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Teichmüller space via Kuranishi families

ENRICO ARBARELLO AND MAURIZIO CORNALBA

Abstract. In this partly expository note we construct Teichmüller space by
patching together Kuranishi families. We also discuss the basic properties of Te-
ichmüller space, and in particular show that our construction leads to simplifica-
tions in the proof of Teichmüller’s theorem asserting that the genus g Teichmüller
space is homeomorphic to a (6g − 6)-dimensional ball.

Mathematics Subject Classification (2000): 30F60 (primary); 14H15, 32G15,
14H10 (secondary).

1. Introduction

Our main goal, in this partly expository note, is to show how the genus g Te-
ichmüller space Tg and the universal family over it can be constructed by patch-
ing together Kuranishi families of genus g curves. This approach, which is close in
spirit to the one of Grothendieck [20,21], should appeal in particular to readers with
an algebro-geometric background, as it relies mostly on standard tools and methods
of their trade. In fact, the main objects we use are the Kuranishi families of smooth
genus g curves, whose construction and properties can be derived quite directly
from the theory of the Hilbert scheme. Our point of view seems to have several ad-
vantages over more traditional ones. First of all, Teichmüller space is constructed
directly as a complex manifold, and the construction makes it obvious that it enjoys
a natural universal property. Secondly, it is very easy to show that the action of the
Teichmüller modular group on Tg is properly discontinuous. Finally, our presen-
tation provides a shortcut to the proof of Teichmüller’s theorem, which states that
Tg is homeomorphic to a (6g − 6)-dimensional ball Bg . In fact, we show that the
universal property of the Kuranishi family holds not only with respect to analytic
deformations, but also with respect to continuous ones, and observe that this imme-
diately proves that the Teichmüller map � : Bg → Tg is continuous. This first step
eliminates some of the technicalities involved in the usual proof of Teichmüller’s
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theorem, highlighting the two central points of the argument: Teichmüller’s unique-
ness theorem and the existence of solutions of the Beltrami equation. It should be
observed that the same program can be carried out for the Teichmüller space Tg,n
of genus g curves with n marked points, although this will not be done here. In
the bibliography we have provided references to the most fundamental texts in this
very classical theory.

2. The Kuranishi family

Throughout this section, C will denote a compact connected Riemann surface of
genus g > 1, or more briefly, a curve of genus g > 1. A family of genus g curves
parametrized by an analytic space S is a proper surjective analytic map η : X → S
having genus g compact Riemann surfaces as fibers. If s is a point of S, we shall
write Xs to indicate the fiber η−1(s); more generally, we shall use the convention
of appending the subscript s to an object over S to indicate its “fiber” at s. The
precise meaning of this in each case will be clear from the context. We will say
that η : X → S is a family of genus g curves in PN , parametrized by S, if X is a
subvariety of PN × S and η is the restriction to X of the projection on the second
factor. A deformation of C, parametrized by a pointed analytic space (S, s0), is a

family of genus g curves η : X → S, together with an isomorphism ψ : C
�→ Xs0 .

Thus, a deformation of C is determined by the data (η, ψ). Given a neighborhood
U of s0, we let ηU : η−1(U ) → U be the map obtained by restriction from η.
If η′ : X ′ → S′, ψ ′ : C → X ′

s′
0

is another deformation of C , parametrized by a

pointed analytic space (S′, s′
0), a morphism of deformations from (η, ψ) to (η′, ψ ′)

is a pair ( f, F) of morphism fitting in a Cartesian diagram

X

η

��

F �� X ′

η′
��

(S, s0)
f

�� (S′, s′
0) .

Let (B, b0) be a (3g − 3)-dimensional connected pointed complex manifold. A
Kuranishi family for C is a deformation of C parametrized by (B, b0):

π : C → B , ϕ : C
�→ Cb0 (2.1)

satisfying the following universal property. Given a deformation (η, ψ) of C as
above, there are a neighborhood U of s0 and a morphism ( f, F) of deformations
from (ηU , ψ) to (π, ϕ); moreover, this morphism is essentially unique, in the sense
that any other morphism of this sort agrees with ( f, F) over η−1(U ′) → U ′, for
some neighborhood U ′ of s0.

Kuranishi families for curves of genus g > 1 always exist. We will now
briefly illustrate how one such family may be constructed. Let ν ≥ 3 and set
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N = (2ν − 1)(g − 1) − 1. As is well known, a curve of genus g can be embedded
in the projective space PN via the ν-canonical map, that is, via the sections of the
ν-th power of the canonical line bundle ωC . The embedding depends on the choice
of a basis for the space of sections of ων

C , and different choices of basis give rise
to projectively equivalent embeddings. Conversely, any isomorphism between two
genus g curves comes from a unique projectivity of PN carrying the ν-canonical
image of one curve to the ν-canonical image of the other. The Hilbert scheme Hg,ν

of ν-canonical, genus g curves is a smooth projective variety whose points are in a
one-to-one correspondence with the set of ν-canonically embedded curves of genus
g. The Hilbert scheme Hg,ν is the parameter space for a family ξ : Y → Hg,ν of
genus g curves in PN having the following universal property. For every family
η : X → S of genus g curves ν-canonically embedded in PN there exists a unique
morphism α : S → Hg,ν exhibiting the family η as the pull-back, via α, of the
universal family ξ , so that there is a commutative diagram of Cartesian squares

PN × S
1×α

�� PN × Hg,ν

X
h

��
��

��

η

��

Y
��

��

ξ

��

S
α �� Hg,ν .

The projective group PGL(N +1,C) acts naturally on Hg,ν , with finite stabilizers,
since curves of genus g > 1 have finite automorphism groups. Thus, in accordance
with Riemann’s count,

dim Hg,ν = 3g − 3 + dim PGL(N + 1,C) .

Now let us consider a genus g curve C and a ν-canonical embedding ϕ : C
�→


 ⊂ PN of C , associated to a basis χ0, . . . , χN of the space of ν-fold holomorphic
differentials on C . Let p ∈ Hg,ν be the point corresponding to 
. We choose a
local “slice” at p for the action of PGL(N + 1,C), that is, a (3g − 3)-dimensional
locally closed subvariety U passing through p and transverse to the orbits of
PGL(N + 1,C). Possibly after shrinking U , if W is a sufficiently small open
neighborhood of the identity in the projective group, (g, u) �→ gu is an isomor-
phism between W ×U and an open neighborhood V of p. Thus there is a canonical
fibration σ : V → U along the orbits of PGL(N + 1,C). Let now π : C → U
be the restriction to U of the universal family ξ : Y → Hg,ν . This family, together
with the identification ϕ : C → 
 = π−1(p), is a Kuranishi family for C . Let us
see why. Suppose

η : X → S , ψ : C → Xs0
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is a deformation of C parametrized by (S, s0). Consider the sheaf ωη of relative
holomorphic differentials along the fibers of η. By suitably shrinking the parameter
space S of this deformation we may assume that η∗ων

η is trivial on S. Choosing a
frame of this vector bundle exhibits η : X → (S, s0) as a family of ν-canonically
embedded curves, that is, determines an embedding β : X → PN × S whose fiber
βs : Xs → PN at s is ν-canonical for every s ∈ S. Furthermore, if the frame is
chosen so as to pull back to χ0, . . . , χN on C , then the composition of the identi-
fication ψ : C → Xs0 with βs0 : Xs0 → PN is equal to the composition of ϕ with
the inclusion of 
 in PN . The universal property of the Hilbert scheme then yields
a morphism α : S → Hg,ν such that α(s0) = p. We may assume that α(S) ⊂ V .
It is then immediate to verify that the morphism σα : S → U realizes the universal
property of a Kuranishi family.

Possibly shrinking B, one can assume that the Kuranishi family (2.1) satisfies
various useful additional properties. For instance, one can set things up so that (2.1)
is “Kuranishi at every point of B”. This means that, for any b ∈ B, the deformation
consisting of C → B and of the identity isomorphism from Cb to itself is a Kuranishi
family for Cb. In fact, the Kuranishi family whose construction we outlined above
has this property.

