each

open edge, of any dimension. In addition, if q = qξ , an isolated singularity at ξ is

removable. The same holds true in a piecewise C2 domain " except that ξ → qξ is

not constant on edges but it is continuous on every relatively open edge.

For general Lipschitz domains, we can provide only a partial answer to the

question posed above.

We say that " possesses a tangent cone at a point ξ ∈ ∂" if the limiting inner

cone with vertex at ξ is the same as the limiting outer cone at ξ .

Theorem 1.13. Suppose that " possesses a tangent cone C"
ξ at a point ξ ∈ ∂"

and denote by qc,ξ the critical value for this cone at the vertex ξ . Then

qξ = q
3
ξ = qc,ξ .

Furthermore, if 1 < q < qξ then δξ is admissible, i.e.,

Mξ :=
∫

"
K (x, ξ)qρ(x)dx < ∞.

We do not know if, under the assumptions of this theorem, an isolated singularity

at ξ is removable when q = qc,ξ . It would be useful to resolve this question.
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E. The generalized boundary value problem in Lipschitz domains: the subcritical

case

In the case of smooth domains, a boundary value problem for equation (1.19) is

either subcritical or supercritical. This is no longer the case when the domain is

merely Lipschitz since the criticality varies from point to point. In this part of the

paper we discuss the generalized boundary value problem in the strictly subcritical

case.

Under the conditions of Theorem 1.13 we know that, if ξ ∈ ∂" and 1 <
q < qξ then K (·, ξ) ∈ L1ρ("). In the next result, we derive, under an additional
restriction on q, uniform estimates of the norm ‖K (·, ξ)‖L1ρ("). Such estimates are

needed in the study of existence and uniqueness. For its statement we need the

following notation:

If z ∈ ∂", we denote by Sz,r the opening of the largest cone CS with vertex at
z such that CS ∩ Br (z) ⊂ " ∪ {z}. If E is a compact subset of ∂" we denote:

q∗
E = lim

r→0

({
qSz,r : z ∈ ∂", dist (z, E) < r

})
.

We observe that

q∗
E ≤ inf{qc,z : z ∈ E}

but this number also measures, in a sense, the rate of convergence of interior cones

to the limiting cones. If " is convex then q∗
E ≤ (N + 1)/(N − 1) for every non-

empty set E . On the other hand if " is the complement of a bounded convex set

then q∗
E = (N + 1)/(N − 1).

Theorem 1.14. If E is a compact subset of ∂" and 1 < q < q∗
E then, there exists

M > 0 such that ∫

"
Kq(x, y)ρ(x)dx ≤ M ∀y ∈ E . (1.25)

Using this theorem we obtain:

Theorem 1.15. Assume that " is a bounded Lipschitz domain and u is a positive

solution of (1.19). If y ∈ S(u) (i.e. y ∈ ∂" is a singular point of u) and 1 < q <
q∗
{y} then, for every k > 0, the measure kδy is admissible and

u ≥ ukδy = solution with boundary trace kδy . (1.26)

Remark 1.16. It can be shown that, if q > q∗
{y}, (1.26) may not hold. For instance,

such solutions exist if " is a smooth, obtuse cone and y is the vertex of the cone.

Therefore the condition q < q∗
{y} for every y ∈ ∂" is, in some sense necessary for

uniqueness in the subcritical case.

As a consequence we first obtain the existence and uniqueness result in the

context of bounded measures.
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Theorem 1.17. Let E ⊂ ∂" be a closed set and assume that 1 < q < q∗
E . Then,

for every µ ∈ M(") such that suppµ ⊂ E there exists a (unique) solution uµ of

(5.1) in " with boundary trace µ.

Further, using Theorems 1.10, 1.11 and 1.14, we establish the existence and

uniqueness result for generalized problems.

Theorem 1.18. Let " be a bounded Lipschitz domain which possesses a tangent

cone at every boundary point. If

1 < q < q∗
∂"

then, for every positive, outer regular Borel measure ν̄ on ∂", there exists a unique
solution u of (1.19) such that tr∂"(u) = ν̄.

2. Boundary value problems

2.1. Classical harmonic analysis in Lipschitz domains

A bounded domain " ⊂ RN is called a Lipschitz domain if there exist positive

numbers r0, λ0 and a cylinder

Or0 = {ξ = (ξ1, ξ
′) ∈ RN : |ξ ′| < r0, |ξ1| < r0} (2.1)

such that, for every y ∈ ∂" there exist:

(i) A Lipschitz function ψ y on the (N−1)-dimensional ball B′
r0

(0) with Lipschitz
constant ≥ λ0;

(ii) An isometry T y of RN such that

T y(y) = 0, (T y)−1(Or0) := O
y
r0,

T y(∂" ∩ O
y
r0) = {(ψ y(ξ ′), ξ ′) : ξ ′ ∈ B′

r0
(0)}

T y(" ∩ O
y
r0) = {(ξ1, ξ ′) : ξ ′ ∈ B′

r0
(0), −r0 < ξ1 < ψ y(ξ ′)}.

(2.2)

The constant r0 is called a localization constant of "; λ0 is called a Lipschitz con-
stant of". The pair (r0, λ0) is called a Lipschitz character (or, briefly, L-character)
of ". Note that, if " has L-character (r0, λ0) and r

′ ∈ (0, r0), λ
′ ∈ (λ0,∞) then

(r ′, λ′) is also an L-character of ".
By the Rademacher theorem, the outward normal unit vector existsHN−1−a.e.

on ∂", where HN−1 is the N-1 dimensional Hausdorff measure. The unit normal
at a point y ∈ ∂" will be denoted by ny .

We list below some facts concerning the Dirichlet problem in Lipschitz do-

mains.
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A.1- Let x0 ∈ ", h ∈ C(∂") and denote Lx0(h) := vh(x0) where vh is the solution
of the Dirichlet problem {

−!v = 0 ∈ "
v = h on ∂".

(2.3)

Then Lx0 is a continuous linear functional on C(∂"). Therefore there exists a
unique Borel measure on ∂", called the harmonic measure in ", denoted by ω

x0
"

such that

vh(x0) =
∫

∂"
hdω

x0
" ∀h ∈ C(∂"). (2.4)

When there is no danger of confusion, the subscript " will be dropped. Because of

Harnack’s inequality the measures ωx0 and ωx , x0, x ∈ " are mutually absolutely

continuous. For every fixed x ∈ " denote the Radon-Nikodym derivative by

K (x, y) := dωx

dωx0
(y) for ωx0-a.e. y ∈ ∂". (2.5)

Then, for every x̄ ∈ ", the function y 0→ K (x̄, y) is positive and continuous on ∂"
and, for every ȳ ∈ ∂", the function x 0→ K (x, ȳ) is harmonic in " and satisfies

lim
x→y

K (x, ȳ) = 0 ∀y ∈ ∂" \ {ȳ}.

By [12]

lim
z→y

G(x, z)

G(x0, z)
= K (x, y) ∀y ∈ ∂". (2.6)

Thus the kernel K defined above is theMartin kernel.

The following is an equivalent definition of the harmonic measure [12]:

For any closed set E ⊂ ∂"

ωx0(E)

:= inf{φ(x0) : φ ∈ C(")+ superharmonic in ", lim inf
x→E

φ(x) ≥ 1}. (2.7)

The extension to open sets and then to arbitrary Borel sets is standard.

By (2.4), (2.5) and (2.7), the unique solution v of (2.3) is given by

v(x) =
∫

∂"
K (x, y)h(y)dωx0(y)

= inf{φ ∈ C(") : φ superharmonic, lim inf
x→y

φ(x) ≥ h(y), ∀y ∈ ∂"}.
(2.8)

For details see [12].

A.2- Let (x0, y0) ∈ "×∂". A function v defined in" is called a kernel function at

y0 if it is positive and harmonic in " and verifies v(x0) = 1 and limx→y v(x) = 0

for any y ∈ ∂" \ {y0}. It is proved in [12, Section 3] that the kernel function at y0
is unique. Clearly this unique function is K (·, y0).
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A.3- We denote by G(x, y) the Green kernel for the Laplacian in " × ". This
means that the solution of the Dirichlet problem

{
−!u = f in ",
u = 0 on ∂",

(2.9)

with f ∈ C2("), is expressed by

u(x) =
∫

"
G(x, y) f (y)dy ∀y ∈ ". (2.10)

We shall write (2.10) as u = G[ f ].
A.4- Let 5 be the first eigenvalue of −! in W

1,2
0 (") and denote by ρ the corre-

sponding eigenfunction normalized by max" ρ = 1.

Let 0 < δ < dist (x0,") and put

Cx0,δ := max
|x−x0|=δ

G(x, x0)/ρ(x).

Since Cx0,δ ρ − G(·, x0) is superharmonic, the maximum principle implies that

0 ≤ G(x, x0) ≤ Cx0,δ ρ(x) ∀x ∈ " \ Bδ(x0). (2.11)

On the other hand, by [15, Lemma 3.4]: for any x0 ∈ " there exists a constant

Cx0 > 0 such that

0 ≤ ρ(x) ≤ Cx0G(x, x0) ∀x ∈ ". (2.12)

A.5- For every bounded regular Borel measure µ on ∂" the function

v(x) =
∫

∂"
K (x, y)dµ(y) ∀x ∈ ", (2.13)

is harmonic in ". We denote this relation by v = K[µ].
A.6- Conversely, for every positive harmonic function v in " there exists a unique

positive bounded regular Borel measure µ on ∂" such that (2.13) holds. The mea-

sure µ is constructed as follows [12, Theorem 4.3].
Let SP(") denote the set of continuous, non-negative superharmonic func-

tions in ". Let v be a positive harmonic function in ".
If E denotes a relatively closed subset of", denote by REv the function defined

in " by

REv (x) = inf{φ(x) : φ ∈ SP("), φ ≥ v in E}.
Then REv is superharmonic in ", REv decreases as E decreases and, if F is another
relatively closed subset of ", then

RE∪F
v ≤ REv + RFv .
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Now, relative to a point x ∈ ", the measure µ is defined by

µx
v(F) = inf{REv (x) : E = D̄ ∩ ", D open in RN , D ⊃ F}, (2.14)

for every compact set F ⊂ ∂". From here it is extended to open sets and then to
arbitrary Borel sets in the usual way.

It is easy to see that, if D contains ∂" then RD̄∩"
v = v. Therefore

µx
v(∂") = v(x). (2.15)

In addition, if F is a compact subset of the boundary, the function x 0→ µx
v(F) is

harmonic in " and vanishes on ∂" \ F .
A.7- If x, x0 are two points in ", the Harnack inequality implies that µx

v is abso-

lutely continuous with respect to µ
x0
v . Therefore, for µ

x0
v -a.e. point y ∈ ∂", the

density function dµx
v/dµ

x0
v (y) is a kernel function at y. By the uniqueness of the

kernel function it follows that

dµx
v

dµ
x0
v

(y) = K (x, y), µx0
v -a.e. y ∈ ∂". (2.16)

Therefore, using (2.15),

(a) µx
v(F) =

∫

F

K (x, y)dµx0(y),

(b) v(x) =
∫

∂"
K (x, y)dµx0(y).

(2.17)

A.8- By a result of Dahlberg [5, Theorem 3], the (interior) normal derivative of

G(·, x0) exists HN−1-a.e. on ∂" and is positive. In addition, for every Borel set

E ⊂ ∂",

ωx0(E) = γN

∫

E

∂G(ξ, x0)/∂nξ dSξ , (2.18)

where γN (N − 2) is the surface area of the unit ball in RN and dS is surface mea-

sure on ∂". Thus, for each fixed x ∈ ", the harmonic measure ωx is absolutely

continuous relative toHN−1
∣∣
∂"
with density function P(x, ·) given by

P(x, ξ) = ∂G(ξ, x)/∂nξ for a.e. ξ ∈ ∂". (2.19)

In view of (2.8), the unique solution v of (2.3) is given by

v(x) =
∫

"
P(x, ξ)h(ξ)dSξ (2.20)

for every h ∈ C(∂"). Accordingly P is the Poisson kernel for ". The expression
on the right hand side of (2.20) will be denoted by P[h]. We observe that,

K[hωx0] = P[h] ∀h ∈ C(∂"). (2.21)
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A.9- The boundary Harnack principle, first proved in [5], can be formulated as

follows [13].

Let D be a Lipschitz domain with L-character (r0, λ0). Let ξ ∈ ∂D and δ ∈
(0, r0). Assume that u, v are positive harmonic functions in D, vanishing on ∂D ∩
Bδ(ξ). Then there exists a constant C = C(N , r0, λ0) such that

C−1u(x)/v(x) ≤ u(y)/v(y) ≤ Cu(x)/v(x) ∀x, y ∈ Bδ/2(ξ). (2.22)

A.10- Let D, D′ be two Lipschitz domains with L-character (r0, λ0). Assume that
D′ ⊂ D and ∂D ∩ ∂D′ contains a relatively open set 6. Let x0 ∈ D′ and let ω,ω′
denote the harmonic measures of D, D′ respectively, relative to x0. Then, for every
compact set F ⊂ 6, there exists a constant cF = C(F, N , r0, λ0, x0) such that

ω′3F≤ ω3F≤ cFω′3F . (2.23)

Indeed, if G,G ′ denote the Green functions of D, D′ respectively then, by the
boundary Harnack principle,

∂G ′(ξ, x0)/∂nξ ≤ ∂G(ξ, x0)/∂nξ ≤ cF∂G(ξ, x0)/∂nξ for a.e. ξ ∈ F. (2.24)

Therefore (2.23) follows from (2.18).

A.11- By [15, Lemma 3.3], for every positive harmonic function v in ",

∫

"
v(x)G(x, x0)dx < ∞. (2.25)

In view of (2.12), it follows that v ∈ L1ρ(").

2.2. The dynamic approach to boundary trace

Let " be a bounded Lipschitz domain and {"n} be a Lipschitz exhaustion of ".
This means that, for every n, "n is Lipschitz and

"n ⊂ "̄n ⊂ "n+1, " = ∪"n, HN−1(∂"n) → HN−1(∂"). (2.26)

Lemma 2.1. Let x0 ∈ "1 and denote by ωn (respectively ω) the harmonic measure
in "n (respectively ") relative to x0. Then, for every Z ∈ C("̄),

lim
n→∞

∫

∂"n

Z dωn =
∫

∂"
Z dω. (2.27)

Proof. By the definition of harmonic measure

∫

∂"n

dωn = 1.
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We extend ωn as a Borel measure on "̄ by setting ωn("̄ \ ∂"n) = 0, and keep

the notation ωn for the extension. Since the sequence {ωn} is bounded, there exists
a weakly convergent subsequence (still denoted by {ωn}). Evidently the limiting
measure, say ω̃, is supported in ∂" and ω̃(∂") = 1. It follows that for every

Z ∈ C("̄), ∫

∂"n

Z dωn →
∫

∂"
Z dω̃.

Let ζ := Z |∂" and z := K"[ζ ]. Again by the definition of harmonic measure,
∫

∂"n

z dωn =
∫

∂"
ζ dω = z(x0).

It follows that ∫

∂"
ζ dω̃ =

∫

∂"
ζ dω,

for every ζ ∈ C(∂"). Consequently ω̃ = ω. Since the limit does not depend on the
subsequence it follows that the whole sequence {ωn} converges weakly to ω. This
implies (2.27).

In the next lemma we continue to use the notation introduced above.

Lemma 2.2. Let x0 ∈ "1, let µ be a bounded Borel measure on ∂" and put v :=
K"[µ]. Then, for every Z ∈ C("̄),

lim
n→∞

∫

∂"n

Zv dωn =
∫

∂"
Z dµ. (2.28)

Proof. It is sufficient to prove the result for positive µ. Let hn := v |∂"n . Evidently

v = K"n [hnωn] in "n . Therefore

v(x0) =
∫

∂"n

hndωn = µ(∂").

Let µn denote the extension of hnωn as a measure in "̄ such that µn("̄\ ∂"n) = 0.

Then {µn} is bounded and consequently there exists a weakly convergent subse-
quence {µn j }. The limiting measure, say µ̃, is supported in ∂" and

µ̃(∂") = v(x0) = µ(∂"). (2.29)

It follows that for every Z ∈ C("̄),
∫

∂"n j

Z dµn j →
∫

∂"
Z dµ̃.

To complete the proof, we have to show that µ̃ = µ. Let F be a closed subset of
∂" and put,

µF = µχF , vF = K"[µF ].
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Let hFn := vF |∂"n and let µ
F
n denote the extension of h

F
n ωn as a measure in "̄ such

that µF
n ("̄ \ ∂"n) = 0. As in the previous part of the proof, there exists a weakly

convergent subsequence of {µF
n j

}. The limiting measure µ̃F is supported in F and

µ̃F (F) = µ̃F (∂") = vF (x0) = µF (∂") = µ(F).

As vF ≤ v, we have µ̃F ≤ µ̃. Consequently

µ(F) ≤ µ̃(F). (2.30)

Observe that µ̃ depends on the first subsequence {µn j }, but not on the second sub-
sequence. Therefore (2.30) holds for every closed set F ⊂ ∂", which implies that
µ ≤ µ̃. On the other hand, µ and µ̃ are positive measures which, by (2.29), have
the same total mass. Therefore µ = µ̃.

Lemma 2.3. Let µ ∈ M(∂") (= space of bounded Borel measures on ∂"). Then
K[µ] ∈ L1ρ(") and there exists a constant C = C(") such that

‖K[µ]‖L1ρ(") ≤ C ‖µ‖M(∂") . (2.31)

In particular if h ∈ L1(∂";ω) then

‖P[h]‖L1ρ(") ≤ C ‖h‖L1(∂";ω) . (2.32)

Proof. Let x0 be a point in " and let K be defined as in (2.5). Put φ(·) = G(·, x0)
and d0 = dist (x0,"). Let (r0, λ0) denote the Lipschitz character of ".

