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Quaternionic maps and minimal surfaces

JINGYI CHEN AND JIAYU LI

Abstract. Let (M, Jα, α = 1, 2, 3) and (N ,J α, α = 1, 2, 3) be hyperkähler
manifolds. We study stationary quaternionic maps between M and N . We first
show that if there are no holomorphic 2-spheres in the target then any sequence of
stationary quaternionic maps with bounded energy subconverges to a stationary
quaternionic map strongly in W 1,2(M, N ). We then find that certain tangent
maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last
we construct a stationary quaternionic map with a codimension-3 singular set by
using the embedded minimal S

2 in the hyperkähler surface M̃0
2 studied by Atiyah-

Hitchin.

Mathematics Subject Classification (2000): 53C26 (primary); 53C43, 58E12,
58E20 (secondary).

1. Introduction

A Riemannian manifold is called hyperkähler if it possesses covariant constant
complex structures I, J, K which satisfy the quaternionic relation

I 2 = J 2 = K 2 = I J K = − identity.

Associated to I, J, K there is a natural family of covariant constant complex struc-
tures aI + bJ + cK where (a, b, c) is a unit vector in R3. A hyperkähler manifold
is Ricci-flat with dimension 4k. Let M and N be two hyperkähler manifolds with
complex structures Jα and J β respectively for α, β = 1, 2, 3 which satisfy the
quaternionic identities. A smooth map f : M → N is called a quaternionic map if

3∑
α,β=1

AαβJ β ◦ d f ◦ Jα = d f (1.1)

where Aαβ denote the entries of a constant matrix A in SO(3). Since SO(3) pre-
serves the quaternionic identities, we can always choose complex structures Jα for
M and J β for N such that Aαβ = δαβ in (1.1).
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NSFC.
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Quaternionic maps arise from the higher dimensional gauge theory (cf. [C],
[DT], [FKS], [MS], [NN], [PG]). More precisely they naturally arise from the adi-
abatic limit of Hermitian Yang-Mills connections on SU (n)-bundles on a product
of two K3 surfaces. Its linear version in dimension four is the so-called Cauchy-
Riemann-Fueter equation (or quaternionic d-bar equations):

∂x1 f − i∂x2 f − j∂x3 f − k∂x4 f = 0

for f : H → H where H is the space of quaternions and x1 + i x2 + j x3 + kx4 ∈ H.
Assume M is compact. For any smooth map u : M → N , consider the energy

functional
E(u) = 1

2

∫
M

|∇u|2

and the functional

ET (u) = Aαβ

∫
M

〈ωJα , u∗ωJ β 〉

and set

I (u) = 1

2

∫
M

|du − AαβJ β ◦ du ◦ Jα|2.

It is clear that I (u) = 0 if and only if u is a quaternionic map. Since u pulls
back the closed 2-form ωJ β to a closed 2-form on M and ωJα is closed, ET (u) is
homotopy invariant and depends on (Aαβ). The following relation holds (cf. [C],
[CL1], [FKS])

E(u) + ET (u) = 1

4
I (u). (1.2)

If u is a quaternionic map, then it minimizes energy in its homotopy class so it is
harmonic.

Recall [Sc] that a map in the Sobolev space W 1,2(M, N ) is a stationary har-
monic map if it is a critical point of the energy functional with respect to both of
the variations on M and N with compact supports. A stationary harmonic map is
smooth away from a closed set of zero (m − 2)-dimensional Hausdorff measure
where m = dim M . Let M and N be two hyperkähler manifolds. A map u from M
to N is called a stationary quaternionic map if it is a stationary harmonic map and
it is a quaternionic map outside its singular set.

It is known that the existence harmonic 2-spheres plays an important role in
the study of stationary harmonic maps ([SU], [Lin]).

In this note we investigate the special minimal 2-spheres which arise from the
stationary quaternionic maps. We first show that if there are no holomorphic 2-
spheres in N then any sequence of stationary quaternionic maps with bounded en-
ergy subconverges to a stationary quaternionic map strongly in W 1,2(M, N ). This
result was stated and proved in [CL1] when M is of dimension four, and the proof
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we shall present here is essentially based on that in [CL1]. We then find that cer-
tain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere
equation:

d f JS2 = −
3∑

k=1

xkJ kd f

where f : S2 → N , (x1, x2, x3) ∈ S2 and JS2 is the standard complex structure
on S2. We construct a stationary quaternionic map with a codimension-3 singular
set by using the embedded minimal S2 in the hyperkähler surface M̃0

2 studied by
Atiyah-Hitchin [AH], where M̃0

2 is the double cover of the space M0
2 of centred

2-monopoles on R3 and it is a complete and simply connected hyperkähler surface.
There are interesting results on decomposition of differential forms in quater-

nionic geometry using representations of special groups (e.g. [Bo], [K], [Sa], [Sw],
[W], etc). It is commented in [W] that the quaternionic maps between hyperkähler
manifolds can be described by the splitting of Sp(1)-representations. The authors
thank the referee for his bringing this point and the related references in quater-
nionic geometry to their attention.