We may also assume that the automorphism group of C acts on C and B. In
fact, let γ be an automorphism of C . Then

π : C → B , ϕγ : C
�→ Cb0 (2.2)

is another Kuranishi family. By the universal property, up to shrinking B, if neces-
sary, there is a unique Cartesian diagram

C
f̃γ

��

π

��

C
π

��

(B, b0)
fγ

�� (B, b0)

where fγ and f̃γ are isomorphisms, inducing an isomorphism between the two
deformations of C given by (2.1) and (2.2). This results, possibly after further
shrinking of B, in compatible actions of Aut(C) on B and C pulling back, via ϕ, to
the standard action on C . The action on C is always faithful, while the action on
B is not faithful only when g = 2; in this case the only elements of Aut(C) acting
trivially are the identity and the hyperelliptic involution. By further shrinking the
base B one may even assume that any isomorphism between two fibers Cb and Cb′
of π comes by restriction from f̃γ , for some γ ∈ Aut(C). This is often crucial in
applications.

We end this section by recalling a fundamental compactness property of fam-
ilies of compact Riemann surfaces. Suppose α : X → U and α′ : X ′ → U ′ are
two families of compact Riemann surfaces of genus g > 1 parametrized by an-
alytic spaces U and U ′. Let {un}n∈N ({u′

n}n∈N) be a sequence of points in U
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(respectively, U ′) converging to a point u ∈ U (respectively, u′ ∈ U ′). Assume
that Xun is isomorphic to X ′

u′
n
, for every n. Then Xu is isomorphic to X ′

u′ . This
can be deduced from the following purely algebro-geometric statement, which is
in turn a rather straightforward consequence of the properness of relative Hilbert
schemes and of the theory of minimal models of algebraic surfaces. Let Y → R and
Y ′ → R be algebraic families of smooth curves of genus g > 1; then the scheme

IsomR(Y, Y ′) parametrizing isomorphisms Yr
�→ Y ′

r , r ∈ R, is proper over R. Here
is how the reduction to this statement of the preceding one goes. Let Z → S and
W → T be algebraic families of smooth curves of genus g > 1. Set Y = Z × T ,
Y ′ = S×W , R = S×T . Then the locus {(s, t) : Xs is isomorphic to Yt }⊂ S×T = R
is the projection of IsomR(Y, Y ′), and hence is closed. This shows in particular that
the statement to be proved is true for algebraic families. To prove it in general it
then suffices to show that the original families α : X → U and α′ : X ′ → U ′, or
just their restrictions to suitable neighborhoods of u and u′, come by pullback from
algebraic families. But this is clear. In fact, up to shrinking U and U ′, we may
suppose that α∗ων

α and α′∗ων
α′ are trivial for some ν ≥ 3. Thus we may embed X

and X ′ ν-canonically, so X ⊂ PN × U , X ′ ⊂ PN × U ′, and both families come
from the universal family over the Hilbert scheme Hg,ν via maps U → Hg,ν and
U ′ → Hg,ν .

A convenient reference for deformation theory and Hilbert schemes is [33].
A detailed presentation of Kuranishi families will be contained in the forthcoming
volume [6].

3. The construction of Teichmüller space as a complex manifold

Fix an oriented genus g topological surface �. We assume that g > 1. Given
a genus g curve C , a Teichmüller structure on it is the isotopy class [ f ] of an
orientation-preserving homeomorphism f : C → � . An isomorphism between
curves with Teichmüller structure (C, [ f ]) and (C ′, [ f ′]) is an isomorphism of
curves ϕ : C → C ′ , such that [ f ′ϕ] = [ f ]. The set of isomorphism classes of
genus g curves with Teichmüller structure has a natural topology and complex
structure which we are presently going to describe. The resulting space is called
the Teichmüller space of � and is denoted by the symbol T� . The point in T� as-
sociated to the curve C and to the isotopy class [ f ] will be denoted by the symbol
[C, [ f ]]. If �′ is another oriented genus g surface, and ρ : � → �′ an oriented
homeomorphism, we get a bijection T� → T�′ by sending [C, [ f ]] to [C, [ρ ◦ f ]].
Clearly, this bijection depends only on the isotopy class of ρ, and it will be clear
from the construction of the complex structure on Teichmüller space that it is an iso-
morphism of complex manifolds. We are therefore justified in writing Tg , instead
of T� , when the reference surface � is kept fixed, as will usually happen.

It is important to remark that a curve with Teichmüller structure (C, [ f ]) has
no non-trivial automorphism. In fact, an automorphism ϕ : C → C such that
[ f ϕ] = [ f ] must be homotopically trivial and, in particular, must induce the iden-
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tity on complex cohomology. This implies that ϕ induces the identity at the level of
holomorphic forms, and hence must commute with the canonical map. This shows
that f is the identity if C is not hyperelliptic, and that f is the identity or the hy-
perelliptic involution otherwise. However, the hyperelliptic involution does not act
trivially on complex cohomology, so f must be the identity in this case as well.

We next introduce a topology and a complex structure on Teichmüller space.
We begin by extending the notion of Teichmüller structure from curves to families
of curves. A Teichmüller structure on a family of genus g curves η : X → S is
the datum of a Teichmüller structure [ fs] on each fiber Xs , satisfying the following
coherence condition. There exists a cover of S with open sets U together with

topological trivializations (F, ηU ) : η−1(U )
�→ � × U such that, for each s ∈ U ,

[Fs] = [ fs]. Let V be an open subset of S, and let

(F, ηV ) : η−1(V )
�→ � × V

(G, ηV ) : η−1(V )
�→ � × V

be two topological trivializations. Suppose that [Fs] = [Gs] for some s ∈ V . Let
γ : [0, 1] → V be a path from a point s′ ∈ V to s. Then, as t varies between 0 and
1, the homeomorphisms

Gγ (t) ◦ F−1
γ (t) ◦ Fs′ : Xs′ → �

describe an isotopy between Gs′ and Gs ◦ F−1
s ◦ Fs′ , which in turn is isotopic to Fs′ .

Hence [Fs′ ] = [Gs′ ] for all s′ ∈ V belonging to the same connected component as
s. This implies in particular that, when V is connected, F and G are equal if and
only if they agree at one point.

Now let (C, [ f ]) be a genus g curve with Teichmüller structure. Consider a
Kuranishi family (2.1) for the curve C . Possibly after shrinking B, such a family
admits a topological trivialization (F, π) : C → � × B such that Fb0 ◦ ϕ = f ,
and hence can be endowed with a unique Teichmüller structure extending the one
on C . We thus get what we shall refer to as a Kuranishi family for the curve with
Teichmüller structure (C, [ f ]). The name is justified by the fact that such a fam-
ily enjoys, with respect to deformations of curves with Teichmüller structure, a
universal property exactly analogous to the one of standard Kuranishi families, as
follows immediately from the universal property of ordinary Kuranishi families and
the uniqueness of the Teichmüller structure extending the one on the fiber at s0. It
should be observed that, when B is small enough, the family we just constructed is
Kuranishi at every point of B, as follows from the analogous property of standard
Kuranishi families.

We are ready to describe the topology and the complex structure on Tg . Let
y = [C, [ f ]] be a point of Tg . Choose a Kuranishi family for (C, [ f ]). As we
explained, this can be constructed by putting on the family (2.1), where B is chosen
to be connected and “sufficiently small”, the unique Teichmüller structure extending
[ f ]; for each b ∈ B, we denote by [Fb] the Teichmüller structure on Cb. As we
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pointed out at the end of Section 2, we may suppose that the action of G = Aut(C)

on C extends to an equivariant action on C and on B, and that any isomorphisms
between fibers of π is the restriction of the action of an element of G on C. We
claim that the natural map

α : B −→ Tg

b �→ [Cb, [Fb]]
is injective. A map of this sort will be called a standard coordinate patch for Tg
around the point y. To prove the injectivity of α, suppose that α(b) = α(b′) for
b, b′ ∈ B. Thus there is an isomorphism ψ : Cb → Cb′ such that [Fb] = [Fb′ ◦ ψ].
Our assumptions imply that ψ is induced by an element ρ ∈ G, so that there is a
commutative diagram

C ξ̃
��

π

��

C
π

��

B
ξ

�� B

(3.1)

where ξ̃ and ξ are automorphisms such that ξ(b0) = b0, ξ(b) = b′, ξ̃b = ψ , and
ξ̃ pulls back to ρ on C . We define a new Teichmüller structure on (2.1) by setting
F ′

t = Fξ(t) ◦ ξ̃t . Since [F ′
b] = [Fb′ ◦ψ] = [Fb], it follows that [F ′

t ] = [Ft ] for every
t ∈ B. When t = b0, this says that [ f ◦ ρ] = [ f ]. Thus ρ is isotopic to the identity
and, as we observed above, this implies that ρ = 1, proving our claim.