By [3, Theorem 1], there exist positive constants c1(N , r0, λ0, d0) and c0(N ,
r0, λ0, d0) such that for every y ∈ ∂",

c−11
φ(x)

φ2(x ′)
|x − y|2−N ≤ K (x, y) ≤ c1

φ(x)

φ2(x ′)
|x − y|2−N , (2.33)

for all x, x ′ ∈ " such that

c0|x − y| < dist (x ′, ∂") ≤ |x ′ − y| < |x − y| <
1

4
min(d0, r0/8). (2.34)

Therefore, by (2.12) and (2.11), there exists a constant c2(N , r0, λ0, d0) such that

c−12
φ2(x)

φ2(x ′)
|x − y|2−N ≤ ρ(x)K (x, y) ≤ c2

φ2(x)

φ2(x ′)
|x − y|2−N

for x, x ′ as above. There exists a constant c̄0, depending on c0, N , such that, for
every x ∈ " satisfying |x−y| < 1

4
min(d0, r0/8) there exists x

′ ∈ "which satisfies
(2.34) and also

|x − x ′| ≤ c̄0 min(dist (x, ∂"), dist (x ′, ∂")).
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By the Harnack chain argument, φ(x)/φ(x ′) is bounded by a constant depending
on N , c̄0. Therefore

c−13 |x − y|2−N ≤ ρ(x)K (x, y) ≤ c3|x − y|2−N (2.35)

for some constant c3(N , r0, λ0, d0) and all x ∈ " sufficiently close to the boundary.

Assuming that µ ≥ 0,

∫

"
K[µ](x)ρ(x)dx =

∫

∂"

∫

"
K (x, ξ)ρ(x)dx dµ(ξ) ≤ C ‖µ‖M(∂") .

In the general case we apply this estimate to µ+ and µ−. This implies (2.31). For
the last statement of the theorem see (2.21).

Definition 2.4. Let D be a Lipschitz domain and let {Dn} be a Lipschitz exhaustion
of D. We say that {Dn} is a uniform Lipschitz exhaustion if there exist positive

numbers r̄, λ̄ such that Dn has L-character (r̄, λ̄) for all n ∈ N. The pair (r̄, λ̄) is
an L-character of the exhaustion.

Lemma 2.5. Assume D, D′ are two Lipschitz domains such that

6 ⊂ ∂D ∩ ∂D′ ⊂ ∂(D ∪ D′)

where 6 is a relatively open set. Suppose D, D′, D ∪ D′ have L-character (r0, λ0).
Let x0 be a point in D ∩ D′ and put

d0 = min(dist (x0, ∂D), dist (x0, ∂D
′)).

Let u be a positive harmonic function in D ∪ D′ and denote its boundary trace on
D (respectively D′) by µ (respectively µ′). Then, for every compact set F ⊂ 6,
there exists a constant cF = c(F, r0, λ0, d0, N ) such that

c−1F µ′3F≤ µ3F≤ cFµ′3F . (2.36)

Proof. We prove (2.36) in the case that D′ ⊂ D. This implies (2.36) in the general

case by comparison of the boundary trace on ∂D or ∂D′ with the boundary trace on
∂(D ∪ D′).

Let Q be an open set such that Q ∩ D is Lipschitz and

F ⊂ Q, Q̄ ∩ D ⊂ D′, Q̄ ∩ ∂D ⊂ 6.

Then there exist uniform Lipschitz exhaustions of D and D′, say {Dn} and {D′
n},

possessing the following properties:

(i) D̄′
n ∩ Q = D̄n ∩ Q.

(ii) x0 ∈ D′
1 and dist (x0, ∂D

′
1) ≥ 1

4
d0.
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(iii) There exist rQ > 0 and λQ > 0 such that both exhaustions have L-character

(rQ, λQ).

Put 6n := ∂Dn ∩ Q = ∂D′
n ∩ Q and let ωn (respectively ω′

n) denote the harmonic

measure, relative to x0, of Dn (respectively D
′
n). By Lemma 2.2,

∫

6n

φ u(y) dωn(y) →
∫

6
φ dµ,

and ∫

6n

φ u(y)dω′
n(y) →

∫

6
φ dµ′

for every φ ∈ Cc(Q). By A.10 there exists a constant cQ = c(Q, rQ, λQ, d0, N )
such that

ω′
n36n≤ ωn36n≤ cQω′

n36n .

This implies (2.36).

2.3. L1 data

We denote by X (") the space of test functions,

X (") =
{
η ∈ W

1,2
0 (") : ρ−1!η ∈ L∞(")

}
. (2.37)

Let X+(") denote its positive cone.

Let f ∈ L∞("), and let u be the weak W 1,2
0 solution of the Dirichlet problem

−!u = f in " , u = 0 on ∂" . (2.38)

If " is a Lipschitz domain (as we assume here) then u ∈ C("̄) (see [28]). Since

G[ f ] is a weakW 1,2
0 solution, it follows that the solution of (2.38), which is unique

in C("̄), is given by u = G[ f ]. If, in addition, | f | ≤ c1ρ then, by the maximum
principle,

|u| ≤ (c1/5)ρ, (2.39)

where 5 is the first eigenvalue of −! in ".
In particular, if η ∈ X (") then η ∈ C("̄) and it satisfies

−G[!η] = η, (2.40)

|η| ≤ 5−1
∥∥∥ρ−1!η

∥∥∥
L∞ ρ . (2.41)

If, in addition, " is a C2 domain then the solution of (2.38) is in C1("̄).
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Lemma 2.6. Let" be a Lipschitz bounded domain. Then for any f ∈ L1ρ(") there

exists a unique u ∈ L1ρ(") such that

−
∫

"
u!η dx =

∫

"
f ηdx ∀η ∈ X ("). (2.42)

Furthermore u = G[ f ]. Conversely, if f ∈ L1loc("), f ≥ 0 and there exists x0 ∈ "

such that G[ f ](x0) < ∞ then f ∈ L1ρ("). Finally

‖u‖Lρ(") ≤ 5−1 ‖ f ‖Lρ(") . (2.43)

Proof. First assume that f is bounded. We have already observed that, in this case,

the weakW
1,2
0 solution u of the Dirichlet problem (2.38) is in C("̄) and u = G[ f ].

Furthermore, it follows from [4] that

∫

"
∇η · ∇udx = −

∫

"
u!ηdx .

Thus u = G[ f ] is also a weak L1ρ solution (in the sense of (2.42)).
Let η0 be the weak W

1,2
0 solution of (2.38) when f = sgn(u)ρ; evidently

η0 ∈ X ("). If u ∈ L1ρ(") is a solution of (2.42) for some f ∈ L1ρ(") then

∫

"
|u|ρdx =

∫

"
f η0dx ≤ 5−1

∫

"
| f |ρdx . (2.44)

The second inequality follows from (2.39). This proves (2.43) and implies unique-

ness.

Now assume that f ∈ L1ρ(") and let { fn} be a sequence of bounded functions
such that fn → f in this space. Let un be the weak W

1,2
0 solution of (2.38) with

f replaced by fn . Then un satisfies (2.42) and un = G[ fn]. By (2.43), {un}
converges in L1ρ("), say un → u. In view of (2.11) it follows that u = G[ f ] and
that u satisfies (2.42).

If f ∈ L1loc("), f ≥ 0 and G[ f ](x0) < ∞ then, by (2.12), f ∈ L1ρ(").

Lemma 2.7. Let " be a Lipschitz bounded domain. If f ∈ L1ρ(") and h ∈
L1(∂";ω), there exists a unique u ∈ L1ρ(") satisfying

∫

"
(−u!η − f η) dx = −

∫

"
P[h]!ηdx ∀η ∈ X (") (2.45)

or equivalently

u = G[ f ] − P[h]. (2.46)
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The following estimate holds

‖u‖L1ρ(") ≤ c
(
‖ f ‖L1ρ(") + ‖P[h]‖L1ρ(")

)
(2.47)

≤ c
(
‖ f ‖L1ρ(") + ‖h‖L1(∂",ω)

)
.

Furthermore, for any nonnegative element η ∈ X ("), we have

−
∫

"
|u|!η dx ≤ −

∫

"
P[|h|]!ηdx +

∫

"
η f sgn(u) dx, (2.48)

and

−
∫

"
u+!η dx ≤ −

∫

"
P[h+]!ηdx +

∫

"
η f sgn+(u) dx . (2.49)

Proof. Existence. By Lemma 2.3, the assumption on h implies thatP[|h|] ∈ L1ρ(").

If we denote by v the unique function in L1ρ(") which satifies

−
∫

"
v!ηdx = −

∫

"
f ηdx ∀η ∈ X ("),

then u = v − P[h] ∈ L1ρ(") and (2.45) holds.
By Lemma 2.6, (2.46) is equivalent to (2.45).

Estimate (2.47). This inequality follows from (2.45) and (2.43).

Estimate (2.49). Let {"n} be an exhaustion of " by smooth domains. If u is the

solution of (2.45) and hn := u
∣∣
∂"n

then, in "n ,

u = G"n [ f ] − P"n [hn] in "n ,

or equivalently,

∫

"n

(−u!η − f η) dx = −
∫

"n

P[hn]!ηdx

= −
∫

∂"n

(∂η/∂n)hndx ∀η ∈ X ("n).

(2.50)

We recall that, since"n is smooth, η ∈ X ("n) implies that η ∈ C1("̄n). In addition
it is known that (see e.g. [29]), for every non-negative η ∈ X ("n),

∫

"n

(−|u|!η − f η sign u) dx ≤ −
∫

∂"n

∂η/∂n|hn|dx . (2.51)

Let ρn be the first eigenfunction of −! in "n , normalized by ρn(x̄) = 1 for some

x̄ ∈ "1. Let η be a non-negative function in X (") and let ηn be the solution of the
problem

!z = (!η)ρn/ρ in "n , z = 0 on ∂"n .
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Then ηn ∈ X ("n) and, since ρn → ρ,

!ηn → !η, ηn → η.

If v := P[|h|] then v ≥ |u| so that

h̃n := v
∣∣
∂"n

≥ |hn|.

Therefore

−
∫

∂"n

∂ηn/∂n|hn|dx ≤ −
∫

∂"n

∂η/∂n|h̃n|dx =

−
∫

"n

P"n [h̃n]!ηndx = −
∫

"n

v!ηndx → −
∫

"
v!ηdx .

(2.52)

Finally, (2.51) and (2.52) imply (2.48).

Estimate (2.49). This inequality is obtained by adding (2.45) and (2.48).

Definition 2.8. We shall say that a function g : R → R belongs to G(R) if it is
continuous, nondecreasing and g(0) = 0.

Lemma 2.9. Let " be a Lipschitz bounded domain and g ∈ G(R). If f ∈ L1ρ(")

and h ∈ L1(∂";ω), there exists a unique u ∈ L1ρ(") such that g(u) ∈ L1ρ(") and

∫

"
(−u!η + (g(u) − f )η) dx = −

∫

"
P[h]!η dx ∀η ∈ X ("). (2.53)

The correspondence ( f, h) 0→ u is increasing.

If u, u′ are solutions of (2.53) corresponding to data f, h and f ′, h′ respec-
tively then the following estimate holds:

∥∥u − u′∥∥
L1ρ(")

+
∥∥g(u) − g(u′)

∥∥
L1ρ(")

≤ c
(∥∥ f − f ′∥∥

L1ρ(")
+

∥∥P[h − h′]
∥∥
L1ρ(")

)

≤ c
(∥∥ f − f ′∥∥

L1ρ(")
+

∥∥h − h′∥∥
L1(∂",ω)

)
.

(2.54)

Finally, for any nonnegative element η ∈ X ("), we have

−
∫

"
|u|!η dx +

∫

"
|g(u)|η dx ≤ −

∫

"
P[|h|]!ηdx +

∫

"
η f sgn(u) dx, (2.55)

and

−
∫

"
u+!η dx +

∫

"
g(u)+η dx ≤ −

∫

"
P[h+]!ηdx +

∫

"
η f sgn+(u) dx . (2.56)
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Proof. If u, u′ are two solutions as stated above then v = u − u′ satisfies
∫

"
(−v!η + Fη) dx = −

∫

"
P[h − h′]!hdx ∀η ∈ X (") (2.57)

where F = g(u) − g(u′) − ( f − f ′) ∈ L1ρ("). Applying (2.48) to this equation
and using the properties of g described in Definition 2.8 we obtain (2.54). Simi-

larly we obtain (2.55) and (2.56), using (2.48) and (2.49). These inequalities imply

uniqueness and monotone dependence on data.

In the case that f and h are bounded, existence is obtained by the standard

variational method. In general we approach f in L1ρ(") by functions in C∞
c (")

and h in L1(∂";ω) by functions in C(∂") and employ (2.54).

3. Measure data

Denote byMρ(") the space of Radon measures ν in " such that ρ|ν| is a bounded
measure.

Lemma 3.1. Let " be a Lipschitz bounded domain. Let ν ∈ Mρ(") and u ∈
L1loc(") be a nonnegative solution of

−!u = ν in ".

Then u ∈ L1ρ(") and there exists a unique positive Radon measure µ on ∂" such

that

u = K[µ] + G[ν]. (3.1)

Proof. Let D be a smooth subdomain of " such that D̄ ⊂ ". Since u ∈ W
1,p
loc (")

for some p > 1 it follows that u possesses a trace, say hD , in W
1− 1

p
,p

(∂D). Put
v := u−GD[ν]. Then−!v = 0 in D and v ≥ 0 on ∂D and therefore in D. If {Dn}
is an increasing sequence of such domains, converging to", thenGDn [ν] ↑ G"[ν].
Thus v = u − G"[ν] is a non-negative harmonic function in " and consequently

possesses a boundary trace µ ∈ M(∂") such that v = K[µ].

Lemma 3.2. Let " be a Lipschitz bounded domain. If ν ∈ Mρ(") and µ ∈
M(∂"), there exists a unique u ∈ L1ρ(") satisfying

∫

"
− u!η dx =

∫

"
η dν −

∫

"
K[µ]!ηdx ∀η ∈ X ("). (3.2)

This is equivalent to

u = G[ν] + K[µ]. (3.3)
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The following estimate holds

‖u‖L1ρ(") ≤ c
(
‖ν‖Mρ(") + ‖K[µ]‖L1ρ(")

)

≤ c
(
‖ν‖Mρ(") + ‖µ‖M(∂")

)
.

(3.4)

In addition, if dν = f dx for some f ∈ L1ρ(") then, for any nonnegative element
η ∈ X ("), we have

−
∫

"
|u|!η dx ≤ −

∫

"
K[|µ|]!ηdx +

∫

"
η f sgn(u) dx, (3.5)

and

−
∫

"
u+!η dx ≤ −

∫

"
K[µ+]!ηdx +

∫

"
η f sgn+(u) dx . (3.6)

Proof. We approximate µ by a sequence {hn P(x0, ·)} and ν by a sequence { fn}
such that

hn P(x0, ·) ∈ L1(∂"), hn P(x0, ·)HN−1 → µ weakly in measure

and

fn ∈ L1ρ("), fn → ν weakly relative to Cρ("),

where Cρ denotes the space of functions ζ ∈ C(") such that ρζ ∈ L∞("). Apply-
ing Lemma 2.7 to problem (2.47) ( f, h replaced by fn, hn) and taking the limit we
obtain a solution u ∈ L1ρ(") of (3.2) satisfying (3.4).

Lemma 2.6 implies that any solution u of (3.2) satisfies (3.3). Therefore the

solution is unique and hence (3.4) holds for all solutions.

Inequalities (3.5) and (3.6) are proved in the same way as the corresponding

inequalities in Lemma 2.7

Definition 3.3. Let " be a bounded Lipschitz domain and let g ∈ G(R). If µ ∈
M(∂"), a function u ∈ L1ρ(") is a weak solution of

{
−!u + g(u) = 0 in "
u = µ in ∂"

(3.7)

if g(u) ∈ L1ρ(") and
u + G[g(u)] = K[µ] (3.8)

a.e. in ". Equivalently

∫

"
(−u!η + g(u)η) dx = −

∫

"
(K[µ]!η) dx ∀η ∈ X ("). (3.9)

The measure µ is called the boundary trace of u on ∂".
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Similarly a function u ∈ L1ρ(") is a weak supersolution, respectively subsolu-

tion, of (3.7) if g(u) ∈ L1ρ(") and

u + G[g(u)] ≥ K[µ] respectively u + G[g(u)] ≤ K[µ]. (3.10)

This is equivalent to (3.9), with = replaced by ≥ or ≤, holding for every positive
η ∈ X (").

Remark 3.4. It follows from this definition and Lemma 2.9 that, if

µn ⇀ µ weakly inM(∂"), un → u, g(un) → g(u) in L1ρ("),

and if

un = K[µn] − G[g(un)],
then u = K[µ] − G[g(u)].
Lemma 3.5. Let " be a Lipschitz bounded domain and let g ∈ G. Suppose that
µ ∈ M(∂") and that there exists a solution of problem (3.7). Then the solution is
unique.

If µ,µ′ are two measures in M(∂"), for which problem (3.7) possesses solu-
tions u, u′ respectively, then the following estimate holds:

∥∥u − u′∥∥
L1ρ(")

+
∥∥g(u) − g(u′)

∥∥
L1ρ(")

≤
∥∥K[µ − µ′]

∥∥
L1ρ(")

) (3.11)

≤
∥∥µ − µ′∥∥

M(∂")
.

If µ ≤ µ′ then u ≤ u′.
In addition, for any nonnegative element η ∈ X ("), we have

−
∫

"
(|u|!η − |g(u)|η) dx ≤ −

∫

"
K[|µ|]!ηdx (3.12)

and

−
∫

"
(u+!η − g(u)+η) dx ≤ −

∫

"
K[µ+]!ηdx . (3.13)

Proof. This follows from Lemma 3.2 in the same way that Lemma 2.9 follows from

Lemma 2.7.