2. Compactness of stationary quaternionic maps

A sequence of stationary harmonic maps with bounded energies subconverges to
a stationary harmonic map strongly in W 1,2 topology if there are no harmonic 2-
spheres in the target manifold [L]. For stationary quaternionic maps, the absence of
holomorphic 2-spheres is sufficient to conclude the strong convergence.

Theorem 2.1. Let M and N be compact hyperkähler manifolds with dim M = m.
Suppose that uk is a sequence of stationary quaternionic maps with bounded ener-
gies. If N does not admit holomorphic S2’s with respect to the complex structure
ai J i on R2 restricted to S2 and the complex structure aiJ i on N for some con-
stants ai (i = 1, 2, 3) with

∑
i a2

i = 1, then there is a subsequence of {uk} which
converges strongly to a stationary quaternionic map u.

Proof. We can always assume that uk ⇀ u weakly in W 1,2(M, N ) and that
|∇uk |2dx ⇀ |∇u|2dx + ν in the sense of measure as k → ∞. Here ν is a non-
negative Radon measure on M with support in �, and � is the blow-up set of the
sequence uk which is m − 2 rectifiable [L]. We will prove the Hausdorff measure
Hm−2(�) = 0 which implies the strong convergence in W 1,2(M, N ). Assume
Hm−2(�) 	= 0. Then [L] there is a nonconstant harmonic map v : Rm → N
with finite energy and ∇�v = 0. Here we have identified the tangent space of
� at 0 ∈ Rm = Rm−2 × R2 with Rm−2 × {0} so ∇� means the differentiation
along Rm−2 × {0}. The rescaling process for constructing v is taken place around
smooth points of uk which approach 0, therefore v is also a smooth quaternionic
map (cf. [CT]).

At the point 0∈Rm , suppose that e is in the normal direction of �. Let K be the
linear space spanned by Jαe for α = 1, 2, 3, so K ⊥ e. Since rank dv = 2, we have
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dv(e) 	= 0. This implies, from the quaternionic map equation,
∑3

i=1 J i dv(J i e) 	=
0 and in turn dv(J i e) 	= 0 for some i . Hence dim dv(K ) = 1. It then follows that
there are real constants a1, a2, a3 with a2

1 +a2
2 +a2

3 = 1 such that ai J i e ∈ {0}×R2

and dv(ai J i e) 	= 0. Notice that we then have three vectors ai J j e − a j J i e, i 	= j
which are perpendicular to e and to

∑3
i=1 ai J i e, so they belong to T �. We there-

fore have (a2 J 1 − a1 J 2)e ∈ Ker (dv), (a3 J 1 − a1 J 3)e ∈ Ker (dv), (a2 J 3 −
a3 J 2)e ∈ Ker (dv), J αdv Jα = dv, thus dv(

∑
i ai J i e) can only have compo-

nents on J α(dv(e)). By a simple calculation, one easily checks that

dv

(
3∑

i=1

ai J i e

)
=

3∑
i, j=1

J j dv(ai J j J i e)

= −
3∑

i=1

aiJ i dv(e) + J 1dv(a2 J 1 J 2 + a3 J 1 J 3)e

+J 2dv(a1 J 2 J 1 + a3 J 2 J 3)e + J 3dv(a1 J 3 J 1 + a2 J 3 J 2)e

= −
3∑

i=1

aiJ i dv(e).

At any other point (0, x) in Rm−2 × R2, the vectors e and
∑3

i=1 a jJ j e still belong
to {0} × R2, and the vectors (a1J 2 − a2J 1)e, (a2J 2 − a3J 2)e, (a1J 3 − a3J 1)e
lie in Rm−2 ×{x} hence in the kernel of dv at (0, x), so we can repeat the argument
above to conclude v is holomorphic at (x, 0) with respect to the same complex
structures

∑3
i=1 ai J i and

∑3
i=1 aiJ i . It follows that v induces a holomorphic map

from S2 to N . But no such holomorphic map can exist by assumption. So we must
have Hm−2(�) = 0 and in turn uk converge strongly to u in W 1,2 norm.