Let us show that the patches we have just introduced define a complex structure
on Tg . Let α : B → Tg and β : B ′ → Tg be two standard patches whose codomains
have a point z in common. Let π : C → B, π ′ : C′ → B ′ be the corresponding
families, and U a small enough neighborhood of β−1(z). Then, by the universal
property of Kuranishi families, there is a unique morphism of families of curves
with Teichmüller structure

π ′−1
(U )

� ��

π ′
U

��

C
π

��

U
ψ

�� B .

On the other hand, ψ clearly agrees with the restriction to U of α−1◦β. In particular,
β−1(α(B)) is open in B ′, and α−1 ◦ β is holomorphic on it.

This completes the construction of a (possibly non-Hausdorff) complex struc-
ture on Tg; in the next section we shall prove that Tg is actually a Hausdorff topo-
logical space. In fact, the above argument also shows that the Kuranishi families
corresponding to standard coordinate patches can be canonically glued together to
yield a universal family of curves with Teichmüller structure

η : Xg −→ Tg .
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This family is universal in the sense that any holomorphic family of genus g curves
with Teichmüller structure over a base T is isomorphic, via a unique isomorphism,
to the pull-back of the family Xg → Tg via a unique morphism T → Tg . In
particular, Tg represents the functor

T �→
{

isomorphism classes of holomorphic families of

genus g curves with Teichmüller structure over T

}

from analytic spaces to sets.

4. The mapping class group and its action

As in the previous section, we pick a reference oriented genus g topological surface
�. The mapping class group 
� , also called Teichmüller modular group, is the
group of all isotopy classes of orientation-preserving homeomorphism of �. When
the reference surface � is kept fixed, we shall often denote it by 
g . The mapping
class group acts naturally on Tg = T� , the action of an element [γ ] being given by

[γ ] · [C, [ f ]] = [C, [γ ◦ f ]] .

It is immediate to show that the elements of 
g act on Tg as holomorphic au-
tomorphisms. Consider an element [γ ] ∈ 
g , and a standard coordinate patch
α : B → Tg obtained from a Kuranishi family (2.1), endowed with a Teichmüller
structure {Fb}b∈B . We know that [γ ] acts by replacing each Teichmüller structure
[ f ] with [γ ◦ f ]. Substituting {γ ◦ Fb}b∈B for the Teichmüller structure {Fb}b∈B
produces a new coordinate patch β : B → Tg , and it is clear that, for any b ∈ B,

β−1([γ ] · α(b)) = b .

This shows that [γ ] acts holomorphically.
As a set, the moduli space Mg of genus g curves is the set of isomorphism

classes of smooth curves of genus g. Ignoring Teichmüller structures gives a map

m : Tg → Mg ,

which can be identified with the quotient map from Tg to Tg/
g . To see this first
observe that, given y ∈ Tg and [γ ] ∈ 
g , y and [γ ] · y obviously map to the same
point of Mg . Conversely, given points y = [C, [ f ]] and y′ = [C ′, [ f ′]] of Tg
mapping to the same point of Mg , there is an isomorphism ϕ : C → C ′, so that
y′ = [γ ] · y, where γ = f ′ϕ f −1. Let now G be the automorphism group of the
curve C . We claim that the homomorphism σ from G to 
g given by

ρ �→ [γρ] , where γρ = fρ f −1 ,

identifies G with the stabilizer of y. First of all, σ is injective, since [ fρ f −1] = 1
if and only if ρ is homotopic to the identity, and, as we know, this happens only
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when ρ = 1. Furthermore, fρ = γρ f , which exactly means that ρ is an isomor-
phism between the curves with Teichmüller structure (C, [ f ]) and (C, [γρ f ]). Thus
y = [γρ] · y, that is, σ(ρ) belongs to the stabilizer of y. Finally, given any [γ ] in
the stabilizer of y, there is an element ψ of G such that [ f ψ] = [γ f ], that is,
[γ ] = [γψ ] = σ(ψ) for some ψ ∈ G.

Now consider a standard coordinate patch α : B → Tg centered at y, coming
from a Kuranishi family (2.1), endowed with a Teichmüller structure {Fb}b∈B . We
shall prove that α is G-equivariant. If ρ is an element of G, there is a diagram (3.1),
where ξ̃ and ξ are automorphisms such that ξ(b0) = b0 and ξ̃b0ϕ = ϕρ. The action
of ρ on B is then given by ρ · b = ξ(b). We must show that α(ξ(b)) = [γ ] · α(b),
where γ = γρ = fρ f −1. We define two new Teichmüller structures {Hb}b∈B and
{Kb}b∈B on (2.1) by setting Hb = Fξ(b)ξ̃b and Kb = γ Fb. It is easy to verify that
Hb0 = Kb0 . It follows that [Hb] = [Kb] for all b. Since ξ̃b is an isomorphism
between (Cb, [Hb]) and (Cξ(b), [Fξ(b)]), and since

[γ ] · [Cb, [Fb]] = [Cb, [Kb]] ,

we have that

[γρ] · α(b) = [Cb, [Kb]] = [Cb, [Hb]] = α(ξ(b)) ,

as wished.
The moduli space Mg = Tg/
g is equipped with the quotient topology. A

basis for this topology is given as follows. As we just saw, any standard patch
α : B → Tg drops to an injective map α : B/G → Mg , where G is the automor-
phism group of the central fiber. The open sets of the form α(B/G) form a basis
for the topology of Mg .

The fact that the moduli space Mg is Hausdorff is an immediate consequence
of the property mentioned at the end of Section 2. Suppose in fact that the sequence
{zn} ⊂ Mg converges to two points x and y, corresponding to the isomorphism
classes of curves C and C ′. Consider Kuranishi families π: C→B and π ′: C′ →B ′
for C = π−1(b0) and C ′ = π−1(b′

0), respectively, yielding standard patches
α : B → Tg and α′ : B ′ → Tg . We may assume that {zn} ⊂ α(B) ∩ α′(B ′). Lift
the sequence {zn}, via α and α′, to sequences {xn} ⊂ B and {yn} ⊂ B ′ converging,
respectively, to b0 and b′

0. Since Cxn is isomorphic to C ′
yn

, for all n, we conclude
that C ∼= Cb0 is isomorphic to C ′ ∼= C ′

b′
0
, so that x = y.

We shall now show that Tg is Hausdorff and, at the same time, that the action
of 
g on Tg is properly discontinuous. We must prove that:

1) Points y and y′ in Tg belonging to different 
g-orbits possess disjoint neighbor-
hoods.

2) Every point y ∈ Tg possesses a neighborhood V such that, if G y is the stabilizer
of y, then

{γ ∈ 
g : γ V ∩ V �= ∅} ⊂ G y .
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The first property is a direct consequence of the Hausdorffness of Mg . To prove
the second, fix y ∈ Tg . We can then identify the stabilizer G y with the automor-
phism group of the fiber Xy of the universal family X → Tg . We claim that y has
arbitrarily small neighborhoods V with the following properties:

a) V is G y-stable;
b) for y and z in V , the fiber Xy is isomorphic to the fiber Xz if and only if z = gy,

for some g ∈ G y ;
c) the stabilizer of z is contained in G y for any z ∈ V .

In fact, we can take as V the images α(B) of standard patches α : B → Tg centered
at y, corresponding to Kuranishi families C → B. The only one of the above
properties that may not be clear is perhaps c). To prove it, recall that the action of
G y on V corresponds to the action on the base B and total space C of the Kuranishi
family of the automorphism group of the central fiber, and that every isomorphism
between fibers of C → B is induced by an automorphism of the central fiber. In
particular, this is true of the automorphisms of the fiber above a point b ∈ B.
Since the group of these automorphisms corresponds to the stabilizer of z = α(b),
property c) follows.

We claim that a neighborhood satisfying properties a)–c) above also satisfies
2). Suppose in fact that z = γ · z′, where z, z′ ∈ V . It follows from b) that there is
ρ ∈ G y such that z′ = ρ · z. But then γρ ∈ Gz ⊂ G y , and hence γ belongs to G y ,
as desired. We may now show that Tg is Hausdorff. We already know that points
y and y′ of Tg belonging to different orbits of 
g can be separated, and property 2)
shows how to separate points belonging to the same orbit.

This completes the proof of the fact that Tg is Hausdorff and that the mapping
class group 
g acts properly discontinuously on Tg .