Definition 3.6. Assume that u ∈ W
1,p
loc (") for some p > 1. We say that u pos-

sesses a boundary trace µ ∈ M(∂") if, for every Lipschitz exhaustion {"n} of ",

lim
n→∞

∫

∂"n

Zu dωn =
∫

∂"
Z dµ, (3.14)

holds for every Z ∈ C("̄).
Similarly we say that u possesses a trace µ on a relatively open set A ⊂ ∂" if

(3.14) holds for every Z ∈ C("̄) such that supp Z ⊂ " ∪ A.
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Remark 3.7. If u ∈ W
1,p
loc (") for some p > 1 then, by Sobolev’s trace theorem,

for every relatively open (N − 1)- dimensional Lipschitz surface 9, u possesses

a trace in W
1− 1

p
,p

(9). In particular the trace is in L1(9). In fact there exists an
element of the Lebesgue equivalence class of u such that the trace on9 is precisely

the restriction of u to 9. When it is relevant, as in (3.14), we assume that u is
represented by such an element.

If u ∈ W 1,p(") then, by the same token, u possesses a trace in W
1− 1

p
,p

(∂").
If {"n} is a uniform Lipschitz exhaustion and hn (respectively h) denotes the trace
of u on ∂"n (respectively ∂") then

‖hn‖
W
1− 1

p ,p
(∂"n)

→ ‖h‖
W
1− 1

p ,p
(∂")

.

This follows from the continuity of the imbedding

W 1,p(") ↪→ W
1− 1

p
,p

(∂")

and the fact that C1("̄) is dense in W 1,p(").
Similarly, if {"n} is a Lipschitz exhaustion (not necessarily uniform, but satis-

fies (2.26)) then
‖hn‖L1(∂"n)

→ ‖h‖L1(∂") .

In particular, if u ∈ W
1,p
0 (") then its boundary trace is zero, in the sense of the

above definition.

Proposition 3.8. Let u be a weak solution of (3.7). If {"n} is a Lipschitz exhaustion
of " then, for every Z ∈ C("̄),

lim
n→∞

∫

∂"n

Zu dωn =
∫

∂"
Z dµ, (3.15)

where ωn is the harmonic measure of "n (relative to a point x0 ∈ "1).

Proof. If v := G[g ◦u] then v ∈ L1ρ(") and u+v is a harmonic function. By (3.8),

u + v = K"[µ]. Therefore, by Lemma 2.2,

lim
n→∞

∫

∂"n

Z(u + v) dωn =
∫

∂"
Z dµ (3.16)

for every Z ∈ C("̄). As v ∈ W
1,p
0 (") for some p > 1 its boundary trace is zero.

Therefore (3.16) implies (3.15).

Definition 3.9. A measure µ ∈ M(∂") is called g-admissible if g(K[|µ|]) ∈
L1ρ(").

Theorem 3.10. Ifµ is g-admissible then problem (3.7) possesses a unique solution.
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Proof. First assume that µ > 0. Under the admissibility assumption, U = K[µ]
is a supersolution of (3.7). Let {Dn} be an increasing sequence of smooth domains
such that D̄n ⊂ Dn+1 ⊂ " and Dn ↑ ". Let un be the solution of problem (3.7) in
Dn with boundary data hn = U

∣∣
∂Dn
. Then {un} decreases and the limit u = lim un

satisfies (3.7).

In the general case we define Ū = K[|µ|] andU , un as before. By assumption
g(Ū) ∈ L1ρ(") and Ū dominates |un| for all n. Let η be a non-negative function in
X (") and let ζn be the solution of the problem

!ζ = (!η)ρn/ρ in Dn , ζ = 0 on ∂Dn .

Then ζn ∈ X (Dn) and, since ρn → ρ,

(!ζn) → (!η), ζn → η.

In addition, (!ζn)/ρn = (!η)/ρ is bounded and, by (2.39), the sequence {ζn/ρn}
is uniformly bounded.

The solutions un satisfy,

∫

Dn

(−un!ζn + g(un)ζn) dx = −
∫

Dn

PDn [hn]!ζndx . (3.17)

The sequence {uk : k > n} is bounded in W 1,p(Dn) for every n. Consequently
there exists a subsequence (still denoted by {un}) which converges pointwise a.e. in
". We denote its limit by u. Since {un} is dominated by Ū it follows that

lim
n→∞

∫

Dn

(−un!ζn + g(un)ζn) dx =
∫

"
(−u!η + g(u)η) dx .

Furthermore,

∫

Dn

PDn [hn]!ζndx =
∫

Dn

U!η(ρn/ρ) dx →
∫

"
U!ηdx =

∫

"
K[µ]!η dx .

Thus u is the solution of (3.7).

Remark 3.11. If we do not assume that g(0) = 0 the admissibility condition be-

comes,

g(K[µ+]+ρ(g(0))+) ∈ L1ρ(") and g(−K[µ−]−ρ(g(0))−) ∈ L1ρ("). (3.18)

4. The boundary trace of positive solutions

As before we assume that " is a bounded Lipschitz domain and g ∈ G. We denote
by ρ the first eigenfunction of −! in " normalized by ρ(x0) = 1 at some (fixed)

point x0 ∈ ".
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A function u ∈ L1loc(") is a solution of the equation

−!u + g(u) = 0 in ", (4.1)

if g ◦ u ∈ L1loc(") and u satisfies the equation in the distribution sense.

A function u ∈ L1loc(") is a supersolution (respectively subsolution) of the

equation (4.1) if g ◦ u ∈ L1loc(") and

−!u + g ◦ u ≥ 0 (respectively ≤ 0)

in the distribution sense.

Proposition 4.1. Let u be a positive solution of (4.1). If g ◦ u ∈ L1ρ(") then

u ∈ L1ρ(") and it possesses a boundary trace µ ∈ M(∂"), i.e., u is the solution of
the boundary value problem (3.7) with this measure µ.

Proof. If v := G[g ◦ u] then v ∈ L1ρ(") and u + v is a positive harmonic function.

Hence u + v ∈ L1ρ(") and there exists a non-negative measure µ ∈ M(∂") such
that u + v = K[µ]. In view of (3.8), this implies our assertion.
Lemma 4.2. If u is a non-negative solution of (4.1) then u ∈ C1(").

Let {un} be a sequence of non-negative solutions of (4.1) which is uniformly
bounded in every compact subset of". Then there exists a subsequence {un j } which
converges in C1("̄′) for every "′ ! " to a solution u of (4.1).

Proof. Since g◦u ∈ L1loc(") it follows that u ∈ W
1,p
loc (") for some p ∈ [1, N/(N−

1)). Let"′ be a smooth domain such that"′ ! ". By the trace imbedding theorem,
u possesses a trace h ∈ L1(∂"′). IfU is the harmonic function in"′ with boundary
trace h then u < U . Thus u (and hence g ◦ u) is bounded in every compact subset
of ". By elliptic p.d.e. estimates, u ∈ C1(").

The second assertion of the lemma follows from the first by a standard argu-

ment.

Theorem 4.3.

(i) Let u be a non-negative supersolution (respectively subsolution) of (4.1). Then

u ∈ W
1,p
loc (") for some p ∈ [1, N/(N−1)). In particular, if"′ is a C1 domain

such that "′ ! " then u possesses a trace h ∈ L1(∂"′).
(ii) If u is a positive supersolution, there exists a non-negative solution u ≤ u

which is the largest among all solutions dominated by u.

If u is a positive subsolution and u is dominated by a solution w of (4.1) then

there exists a minimal solution ū such that u ≤ ū. In particular, if g ∈ G
satisfies the Keller-Osserman condition then such a solution exists.

(iii) Under the assumptions of (ii), if g ◦ u ∈ L1ρ(") (respectively g ◦ ū ∈ L1ρ("))
then the boundary trace of u (respectively ū) is also the boundary trace of u in

the sense of Definition 3.6.
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Proof. First consider the case of a supersolution. Since −!u + g(u) ≥ 0 there

exists a positive Radon measure τ in " such that

−!u + g(u) = τ in ".

Therefore u ∈ W
1,p
loc (") and consequently u possesses an L1 trace on ∂"′ for every

"′ as above.
Next, let {"n} be a C1 exhaustion of " which is also uniformly Lipschitz. Let

vn be the solution of the boundary value problem

−!v + g(v) = 0 in "n , v = u on ∂"n . (4.2)

Since u possesses a trace in L1(∂"n) this boundary value problem possesses a

(unique) solution. By the comparison principle 0 ≤ vn ≤ u in "n . Therefore

the sequence {vn} decreases and consequently it converges to a solution u of (4.1).
Evidently this is the largest solution dominated by u.

Now suppose that g ◦ u ∈ L1ρ(") (but not necessarily g ◦ u ∈ L1ρ(")). By

Proposition 4.1, u ∈ L1ρ(") and u possesses a boundary trace µ. By the definition
of vn ,

∫

∂"n

udωn =
∫

∂"n

P"n (x0, y)u(y)dS = vn(x0) +
∫

"n

G"n (x, x0)g(vn(x))dx

→ u(x0) +
∫

"
G"(x, x0)g(u(x))dx .

Hence, taking a subsequence if necessary, we may assume that

uχ∂"nωn ⇀ µ′

where µ′ is a measure on ∂" such that

µ′(∂") = u(x0) +
∫

"
G"(x, x0)g(u(x))dx .

On the other hand, as µ is the boundary trace of u,

u(x0) +
∫

"
G"(x, x0)g(u(x))dx = µ(∂").

Thus µ(∂") = µ′(∂"). However, as u ≤ u, we have µ ≤ µ′. This implies that
µ = µ′.

Next we treat the case of a subsolution. The proof of (i) is the same as before.

We turn to (ii). In the present case, the corresponding sequence {vn} is increasing
and, in general, may not converge. But, as we assume that u is dominated by a

solution w, the sequence converges to a solution ū which is clearly the smallest so-
lution above u. In particular, if g satisfies the Keller-Osserman condition then {vn}
is uniformly bounded in every compact subset of " and consequently converges to

a solution.

The proof of (iii) for subsolutions is again the same as in the case of superso-

lutions.
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Corollary 4.4. I. Let u be a non-negative supersolution of (4.1). Let A be a rela-

tively open subset of ∂". Suppose that, for every Lipschitz domain "′ such that

"′ ⊂ ", ∂"′ ∩ ∂" ⊂ A, (4.3)

we have

g ◦ u ∈ L1ρ("′). (4.4)

Then both u and u possess traces on A and the two traces are equal.

II. Let u be a non-negative subsolution of (4.1). Let A be a relatively open subset

of ∂". Suppose that for every Lipschitz domain "′ satisfying (4.3) we have

g ◦ ū ∈ L1ρ("′). (4.5)

Then both u and ū posses traces on A and the two traces are equal.

Proof. Let u be a supersolution and let "′ be a domain as above. Denote by ρ′ the
first eigenfunction of −! in "′ normalized by ρ′(x0) = 1 for some x0 ∈ "′. Since
ρ′ ≤ cρ, (4.3) implies that g◦u ∈ L1ρ′("

′). Let u′ denote the largest solution of (4.1)
in "′ dominated by u. Then g ◦ u′ ∈ L1ρ′("

′) and, by Theorem 4.3, u′ ∈ L1ρ("′)
and u′ has a trace ν′ on ∂"′ which is also the boundary trace of u on ∂".

Let {"n} be an increasing uniformly Lipschitz sequence of domains such that
∂"n ∩ " is a C1 surface, Dn := " \ "n is Lipschitz and

Fn := ∂"n \ " ⊂ F0n+1 ⊂ A, ∪"n = ", ∪F0n = A,

where F0n is the relative interior of Fn . Denote by un the largest solution domi-

nated by u in "n and observe that {un} is decreasing and converges to a solution.
Obviously this is the largest solution dominated by u, namely, u.

Let τn be the trace of un on ∂"n . Put νn = τnχFn . Recall that τn is also the
trace of u so that

ν′
n = τn − νn = uχ∂"n\FndS.

Assertion A. There exists a Radon measure ν on A such that νn ⇀ ν and ν is the
trace of u, as well as of u, on A.

Let E be a compact subset of A and denote,

n(E) := inf{m ∈ N : E ⊂ F0m}.

In view of the fact that, for n ≥ n(E), νn is the trace of u, relative to "n , on

a set F0n(E) in which E is strongly contained and the fact that {"n} is Lipschitz,
Lemma 2.5 implies that the set {νn(E) : n ≥ n(E)} is bounded. By taking a
sequence if necessary we may assume that

νn3E⇀ νE .
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Applying this procedure to E = Fm for each m ∈ N and then using the diagonal-

ization method we obtain a subsequence, again denoted by {νn}, such that

νn ⇀ ν

where ν is a Radon measure on A (not necessarily bounded).
Next we wish to show that ν is the trace of u on A relative to ". To this

purpose we construct a C1 exhaustion of ", say {Dn}, such that Dn ! "n and

∂Dn = 6n ∪ 6′
n where

6′
n = ∂"n ∩ {y ∈ " : dist (y, Fn) ≥ εn}

6n ⊂ {y ∈ "n : dist (y, Fn) < εn},

where 0 < εn < 1
2
dist (Fn, ∂" \ A) is chosen so that

HN−1χ6n ⇀ HN−1χA and uχ6n dωn ⇀ ν.

Here dωn is the harmonic measure in Dn . This is possible because, if 6n is suffi-
ciently close to ∂"n , then

uχ6n dωn − νnχFn ⇀ 0.

(As usual in this paper, νnχFn denotes the Borel measure in RN that is equal to νn
on Fn and zero elsewhere.) This implies that ν is the trace of u on A.

Since νn is also the trace of un on Fn it follows that, if 6n is sufficiently close
to ∂"n ,

unχ6n dωn − νnχFn ⇀ 0.

As un ↓ u we deduce that ν is also the trace of u on A.
If u is a subsolution the argument is essentially the same. Let ūn be the smallest

solution that dominates u in "n . Then the sequence {ūn} is increasing, but it is
dominated by a solution w. Therefore it converges to a solution and this is the
smallest solution dominating u, namely, ū. By Theorem 4.3, un and u3 possess the
same trace on ∂"n . Let τn be the trace of un on ∂"n and put νn = τnχFn . The rest
of the proof is as before.

Definition 4.5. Let u be a positive supersolution, respectively subsolution, of (4.1).

A point y ∈ ∂" is a regular boundary point relative to u if there exists an open

neighborhood D of y such that g ◦ u ∈ L1ρ(" ∩ D). If no such neighborhood exists
we say that y is a singular boundary point relative to u.

The set of regular boundary points of u is denoted by R(u); its complement
on the boundary is denoted by S(u). EvidentlyR(u) is relatively open.

Theorem 4.6. Let u be a positive solution of (4.1) in ". Then u possesses a trace
onR(u), given by a Radon measure ν.
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Furthermore, for every compact set F ⊂ R(u),

∫

"
(−u!η + g(u)η) dx = −

∫

"
(K[νχF ]!η) dx (4.6)

for every η ∈ X (") such that supp η ∩ ∂" ⊂ F .

Proof. The first assertion is an immediate consequence of Corollary 4.4.

We turn to the proof of the second assertion. Let F be a compact subset of

R(u) and let η ∈ X (") be a function such that the following conditions hold for
some open set Eη:

supp η ⊂ "̄ ∩ Eη, F ⊂ Eη ∩ ∂", Ēη ∩ S(u) = ∅, x0 ∈ Dη := " ∩ Eη.

By Definition 4.5, if D is a subdomain of " such that D̄ ∩ S(u) = ∅ then g ◦ u ∈
L1ρ(D), where ρ is the first normalized eigenfunction of ". Let E be a C2 domain
such that

Ēη ⊂ E, HN−1(∂" ∩ ∂E) = 0, Ē ∩ S(u) = ∅.

Put D := E ∩ " and note that g ◦ u ∈ L1ρ(D).
If φ denotes the first normalized eigenfunction in D then φ ≤ cρ for some

positive constant c. Therefore the fact that g◦u ∈ L1ρ(D) implies that g◦u ∈ L1φ(D)

and the properties of η imply that η ∈ X (D). Hence u possesses a boundary trace
τ D on ∂D and

∫

D

(−u!η + g(u)η) dx = −
∫

D

(
KD[τ D]!η

)
dx . (4.7)

Let 6 = Ē ∩ ∂" and 6′ = ∂D \ 6; note that 6 ∩ S(u) = ∅ and η vanishes in a
neighborhood of ∂E ∩ "̄. Put τ D6 = τ Dχ6 and τ D6′ = τ D − τ D6 . Then dτ D6′ = udS

on 6′ and, as u ∈ C(D̄ \ 6),

KD[τ D6′ ] ∈ C(D̄ \ 6).

Furthermore η vanishes in a neighborhood of 6′ and consequently
∫

D

(
KD[τ D6′ ]!η

)
dx =

∫

D

(∫

∂D\6
PD(x, y)u(y)dSy

)
!η(x)dx

=
∫

∂D\6

(∫

D

PD(x, y)!η(x)dx

)
u(y)dSy = 0.

Thus ∫

"
(−u!η + g(u)η) dx = −

∫

"
KD[τ D6 ]!η dx . (4.8)

(Changing the domain of integration from D to " makes no difference since η
vanishes in " \ D.)
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Now, τ D6 is the trace of u on 6 relative to D while νχ6 is the trace of u on 6
relative to ". Since D ⊂ " it follows that

τ D6 ≤ νχ6. (4.9)

Let {E j } be an increasing sequence of C2 domains such that each domain
possesses the same properties as E and,

Ē j ∩ ∂" = Ē ∩ ∂" = 6, and D j := E j ∩ " ↑ ". (4.10)

For each j ∈ N and y ∈ 6, the function K D j
(·, y) is harmonic in D j , vanishes

on ∂D j \ {y} and K D j
(x0, y) = 1. Furthermore the sequence {K D j

(·, y)} is non-
decreasing. Therefore it converges uniformly in compact subsets of (" ∪ 6) \ {y}.
The limit is the corresponding kernel function in ", namely K"(·, y). (Recall that
the kernel function is unique.)

In view of (4.9), the sequence {τ D j

6 } is bounded. Therefore there exists a sub-
sequence, which we still denote by {τ D j

6 }, such that

τ D
j

6 ⇀ τ6

weakly relative to C(6). Combining these facts we obtain,

KDj [τ D j

6 ] → K"[τ6].