We end this section by briefly discussing the definition of Teichmüller space.
It is known that, if X and Y are surfaces without boundary, compact or not, two
homeomorphisms f1, f2 : X → Y are homotopic if and only if they are isotopic. A
proof can be found in [18, cf. in particular Theorems 6.4 and A4]. An immediate
consequence is that a Teichmüller structure on an unpointed curve C can also be
defined as the homotopy class of an orientation-preserving homeomorphism from
C to a reference surface �. Similarly, 
g can be defined as the group of orientation-
preserving homeomorphisms of � modulo homotopy.

Another variant of the definitions of Teichmüller space and mapping class
group, entirely equivalent to the original one, can be obtained by fixing a differ-
entiable structure on the reference surface � and replacing the words “homeomor-
phism” and “isotopy” with “diffeomorphism” and “differentiable isotopy” through-
out. What this amounts to saying is that every class in 
g contains a diffeomor-
phism, and that two diffeomorphisms which are isotopic are also differentiably iso-
topic. Thus the Teichmüller space Tg is the set of isomorphism classes of objects
(C, ϕ), where C is a curve of genus g and ϕ is the differentiable isotopy class of an
oriented diffeomorphism from C to �. Similarly,


g = Diff+(�)/ Diff0(�) ,
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where Diff+(�) stands for the group of orientation-preserving diffeomorphisms
of � and Diff0(�) for its identity component, which is nothing but the group of
diffeomorphisms of � which are differentiably isotopic to the identity.

5. Continuous families of Riemann surfaces

Roughly speaking, the universal property of the Kuranishi family of a smooth curve
C can be expressed by saying that any small deformation of C can be obtained by
pullback from the Kuranishi family. Our main goal in this section is to show that
the same is true for “continuous deformations” of C .

First, we need some preliminaries. Let α : X → S be a surjective morphism of
Cm manifolds, where m = 0, . . . , ∞. Suppose we can find an open cover {Ui } of
X and Cm diffeomorphisms �i = �i,1 × �i,2 : Ui → Vi × Wi of manifolds over
S, where Vi is open in Rn and Wi is an open set in S, such that:

a) the function v �→ �i,1 ◦ �−1
j (v, w) is of class C∞ for any choice of i and j and

for any w ∈ W j ,
b) the composition �i,1 ◦ �−1

j and all its derivatives, of any order, with respect to
the the Vj coordinates, are of class Cm , for any choice of i and j .

We shall then say that the atlas U = {(Ui , �i )} defines on α : X → S a structure
of Cm family of differentiable manifolds. We shall refer to the components of the
functions �i,1 as vertical coordinates and to derivatives with respect to them as
vertical derivatives. We shall say that a function on an open set of X is adapted
if it is C∞ in the vertical coordinates and its vertical derivatives, of any order, are
Cm ; clearly, this notion does not depend on the chart in U with respect to which
vertical derivatives are computed. Another atlas U ′ will be considered equivalent to
U if the adapted functions with respect to it are the same as the adapted functions
with respect to U . This is equivalent to asking that the vertical coordinates in either
atlas be adapted with respect to the other atlas. We shall say that equivalent atlases
define on α : X → S the same structure of Cm family of differentiable manifolds.
Given a Cm family of differentiable manifolds, the charts of any atlas defining the
Cm family structure will be said to be adapted. A morphism from a Cm family of
differentiable manifolds α : X → S to another family β : Y → T is a commutative
square

X
F ��

α

��

Y

β

��

S
f

�� T

where f and F are Cm morphisms and the composition of F with any vertical
coordinate on Y is an adapted function. Clearly, the class of morphisms of Cm

families of differentiable manifolds is closed under composition.
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Let α : X → S be a Cm family of differentiable manifolds. There is an obvious
notion of Cm family of differentiable vector bundles (real or complex) on α: X → S.
Examples are provided, for instance, by the relative tangent bundle to X → S and
its dual. The class of Cm families of differentiable vector bundles is closed under
the standard vector bundle operations, such as passing to the dual, direct sum, tensor
product, and exterior power. If E is a Cm family of differentiable vector bundles,
it makes sense to speak of adapted local trivializations and adapted sections of
E . In particular, it makes sense to speak of adapted relative differential forms (or,
more generally, relative E-valued differential forms) along the fibers of α. There
is also a good notion of Cm family of linear differential operators or, as we shall
sometimes say, of adapted linear differential operator. Given two Cm families E
and E ′ of differentiable vector bundles on α : X → S, a linear differential operator
carrying sections of E to sections of E ′ will be said to be a Cm family of linear
differential operators on α : X → S if, when written in adapted coordinates and
relative to adapted local trivializations of E and E ′, it involves only differentiation
with respect to vertical coordinates and its coefficients are adapted functions. Thus
an adapted linear differential operator carries adapted sections to adapted sections.

We will need a basic result, due to Kodaira and Spencer [24], concerning the
differentiability properties of solutions of differential equations Lu = v, where L
is a Cm family of differential operators and v is an adapted section. Let α : X → S
be a Cm family of compact differentiable manifolds, and let E be a Cm family of
differentiable vector bundles on it. We denote by Ã(E) the vector space of adapted
sections of E . Let L : Ã(E) → Ã(E) be a Cm family of linear differential opera-
tors. A metric on E will be said to be adapted if the inner product of any pair of
adapted sections is an adapted functions. Adapted metrics always exist, and can
for instance be constructed by gluing together flat local metrics by means of a par-
tition of unity made up of adapted functions. Suppose an adapted metric is given
on E , and one on the relative tangent bundle to X → S. We denote by 〈 , 〉s the
inner product on Es , and by dVs the volume form on Xs coming from the metric.
Consider the inner product

(u, v) =
∫

Xs

〈u, v〉s dVs (5.1)

on A(Es), the vector space of C∞ sections of Es . We will say that L is a family
of formally self-adjoint, strongly elliptic differential operators if each Ls is self-
adjoint with respect to the inner product (5.1), and strongly elliptic. Under these
circumstances the kernel of Ls is finite-dimensional, and there are linear operators

Fs, Gs : A(Es) → A(Es) ,

where Fs is the orthogonal projection onto the kernel of Ls , and

u = Fsu + Ls Gsu . (5.2)

for any u ∈ A(Es). We shall refer to Fs and Gs , respectively, as the harmonic
projector and Green operator associated to Ls and to the chosen metrics. The
theorem of Kodaira and Spencer reads as follows.
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Theorem 5.1 ([24], Theorem 5). Let m be a non-negative integer or ∞. Let
α : X → S be a Cm family of compact differentiable manifolds, and let E be
a Cm family of differentiable vector bundles on α : X → S. Suppose E and
the relative tangent bundle to X → S are endowed with adapted metrics. Let
L : Ã(E) → Ã(E) be a Cm family of formally self-adjoint, strongly elliptic linear
differential operators. Suppose the dimension of the kernel of Ls is independent
of s. Then the family of harmonic projectors F = {Fs}s∈S and the family of Green
operators G = {Gs}s∈S are of class Cm, in the sense that Fu and Gu are adapted,
for any adapted u.

To be precise, the statement proved by Kodaira and Spencer is slightly less
general than the one we have given, in two respects. First of all, they deal only
with families of the form X0 × S → S, where X0 is a compact manifold. More
importantly, they treat only the case m = ∞. These, however, are not serious
difficulties. Since the statement of Theorem 5.1 is local on S, the first is resolved
by the following result.

Lemma 5.2. Let α : X → S be a Cm family of compact differentiable manifolds,
let E be a Cm family of differentiable vector bundles on it, and let s0 be a point of
S. Then, if U is a sufficiently small neighborhood of s0, there is an isomorphism
of Cm families of differentiable manifolds between α−1(U ) → U and the product
family Xs0 × U → U. Moreover, if q is the projection of α−1(U ) ∼= Xs0 × U to
Xs0 , E is isomorphic, as a Cm family of differentiable vector bundles, to q∗(Es0).

This result is well known, at least for m = ∞. However, since the usual proof,
which involves integrating lifts to X of coordinate vector fields on S, breaks down
for m = 0, we shall sketch an alternate proof below. Before we do so, however,
we notice that the second difficulty mentioned above is also non-existent, since the
proof given by Kodaira and Spencer for their theorem, and in particular their crucial
Proposition 1, work equally well, and virtually without changes, in our context,
provided we substitute Lemma 5.2 above, and in particular its second part, for their
Lemma 1.

We now prove our Lemma 5.2. We shall use the following version “with pa-
rameters” of the inverse function theorem.