Hence, by (4.7),

∫

"
(−u!η + g(u)η) dx = −

∫

"

(
K"[τ6]!η

)
dx . (4.11)

Finally, as τ
Dj

6 is the trace of u on 6 relative to Dj then, in view of (4.10), the limit

τ6 is the trace of u on 6 relative to ", i.e.,

τ6 = νχ6.

This relation and (4.11) imply (4.6).

Theorem 4.7. I. Let u be a positive supersolution of (4.1) in " and let u be the

largest solution dominated by u. Then,

S(u) = S(u), R(u) = R(u). (4.12)

Both u and u possess a trace onR(u) and the two traces are equal.
II. Let u be a positive subsolution of (4.1) in " and let ū be the smallest solution

which dominates u. If u is dominated by a solution w of (4.1) then both u and ū
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possess a trace onR(w) (which is contained inR(u)) and the two traces are equal
on this set.

In particular, if R(w) = R(u) then (4.12), with u replaced by ū, holds and
both u and ū possess a trace onR(u), the two traces being equal.
III. Let ν denote the trace of u onR(u). Then, for every compact set F ⊂ R(u),

∫

"
(−u!η + g(u)η) dx

{
≥ −

∫
" (K[νχF ]!η) dx, u supersolution,

≤ −
∫
" (K[νχF ]!η) dx, u subsolution

(4.13)

for every η ∈ X ("), η ≥ 0, such that supp η ∩ ∂" ⊂ F .

Proof. Part I. is a consequence of Corollary 4.4 I.

The first assertion in II. follows from Corollary 4.4 II. with A = R(w). The
second assertion in II. is an immediate consequence of the first.

By Theorem 4.6, u (respectively ū) satisfy (4.6), where ν is the trace of u
(respectively ū) onR(u). Since ν is also the trace of u onR(u)we obtain statement
III.

Theorem 4.8. Assume that g ∈ G satisfies the Keller-Osserman condition.
(i) Let u be a positive solution of (4.1) and let {"n} be a Lipschitz exhaustion of

". If y ∈ S(u) then, for every nonnegative Z ∈ C("̄) such that Z(y) 8= 0

lim

∫

∂"n

Zudωn = ∞. (4.14)

(ii) Let u be a positive supersolution of (4.1) and let {"n} be a C1 exhaustion of
". If y ∈ S(u) then (4.14) holds for every nonnegative Z ∈ C("̄) such that
Z(y) 8= 0.

Proof. The proof of satement (i) is essentially the same as for the corresponding

result in smooth domains [23, Lemma 2.8] and therefore will be omitted. In fact

the assumption that g satisfies the Keller-Osserman condition implies that the set

of conditions II in [23, Lemma 2.8] is satisfied. Here too, the Keller-Osserman

condition can be replaced by the weaker set of conditions II in the same way as

in [23].

Part (ii) is a consequence of Theorem 4.7 and statement (i).

Definition 4.9. Let g ∈ G. Let u be a positive solution of (4.1) with regular bound-
ary setR(u) and singular boundary set S(u). The Radon measure ν inR(u) associ-
ated with u as in Theorem 4.6 is called the regular part of the trace of u. The couple

(ν,S(u)) is called the boundary trace of u on ∂". This trace is also represented by
the (possibly unbounded) Borel measure ν̄ given by

ν̄(E) =
{

ν(E), if E ⊂ R(u)

∞, otherwise.
(4.15)
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The boundary trace of u in the sense of this definition will be denoted by tr∂"u.

Let

Vν := sup{uνχF : F ⊂ R(u), F compact} (4.16)

where uνχF denotes the solution of (3.7) with µ = νχF . Then Vν is called the

semi-regular component of u.

Remark 4.10. Let τ be a Radonmeasure on a relatively open set A ⊂ ∂". Suppose
that for every compact set F ⊂ A, uτχF is defined. If Vτ is defined as above, it need

not be a solution of (4.1) or even be finite. However, if g satisfies the Keller–

Osserman condition or if uτχF is dominated by a solution w, independent of F ,
then Vτ is a solution.

Definition 4.11. A compact set F ⊂ ∂" is removable relative to (4.1) if the only

non-negative solution u ∈ C("̄ \ F) which vanishes on "̄ \ F is the trivial solution
u = 0.

Remark 4.12. In the case of power nonlinearities in smooth domains there exists a

complete characterization of removable sets (see [22] and the references therein).

Lemma 4.13. Let g ∈ G and assume that g satisfies the Keller-Osserman condi-

tion. Let F ⊂ ∂" be a compact set and denote by UF the class of solutions u of

(4.1) which satisfy the condition,

u ∈ C("̄ \ F), u = 0 on ∂" \ F . (4.17)

Then there exists a function UF ∈ UF such that
u ≤ UF ∀u ∈ UF .

Furthermore, S(UF ) =: F ′ ⊂ F; F ′ need not be equal to F .

The proof is standard and will be omitted.

Definition 4.14. UF is called the maximal solution associated with F . The set

F ′ = S(UF ) is called the g-kernel of F and denoted by kg(F).

Note. The situation S(UF ) ! F occurs if and only if there exists a closed set

F ′ ⊂ F such that F \ F ′ is a non-empty removable set. In this case UF = UF ′ .

Lemma 4.15. Let F1, F2 be two compact subsets of ∂". Then,

F1 ⊂ F2 =⇒ UF1 ≤ UF2 (4.18)

and

UF1∪F2 ≤ UF1 +UF2 . (4.19)

If F is a compact subset of ∂" and {Nk} is a decreasing sequence of relatively open
neighborhoods of F such that N̄k+1 ⊂ Nk and ∩Nk = F then

UN̄k
→ UF (4.20)

uniformly in compact subsets of ".
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Proof. The first statement is an immediate consequence of the definition of maximal

solution.

Next we verify (4.20). By (4.18) the sequence {UN̄k
} decreases and therefore

it converges to a solution U . Clearly U has trace zero outside F so that U ≤ UF

On the other hand, for every k, UN̄k
≥ UF . Hence U = UF .

We turn to the verification of (4.19). Let u be a positive solution of (5.1) which

vanishes on ∂"\ (F1∪ F2). We shall show that there exists solutions u1, u2 of (5.1)
such that

ui = 0 on ∂" \ Fi , u ≤ u1 + u2. (4.21)

First we prove this statement in the case where F1 ∩ F2 = ∅. Let E1, E2 be C1
domains such that Ē1 ∩ Ē2 = ∅ and Fi ⊂ Ei ∩ ∂", (i=1,2). Let {"n} be a
Lipschitz exhaustion of" and put An,i = ∂"n∩Ei , (i=1,2). Let vn,i be the solution
of (5.1) in"n with boundary data uχAn,i and vn be the solution in"n with boundary

data u(1− χAn,1∪An,2). Then

u ≤ vn + vn,1 + vn,2.

By taking a subsequence if necessary we may assume that the sequences {vn},
{vn,1}, {vn,2} converge. Then lim vn,i = Ui where Ui vanishes on ∂" \ Ei , (i=1,2).
In addition, as the trace of u on ∂" \ (F1 ∪ F2) is zero, we have lim vn = 0. Thus

u ≤ U1 +U2.

Now take decreasing sequences of C1 domains {Ek,1}, {Ek,2} such that

Ēk,1 ∩ Ēk,2 = ∅, Fi ⊂ Ek,i ∩ ∂", Ēk,i ∩ ∂" ↓ Fi i = 1, 2.

Construct Uk,i corresponding to Ek,i in the same way that Ui corresponds to Ei .

Then,

u ≤ Uk,1 +Uk,2

and, by (4.20), taking a subsequence if necessary,

ui := lim
k→∞

Uk,i = 0 on ∂" \ Fi , i = 1, 2.

This proves (4.21) in the case where F1, F2 are disjoint.

In the general case, let {N j } be a decreasing sequence of relatively open neigh-
borhoods of F1 ∩ F2 such that

N̄ j+1 ⊂ N j , ∩N j = F1 ∩ F2.

Put F ′
j,2 = F2 \ N j .
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Let {Mj } be a decreasing sequence of relatively open neighborhoods of F1
such that

M̄ j+1 ⊂ Mj , ∩Mj = F1, M̄ j ∩ F ′
j,2 = ∅.

Put F ′
j,1 := M̄ j .

Let v j be the largest solution dominated by u and vanishing on the complement
of F ′

j,1 ∪ F ′
j,2:

∂" \ (F ′
j,1 ∪ F ′

j,2) = ∂" \
(
(F1 ∪ F2) \ (N j \ M̄ j )

)

= (∂" \ (F1 ∪ F2)) ∪ (N j \ M̄ j ).

Furthermore, (u−UN̄ j\Mj
)+ is a subsolution which is dominated by u and vanishes

on the complement of F ′
j,1 ∪ F ′

j,2. Therefore v j satisfies

u ≥ v j ≥ (u −UN̄ j\Mj
)+,

which implies,

0 ≤ u − v j ≤ UN̄ j\Mj
≤ UN̄ j

.

By (4.20), UN̄ j
↓ UF1∩F2 . Taking a converging subsequence v ji → v we obtain

0 ≤ u − v ≤ UF1∩F2 .

By the previous part of the proof there exist solutions v j,1, v j,2, whose boundary
trace is supported in F ′

j,1 and F
′
j,2 respectively, such that

v j ≤ v j,1 + v j,2.

Taking a subsequence we may assume convergence of {v j,1} and {v j,2}. Then ui =
lim v j,i has boundary trace supported in Fi . Finally,

u ≤ v +UF1∩F2 ≤ u1 + u2 +UF1∩F2

and tr∂"u1 is supported in F1 while tr∂"(u2 + UF1∩F2) is supported in F2. Since
u − u1 is a subsolution dominated by the supersolution u2 +UF1∩F2 there exists a
solution w2 between them and we obtain

u ≤ u1 + w2

where tr∂"w2 is supported in F2.

The next theorem deals with some aspects of the generalized boundary value

problem:
−!u + g ◦ u = 0, u ≥ 0 in ",

tr∂" = (ν, F),
(4.22)

where F ⊂ ∂" is a compact set and ν is a (non-negative) Radon measure on ∂"\F .
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Theorem 4.16. Let g ∈ G and assume that g is convex and satisfies the Keller-

Osserman condition.

EXISTENCE. The following set of conditions is necessary and sufficient for the

existence of a solution u of (4.22):
(i) For every compact set E ⊂ ∂" \ F , the problem

−!u + g(u) = 0 in ", u = νχE on ∂", (4.23)

possesses a solution.

(ii) If kg(F) = F ′, then F \ F ′ ⊂ S(Vν).

When this holds,

Vν ≤ u ≤ Vν +UF . (4.24)

Furthermore if F is a removable set then (4.22) possesses exactly one solution.

UNIQUENESS. Given a compact set F ⊂ ∂", assume that

UE is the unique solution with trace (0, kg(E)) (4.25)

for every compact E ⊂ F . Under this assumption:
(a) If u is a solution of (4.22) then

max(Vν,UF ) ≤ u ≤ Vν +UF . (4.26)

(b) Equation (5.1) possesses at most one solution satisfying (4.26).

(c) Condition (4.25) is necessary and sufficient in order that (4.22) posses at most

one solution.

MONOTONICITY.

(d) Let u1, u2 be two positive solutions of (4.1) with boundary traces (ν1, F1) and
(ν2, F2) respectively. Suppose that F1 ⊂ F2 and that ν1 ≤ ν2χF1 =: ν′

2. If

(4.25) holds for F = F2 then u1 ≤ u2.

Proof. First assume that there exists a solution u of (4.22). By Theorem 4.6 condi-

tion (i) holds. Consequently Vν is well defined by (4.16).

Since Vν ≤ u the function w := u − Vν is a subsolution of (4.1). Indeed, as g

is convex and g(0) = 0 we have

g(a) + g(b) ≤ g(a + b) ∀a, b ∈ R+. (4.27)

Therefore

0 = −!w + (g(u) − g(Vν) ≥ −!w + g(w).

By Theorem 4.3, as g satisfies the Keller-Osserman condition, there exists a solution

w̄ of (4.1) which is the smallest solution dominating w.
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By Theorem 4.7, the traces of w and w̄ are equal on A = R(u) ⊂ R(w̄).
Clearly the trace of w onR(u) is zero. The definitions of Vν and w̄ imply,

max(Vν, w̄) ≤ u ≤ Vν + w̄. (4.28)

Therefore

S(w̄) ∪ S(Vν) = S(u).

In addition, as w̄ has trace zero in ∂"\F , it follows, by the definition of the maximal
function, that

w̄ ≤ UF and consequently S(w̄) ⊂ kg(F).

These observations imply that condition (ii) must hold. Inequality (4.24) follows

from (4.28) and this inequality implies that if F is a removable set then (4.22)

possesses exactly one solution.

Now we assume that conditions (i) and (ii) hold and prove existence of a so-

lution. The function Vν is well defined and Vν + UF is a supersolution of (4.1)

whose boundary trace is (ν, F). Therefore, by Theorem 4.7, the largest solution

dominated by it has the same boundary trace, i.e. solves (4.22).

Next assume that condition (4.25) is satisfied. It is obvious that (4.25) is nec-

essary for uniqueness. In addition, (4.25) implies that UF ≤ u and consequently

(4.24) implies (4.26). It is also clear that (b) implies the sufficiency part of (c).

Therefore it remains to prove statements (b) and (d). Let u be the smallest

solution dominating the subsolution max(Vν,UF ) and let v be the largest solution
dominated by Vν +UF .

To establish (b) we must show that u = v. By (4.26) v − u ≤ Vν . In addition

the subsolution v − u has trace zero on ∂" \ F . Therefore
v − u ≤ min(Vν,UF ). (4.29)

Let {Nk} be a decreasing sequence of open sets converging to F such that Nk+1 !
Nk . Assuming for a moment that ν is a finite measure, the trace of Vν on Nk is

νk := νχNk and it tends to zero as k → ∞. Therefore, in this case,

min(Vν,UF ) ≤ Vνk → 0

and hence u = v. Of course this also implies uniqueness (statement (c)) in the case
where ν is a finite measure.

In the general case we argue as follows. Let vk be the unique solution with
boundary trace (ν′

k, N̄k) where ν′
k = ν(1 − χN̄k ). By taking a subsequence if nec-

essary, we may assume that {vk} converges to a solution v′. By (4.26),

max(Vν′
k
,UN̄k

) ≤ vk ≤ Vν′
k
+UN̄k

and, by the previous part of the proof, vk is the largest solution dominated by Vν′
k
+

UN̄k
. We claim that if w is a solution of (5.1) then

Vν ≤ w ≤ Vν +UF =⇒ w ≤ Vν′
k
+UN̄k

. (4.30)
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Indeed,

w≤Vν +UF =⇒w≤Vν′
k
+Vνk +UF =⇒w≤Vν′

k
+UN̄k

+UF =⇒w≤Vν′
k
+2UN̄k

.

Thus

0 ≤ w − Vν′
k

≤ 2UN̄k

which implies

w − Vν′
k

≤ UN̄k
,

because any solution (or subsolution) dominated by 2UN̄k
is also dominated byUN̄k

.

Hence vk ≥ v and consequently v′ ≥ v.
By (4.20) UN̄k

↓ UF and by definition Vν′
k

↑ Vν . Therefore

max(Vν,UF ) ≤ v′ ≤ Vν +UF .

Since v is the largest solution dominated by Vν + UF and v ≤ v′ it follows that
v = v′.

Let uk be the unique solution with boundary trace (ν′
k, kg(F)). By (4.26),

max(Vν′
k
,Ukg(F)) ≤ uk ≤ Vν′

k
+Ukg(F).

Since uk ≤ u and {uk} increases (because {Vν′
k
} increases) it follows that u′ =

lim uk ≤ u. Furthermore,

max(Vν,Ukg(F)) ≤ u′ ≤ Vν +Ukg(F).

If (4.22) possesses a solution then condition (ii) holds. Therefore for any solution

w of (5.1)

max(Vν,Ukg(F)) ≤ w =⇒ max(Vν,UF ) ≤ w.

Hence max(Vν,UF ) ≤ u′ and, as u′ ≤ u we conclude that u′ = u.

Finally, for every ε > 0,

(1− ε)Vν′
k
+ εUkg(F) ≤ uk

and consequently

vk − uk ≤ Vν′
k
+UN̄k

−
(
(1− ε)Vν′

k
+ εUkg(F))

)

= UN̄k
− (1− ε)Ukg(F) + εVν′

k
≤ UNk\F +UF − (1− ε)Ukg(F) + εVν′

k

≤ ε(UF + Vν′
k
) → ε(UF + Vν).

This implies uk = vk and hence u = v. This establishes statement (b) and hence
the sufficiency in (c).

Finally we establish monotonicity. Let vi be the unique solution of (5.1) with
boundary trace (νi , Fi ), (i=1,2). Then vi is the largest solution dominated by Vνi +
UFi (i=1,2). The argument used in proving (4.30) yields

Vν1 ≤ w ≤ Vν1 +UF1 =⇒ w ≤ Vν2 +UF2 . (4.31)

This implies v1 ≤ v2.
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5. Equation with power nonlinearity in a Lipschitz domain

In this section we study the trace problem and the associated boundary value prob-

lem for equation

−!u + |u|q−1 u = 0 (5.1)

in a Lipschitz bounded domain " and q > 1. The main difference between the

smooth cases and the Lipschitz case is the fact that the notion of critical exponent

is pointwise. If G is any domain in RN we denote

U(G) := {the set of solutions (5.1) in G} . (5.2)

and U+(G) = {u ∈ U(G) : u ≥ 0 in G}. Notice that any solution is at least C3 in G
and any positive solution is C∞. The next result is proved separately by Keller [16]
and Osserman [27].