Lemma 5.3. Let U be an open subset of Rn, V an open subset of R�, f : U ×
V → Rn a continuous function, and m a non-negative integer or ∞. Write
x = (x1, . . . , xn) to indicate the standard coordinates in U and t = (t1, . . . , t�)
to indicate the standard ones in V . Suppose that:

i) the function f is C∞ in x for any fixed t;
ii) the function f and all its derivatives, of any order, with respect to the x vari-

ables, are Cm functions of x and t;
iii) the Jacobian ∂ f

∂x (x, t) is non-singular at a point (x0, t0) ∈ U × V .

Set F(x, t) = ( f (x, t), t). Then there is an open neighborhood A of (x0, t0) such
that F(A) is open in Rn × R� and F induces a homeomorphism from A to F(A).
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Moreover, writing the inverse of this function under the form (x, t) �→ (g(x, t), t),
the function g is C∞ in x, and g and all its derivatives, of any order, with respect
to the x variables, are Cm functions of x and t.

The proof of this lemma is essentially the same as the one of the standard
inverse function theorem, and will not be given here.

Proof of Lemma 5.2. The first step is to show that families of compact differentiable
manifolds can be locally embedded in euclidean space. More precisely, we shall see
that, if U is a sufficiently small neighborhood of s0, for sufficiently large N there
is a map F : α−1(U ) → RN such that the pair (1U , F × α) is a morphism of
Cm families of differentiable manifolds from α−1(U ) → U to RN × U → U
which is a fiberwise embedding. Denote by Br the ball of radius r centered at the
origin of Rn . Shrinking S, if necessary, we may find finitely many adapted charts
(ϕi , α) : Ui → B2 × S, where Ui is an open subset of X , such that X is covered
by the open sets (ϕi , α)−1(B1 × S). Choose a non-negative C∞ function ρ on B2
which vanishes identically on the complement of B4/3 and is identically equal to 1
on B1. Pulling this back via ϕi we get a function on Ui , which we denote by ρi .
Write ϕi = (ϕi,1, . . . , ϕi,n), and denote by ψi, j the function ρiϕi, j , extended to zero
on the complement of Ui in X ; clearly, ψi, j is adapted. Denote by ψ the map from
X to RM whose components are the ψi, j . The map ψ is adapted, and its restriction
to each fiber of α is a local embedding. In particular, there is an open neighborhood
W of the diagonal � in X ×S X such that ψ(x) �= ψ(y) for all (x, y) ∈ W � �.
Shrinking S again, we may find finitely many adapted charts (ξi , α) : Vi → B2 × S,
where Vi is an open subset of X , having the following property. We may select
a set I of pairs of indices such that Vi ×S Vj does not meet � if (i, j) ∈ I , and
X ×S X � W is covered by the open sets (ξi , α)−1(B1 × S) ×S (ξ j , α)−1(B1 × S)

as (i, j) varies in I . Denote by λi the pullback of ρ via ξi , extended to zero on the
complement of Vi . By construction, if (x, y) ∈ X ×S X � W , there is an index i
such that λi (x) �= 0 but λi (y) = 0. As a consequence, the λi , together with the ψi, j ,
are the components of an adapted map X → RN which is a fiberwise embedding.

We may thus view X as embedded in RN × S, and hence each fiber Xs as em-
bedded in RN . There is a neighborhood V of Xs0 in RN which is diffeomorphic to
a neighborhood of the zero section of the normal bundle to Xs0 in RN , and the pro-
jection to the zero section in the normal bundle yields a C∞ map η : V → Xs0 .
Clearly, Xs ⊂ V when s is close to s0, and therefore, after suitably shrinking
S, η gives an adapted map β : X → Xs0 . We wish to show that, possibly af-
ter further shrinking S, (β, α) : X → Xs0 × S is an isomorphism of Cm families
of differentiable manifolds. As the embedding of X in RN is adapted, the tan-
gent spaces to the Xs vary continuously. Moreover, Lemma 5.3 implies that every
point of Xs0 has a neighborhood U such that β induces a diffeomorphism from
Xs ∩ β−1(U ) to U for s near s0. Let us see that, in fact, β|Xs is a diffeomorphism
when s is close to s0. It suffices to prove injectivity. Suppose there are a sequence
{sn} in S converging to s0 and sequences of points xn, yn ∈ Xsn such that xn �= yn
but β(xn) = β(yn); we may assume that {xn} and {yn} converge, respectively, to
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points x, y ∈ Xs0 . Letting n go to infinity we find that x = β(x) = β(y) = y. This
shows that, if U is neighborhood of x as above, xn and yn belong to U for large n,
and hence β(xn) �= β(yn), a contradiction. This proves the first part of Lemma 5.2.

The proof of the last statement is similar. We sketch it for E a real vector
bundle, the proof for a complex bundle being entirely analogous. First notice that,
up to shrinking S, there exist enough adapted sections of E to embed E as a sub-
vector bundle in a trivial bundle RK × Xs0 × S, for some large K . The orthogonal
projection with respect to the Euclidean metric of RK gives a surjective morphism
of C∞ vector bundles on Xs0 from RK × Xs0 to Es0 . As a consequence, we get
a surjective morphism RK × Xs0 × S → q∗(Es0) which, when composed with
the inclusion of E ⊂ RK × Xs0 × S yields a morphism of adapted vector bundles
E → q∗(Es0). The restriction of this to α−1(U ) is an isomorphism for any suffi-
ciently small neighborhood U of s0.

The notion of Cm family of differentiable manifolds has a holomorphic coun-
terpart in the one of Cm family of complex manifolds. Formally, such a family is a
surjective morphism α : X → S of Cm manifolds with the property that each fiber
Xs is a complex manifold, satisfying the following local triviality condition. For
every x ∈ X there is a Cm diffeomorphism ϕ : U → V × W , where U is a neigh-
borhood of x in X , W is a neighborhood of α(x) in S, and V is a ball centered at 0
in some Ch , such that:

i) ϕ is compatible with the projections to S;
ii) ϕ(x) = (0, α(x));

iii) ϕ maps U ∩ α−1(s) biholomorphically onto V × {s} for every s ∈ W .

When all the fibers of α are curves we will speak of Cm family of curves. A Cm

family of compact complex manifolds has a natural structure of Cm family of dif-
ferentiable manifolds, as a consequence of the following standard result.

Lemma 5.4. Let f (z1, . . . , zh, t1, . . . , t�) be a Cm function of the complex vari-
ables z1, . . . , zh and of the real variables t1, . . . , t� which is holomorphic in
z1, . . . , zh. Then the partials of f , of any order, with respect to the variables
z1, . . . , zh, are Cm functions of z1, . . . , zh, t1, . . . , t�.

The lemma follows directly from Cauchy’s integral formula

∂
∑

ki

∂zk1
1 . . . ∂zkh

h

f (z1, . . . , zh, t1, . . . , tk)

=
∏

ki !
(2π i)h

∫
|ζi −zi |=ε

i=1,...,h

f (ζ1, . . . , ζh, t1, . . . , t�)∏
(ζi − zi )ki +1

dζ1 . . . dζh .

In fact, the right-hand side can be continuously differentiated m times under the
integral sign with respect to the variables ti .
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A morphism of Cm families of complex manifolds is just a morphism of Cm

families of differentiable manifolds which happens to be holomorphic on the fibers.
If α : X → S is a Cm family of complex manifolds, we denote by ÕX the sheaf
of Cm functions on X which are holomorphic along the fibers, and by �̃

p
α the

ÕX -module whose sections are the relative differential forms which restrict to a
holomorphic (p, 0)-form on each fiber. We also write Ãp,q

α for the sheaf of adapted
relative (p, q)-forms; it is a module over ÃX , the sheaf of adapted functions. Now
let C be a curve. A Cm deformation of C is the datum of a pointed Cm manifold

(S, s0), a Cm family of curves α : X → S, and an isomorphism ϕ : C
�→ Xs0 .

A morphism of Cm deformations from α : X → (S, s0), ϕ : C → Xs0 to another
deformation α′ : X ′ → (S′, s′

0), ϕ′ : C → X ′
s′
0

is a pair ( f, F) of Cm morphisms

fitting in a Cartesian diagram

X
F ��

α

��

X ′

α′
��

(S, s0)
f

�� (S′, s′
0)

such that ( f, F) is a morphism of Cm families of curves and Fs0 ◦ ϕ = ϕ′. We
shall show that the universal property of the Kuranishi family of C holds also with
respect to Cm deformations.