Proposition 5.1. Let q > 1, " ⊂ RN be any domain and u ≥∈ C(") be a weak
solution of

−!u + Auq ≤ B in ". (5.3)

for some A > 0 and B ≥ 0. Then there exists Ci (N , q) > 0 (i = 1, 2) such that

u(x) ≤ C1

(
1√

Adist (x, ∂")

)2/(q−1)
+ C2

(
B

A

)1/q
∀x ∈ ". (5.4)

For a solution of (5.1) in" which vanishes on the boundary except at one point, we

have a more precise estimate.

Proposition 5.2. Let q > 1, " ⊂ RN be a bounded Lipschitz domain, y ∈ ∂" and

u ∈ U+(") is continuous in " \ {y}) and vanishes on ∂" \ {y}. Then there exists
C3(N , q,") > 0 and α ∈ (0, 1] such that

u(x) ≤ C3 (dist (x, ∂"))α |x − y|−2/(q−1)−α ∀x ∈ ". (5.5)

Furthermore α = 1 if " is a domain of class W 2,s with s > N .

Note: A bounded domain " is of class W 2,s if, for every z ∈ ∂", there exists a
neighborhood Qz and a local set of coordinates ζ centered at z, such that Qz ∩ ∂"
can be represented in the form ζN = F(ζ1, . . . , ζN−1) and F belongs to W 2,s in a

neighborhood of the origin in RN−1.

Proof. By translation we can assume that y = 0. Let ũ be the extension of u+ by
zero outside " \ {0}. Then it is a subsolution of (5.1) in RN \ {0} (see [11] e.g.).
Thus

ũ(x) ≤ C1|x |−2/(q−1) ∀x 8= 0,

and, with the same estimate for u−, we derive

|u(x)| ≤ C1|x |−2/(q−1) ∀x ∈ ". (5.6)
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Next we set, for k > 0, Tk[u] defined by Tk[u](x) = k−2/(q−1)u(k−1x), valid for
any x ∈ "k = k". Then uk := Tk[u] satisfies the same equation as u in "k , is

continuous in "k \ {0} and vanishes on ∂"k \ {0}. Then
uk(x) ≤ C1|x |−2/(q−1) ∀x ∈ "k,

thus, by elliptic equation theory in uniformly Lipschitz domains, (which is the case

if k ≥ 1)
‖uk‖Cα("k∩(B7/4\B5/4)) ≤ C ‖uk‖L∞("k∩(B2\B1)) = C2.

This implies

|u(k−1x ′) − u(k−1z′)| ≤ C2k
−2/(q−1)−α|x ′ − z′|α

∀(x, z) ∈ "k × "k : 5/4 ≤ |x ′|, |z′| ≤ 7/4.

Let (x, z) in " × " close enough to 0. First, if 5/7 ≤ |x |/|z| ≤ 7/5 there exists
k ≥ 1 such that 5/4 ≤ |kx |, |kz| ≤ 7/4. Then

|u(x) − u(z)| ≤ C3|x |−2/(q−1)−α|x − z|α.

If we take in particular x such that z = Proj∂"(x) satisfies the above restriction, we
derive

u(x) ≤ C3|x |−2/(q−1)−α (dist (x, ∂"))α .

Because " is Lipschitz, it is easy to see that there exists β ∈ (0, 1/2) such that
whenever dist (x, ∂") =

∣∣x − Proj∂"(x)
∣∣ ≤ β|x |, there holds

5/7 ≤ |x |/
∣∣Proj∂"(x)

∣∣ ≤ 7/5.

Next we suppose
∣∣x − Proj∂"(x)

∣∣ > β|x |. Then, by the Keller-Osserman estimate,

u(x) ≤ C|x |−2/q−1)−α|x |α ≤ Cβ−α|x |−2/q−1)−α
∣∣x − Proj∂"(x)

∣∣α ,

which is (5.5). If we assume that ∂" is W 2,s , with s > N , then we can perform a

change W 2,s of coordinates near 0 with transforms ∂" ∩ BR(0) into RN
+ ∩ BR(0)

and the equation into

−
∑

i, j

∂

∂xi

(
ai j

∂ ũ

∂x j

)
+ |ũ|q−1ũ = 0, in RN

+ ∩ BR(0) \ {0}, (5.7)

where the ai j are the partial derivatives of the coordinates and thus belong to

W 1,s(BR). By developping, ũ satisfies

−
∑

i, j

ai j
∂2ũ

∂xi∂x j
−

∑

j

b j
∂ ũ

∂x j
+ |ũ|q−1ũ = 0.

Notice that, since s > N , the ai j are continuous while the bi are in L
s . The same

regularity holds uniformly for the rescaled form of ũk := Tk[ũ]. By the Agmon-
Douglis-Nirenberg estimates ũk belongs to W

2,s . Since s > N , ũ satisfies an uni-

form C1 estimates, which implies that we can take α = 1.
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5.1. Analysis in a cone

The removability question for solutions of (5.1) near the vertex of a cone has been

studied in [9], and we recall this result below.

If we look for separable solutions of (5.1) under the form u(x) = u(r, σ ) =
rβω(σ ), where (r, σ ) ∈ R+ × SN−1 are the spherical coordinates, one finds imme-
diately β = −2/(q − 1) and ω is a solution of

−!′ω − λ
N ,qω + |ω|q−1 ω = 0 (5.8)

on SN−1 with

λ
N ,q = 2

q − 1

(
2q

q − 1
− N

)
. (5.9)

Thus, a solution of (5.1) in the cone C
S

= {(r, σ ) : r > 0, σ ∈ S ⊂ SN−1},
vanishing on ∂C

S
\ {0}, has the form u(r, σ ) = r−2/(q−1)ω(σ ) if and only if ω is a

solution of (5.8) in S which vanishes on ∂S. The next result [9, Propopsition 2.1]
gives the the structure of the set of positive solutions of (5.8).

Proposition 5.3. Let λ
S
be the first eigenvalue of the Laplace-Beltrami operator

−!′ in W 1,2
0 (S). Then

(i) If λ
S

≥ λ
N ,q there exists no solution to (5.8) vanishing on ∂S.

(ii) If λ
S

< λ
N ,q there exists a unique positive solution ω = ω

S
to (5.8) vanishing

on ∂S. Furthermore S ⊂ S′ =⇒ ω
S

≤ ω
S′ .

The following is a consequence of Proposition 5.3.

Proposition 5.4. [9] Assume " a bounded domain with a purely conical part with

vertex 0, that is

" ∩ Br0(0) = C
S
∩ Br0(0) = {x ∈ ∩Br0(0) \ {0} : x/ |x | ∈ S} ∪ {0}

and that ∂" \ {0} is smooth. Then, if λ
S

≥ λ
N ,q , any solution u ∈ U(") which is

continuous in " \ {0} and vanishes on ∂" \ {0} is identically 0.
Remark 5.5. If S ⊂ SN−1 is a domain and λ

S
the first eigenvalue of the Laplace-

Beltrami operator−!′ inW 1,2
0 (S) we denote by α̃

S
and α

S
the positive root and the

absolute value of the negative root respectively, of the equation

X2 + (N − 2)X − λ
S

= 0.

Thus

α̃
S

= 1

2

(
2− N +

√
(N − 2)2 + 4λ

S

)
,

α
S

= 1

2

(
N − 2+

√
(N − 2)2 + 4λ

S

)
.

(5.10)
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It is straightforward that

λ
S

≥ λ
N ,q ⇐⇒ α

S
≥ 2

q − 1
,

and, in case of equality, the exponent q = q
S
satisfies q

S
= 1+ 2/α

S
.

From the previous remarks it follows that, if CS is the cone with vertex at the

origin and “opening” S ⊂ SN−1, we have

KCS (x, 0) = |x |−αSω
S
(σ ), ρ(x) = |x |α̃Sω

S
(σ ), (5.11)

where ωS is as in Proposition 5.3.

Combining the removability result with the admissibility condition Theorem

3.10, we obtain the following.

Theorem 5.6. The problem

−!u + |u|q−1u = 0 in CS ,

u ∈ C(C̄S \ {0}), u = 0 on ∂CS \ {0}
(5.12)

possesses a non-trivial solution if and only if

1 < q < qS = 1+ 2/α
S
.

Under this condition the following statements hold.

(a) For every k 8= 0 there exists a unique solution vk of (5.1) with boundary trace
kδ0. In addition we have

vk/v1(x) → k uniformly as x → 0. (5.13)

(b) Equation (5.1) possesses a unique solution U in CS such that S(U) = {0} and
its trace on ∂CS \ {0} is zero. This solution satisfies

|x |
2

q−1U(x) = U(x/|x |) = ωS(x/|x |) (5.14)

and

U = v∞ := lim
k→∞

vk . (5.15)

Proof. (a) By (5.11),

∫

CS∩B1
Kq(x, 0)ρ(x) dx ≤ C

∫ 1

0

r α̃
S
−qα

S
+N−1dr < ∞,

since

α̃
S
− qα

S
+ N − 1 = 1− (q − 1)α

S
> −1.
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Thus q is admissible for CS ∩ B1 at 0. By Theorem 3.10, for every k ∈ R, there
exists a unique solution of (5.1) with boundary trace kδ0.

Observe that, for every a, j > 0, ṽ j (x) := a2/(q−1)v j (ax) is a solution of
(5.1) in CS . This solution has boundary trace kδ0 where k = a2/(q−1) j . Because of
uniqueness, ṽ j = vk . Thus

vk(x) = a2/(q−1)v j (ax), k = a2/(q−1) j. (5.16)

This implies (5.13).

(b) Let w be a solution in CS such that S(w) = {0} and its trace on ∂CS \ {0}
is zero. We claim that

w ≥ v∞ := lim k → ∞vk . (5.17)

Indeed, for every S′ ! S, k > 0,
∫

aS′
w dωa → ∞, lim sup

∫

aS′
vkdωa < ∞ as a → 0

where dωa denotes the harmonic measure for a bounded Lipschitz domain"a such

that aS′ ⊂ ∂"a and "a ↑ CS . Therefore, using the classical Harnack inequality

up to the boundary, w/vk → ∞ as |x | → 0 in CS′ . In addition, either by Hopf’s
maximum principle (if S is smooth) or by the boundary Harnack principle (if S is

merely Lipschitz),

c−1v1 ≤ w ≤ cv1 in CS\S′ .

This inequality together with (5.16) yields,

c−1vk ≤ w ≤ cvk in CS\S′

with c independent of k. Therefore c−1vk ≤ w in CS . If 1/c > k/cj > 1 then
k
j
v j ≤ vk ≤ cw and consequently v j < w. Here we used the fact that k

j
v j is a

subsolution with boundary trace kδ0.
LetU0 be the maximal solution with trace 0 on ∂CS\{0} and singular boundary

point at 0. Then

U0(x) = a2/(q−1)U0(ax) ∀a > 0, x ∈ CS,

because a2/(q−1)U0(ax) is again a solution which dominates every solution with
trace 0 on ∂CS \ {0} and singular boundary point at 0. Hence,

U0(x) = |x |−2/(q−1)U0(x/|x |) = |x |−2/(q−1)ωS(x/|x |). (5.18)

The second equality follows from the uniqueness part in Proposition 5.3 since the

function x → U0(x/|x |) is continuous in S̄ and vanishes on ∂S.
Inequality (5.17) implies that v∞ is the minimal positive solution such that

S(w) = {0} and its trace on ∂CS \ {0} is zero. Using this fact we prove in the same
way that v∞ satisfies

v∞(x) = |x |−2/(q−1)v∞(x/|x |) = |x |−2/(q−1)ωS(x/|x |).
This implies (5.15) and the uniqueness in statement (b).
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In the next theorem we describe the precise asymptotic behavior of solutions

in a conical domain with mass concentrated at the vertex.

Theorem 5.7. Let C
S
be a cone with vertex 0 and opening S ⊂ SN−1 and assume

that 1 < q < q
S

= 1 + 2/α
S
. Denote by φS the first eigenfunction of −!′ in

W
1,2
0 (S) normalized by maxφ

S
= 1. Then the function

/S = x−α
Sφ

S
(x/ |x |),

with αS as in (5.10), is harmonic in CS and vanishes on ∂CS \ {0}. Thus there exists
γ > 0 such that the boundary trace of /S is the measure γ δ0. Put /1 := 1

γ /S.

Let r0 > 0 and denote "S = CS ∩ Br0(0). For every k ∈ R, let uk be the
unique solution of (5.1) in "S with boundary trace kδ0. Then

uk(x) = k/1(x)(1+ o(1)) as x → 0. (5.19)

If vk is the unique solution of (5.1) in CS with boundary trace kδ0 then

uk/vk → 1 and vk/(k/1) → 1 as x → 0. (5.20)

The function u∞ = limk→∞ uk is the unique positive solution of (5.1) in "S which

vanishes on ∂"S \ {0} and is strongly singular at 0 (i.e., 0 belongs to its singular
set). Its asymptotic behavior at 0 is given by,

u∞(x) = |x |−
2

q−1ωS(x/|x |)(1+ o(1)) as x → 0. (5.21)

Proof. Step 1: Construction of a fundamental solution. Put

/(x) = |x |−α
S φ

S
(x/ |x |), /̃(x) = |x |α̃S φ

S
(x/ |x |) (5.22)

with αS , α̃S as in (5.10). Then/ and /̃ are harmonic in C
S
,/ vanishes on ∂C

S
\{0}

and /̃ vanishes on ∂C
S
. Furthermore, since q < 1+ 2/α

S
,

∫

CS∩B1(0)
/qρdx < ∞.

Therefore the boundary trace of / is a bounded measure concentrated at the vertex

of CS , which means that the trace is γ δ0 for some γ > 0. (Here δ0 denotes the
Dirac measure on ∂CS concentrated at the origin.)

The function

<(x) = 1

γ
(/(x) − r

α̃
S
−α

S

0 /̃(x))

is harmonic and positive in "
S
and vanishes on ∂"

S
\ {0}. Its boundary trace is δ0.
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Step 2: Weakly singular behaviour. By Theorem 3.10, for any k ≥ 0, there exists a

unique function uk ∈ L
q
ρ("

S
) with trace kδ0 and by (3.8)

uk(x) = k<(x) − G[|uk |q ]. (5.23)

Since |x |αS uk is bounded, we set

v(t, σ ) = rα
S uk(r, σ ), t = − ln r.

Then v satisfies

vt t + (2α
S
+ 2− N )vt + λ

S
v + !′v − e(αS (q−1)−2)t |v|q−1 v = 0 (5.24)

in DS,t0 := [t0,∞) × S (with t0 := − ln r0) and vanishes on [t0,∞) × ∂S. Since
0 ≤ uk(x) ≤ k<(x), v is uniformly bounded, and, since α

S
(q − 1) − 2 < 0, v(t, .)

is uniformly bounded in Cα(S) for some α ∈ (0, 1). Furthermore, ∇′v(t, .) (by
definition ∇′ is the covariant gradient on SN−1) is bounded in L2(S), independently
of t . Set

y(t) =
∫

S

v(t, σ )φ
S
dV (σ ), F(t) =

∫

S

(|v|q−1 v)(t, σ )φ
S
dV (σ ).

From (5.24), it follows

d

dt

(
e(2αS+2−N )t y′

)
= e((q+1)α

S
−N )t F,

where dV is the volume measure on SN−1. By (5.10), γ := 2α
S
+ 2− N > 0, then

y′(t) = e−γ (t−t0)y′(t0) + e−γ t

∫ t

t0

e((q+1)α
S
−N )s F(s)ds,

and ∣∣y′(t)
∣∣ ≤ c1e

−γ (t−t0) + c2e
(α

S
(q−1)−2)t .

This implies that there exists k∗ ∈ R+ such that

lim
t→∞ y(t) = k∗. (5.25)

Next we use the fact that the following Hilbertian decomposition holds

L2(S) = ⊕∞
k=1ker(−!′ − λk I )

where λk is the k-th eigenvalue of −!′ in W 1,2
0 (S) (and λ

S
= λ1). Let ṽ and F̃ be

the projections of v and |v|q−1 v onto ker(−!′ − λ
S
I )⊥. Since

ṽt t + (2α
S
+ 2− N )ṽt + λ

S
ṽ + !′ṽ − e(αS (q−1)−2)t F̃ = 0 (5.26)
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we obtain, by multiplying by w̃ and integrating on S,

V ′′ + (2α
S
+ 2− N )V ′ − (λ2 − λ

S
)V + e(αS (q−1)−2)t/ ≥ 0,

where V (t) = ‖ṽ(t, .)‖L2(S) and /(t) =
∥∥∥F̃(t, .)

∥∥∥
L2(S)

. The associated o.d.e.

z′′ + (2α
S
+ 2− N )z′ − (λ2 − λ

S
)z + e(αS (q−1)−2)t/ = 0,

admits solutions under the form

z(t) = a1e
−µ1t + a2e

µ2t + d(t)e(αS (q−1)−2)t

where −µ1 and µ2 are respectively the negative and the positive roots of

X2 + (2α
S
+ 2− N )X − (λ2 − λ

S
) = 0,

and |d(t)| ≤ c/ if α
S
(q−1)−2 8= −µ1, or |d(t)| ≤ ct1/ if α

S
(q−1)−2 = −µ1.

Applying the maximum principle, to (5.26), we derive

‖ṽ(t, .)‖L2(S) ≤ ‖ṽ(t0, .)‖L2(S) e−µ1(t−t0) + d(t)e(αS (q−1)−2)t ∀t ≥ t0. (5.27)

By the standard elliptic regularity results in Lipschitz domains [10], we obtain from

(5.27), for any t > t0 + 1,

‖ṽ(t, .)‖Cα(S) ≤c1‖ṽ‖L2((t−1,t+1)×S)+c2
∥∥∥e(αS (q−1)−2)s F̃

∥∥∥
L∞((t−1,t+1)×S)

, (5.28)

for some α ∈ (0, 1] depending of the regularity of ∂S. Thus

‖ṽ(t, .)‖Cα(S) ≤ ce−µ1t + c′te(αS (q−1)−2)t . (5.29)

Combining (5.25) and (5.29) we obtain that

|x |αS uk(x) − k∗φ
S
(x/|x |) → 0 as x → 0 (5.30)

in Cα(S). Furthermore 0 ≤ k∗ ≤ k.

Step 3: Identification of k∗. Let {"n} be a Lipschitz exhaustion of "S and de-

note by ωn (respectively ω) the harmonic measure on ∂"n (respectively ∂"S). By

Proposition 3.8

lim
n→∞

∫

∂"n

uk dωn = k.

On the other hand, by (5.30),

uk/(k
∗|x |−αSφS) → 1 as x → 0.



960 MOSHE MARCUS AND LAURENT VERON

Hence

lim
n→∞

∫

∂"n

uk dωn = k∗ lim
n→∞

∫

∂"n

|x |−αSφS dωn

= k∗γ lim
n→∞

∫

∂"n

/1 dωn = k∗γ .

Thus

k = k∗γ . (5.31)

This and (5.30) imply (5.19).

Further,

uk ≤ vk ≤ k/1

since /1 is harmonic in CS . Therefore (5.19) implies (5.20).

Step 4: Study when k → ∞. By Theorem 5.6, equation (5.1) possesses a unique

solution U in CS such that U = 0 on ∂CS \ {0} and U has strong singularity at the

vertex, i.e., 0 ∈ S(U). By (5.14) and (5.15) this solution satisfies

U = v∞ := lim
k→∞

vk = |x |−
2

q−1ωS. (5.32)

Let V be the maximal solution in "S vanishing on ∂"S \ {0}. Its extension by zero
to CS is a subsolution and consequently, V ≤ U .

Let w be the unique solution of (5.1) in "S such that w = U on ∂"S ∩ Br0(0)
and w = 0 on the remaining part of the boundary. Then w < U so that U − w is

a subsolution of (5.1) in "S which vanishes on ∂"S \ {0}. Therefore U − w ≤ V .

Thus

U − w ≤ V ≤ U and U/V → 1 as x → 0. (5.33)

Let u be an arbitrary positive solution in "S vanishing on ∂"S \ {0}. Denote by u∗
its extension by zero to CS . Then u

∗ is a subsolution and, by Theorem 4.3, there

exists a solution ū of (5.1) in CS which is the smallest solution dominating u
∗. The

solution ū can be obtained from u∗ as follows. Let {rn} be a sequence decreasing to
zero, r1 < r0, and denote

Dn = CS \ Brn (0), hn = u∗3∂Dn .

Let wn be the solution of (5.1) in Dn such that wn = hn on the boundary. Then

{wn} increases and
ū = limwn. (5.34)

If u has strong singularity at the origin then, of course, the same is true with respect

to ū and consequently, by Theorem 5.6,

ū = U. (5.35)

In the remaining part of the proof we assume only (5.35) and show that this implies

u = V .
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Let z be the solution of (5.1) in "S such that z = U on ∂"S ∩ ∂Br0 and 0 on
∂"S ∩ ∂CS . Then u + z is a supersolution in "S . Let

"n = "S \ Brn (0) = Dn ∩ Br0(0).

The trace of u + z on ∂"n is given by

fn =
{
U on ∂"n ∩ ∂Br0
hn + z on ∂"n \ ∂Br0 .

Since U = ū ≥ u∗ we have fn ≥ hn . Therefore, if w̃n is the solution of (5.1) in "n

such that w̃n = fn on the boundary then

wn ≤ w̃n ≤ u + z in "n.

Hence, by (5.34),

U ≤ u + z.

Since z → 0 as x → 0, it follows that

lim supU/u ≤ 1 as x → 0.

Since u < V , (5.33) implies that

lim infU/u ≥ 1 as x → 0.

Therefore U/u → 1 as x → 0 and consequently , by (5.33) and the maximum

principle, u = V . This proves the uniqueness stated in the last part of the theorem

and (5.33) implies (5.21).

Corollary 5.8. Suppose that u is a positive solution of (5.1) in "S which vanishes

on ∂"S \ {0} and
sup
"S

|x |αS u = ∞. (5.36)

Then u = u∞.

Proof. Let ū be as in (5.34). Since ū ≥ u it follows that

sup
"S

|x |αS ū = ∞.

By Theorem 5.6 ū = U . The last part of the proof shows that u = u∞.

As a consequence of Theorem 5.7 we obtain the classification of positive solu-

tions of (5.1) in conical domains with isolated singularity located at the vertex. In

the case of a half space such a classification was obtained in [11].
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Theorem 5.9. Let C
S
be as in Theorem 5.7, "s = C

S
∩ Br0(0) for some r0 > 0

and 1 < q < q
S

= 1 + 2/α
S
. If u ∈ C("̄s \ {0}) is a positive solution of (5.1)

vanishing on ∂C
S
∩ Br0(0) \ {0}, the following alternative holds:

Either

(i) lim supx→0 |x |−α̃
S u(x) < ∞ and thus u ∈ C("̄s).

or

(ii) there exist k > 0 such that (5.19) holds

or

(iii) (5.21) holds.

Proof. Let uε be the solution of (5.1) in "
S,ε = "

S
\ Bε(0) with boundary data u

on "
S,ε ∩ ∂Bε(0) and zero on ∂"

S,ε \ ∂Bε(0). Then

0 ≤ uε ≤ u ≤ uε + Z(x) ∀x ∈ "
S,ε ,

where Z is harmonic in "
S
, vanishes on ∂"

S
\ ∂Br0(0) and coincides with u on

C
S
∩ ∂Br0(0). Furthermore 0 < ε < ε′ =⇒ uε ≤ uε′ in "

S,ε′ . Thus uε converges,

as ε → 0, to a solution ũ of (5.1) which vanishes on ∂"
S
\ {0} and satisfies

0 ≤ ũ(x) ≤ u(x) ≤ ũ(x) + Z(x) ∀x ∈ "
S
. (5.37)

If

lim sup
x→0

|x |αS ũ(x) < ∞, (5.38)

it follows from Theorem 5.7-Step 2, that there exists k∗ ≥ 0 such that

ũ(x) = k∗ |x |−α
S φ

S
(x/|x |)(1+ o(1)) as x → 0. (5.39)

If k∗ > 0 then u satisfies (ii). If k∗ = 0, it is straightforward to see that, for any

ε > 0, ũ(x) ≤ ε |x |−α
S . Thus

u(x) ≤ Z(x) = c |x |α̃S φ
S
(x/|x |)(1+ o(1)) as x → 0, (5.40)

by standard expansion of harmonic functions at 0.

Finally, if

lim sup
x→0

|x |αS ũ(x) = ∞, (5.41)

then, by Corollary 5.8, ũ = u∞ and consequently, by Theorem 5.7, ũ – and there-

fore u – satisfies (5.21).
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5.2. Analysis in a Lipschitz domain

In a general Lipschitz bounded domain tangent planes have to be replaced by

asymptotic cones, and these asymptotic cones can be inner or outer.

Definition 5.10. Let " be a bounded Lipschitz domain and y ∈ ∂". For r > 0,

we denote by C Iy,r (respectively COy,r ) the set of all open cones Cs,y with vertex
at y and smooth opening S ⊂ ∂B1(y) such that Cs,y ∩ Br (y) ⊂ " (respectively

" ∩ Br (y) ⊂ Cs,y). Further we denote

CI
y,r :=

⋃{
CS,y : CS,y ∈ C Iy,r

}
, CO

y,r :=
⋂{

CS,y : CS,y ∈ COy,r
}

(5.42)

and

CI
y :=

⋃

r>0

CI
y,r , CO

y :=
⋂

r>0

CO
y,r . (5.43)

The cone CI
y (respectively C

O
y ) is called the limiting inner cone (respectively outer

cone) at y. Finally we denote

SIy,r :=CI
y,r ∩ ∂B1(y), SOy,r :=CO

y,r ∩ ∂B1(y),

SIy :=CI
y ∩ ∂B1(y), SOy :=CO

y ∩ ∂B1(y).
(5.44)

Remark 5.11. In this definition, we identify ∂B1(y) with the manifold S
N−1. No-

tice that the following monotonicity holds

0 < s < r =⇒
{
CI
y,r ⊂ CI

y,s

CO
y,s ⊂ CI

y,r .
(5.45)

Definition 5.12. If CS is a cone with vertex y and opening S and if λS is the first

eigenvalue of −!′ in W 1,2
0 (S), we denote

α
S

= 1

2

(
N − 2+

√
(N − 2)2 + 4λ

S

)
, and q

S
= 1+ 2/α

S
. (5.46)

Thus q
S
is the critical value for the cone CS at its vertex.

Remark 5.13. As r 0→ SIy,r is nondecreasing, it follows that r 0→ λSIy,r is nonin-

creasing and consequently r 0→ qSIy,r
is nondecreasing. It is classical that

lim
r→0

λ
SIy,r

= λ
SIy

. (5.47)

A similar observation holds with respect to SOy,r if we interchange the terms “non-

decreasing” and “nonincreasing”. In particular

lim
r→0

λ
SOy,r

= λ
SOy

. (5.48)

In view of (5.46) we conclude that,

lim
r→0

q
SIy,r

= q
SIy

, lim
r→0

q
SOy,r

= q
SOy

. (5.49)

We also need the following notation:
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Definition 5.14. Let " be a bounded Lipschitz domain. For every compact set

E ⊂ ∂" denote,

q∗
E = lim

r→0
inf

{
qSIz,r

: z ∈ ∂", dist (z, E) < r
}

. (5.50)

If E is a singleton, say {y}, we replace q∗
E by q

∗
y .

Remark 5.15. For a cone CS with vertex y, q
∗
y ≤ qS . However if CS is contained

in a half space then q∗
y = qS . On the other hand, if CS strictly contains a half space

then q∗
y < qS .

If " is the complement of a bounded convex domain then, for every y ∈ ∂",

q∗
y = (N + 1)/(N − 1). (5.51)

Indeed qc,y ≥ (N + 1)/(N − 1). But for HN−1-a.e. point y ∈ ∂" there exists

a tangent plane and consequently qc,y = (N + 1)/(N − 1). This readily implies
(5.51).

Since " is Lipschitz, there exists r" > 0 such that , for every r ∈ (0, r") and
every z ∈ ∂", there exists a cone C with vertex at z such that C ∩ Br (z) ⊂ "̄.
Denote

a(r, y) := inf
{
qSIz,r

: z ∈ ∂" ∩ Br (y)
}

∀r ∈ (0, r"), y ∈ ∂".

Then,

q∗
E := lim

r→0
inf{a(r, y) : y ∈ E}

≤ inf { lim
r→0

a(r, y) : y ∈ E} = inf {q∗
y : y ∈ E}. (5.52)

Indeed, the monotonicity of the function r 0→ q
SIy,r

(for each fixed y ∈ ∂") implies

q∗
y = lim

r→0
a(r, y) = sup

0<r<r"

a(r, y). (5.53)

As

q∗
E = lim

r→0
inf{a(r, y) : y ∈ E}

inequality (5.52) follows immediately from (5.53).

Finally we observe that, if E is a compact subset of ∂" then

(E)r := {z ∈ ∂" : dist (z, E) ≤ r} =⇒ q∗
(E)r

↑ q∗
E as r ↓ 0. (5.54)

In order to deal with boundary value problems in a general Lipschitz domain " we

must study the question of q-admissibility of δy , y ∈ ∂". This question is addressed
in the following:
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Theorem 5.16. If y ∈ ∂" and 1 < q < q
SIy

:= 1+ 2/α
SIy
then

∫

"
Kq(x, y)ρ(x)dx < ∞. (5.55)

Furthermore, if E is a compact subset of ∂" and 1 < q < q∗
E then, there exists

M > 0 such that, ∫

"
Kq(x, y)ρ(x)dx ≤ M ∀y ∈ E . (5.56)

Proof. We recall some sharp estimates of the Poisson kernel due to Bogdan [3]. Set

κ = 1/2(
√
1+ K 2), where K is the Lipschitz constant of the domain, seen locally

as the graph of a function fromRN−1 intoR. Let x0 ∈ " and set φ(x) := G(x, x0).
Then there exists c1 > 0 such that for any y ∈ ∂" and x ∈ " satisfying |x−y| ≤ r0,

there holds

c−11
φ(x)

φ2(ξ)
|x − y|2−N ≤ K (x, y) ≤ c1

φ(x)

φ2(ξ)
|x − y|2−N , (5.57)

for any ξ such that Bκ|x−y|(ξ) ⊂ " ∩ B|x−y|(y). This implies

c−12
φq+1(x)
φ2q(ξ)

|x − y|(2−N )q ≤ Kq(x, y)ρ(x) ≤ c2
φq+1(x)
φ2q(ξ)

|x − y|(2−N )q (5.58)

for some c2 since φ and ρ are comparable in Br0(y), uniformly with respect to y
(provided we have chosen r0 ≤ dist (x0, ∂")/2. Let Cs,y be a smooth cone with

vertex at y and opening S := Cs,y ∩ ∂B1(y), such that Cs,y ∩ ∂Br0(y) ⊂ ". We
can impose to the point ξ in inequality (5.57) to be such that ξ/|ξ | := >0 ∈ S, or,

equivalently, such that |ξ − y| ≤ γ dist (ξ, ∂") for some γ > 1 independent of ξ ,
|x − y| and y. Then, by Carleson estimate [2, Lemma 2.4] and Harnack inequality,
there exists c5 independent of y such that there holds

φ(ξ)

φ(x)
≥ c3 (5.59)

for all x ∈ " ∩ Br0(y) and all ξ as above. Consequently, (5.58) yields to

Kq(x, y)ρ(x) ≤ c4φ
1−q(ξ)|x − y|(2−N )q . (5.60)

There exists a separable harmonic function v in Cs,y under the form

v(z) = |z − y|αS+2−Nφ
S
((z − y)/|z − y|)

where φ
S
is the first eigenfunction of −!′ in W 1,2

0 (S) normalized by maxφ
S

=
1, λ

S
the corresponding eigenvalue and α

S
is given by (5.10). By the maximum

principle,

v(z) ≤ c5φ(z) ∀z ∈ C
S,y ∩ Br0(y). (5.61)
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Therefore there exists c6 > 0 such that

φ(ξ) ≥ c6 |ξ − y|αS+2−N . (5.62)

Because |x − y| ≥ |ξ − y| ≥ κ |x − y| /2, from the choice of ξ , it follows

Kq(x, y)ρ(x) ≤ c7

|x − y|(q−1)α
S
+N−2 ∀x ∈ " ∩ Br0(y). (5.63)

Clearly, if we choose q such that 1 < q < q
SIy

:= 1+ 2/α
SIy
, then q < 1+ 2/α

SIr,y

for some r small enough and we can take CS,y = CI
y,r . Thus (5.55) follows.

We turn to the proof of (5.56). To simplify the notation we assume that q <
q∗
∂". The argument is the same in the case q < q∗

E .

If we assume q < limr→0 inf{q
SIz,r

: z ∈ ∂"}, then for ε > 0 small enough,

there exists rε > 0 such that

0 < r ≤ rε =⇒ 1 < q < inf{q
SIz,r

: z ∈ ∂"} − ε ∀0 < r ≤ rε .

Notice that the shape of the cone may vary, but, since ∂" is Lipschitz there exists a

fixed relatively open subdomain S∗ ⊂ ∂B1 such that for any y ∈ ∂", there exists

an isometry Ry of RN with the property that Ry(S
∗
) ⊂ SIy,r for all 0 < r ≤ rε .

Here we use the fact that r 0→ SIy,r is increasing when r decreases. If we take ξ
such that ξ/|ξ | = >0 ∈ Ry(S

∗), then the constants in Bogdan estimate (5.57) and
Carleson inequality (5.59) are independent of y ∈ ∂" if we replace r0 by inf{rε, r0}.
Hereafter we shall assume that rε ≤ r0. Set

vS(t) = |t − y|αS+2−Nφ
S
((t − y)/|t − y|)

with S = SIy,rε . Then vS is well defined in the cone CS,y with vertex y and opening
S. Let

9crε := {t ∈ " : dist (t, ∂") = crε}.
Because ∂" is Lipschitz, we can choose 0 < c < 1 such that CS,y ∩9crε ⊂ Brε (z).
Then we can compare vS and φ on the set 9crε . It follows by maximum principle

that estimate (5.61) is still valid with a constant may depend on rε , but not on y.

Because

min
Ry(S∗)

φ
SIy,rε

≥ c8

where c8 is independent of y, (5.62) holds under the form

φ(ξ) ≥ c6 |ξ − y|
α
SIy,rε

+2−N
, (5.64)

where, we recall it, ξ satisfies ξ/|ξ | ∈ Ry(S
∗), and is associated to any x ∈ Brε (y)∩

" by the property that Bκ|x−y|(ξ) ⊂ B|x−y|(y) ∩ ", and thus |x − y| ≥ |ξ − y| ≥
κ |x − y| /2. Then (5.63) holds uniformly with respect to y, with r0 replaced by rε .
This implies (5.56).
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The next proposition partially complements Theorem 5.16.

Proposition 5.17. Let y ∈ ∂" and q > q
SOy
. Then any solution of (5.1) in" which

vanishes on ∂" \ {0} is identically 0.

Remark 5.18. This proposition implies that, if q > q
SOy
,

∫

"
Kq(x, y)ρ(x)dx = ∞. (5.65)

Otherwise δy would be admissible.

Proof. We consider a local outer smooth cone with vertex at y, C2, such that " ∩
Br0(y) \ {0} ⊂ C2 ∩ Br0(y) := C2,r0 . We denote by S

∗ = C2 ∩ ∂B1(y) its opening.
For ε > 0 small enough, we consider the doubly truncated cone Cε

2,r0
= ∩C2,r0 \

Bε(y)} and the solution v := vε to






−!v + vq = 0 in Cε
2,r0

v = ∞ on ∂Bε(y) ∩ C2
v = ∞ on ∂Br0(y) ∩ C2
v = 0 on ∂C2 ∩ Br0(y) \ Bε(y),

(5.66)

where q ≥ q
S∗ := 1+ 2/α

S∗ , and α
S∗ is expressed by (5.10) with S replaced by S

∗.
Then vε dominates in C

ε
2,r0

∩" any positive solution u of (5.1) in" which vanishes

on ∂" \ {0}. Letting ε → 0, vε converges to v0 which satisfies






−!v + vq = 0 in C2,r0
v = ∞ on ∂Br0 ∩ C2
v = 0 on ∂C2 ∩ Br0(y).