Proposition 5.5. Let C be a curve of genus g > 1, and let α : X → (S, s0),
ϕ : C → Xs0 , be a Cm deformation of C. Let π : C → (B, b0), ψ : C → Cb0 ,
be a Kuranishi family for C. Then, for some open neighborhood A of s0, there is a
morphism ( f, F) of Cm deformations from α−1(A) → (A, s0), ϕ : C → Xs0 to the
Kuranishi family. This morphism is essentially unique, in the sense that any mor-
phism of deformations from α−1(A′) → (A′, s0), ϕ : C → Xs0 , A′ a neighborhood
of s0, to the Kuranishi family, agrees with ( f, F) on α−1(U ) → U, where U is a
neighborhood of s0.

Proof. We claim that, possibly after shrinking S, we can find a Cartesian diagram

X
� ��

α

��

Y
ξ

��

(S, s0)
λ �� (Hg,ν, s′

0)

(5.3)

where (λ, �) is a morphism of Cm families of complex manifolds and ξ : Y →
Hg,ν is the universal family over the Hilbert scheme of ν-canonically embedded
genus g curves, for some ν ≥ 3. The existence part of the proposition then follows
from the standard universal property of the Kuranishi family, applied to Y → Hg,ν .

To prove the existence of (5.3) we proceed as follows. Let us0 be a holomor-
phic ν-fold differential on Xs0 , for some ν ≥ 3. We shall show that us0 extends,
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possibly after shrinking S, to a section of L = (�̃1
α)⊗ν on all of X . First of all, by

Lemma 5.2, us0 extends to a section u of (Ã1,0
α )⊗ν = L⊗ÕX

ÃX . Put adapted met-

rics on the Cm families of differentiable vector bundles underlying L and Ã1,0
α . For

each s ∈ S, we write us for the restriction of u to the fiber Xs , and ∂s to indicate the
∂ operator acting on sections of L⊗ÕX

AXs . We also let ϑs be the formal adjoint of

∂s , and ��s = ∂sϑs the Laplace-Beltrami operator, both acting on L-valued (0, 1)-
forms on Xs . The kernel of ��s can be identified with H1(Xs,O(K ν

Xs
)), where K Xs

stands for the canonical bundle of Xs , and hence is reduced to zero, since g > 1
and ν ≥ 3. In particular, the family of differential operators {��s} satisfies the as-
sumptions of Theorem 5.1. It follows from (5.2) that

∂sus = ��s Gs∂sus = ∂sϑs Gs∂sus .

By Theorem 5.1, {Gs∂sus}, and hence v = {vs} = {ϑs Gs∂sus}, are adapted. Since
∂s(us − vs) = 0 for any s, and vs0 = 0, we conclude that u − v is a section of L
extending us0 .

Now choose a basis for the space of holomorphic ν-fold differentials on Xs0

and, after suitably shrinking S, extend its elements to sections u0, . . . , uN of L on
X , where N = (2ν − 1)(g − 1) − 1. We may assume that the restrictions of these
sections to Xs constitute a basis for the space of holomorphic ν-fold differentials
on Xs , for any s. The sections u0, . . . , uN then give a morphism of Cm families of
complex manifolds over S

X ��

α
��

��
��

��
��

PN × S

η
����

��
��

��
�

S

such that Xs → PN is a ν-canonical embedding for each s. To construct (5.3), we
take as λ the map which associates to each s ∈ S the point of Hg,ν correspond-
ing to Xs ↪→ PN . Recall that λ(s) can be described as follows. The pullback
homomorphism

H0(PN ,O(k)) → H0(Xs,OXs (k)) ∼= H0(Xs,O(K kν
Xs

)) (5.4)

is onto for every k ≥ 1, by Noether’s theorem. Its kernel is a point of the Grassman-

nian G of
((N+k

N

) − (2kν − 1)(g − 1)
)

-planes in
(N+k

N

)
-space. For large enough

k, the Hilbert scheme Hg,ν is a subscheme of G, and λ(s) is just the kernel of (5.4).
On the other hand, by construction, the homomorphism (5.4) is the fiber at s of a
homomorphism of Cm vector bundles

η∗ÕPN ×S(k) → α∗Lk .

Since the kernel of this homomorphism is a Cm vector subbundle of the trivial
bundle on the left, the map λ is Cm .
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The map � is easily constructed. If x is a point of X , then

�(x) = ([u0(x) : · · · : uN (x)], λ(s)) ∈ X ′ ⊂ PN × Hg,ν .

It is clear that (λ, �) is a morphism of Cm families.
It remains to prove the uniqueness property of ( f, F). Let ( f ′, F ′) be another

morphism of deformations from α−1(A′) → (A′, s0), ϕ : C → Xs0 to the Kuranishi
family of C . We may suppose that A′ = A. We may also suppose that Aut(C)

acts on C and B, and that any isomorphism between fibers of π comes from an
automorphism of C . Assume that there is a sequence {xn} in A, converging to
s0, such that the restriction of F to Xxn is different from the one of F ′ for each
n. We will show that this leads to a contradiction. In fact, what the assumption
implies is that for each n there is a non-trivial element γn of Aut(C) such that
γn f (xn) = f ′(xn) and γn F coincides with F ′ on Xxn . As the automorphism group
of C is finite, we may suppose that all the γn are equal to a fixed γ ∈ Aut(C).
Then, passing to the limit for n → ∞, we conclude that γ F and F ′ agree also
on Xs0 . On the other hand, since we are dealing with morphisms of deformations,
Fs0 ◦ ϕ = F ′

s0
◦ ϕ, which implies that γ = 1, a contradiction.

The notion of Teichmüller structure carries over, with obvious changes, to the con-
text of Cm families of curves. An important corollary of Proposition 5.5 is then the
following.

Theorem 5.6. Let α : X → S be a Cm family of genus g curves with Teichmüller
structure. Suppose g ≥ 2. Let η : Xg → Tg be the universal family on the genus
g Teichmüller space. Let f : S → Tg be the map which associates to each point
of S the isomorphism class of the corresponding fiber, and let F : X → Xg be
the map whose restriction to the fiber Xs is the unique isomorphism of curves with
Teichmüller structure from Xs to η−1( f (s)). Then the pair ( f, F) is a morphism of
Cm families of curves. In particular, f is of class Cm.

6. The theorem of Teichmüller

In this section we discuss the following famous theorem of Teichmüller.

Theorem 6.1. Let g > 1. The Teichmüller space Tg is homeomorphic to the unit
ball in C3g−3.

Our plan is to show how the proof of this theorem directly reduces to the proof of
two fundamental results, namely Teichmüller’s uniqueness theorem and the theo-
rem of existence of solutions of the Beltrami equation.

Before we can proceed, we must introduce the notion of Beltrami differen-
tial. Let S be a compact connected Riemann surface. We consider vector-valued
differentials on S which are locally of the form

µ = ν
∂

∂z
⊗ dz,
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where z is a local coordinate and ν is a measurable function, that is, measurable
sections of TS ⊗ K S , where TS and KS are, respectively, the complex tangent and
cotangent bundles to S. It makes sense to define a measurable function |µ| by
setting it locally equal to |ν|, since the latter is clearly independent of the choice of
coordinate z. A Beltrami differential on the Riemann surface S is an L∞ section
of TS ⊗ K S whose norm ‖µ‖ = supS |µ| is strictly less than 1. We shall really
need only a particular kind of Beltrami differentials, namely those which are C∞
everywhere, except at a finite number of points. These differentials will be called
admissible.

To a Beltrami differential we associate a perturbed version of the ∂ operator on
S, by setting

∂µ = ∂ − µ ,

where µ acts on a function f as

µ( f ) = ν
∂ f

∂z
dz .

The corresponding Beltrami equation is

∂µu = 0 ,

that is,
uz = ν(z)uz . (6.1)

The basic existence theorem for the Beltrami equation asserts that it has local so-
lutions, in an appropriate generalized sense, which are homeomorphisms to open
subsets of the complex plane. We will not need the full strength of this result,
which is due to Morrey [29], but just the fact that the same conclusion holds under
the stronger hypothesis that µ is C∞. This is due to Korn [25] and Lichtenstein [27],
who more generally deal with the case when µ satisfies a Hölder condition; a sim-
plified proof of their result was given by Bers [7] and Chern [14], and can be found
also in [15, Chapter IV, Section 8]. Formally, the existence result we need is the
following.

Theorem 6.2. Let ν(z, t1, . . . , tn) be a C∞ function on a neighborhood of the ori-
gin in C × Rn. Suppose that |ν(z, t)| < 1 for all values of z and t = (t1, . . . , tn).
Then there exists a C∞ function w(z, t), also defined on a neighborhood of the
origin, such that

wz = ν(z, t)wz , wz(0, 0) �= 0 .