(5.67)

Furthermore u ≤ v0 in Br0 ∩ ". Because q
S∗ is the critical exponent in C2, the

singularity at 0 is removable, which implies that v(x) → 0 when x → 0 in C2.

Thus u+(x) → 0 when x → 0 in ". Thus u+ = 0. But we can take any cone

with vertex y containing " locally in Br (y) for r > 0. This implies that for any

q > q
SOy
, any solution of (5.1) which vanishes on ∂" \ {0} is non-positive. In the

same way it is non-negative.

Definition 5.19. If y ∈ ∂" we say that an exponent q ≥ 1 is:

(i) Admissible at y if

‖K (., y)‖Lqρ(") < ∞,

and we set

q1,y = sup{q > 1 : q admissible at y}.
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(ii) Acceptable at y if there exists a solution of (5.1) with boundary trace δy , and
we set

q2,y = sup{q > 1 : q acceptable at y}.
(iii) Super-critical at y if any solution of (5.1) which is continuous in " \ {0} and

vanishes on ∂" \ {0} is identically zero, and we set

q3,y = inf{q > 1 : q super-critical at y}.

Proposition 5.20. Assume " is a bounded Lipschitz domain and y ∈ ∂". Then

q
SIy

≤ q1,y ≤ q2,y ≤ q3,y ≤ q
SOy

. (5.68)

If 1 < q < q2,y then, for any real a there exists exactly one solution of (5.1) with

boundary trace γ δy .

Proof. It follows from Theorem 5.16 that q
SIy

≤ q1,y and from Proposition 5.17 that

q3,y ≤ q
SOy

. It is clear from the definition and Theorem 3.10 that q1,y ≤ q2,y ≤ q3,y .

Thus (5.68) holds.

Now assume that q < q2,y so that there exists a solution u with boundary trace

δy . By the maximum principle u > 0 in ". If a ∈ (0, 1) then au is a subsolution
of (5.1) with boundary trace aδy and au < u. Therefore by Corollary 4.4 II, the

smallest solution dominating au has boundary trace aδy . If a > 1 then au is a

supersolution and the same conclusion follows from Corollary 4.4 I. If va is the
(unique) solution of (5.1) with boundary trace aδy then −v is the (unique) solution
with boundary trace −aδy .

Theorem 5.21. Assume y ∈ ∂" is such that SOy = SIy = S, let λ
S
be the first

eigenvalue of −!′ in W 1,2
0 (S) and denote

qc,y := 1+ 2/α
S

(5.69)

with αS as in (5.10). Then q1,y = q2,y = q3,y = qc,y and

(i) if 1 < q < qc,y then δy is admissible;
(ii) if q > qc,y then the only solution of (5.1) in " vanishing on ∂" \ {y} is the

trivial solution;
(iii) if q = qc,y and u is a solution of (5.1) in " vanishing on ∂" \ {y} then

u = o(1)|x − y|−
2

q−1 as x → y in ". (5.70)

Remark 5.22. We know that, in the conical case, the conclusion of statement (ii)

holds for q = qc,y as well. Consequently , in a polyhedral domain ", an isolated
singularity at a point y ∈ ∂" is removable if q ≥ qc(y). We do not know if this
holds in general Lipschitz domains.



BOUNDARY TRACE IN LIPSCHITZ DOMAINS 969

Proof. The above assertion, except for statement (iii), is an immediate consequence

of Proposition 5.20, Definition 5.12 and the remark following that definition.

It remains to prove (iii). We may assume that u > 0. Otherwise we observe

that |u| is a subsolution of (5.1) and by Theorem 4.3(ii) there exists a solution v
dominating it. It is easy to verify that the smallest solution dominating |u| vanishes
on ∂" \ {y}.

For any r > 0 let ur be the extension of u by zero to Dr := CSOr
∩ Br (y). Thus

ur is a subsolution in Dr , ur ∈ C(D̄r \{y}) and ur = 0 on (∂CSOr ∩Br (y))\{y}. The
smallest solution above it, say ũr is in C(D̄r \ {y}) and ũr = 0 on (∂CSOr ∩ Br (y))\
{y}. By a standard argument this implies that there exists a positive solution ṽr in
Dr such that ṽr vanishes on ∂Dr \ {y} and

ur ≤ 2ṽr in Dr .

We extend this solution by zero to the entire cone CSOr
, obtaining a subsolution

w̃r and finally (again by Theorem 4.3(ii)) a solution wr in CSOr
which vanishes on

∂CSOr \ {y} and satisfies
ur ≤ 2wr in Dr .

Observe that q
SOr

↓ qc,y as r ↓ 0. If qc,y = q
SOr
for some r > 0 then the existence

of a solutionwr as above is impossible. Therefore we conclude that qc,y < q
SOr
and

therefore, by Theorem 5.6, there exists a solution v∞,r in CSOr
such that

v∞,r (x) = |x − y|−
2

q−1ω
SOr

((x − y)/|x − y|) ∀x ∈ CSOr
.

This solution is the maximal solution in CSOr
so that

wr ≤ v∞,r in Dr .

But, since q = q
SO
, it follows that ω

SOr
→ 0 as r → 0. This implies (5.70).

The next result provides an important ingredient in the study of general bound-

ary value problems in Lipschitz domains.

Theorem 5.23. Assume that q > 1, " is a bounded Lipschitz domain and u ∈
U+("). If y ∈ S(u) and q < q∗

y then, for every k > 0, the measure kδy is
admissible and

u ≥ ukδy ∀k ≥ 0. (5.71)

Remark 5.24. Here q∗
y = q∗

{y} is defined as in part E of the introduction. If q > q∗
y ,

(5.71) need not hold. For instance, consider the cone CS with vertex at the origin,

such that S ⊂ SN−1 is a smooth domain and SN−1 \ S is contained in an open half
space. Then qc,0 > (N + 1)/(N − 1) while qc,x = (N + 1)/(N − 1) for any x 8= 0

on the boundary of the cone. Thus q∗(0) < qc,0. Suppose that q ∈ (q∗
0 , qc,0). Let

F be a closed subset of ∂CS such that 0 ∈ F but 0 is a C2/q,q ′-thin point of F . Let
u be the maximal solution in CS vanishing on ∂CS \ F . Then 0 ∈ S(u) but (5.71)
does not hold for any k > 0.
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Proof. Up to an isometry of RN , we can assume that y = 0 and represent ∂" near

0 as the graph of a Lipschitz function. This can be done in the following way: we

define the cylinder C ′
R := {x = (x ′, xN ) : x ′ ∈ B′

R} where B′
R is the (N − 1)-ball

with radius R. We denote, for some R > 0 and 0 < σ < R,

∂" ∩ C ′
R = {x = (x ′, η(x ′)) : x ′ ∈ B′

R},
and

9δ,σ = {x = (x ′, η(x ′) + δ) : x ′ ∈ B′
σ },

and assume that, if 0 < δ ≤ R,

"R
δ = {x = (x ′, xN ) : x ′ ∈ B′

R, η(x ′) < xN < η(x ′) + R} ⊂ ".

We can also assume that η(0) = 0. Although the two harmonic measures in " and

∂"∩C ′
R differ, it follow by Dahlberg’s result that there exists a constant c > 0 such

that, if δ < δ0 ≤ R/2,

c−1ωx0
" (E) ≤ ω

x0

"R
δ

(E + εeN ) ≤ cω
x0
" (E),

for any Borel set E ⊂ ∂" ∩ C ′
δ . Therefore, if we set

Mε,σ =
∫

9ε,σ

u(x)dωx0, (x),

it follows that limε→0 Mε,σ = ∞ since 0 ∈ S(u). We can suppose that σ is small
enough so that there exists q̂ ∈ (q, q∗

y ) and M > 0 such that, for any p ∈ [1, q̂]
∫

"
K p(x, z)ρ(x)dx ≤ M ∀z ∈ ∂" ∩ Bσ . (5.72)

For fixed k there exists ε = ε(δ) > 0 such that Mε,σ = k. There exists a uniform

Lipschitz exhaustion {"ε} of " with the following properties:

(i) "ε ∩ C ′
R ∩ {x = (x ′, xN ) : a < xN < b} = 9ε,R , for some fixed a and b.

(ii) The "ε and " have the same Lipschitz character L .

It follows that the Poisson kernel K"ε in "ε respectively endows the same proper-

ties (5.72) as K except " has to be replaced by "ε , ρ by ρε := dist (., ∂"ε and z

has to belong to ∂"ε ∩ Bσ . Next, we consider the solution v = vε(σ )) of

{ −!v + vq = 0 in "ε

v = uχ9ε,σ
in ∂"ε .

(5.73)

By the maximum principle, u ≥ v in "ε . Furthermore v ≤ K"ε [uχ9ε,σ
]. Let

q̂ = (q + q̃σ )/2 and ω ⊂ " be a Borel subset. By convexity

∫

ω

(
K"ε [uχ9ε,σ

]
)q̂

ρ(x)dx ≤ M Mε,σ .
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Thus, by Hölder’s inequality

∫

ω

(
K"ε [uχ9ε,σ

]
)q

ρ(x)dx ≤
(∫

ω
ρ(x)dx

)1−q/q̂ (
M Mε,σ

)q/q̂
.

By standard a priori estimates, vε(σ ) → v0 (up to a subsequence) a.e. in ", thus

v
q

ε(σ ) → v
q

0 . By Vitali’s theorem and the uniform integrability of the {vε(σ )},
vε(σ ) → v0 in L

q
ρ("). Because

vε(σ ) + G"ε [vqε(σ )] = K"ε [uχ9ε,σ
]

where G"ε is the Green operator in "ε , and

K"ε [uχ9ε,σ
] → Mε,σ K (., y) = kK (., y)

as σ → 0, it follows that u ≥ v0, and v0 satisfies

v0 + G"[vq0 ] = kK (., y).

Then v0 = ukδy , which ends the proof.

Corollary 5.25. Let {y j }nj=1 ⊂ ∂" be a set of points such that

q < inf{q∗
y j

: j = 1, . . . , n}. (5.74)

Then, for any set of positive numbers k1, · · · , kn , there exists a unique solution uµ

of (5.1) in " with boundary trace µ = ∑n
j=1 k jδy j .

If u ∈ U+(") and {y j }nj=1 ⊂ S(u) then u ≥ uµ.

Proof. From Theorem 5.23, u ≥ uk j δy j for any j = 1, . . . , n. Thus u ≥ ũ{k} =
max(uk j δy j ), which is a subsolution with boundary trace

∑
j k jδy j . But ṽ{k}, the so-

lution with boundary trace
∑

j k jδy j is the smallest solution above ũ{k}. Therefore
the conclusion of the corollary holds.

As a consequence one obtains:

Theorem 5.26. Let E ⊂ ∂" be a closed set and assume that q < q∗
E . Then, for

every µ ∈ M(") such that suppµ ⊂ E there exists a (unique) solution uµ of (5.1)

in " with boundary trace µ.
If {µn} is a sequence in M(") such that suppµn ⊂ E and µn ⇀ µ weak*

then uµn → uµ locally uniformly in ".
If u ∈ U+(") and q < q∗

S(u)
then, for every µ ∈ M(") such that suppµ ⊂

S(u),
uµ ≤ u. (5.75)



972 MOSHE MARCUS AND LAURENT VERON

Proof. Without loss of generality we assume that µ ≥). Let {µn} be a sequence of
measures on ∂" of the form

µn =
kn∑

j=1
a j,nδy j,n

where y j,n ∈ E , a j,n > 0 and
∑kn

j=1 a j,n = ‖µ‖, such that µn ⇀ µ weakly*.

Passing to a subsequence if necessary, uµn → v locally uniformly in ". In order to
prove the first assertion it remains to show that v = uµ.

If 0 < r is sufficiently small, there exists q̂r ∈ (q, q∗
E ) and Mr > 0 such that,

for any p ∈ [1, q̂r ] and every z ∈ ∂" such that dist (z, E) < r , estimate (5.72)

holds. It follows that the family of functions

{K (·, z) : z ∈ ∂", dist (z, E) < r}

is uniformly integrable in L
q
ρ(") and consequently the family

{K[ν]; ν ∈ M(∂"), ‖ν‖M ≤ 1, supp ν ⊂ {z ∈ ∂" : dist (z, E) < r}}

is uniformly integrable in L
q
ρ("). By a standard argument (using Vitali’s conver-

gence theorem) this implies that v = uµ. This proves the first two assertions of the

theorem.

The last assertion is an immediate consequence of the above together with

Corollary 5.25. Indeed, if E = S(u) then, by Corollary 5.25, u ≥ uµn . Therefore

u ≥ uµ.

Proposition 5.27. Let y ∈ ∂" and 1 < q < q
SIy
. Then there exists a maximal

solution u := Uy of (5.1) such that tr(Uy) = ({y}, 0). It satisfies

lim inf
x→y

x−y
|x−y|→σ

|x − y|2/(q−1)Uy(x) ≥ ω
SIy

(σ ), (5.76)

uniformly on any compact subset of SIy , where ω
SIy
is the unique positive solution of

{
−!′ω − λ

N ,qω + |ω|q−1ω = 0 in SIy

ω = 0 on ∂SIy ,
(5.77)

normalized by ω(σ0) = 1 for some fixed σ0 ∈ SIy .

For r > 0 small enough, we denote by ω
SOy,r

the unique positive solution of

{
−!′ω − λ

N ,qω + |ω|q−1ω = 0 in SOy,r

ω = 0 on ∂SOy,r ,
(5.78)
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normalized in the same way. Then

lim sup
x→y

x−y
|x−y|→σ

|x − y|2/(q−1)Uy(x) ≤ ω
SOy,r

(σ ) . (5.79)

Finally, if SOy = SIy = S, then

lim
x→y

x−y
|x−y|→σ

|x − y|2/(q−1)Uy(x) = ω
S (σ ) . (5.80)

Proof. We recall that CI
y,r (respectively C

O
y,r ) is an r-inner cone (respectively r-

outer cone) at y with opening SIy,r ⊂ ∂B1(y) (respectively S
O
y,r ⊂ ∂B1(y)). This is

well defined for an r > 0 small enough so that q < q
SIy,r
. We denote by ω

SIy,r
the

unique positive solution of

{
−!′ω − λ

N ,qω + |ω|q−1ω = 0 in SIy,r

ω = 0 on ∂SIy,r .
(5.81)

We construct Uy ∈ U+("), vanishing on ∂" \ {y} in the following way. For 0 <
ε < r , we denote by v := Uy,ε the solution of






−!v + |vq−1|v = 0 in " \ Bε(y)

v = 0 in ∂" \ Bε(y)

v = ∞ in " ∩ ∂Bε(y).

Let v := V I
ε (respectively v := V O

ε ) be the solution of






−!v + |vq−1|v = 0 in C
SIy,r

\ Bε(y) (respectively C
SOy,r

\ Bε(y))

v = 0 in ∂C
SIy,r

\ Bε(y) (respectively ∂C
SOy,r

\ Bε(y))

v = ∞ in C
SIy,r

∩ ∂Bε(y) (respectively C
SOy,r

∩ ∂Bε(y)).

Then there exist m > 0 depending on r , but not on ε, such that

V I
ε (x) − m ≤ Uy,ε(x) ≤ V O

ε (x) + m (5.82)

for all x ∈ CI
y,r \ {Bε(y)} for the left-hand side inequality, and x ∈ ∂" ∩ Br (y) \

{Bε(y)} for the right-hand side one. When ε → 0, V I
ε converges to the explicit

separable solution x 0→ |x − y|−2/(q−1)ω
SIy,r

in C
SIy,r

(the positive cone with vertex

generated by SIy,r ). Similarly V
O
ε converges to the explicit separable solution x 0→
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|x − y|−2/(q−1)ω
SOy,r

in C
SOy,r
. Furthermore ε < ε′ =⇒ Uy,ε ≤ Uy,ε′ . If Uy =

limε→0{Uy,ε}, there holds

|x − y|−2/(q−1)ω
SIy,r

(
x − y

|x − y|

)
− m ≤ Uy(x)

≤ |x − y|−2/(q−1)ω
SIy,r

(
x − y

|x − y|

)
+ m.

(5.83)

These inequalities imply

lim inf
x→y

x−y
|x−y|→σ

|x − y|2/(q−1)Uy(x) ≥ ω
SIy,r

(σ ). (5.84)

Inequality (5.79) is obtained in a similar way. Since limr→0 ω
SIy,r

= ω
SIy
uniformly

in compact subsets of SIy we also obtain (5.76). If S
O
y = SIy = S, then ω

SIy
=

ω
SOy

= ω
S
, thus (5.80) holds.

Remark 5.28. BecauseUy is the maximal solution which vanishes on ∂"\{y}, the
function u∞δy = limk→∞ ukδy also satisfies inequality (5.79). We conjecture that

u∞δy always satisfies estimate (5.76). This is true if the outer and inner cone at y

are the same. In fact in that case we obtain a much stronger result:

Theorem 5.29. Assume y ∈ ∂" is such that SOy = SIy = S and q < qc,y . Then

Uy = u∞δy .

Proof. Without loss of generality we can assume that y = 0 and will denote Br =
Br (0) for r > 0. Let CI

r (respectively C
O
r ) be a cone with vertex 0, such that

CI
r ∩ Br \ {0} ⊂ " (respectively " ∩ Br ⊂ CO

r ). We recall that the characteristic

exponents α
SI
0

and α
SO
0

are defined according to Definition 5.10 and Definition 5.12.

Since

α
SI
0

= lim
r→0

α
SI
0,r

= lim
r→0

α
SO
0,r

= α
SO
0

< 2/(q − 1),

we can choose r such that

qα
SI
0,r

− α
SO
0,r

< 2− (q − 1)(α
SI
0,r

− α
SO
0,r

), (5.85)

and for simplicity, we set α
SI
0,r

= α
I
, α

SO
0,r

= α
O
and

γr = q − 1

2+ α
O

− qα
I

.