We shall also need the following uniqueness result.

Lemma 6.3. Let ν(z) be a function on a neighborhood of the origin in the complex
plane which is C∞ except at a finite set Z. Suppose that |ν(z)| < 1 for all z. Let
u be a homeomorphism from a neighborhood of the origin to an open subset of C
which solves the Beltrami equation (6.1) away from Z. Let f be a bounded function
on a neighborhood of the origin which is once differentiable away from Z. Then f
satisfies (6.1) away from Z if and only if it is a holomorphic function of u.
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The proof of the lemma is quite straightforward. Suppose first that Z is empty,
and let w be the solution of the Beltrami equation provided by Theorem 6.2. A
simple chain rule computation shows that

fz − ν fz = (1 − |ν|2) · fw · wz .

Thus f is a holomorphic function of w near the origin if and only if it is a solution
of the Beltrami equation. This applies in particular to the function u. Moreover,
since u has an inverse, it is also the case that w is a holomorphic function of u. This
proves the lemma when Z is empty. In the general case what the above argument
shows is that f solves the Beltrami equation away from Z if and only if it is a
holomorphic function of u there. Holomorphicity of f at points of Z then follows
from the Riemann extension theorem.

Theorem 6.2 in its parameterless version, that is, for n = 0, and Lemma 6.3
say, in particular, that a C∞ Beltrami differential µ on a Riemann surface S defines
on S a new complex structure whose holomorphic functions are the solutions of
the corresponding Beltrami equation. The reader should be warned that ∂µ is not
the ∂ operator of this complex structure, but just its component of type (0, 1) (with
respect to the original structure). A more suggestive, though cumbersome, notation

for ∂µ could thus be ∂
(0,1)

µ .
Dependence on parameters in Theorem 6.2 is often not considered in the lit-

erature; a notable exception is [2], to which we might refer for a proof. A cheap
alternative is to appeal instead to Theorem 5.1. Here is how the argument goes.
Since the problem is of a local nature, we may alter ν outside a neighborhood of
the origin. Hence we may assume that ν is defined and C∞ on C × U , where U
is a neighborhood of the origin in Rn , and that there is a positive r such that ν

vanishes for |z| > r . Thus we may view µ = ν ∂/∂z ⊗ dz as a family {µt }t∈U of
Beltrami differentials on P1, vanishing outside the disk of radius r centrered at 0.
Let H be the hyperplane bundle on P1; its smooth sections can be viewed as C∞
functions f on C such that f/z extends in a C∞ way across ∞. Since ∂µt is the
standard ∂ operator in a neighborhood of ∞, for any smooth section u of H , ∂µt u
is a smooth H -valued (0, 1)-form. Let ϑµt be the formal adjoint of ∂µt with re-
spect to (say) the Fubini-Study metric. Then the differential operator Lt = ϑµt ∂µt

is self-adjoint and strongly elliptic. If u is a section of H such that Lt u = 0,
then (∂µt u, ∂µt u) = (u, Lt u) = 0, and hence ∂µt u = 0. In other words, the Lt -
harmonic sections of H are just those sections which are holomorphic with respect
to the complex structure defined by µt . The space of these sections has dimension
2 for any t , by the Riemann-Roch theorem, so that Theorem 5.1 applies. Pick a
µ0-holomorphic section u which vanishes simply at 0, and set wt = Ft u, where
Ft is the harmonic projector associated to Lt . Then ∂µt wt = 0, and wt depends
differentiably on t , by Theorem 5.1. In other words, w(z, t) = wt (z) has all the
required properties.

Admissible Beltrami differentials originate, in particular, from the so-called
admissible quasi-diffeomorphisms. An orientation-preserving homeomorphism
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F : S → S′ between two compact Riemann surfaces which is a diffeomorphism
outside a finite set Z ⊂ S is called a quasi-diffeomorphism. Pick holomorphic co-
ordinates z and w around p ∈ S�Z and F(p) ∈ S′, respectively. The condition that
F be an orientation-preserving diffeomorphism on S� Z tells us that, on S� Z , the
Jacobian determinant of F is positive. Since, in local coordinates, the Jacobian is

|wz|2 − |wz|2 ,

the local function
ν(z) = wz

wz

is C∞ away from Z and of absolute value less than 1. It is a straightforward appli-
cation of the chain rule to check that setting

µF = ν
∂

∂z
⊗ dz

gives a well-defined section of TS ⊗ K S which is C∞ away from Z . The quasi-
diffeomorphism F is said to be admissible if ‖µF‖ < 1, i.e., if µF is a Beltrami
differential. By Lemma 6.3, the complex structure of S′ can be completely de-
scribed in terms of the one of S and of the differential µF ; a bounded function f
on an open subset of S′ is holomorphic if and only if u = f ◦ F is a solution of the
Beltrami equation ∂µF u = 0 away from Z .

Lemma 6.4. Let F : S → S′ be a quasi-diffeomorphism. Then

‖µF‖ = ‖µF−1‖ .

If F ′ : S → S′′ is another quasi-diffeomorphism, then µF ′ = µF if and only if
F ′ ◦ F−1 : S′ → S′′ is holomorphic.

The second assertion of the lemma follows immediately from Lemma 6.3, while
another elementary chain rule computation shows that |µF (p)|=|µF−1(F(p))| for
any p ∈ S, thus proving the first assertion.

It is convenient to introduce the concept of dilatation for a quasi-diffeomor-
phism F : S → S′. This is simply defined to be

K [F] = 1 + ‖µF ‖
1 − ‖µF ‖ .

It follows from Lemma 6.4 that a quasi-diffeomorphism and its inverse have the
same dilatation. It is also clear that F is admissible if and only if K [F] < ∞.

We now turn to Theorem 6.1. Let S be a reference Riemann surface of genus
g > 1. As we have announced, we shall rely on a fundamental result of Teichmüller,
the so-called Teichmüller uniqueness theorem. This provides a canonical represen-
tative for each isotopy class of orientation-preserving homeomorphisms f : C → S,
which has the following two remarkable properties:

1. it is an admissible quasi-diffeomorphism;
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2. away from the points where it fails to be smooth it can be locally described, in a
canonical way, as a real affine transformation.

Let ω be a holomorphic quadratic differential on S. If ω = f (z)dz2 is a local
expression for it in terms of a local coordinate z, we define the (singular) volume
form associated to ω to be

d Aω = i

2
| f |dz ∧ dz = | f |dx ∧ dy ,

where x and y stand for the real and imaginary parts of z. One immediately checks
that this definition is independent of the choice of local coordinate. Now consider
the (3g − 3)-dimensional space H0(S,O(K 2

S)) of holomorphic quadratic differen-
tials on S. A norm is introduced in this space by setting

‖ω‖ =
∫

S
d Aω

for any ω in H0(S,O(K 2
S)). Look at the unit ball in H0(S,O(K 2

S)):

B(K 2
S) = {ω ∈ H0(S,O(K 2

S)) : ‖ω‖ < 1} .

We are going to define a map

� : B(K 2
S) → TS = Tg

and prove the following more precise version of (6.1).

Theorem 6.5. � is a homeomorphism.

The construction of � is as follows. Pick ω ∈ B(K 2
S) and set

k = ‖ω‖ < 1 .