Step 1.We claim that there exists c > 0 and c∗ > 0 such that, for any m > 0

umδ0(x) ≥ c∗m|x |−α
O ∀x ∈ Bcm−γr ∩ CI

r . (5.86)
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Since mK (., 0) is a super-solution for (5.1),

umδ(x) ≥ mK (x, 0) − mq

∫

"
G(z, x)Kq(z, 0)dz.

If we assume that x ∈ CI
r ∩ Br , then dist (x, ∂") ≥ θ |x | for some θ > 0 since

CI
r ∩ Br \ {0} ⊂ ". Using Bogdan’s estimate and Harnack inequality we derive

K (x, 0) ≥ c1
|x |2−N
G(x, x0)

,

for some fixed point x0 in ". But the Green function in " ∩ Br is dominated by the

Green function in CO
r ∩ Br , thus G(x, x0) ≤ c2|x |α̃O where α̃

O
= 2 − N + α

O
.

This implies

K (x, 0) ≥ c3|x |−α
O ∀x ∈ CI

r ∩ Br . (5.87)

Similarly (and it is a very rough estimate)

K (x, 0) ≤ c4|x |−α
I ∀x ∈ ".

Because G(x, z) ≤ c5|x − z|2−N , we obtain
∫

"
G(z, x)Kq(z, 0)dz ≤ c6

∫

BR

|x − z|2−N |z|−α
I dz.

We write

∫

BR

|x − z|2−N |z|−qα
I dz =

∫

B2|x |
|x − z|2−N |z|−qα

I dz

+
∫

BR\B2|x |
|x − z|2−N |z|−qα

I dz.

But ∫

B2|x |
|x − z|2−N |z|−qα

I dz = |x |2−qα
I

∫

B2(0)
|ξ − t |2−N |t |−qα

I dt

where ξ = x/|x | is fixed. In the same way
∫

BR\B2|x |
|x − z|2−N |z|−qα

I dz ≤
∫

BR\B2|x |
|z|2−N−qα

I |x |2−qα
I dz

≤ |x |2−qα
I

∫

BR/|x |\B2
|t |2−N−qα

I dt

≤ c7|x |2−qα
I

∫ R/|x |

2

s1−qα
I ds.
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Thus

∫

BR\B2|x |
|x − z|2−N |z|−qα

I dz ≤






c8 if 1− qα
I
> −1

c8 |ln |x || if 1− qα
I
= −1

c8|x |2−qα
I if 1− qα

I
< −1.

(5.88)

Combining (5.87) and (5.88) yields to (5.86).

Step 2. There holds

u∞δ0(x) ≥
(
|x |−2/q−1) − r−2/(q−1)

)
ω
SIr

(x/|x |) ∀x ∈ CI
r ∩ Br , (5.89)

where ω
SIr
is the unique positive solution of (5.81). For @ > 0, let uI@δ0

be the

solution of {
−!u + uq = 0 in CI

r

u = @δ0 on ∂CI
r .

(5.90)

By comparing uI@δ0
with the Martin kernel in CI

r ,

uI@δ0(x) ≤ c10@|x |−α
I ∀x ∈ CI

r . (5.91)

Because

c10@|x |−α
I ≤ c∗m|x |−α

O ∀x s.t. |x | ≥ c11

(
@

m

)(α
I
−α

O
)−1

, (5.92)

it follows

umδ0(x) ≥ uI@δ(x) ∀x s.t. c11

(
@

m

)(α
I
−α

O
)−1

≤ |x | ≤ c∗m−γr . (5.93)

Notice that (5.85) implies

(
@

m

)(α
I
−α0)

−1

= o(m−γr ) as m → ∞.

Since uI@δ0
(x) ≤ |x |−2/(q−1)ω

SIr
(x/|x |), it follows, by the maximum principle, that

umδ0(x) ≥ uI@δ0(x) − r−2/(q−1)ω
SIr

(x/|x |)

for every x ∈ CI
r ∩ Br such that |x | ≥ c11

(
@
m

)(α
I
−α

O
)−1
. Letting successively

m → ∞ and @ → ∞ and using

lim
@→∞

uI@δ0(x) = |x |−2/(q−1)ω
SIr

(x/|x |) ∀x ∈ CI
r ,

we obtain (5.89).
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Step 3. Let u ∈ U+("), u vanishing on ∂" \ {0}. Because

u(x) ≤ CN ,q |x |−2/(q−1)

and CI
r ∩ Br \ {0} ⊂ ", it is a classical consequence of Harnack inequality that, for

any x and x ′ ∈ CI
r ∩ Br/2 such that 2

−1|x | ≤ |x ′| ≤ 2|x |, u satisfies

c−112 u(x
′) ≤ u(x) ≤ c12u(x

′),

where c12 > 0 depends on N , q and min
{
dist (z, ∂")/|z| : z ∈ CI

r ∩ Br

}
.

Step 4. There exists c13 = c13(q,") > 0 such that

U0(x) ≤ c13u∞δ(x) ∀x ∈ ". (5.94)

Because of (5.79) and the fact that for r > 0 and any compact subset K ⊂ SI0,r

1 ≤
ω
SO
0,r

(σ )

ω
SI
0,r

(σ )
≤ M ∀σ ∈ K ,

where M depends on K , there exists c14 > 0 such that

1 ≤ U0(x)

u∞δ0(x)
≤ c14 ∀x ∈ Br s.t. x/|x | ∈ K .

Using Step 3, there also holds

c−115 ≤ min

{
U0(x

′)
U0(x)

,
u∞δ0(x

′)
u∞δ0(x)

}

≤ max

{
U0(x

′)
U0(x)

,
u∞δ0(x

′)
u∞δ0(x)

}
≤ c15 ∀x, x ′ ∈ Br/2,

(5.95)

provided x/|x | and x ′/|x ′| ∈ K and 2−1|x | ≤ |x ′| ≤ 2|x |. For 0 < s ≤ r/2, set
6s = " ∩ ∂Bs . There exists n0 ∈ N∗ and κ ∈ (0, 1/4), independent of s, such that
for any x ∈ 6s such that x/|x | ∈ K , there exists at most n0 points a j ( j = 1, . . . jx )
such that a j ∈ 6s , a1 ∈ ∂", κs ≤ dist (a j , ∂") ≤ s, |a j − a j+1| ≤ s/2 for
j = 1, . . . jx and a jx = x . Using Proposition 6.1 and the remark hereafter,

c−1
U0(z)

U0(a1)
≤ u∞δ0(z)

u∞δ0(a1)
≤ c

U0(z)

U0(a1)
∀z ∈ 6s ∩ Ba0 .

Combining with (5.95) we derive

U0(x) ≤ cc
n0
15u∞δ0(x) ∀x ∈ 6s .
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Because cc
n0
15u∞δ0 is a super-solution of (5.1) (clearly cc

n0
15 > 1),

U0 ≤ cc
n0
15u∞δ0 in " \ Bs ∀s ∈ (0, r].

Thus (5.94) follows with c13 = cc
n0
15.

Step 5. End of the proof. It is based upon an idea introduced in [20]. If we assume

U0 > u∞δ0 , the convexity of x 0→ xq implies that the function

v = u∞δ0 − 1

2c13
(U0 − u∞δ0)

is a super solution such that

au∞δ0 ≤ v < u∞δ0

where a = 1+c13
2c13

< 1. Since au∞δ0 is a subsolution, it follows that there exists a

solution w such that

au∞δ0 < w < v < u∞δ0 .

But this is impossible because, for any a ∈ (0, 1), the smallest solution dominating
au∞δ0 is u∞δ0 .

The next result extends a theorem of Marcus and Véron [20].

Theorem 5.30. Assume that" is a bounded Lipschitz domain such that S
O

y = S
I

y =
Sy for every y ∈ ∂". Further, assume that

1 < q < q∗
∂".

Then for any outer regular Borel measure ν̄ on ∂" there exists a unique solution u

of (5.1) such that tr∂"(u) = ν̄.

Proof. We assume ν̄ ∼ (ν, F) in the sense of Definition 4.9 where F is a closed
subset of ∂" and ν a Radon measure on R = ∂" \ F . We denote by UF the

maximal solution of (5.1) defined in Lemma 4.13. Because q < q∗
∂", for any y ∈ F

there exists u∞δy (and actually u∞δy = Uy by Theorem 5.29). Then UF ≥ Uy

by Lemma 4.15, thus S(UF ) = F ′ = F with the notation of Definition 4.14. By

Theorem 5.26, any Radon measure is q-admissible thus for any compact subset E ⊂
R there exist a unique solution uνχE of (5.1) with boundary trace νχE . Therefore
there exists a solution with boundary trace ν̄ and, by Theorem 4.16, its uniqueness
is reduced to showing that UF is the unique solution with boundary trace (0, F).
Assume uF is any solution with trace (0, F). By Theorem 5.23 and Theorem 5.29,
there holds

uF (x) ≥ u∞δy (x) = Uy(x) ∀y ∈ F, ∀x ∈ ". (5.96)

Next we prove:
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Assertion. There exists C > 0 depending on F , " and q such that

UF (x) ≤ CuF (x) ∀x ∈ ". (5.97)

There exists r0 > 0 and a circular coneC0 with vertex 0 and opening S0 ⊂ ∂B1 such
that for any y ∈ ∂" there exists an isometry Ty of RN such that Ty(C0)∩ Br0(y) ⊂
" ∪ {y}. We shall denote by C1 a fixed sub-cone of C0 with vertex 0 and opening
S1 ! S0. In order to simplify the geometry, we shall assume that both C0 and C0
are radially symmetric cones. If x ∈ " is such that dist (x, ∂") ≤ r0/2, either

(i) there exists some y ∈ S and an isometry Ty such that Ty(C0)∩Br0(y) ⊂ "∪{y}
and (x − y)/|x − y| ∈ S1,

(ii) or such a y andRy does not exist.

In the first case, it follows from Proposition 5.27 and Theorem 5.29 that

uF (x) ≥ c1|x − y|−2/(q−1). (5.98)

Furthermore, the constant c1 depends on r , S q and ", but not on uF . By (5.5)

UF (x) ≤ c2 (dist (x, ∂"))−2/(q−1) . (5.99)

Since in case (i), there holds dist (x, ∂") ≥ c3|x − y| for some c3 > 1 depending

on S0 and S1, it follows that (5.97) holds with c = c1c
2/(q−1)
2 /c3.

In case (ii), x does not belong to any cone radially symmetric cones with open-

ing S1 and vertex at some y ∈ S . Therefore, there exists c4 < 1 depending on C1
such that

dist (x, ∂") ≤ c4dist (x,S). (5.100)

We denote rx := dist (x,S). If

dist (x, ∂") ≤ min{c4, 10−1}rx , (5.101)

there exists ξx ∈ ∂" such that |x − ξx |dist (x, ∂"). Then B9rx/10(ξx ) ⊂ Brx (x).
We can apply Proposition 6.1 in " ∩ B9rx/10(ξx ). Since x ∈ Brx/5(ξx ), there holds

c−15
uF (z)

UF (z)
≤ uF (x)

UF (x)
≤ c5

uF (z)

UF (z)
∀z ∈ Brx/5(ξx ) ∩ ". (5.102)

We can take in particular z such that |z − ξx | = rx/5 and dist (z, ∂") =
max{dist (t, ∂") : t ∈ Brx/5(ξx ) ∩ "}. Since the distance from z to S is com-
parable to dist (z, ∂"), there exist n0 ∈ N∗ depending on the geometry of " and

n0 points {a j } with the properties that dist (a j , ∂") ≥ dist (z, ∂"), Brx/10(a j ) ∩
Brx/10(a j+1) 8= ∅ for j = 1, . . . , n0−1, a1 = z and an0 have the property (i) above,

that is there exists some y ∈ S and an isometry Ry such that Ry(C0) ∩ Br0(y) ⊂
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" ∪ {y} and (an0 − y)/|an0 − y| ∈ S1. By classical Harnack inequality (see Theo-

rem 5.29 Step 3), there holds

uF (a j ) ≥ c6uF (a j+1) and UF (a j ) ≥ c−16 UF (a j+1)

for some c6 > 1 depending on N , q and " via the cone C0. Therefore

UF (x) ≤ c5c
2n0
6

uF (an0)

UF (an0)
uF (x) ≤ c7uF (x), (5.103)

which implies (5.97) from case (i) applied to an0 .

Finally, if (5.100) holds, but also

dist (x, ∂") ≥ min{c4, 10−1}rx , (5.104)

this means that dist (x, ∂") is comparable to rx . Then we can perform the same con-
struction as in the case (5.101) holds, except that we consider balls Bdist (x,∂")/4(a j)

in order to connect x to a point an0 satisfying (i). The number n0 is always inde-

pendent of uF . Thus we derive again estimate (5.97) provided dist (x, ∂") ≤ r0/2.
In order to prove that this holds in whole ", we consider some 0 < r1 ≤ r0/2 such
that "′

r1
:= {x ∈ " : dist (x,") > r1} is connected. The function v solution of

{ −!v + vq = 0 in "′
r1

v = c1uF in ∂"′
r1

(5.105)

is larger that UF in "′
r1
. Since c1uF is a super solution, v ≤ c1uF in "′

r1
. This

implies that (5.97) holds in ".
Inequality (5.97) implies uniqueness by the same argument as in the proof of

Theorem 5.29, Step 5.

6. Boundary Harnack inequality

In this section we prove the following:

Proposition 6.1. Assume " is a bounded Lipschitz domain, A ⊂ ∂" is relatively

open and q > 1. Let (r0, λ0) be the Lipschitz characteristic of " (see Subsection
2.1).

Let ui ∈ C(" ∪ A), i = 1, 2, be positive solutions of

−!u + uq = 0 in ",

such that u2 ≤ u1 and ui = 0 on A. Put S = ∂" \ A and d(x, S) = dist (x, S). Let
y ∈ A and let

r := min

(
r0/8,

1

4
d(y, S

)
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so that

∂(B4r (y) ∩ ") = (B4r (y) ∩ ∂") ∪ (∂B4r (y) ∩ ").

Assume also that there exists a constant c1 independent of y such that

u1(z) ≤ c1u2(z) (6.1)

for any z ∈ ∂B3r (y) ∩ " such that dist (z, ∂") ≥ β|z − y|, then

c−1
u1(z)

u1(z′)
≤ u2(z)

u2(z′)
≤ c

u1(z)

u1(z′)
∀z, z′ ∈ B2r (y) ∩ "

such that |z′|=2r, dist (z′, ∂") ≥ β|z′− y|
(6.2)

where the constant c>0 depends only on N, q,β,c1 and the Lipschitz characteristic
of ". In particular

u1(z) ≤ cu2(z) ∀z ∈ B2r (y) ∩ ". (6.3)

Proof. Without loss of generality we assume that y = 0. We can also assume that

the truncated cone with vertex 0

6 := {ζ ∈ RN : 0 < |ζ | < 4r, dist (ζ, ∂") > β|ζ |}

is such that 6 is a compact subset of " ∪ {0}
Let b = d(0, S) and put

ũi (x) = b
− 2
q−1 u1(x/b), i = 1, 2.

Then ũi has the same properties as ui when " is replaced by "b = 1
b
", S by

Sb = 1
b
S, 6 by 6b = 1

b
6 and r by δ = r/b. Of course d(0, Sb) = 1 so that

δ = min(r0/(8b), 1/4).

The functions ũi satisfy the equation

−!ũi + ũ
q
i = 0 in B4δ(0) ∩ "b

and ũi = 0 on B4δ(0) ∩ ∂"b. Therefore, by the Keller–Osserman estimate,

ũi ≤ c(N , q)δ−2/(q−1) in B̄3δ(0) ∩ "b.

If a(x) = ũ
q−1
1 then ũ1 satisfies

−!ũ1 + a(x)ũ1 = 0 in

(
1

b
"

)
∩ B1(0),

and a(·) is bounded in B̄3δ(0).
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Let w be the solution of






−!w + a(x)w = 0 in B3δ(0) ∩ "b

w = 0 on B3δ(0) ∩ 1
b
∂"

w = ũ2χ
6b

on ∂B3δ(0) ∩ "b.

By applying the boundary Harnack principle in B3δ(0)∩"b (using the slightly more

general form derived in [2, Theorem 2.1]) we obtain

c−1
ũ1(ζ

′)
ũ1(ζ )

≤ w(ζ ′)
w(ζ )

≤ c
ũ1(ζ

′)
ũ1(ζ )

∀ζ, ζ ′ ∈ B2δ(0) ∩ "b, (6.4)

where the constant c depends only on the Lipschitz characteristic of "b (which is

(r0/b, λ0b) and therefore “better” then that of " when b ≤ 1). Notice that

ũi (ζ ) ≤ c2ũi (ζ
′) ∀ζ, ζ ′ ∈ 6b s.t. 2δ ≤ |ζ |, |ζ ′| ≤ 3δ

by Harnack inequality. Since a(x) is bounded, it follows by standard representation
formula and Harnack inequality applied to ũ2 that

min{w(x) : |x | = δ, x ∈ 6b} ≥ c′3 min{w(x) : |x | = 3δ, x ∈ 6b}

≥ c3 max{w(x) : |x | = 3δ, x ∈ 6b},
(6.5)

where the constants ci (i = 1, 2) depend on the opening of the cone and thus on the
Lipschitz characteristic of "b. Since w ≤ ũ2 the above inequalities imply

ũ1(ζ ) ≤ cũ2(ζ )
ũ1(ζ

′)
w(ζ ′)

≤ c

c3
ũ2(ζ )

ũ1(ζ
′)

ũ2(ζ ′)
∀ζ ∈ B2δ(0)∩"b, ∀ζ ′ ∈ ∂B2δ(0)∩6b.

In particular, it implies

ũ1(ζ ) ≤ c′ũ2(ζ ) ∀ζ ∈ B2δ(0) ∩ "b.

This completes the proof.
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