Let Z be the set of zeroes of ω. We introduce a new complex structure on S � Z .
Near a point p ∈ S � Z we may write

ω = (dz)2 ,

where z is a holomorphic local coordinate, which is uniquely defined up to sign and
the addition of a constant. We will say that z is an ω-coordinate. We define a new
coordinate patch around p by setting

z′ = z + kz

1 − k
. (6.2)

A different choice of z changes z′ by at most a sign and the addition of a constant.
Hence these coordinate patches define a new holomorphic structure on S � Z . We
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will show that this structure extends to one on all of S by constructing explicit
coordinate patches around each point of Z ; this extension will clearly be unique.
Let p be a zero of ω, and z a local coordinate around p. Write ω = f (z)dz2 near
p. We first treat the case when f vanishes to even order 2n at p. By suitably
changing coordinate, we may suppose that ω = d(zn+1)2. It follows that zn+1 is
an ω-coordinate at all points of S sufficiently close to p, but different from it, and
hence, by virtue of (6.2), that

ξ(z) = zn+1 + kzn+1

1 − k

is a local coordinate for the new complex structure on S�Z at all these points. Since

k < 1, the function 1 + k zn+1

zn+1 takes its values in the half-plane of complex numbers
with positive real part, where a single-valued determination of the (n + 1)-st root
function exists. Set

η(z) = z


1 + k zn+1

zn+1

1 − k




1
n+1

for z �= 0 and η(0) = 0. Since 1 + k zn+1

zn+1 is bounded, the function η is continuous at
p. We will now show that η is a homeomorphism between an open neighborhood of
p and an open neighborhood of the origin in the complex plane, and we will take it
as our new coordinate around p. This is compatible with the new complex structure
on S � Z , since ηn+1 = ξ . To prove our claim, by the “invariance of domain”
theorem, it suffices to show that η is injective. If η(z) = η(z′), then ξ(z) = ξ(z′),
and hence zn+1 = z′n+1. It follows that

1 + k
zn+1

zn+1
= 1 + k

z′n+1

z′n+1

and therefore that z = z′, by the definition of η. We now treat the case when f
vanishes to odd order m at p. Let q be the map ζ �→ ζ 2 = z. The pulled-back
differential q∗ω vanishes to order 2m + 2 at the origin, and by suitably changing
coordinate we may suppose that q∗ω = d(ζm+2)2. This means that ζm+2 is an
ω-coordinate at all points of S close to p, but different from it. Thus

ξ = ζm+2 + kζ
m+2

1 − k

is a local coordinate for the new complex structure on S � Z at these points. We
take as new coordinate at p the function η(z) whose value is

η(z) = z


1 + k |z|m+2

zm+2

1 − k




2
m+2

= ζ 2


1 + k ζ

m+2

ζm+2

1 − k




2
m+2
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for z �= 0 and zero for z = 0. To prove that this extends the new complex structure
on S � Z one proceeds as in the even order case, after noticing that ηm+2 = ξ2.
This finishes the construction of the new complex structure of S.

We may now define the Teichmüller map � : B(K 2
S) → Tg . We set

�(ω) = [Sω, [ fω]] ,

where Sω is the surface S, equipped with the new complex structure we have just
described, and fω : Sω → S is the set-theoretic identity. The homeomorphism
fω is called the Teichmüller map associated to ω, and is an admissible quasi-
diffeomorphism. In fact, by (6.2), ν fω = −k, and hence

|µ fω | = k = ‖ω‖ < 1

everywhere.
It is crucial to observe that Sω and fω depend continuously on ω ∈ B(K 2

S).
More precisely, if we denote by S the disjoint union of all the Sω and by f the
map from S to S × B(K 2

S) which sends x ∈ Sω to ( fω(x), ω), what we just did
was to put on S → B(K 2

S) a structure of continuous family of compact genus
g Riemann surfaces for which f is a topological trivialization. The map f thus
endows the family S → B(K 2

S) with a Teichmüller structure. By the universal
property of Teichmüller space, discussed in the preceding section, the map � is
therefore continuous. We see that this rather simple proof of the continuity of � is
a direct consequence of our definition of Teichmüller space in terms of Kuranishi
families.

The uniqueness theorem of Teichmüller asserts that, among all admissible
quasi-diffeomorphisms isotopic to it, fω : S → S is one with minimal dilatation,
and that it is uniquely characterized by this property.

Theorem 6.6 (Teichmüller’s uniqueness theorem). Let S be a genus g Riemann
surface with g > 1, and let ω be a holomorphic quadratic differential on S. Assume
that ‖ω‖ = k < 1. Let f : Sω → S be an admissible quasi-diffeomorphism which
is isotopic to fω (i.e., isotopic to the identity). Then

K [ f ] ≥ K [ fω] = 1 + k

1 − k
,

and equality holds if and only if f = fω.

We will not prove the theorem here, but we refer to one of the many proofs which
exist in the literature (see, for example, [1,19], or [26] and the bibliography therein).

Assuming Teichmüller’s uniqueness theorem, we shall first prove that the map
� : B(K 2

S) → Tg is injective. Suppose that �(ω1) = �(ω2); in other words,
that there are an isomorphism ϕ : Sω1 → Sω2 and an isotopy fω1 ∼ fω2 ◦ ϕ. Set
ki = ‖ωi‖, i = 1, 2. The first part of Teichmüller’s uniqueness theorem, together
with Lemma 6.4, tells us that

1 + k2

1 − k2
= K [ fω2] = K [ fω2 ◦ ϕ] ≥ K [ fω1] = 1 + k1

1 − k1
.
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Reversing the roles of ω1 and ω2, we obtain k1 = k2, and the second part of
Teichmüller’s uniqueness theorem implies that

fω1 = fω2 ◦ ϕ .

Let zi be an ωi -coordinate on S, for i = 1, 2. By Lemma 6.4 we have

k1
∂

∂z1
⊗ dz1 = µ f −1

ω1
= µ f −1

ω2
= k2

∂

∂z2
⊗ dz2 .

But k1 = k2, so that
∂z2

∂z1
= ∂z2

∂z1
.

Since z2 is a holomorphic function of z1, this implies that z2 = c · z1 + b, where b
and c are constants, and c is real. Hence ω2 = (dz2)

2 = c2 · (dz1)
2 = c2 · ω1. As

‖ω1‖ = k1 = k2 = ‖ω2‖, we obtain that c2 = 1, which proves the injectivity of �.

We are now going to conclude the proof of Theorem 6.5, and hence of Theo-
rem 6.1. The first step is the following.

Proposition 6.7. The Teichmüller map � is closed.

Proof. Let {ωn} be a sequence in B(K 2
S). Suppose the sequence yn = �(ωn)

converges to y ∈ Tg . What must be proved is that a subsequence of {ωn} converges
in B(K 2

S). Set y = [C, [ f ]], where f is a diffeomorphism. As a neighborhood of
y we take the basis B of a Kuranishi family π : C → B for C . We can assume
that there is a C∞ trivialization (F, π) : C → S × B such that Fy = f . We may
also assume that {yn} ⊂ B. Set fn = Fyn , µ = µ f and µn = µ fn

. Since f and
fn are C∞, the Beltrami differentials µ and µn are also C∞; since F is C∞, {µn}
converges uniformly to µ. Teichmüller’s uniqueness theorem gives

1 + ‖µ‖
1 − ‖µ‖ = lim

n→∞

(
1 + ‖µn‖
1 − ‖µn‖

)
= lim

n→∞K [ fn]≥ lim
n→∞K [ fωn ]= lim

n→∞

(
1 + ‖ωn‖
1 − ‖ωn‖

)
.

Therefore, for any constant c with ‖µ‖ < c < 1, one has that ‖ωn‖ < c, if n is
large enough. Thus a subsequence of {ωn} converges.

The last ingredient of the proof of Theorem 6.5 is the following.

Proposition 6.8. The Teichmüller space Tg is connected.

We can immediately see that this implies Theorem 6.5. In fact, Proposition 6.7, in
addition to showing that �(B(K 2

S)) is closed in Tg , also shows that � gives a home-
omorphism between B(K 2

S) and �(B(K 2
S)). But then the “invariance of domain”

theorem says that �(B(K 2
S)) is open in Tg , since B(K 2

S) and Tg are differentiable
manifolds of dimension 6g − 6.

We now turn to Proposition 6.8. An immediate consequence of Theorem 6.2
and Lemma 6.3 is the following.
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Lemma 6.9. Let µt be a family of smooth Beltrami differentials on S, where t
varies in an interval I ⊂ R. Suppose µt depends smoothly on t, in the sense that
it is C∞ on S × I . Then there are a differentiable family ξ : Y → I of Riemann
surfaces and a differentiable trivialization S × I → Y such that the Beltrami dif-
ferential µFt associated to Ft is µt .

To prove Proposition 6.8, denote by x0 the base point [S, [1]] of TS = Tg ,
let x = [C, [ f ]] be another element of Tg , where f : C → S is a diffeomor-
phism, and set µt = tµ f −1 . By Lemma 6.9, there is a differentiable family of

curves with Teichmüller structure over an interval I whose fiber at t is [Yt , [F−1
t ]].

This comes from a differentiable map γ : I → Tg , by the universal property of
Teichmüller space. To prove connectedness, we just have to show that γ (0)= x0 and
γ (1) = x ; in other words, that [Y0, [F−1

0 ]] = [S, [1]] and [Y1, [F−1
1 ]] = [C, [ f ]].

Since, by construction, µF−1
0

= 0 and µF−1
1

= µ f −1 , this follows from the second

part of Lemma 6.4. This concludes the proof of Proposition 6.8, and therefore of
Teichmüller’s theorem.
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