Remark 2.2. The strong convergence is equivalent to Hm−2(�) = 0 and is equiv-
alent to that the Hausdorff dimension of the singular set sing(u) of u is no bigger
than m − 3. Moreover sing(u) is rectifiable since N real analytic [Si].

3. Quaternionic minimal surfaces via quaternioinc maps

In this section we study a special class of minimal surfaces which arise from certain
tangent maps of the quaternionic maps.

Assume that M is 4-dimensional hyperkähler manifold and N is a 4n-dimen-
sional hyperkähler manifold. We can choose a coordinate system around a point
x in M so that the matrix expressions of the complex structures on M take the
following form:

J 1 =
 0 0 0 1

0 0 −1 0
0 1 0 0

−1 0 0 0

 , J 2 =
 0 0 1 0

0 0 0 1
−1 0 0 0
0 −1 0 0

 , J 3 =
 0 −1 0 0

1 0 0 0
0 0 0 1
0 0 −1 0
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Note that the three Kähler forms ωJi , i = 1, 2, 3 have variable coefficients in these
coordinates. For f : M → N , if we denote ∂ f

∂xk
by fk for k = 1, 2, 3, 4 in the

coordinate system we have just chosen, the quaternionic map equation (1.1) reads

f1 − aα3J α f2 + aα2J α f3 + aα1J α f4 = 0 (3.1)

where we take summation over α.
Now assume that f is a homogeneous degree-0 quaternionic map from R4 to

N and satisfies f (x1, x2, x3, x4) = f (x1, x2, x3, 0). So f is singular along the
x4-axis or it is constant. Note that such an f is just a tangent map, with a line of
singularities, of a quaternionic map from M to N .

As a radially independent harmonic map, f induces a smooth harmonic map
from S2 to N : φ(x) = f (x, x4) for x ∈ S2 ⊂ R3.

Lemma 3.1. With f and φ as above, then

dφ JS2 = −aαβ xβJ α dφ. (3.2)

Proof. Because f is a homogeneous degree-0 map,

4∑
k=1

xk fk = 0

and this combined with (3.1) leads to

(x2 + x1aα3 Jα) f2 + (x3 − x1aα2 Jα) f3 = 0.

In the spherical coordinates  x1 = r sin α cos θ

x2 = r sin α sin θ

x3 = r cos α,

it reads

(x2 + x1aα3 Jα)

(
cos α sin θ fα + cos θ

fθ
sin α

)
+ (x3 − x1aα2 Jα) (− sin α fα) = 0.

Multiplying this equation by sin(α) yields

(x2 + x1aα3 Jα)

(
x3x2 fα + x1

fθ
sin α

)
− (x3 − x1aα2 Jα)(x2

1 + x2
2) fα = 0

i.e.

−x1(x2+x1aα3 Jα)
fθ

sin α
=

(
x2x3(x2 + x1aα3 Jα) − (x3 − x1aα2 Jα)(x2

1 + x2
2)

)
fα.
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Multiplying x2 − x1aα3 Jα from left on both sides of the equation above, we obtain,

−x1(x2
1 + x2

2)
fθ

sin α
= x1(x2

1 + x2
2)

(
x1aα1 Jα + x2aα2 Jα + x3aα3 Jα

)
fα

here we have used aα3 Jα · aβ2 Jβ = aγ 1 J γ with the summation convention over
repeated indices applied. So we see φ satisfies the equation:

dφ JS2 = −aαβ xβJ α dφ.

This finishes the proof.

Note that aαβ xβJ α is only defined along the image surface f (S2) and f cannot
be holomorphic with respect to any complex structure in the 2-sphere family of
complex structures on N .

Let � be a Riemann surface, N 4n a hyperkähler manifold with the complex
structures J 1, J 2, J 3 which satisfy the quaternion relation J 1J 2 = J 3. Let
�a = (a1, a2, a3) be smooth functions � → S2.

Definition 3.2. Let f : � → N 4n be a smooth immersion which satisfies

d f J� = −
3∑

k=1

akJ k d f, (3.3)

where �a = (a1, a2, a3) : � → S2. We say f is a quaternionic surface in N 4n . If in
addition f is harmonic, we say f is a quaternionic minimal surface.

Condition (3.3) requires the image of d f lying in the span of J 1d f,J 2d f,J 3d f .
In the twistor space approach to minimal surfaces and harmonic maps, this condi-
tion is called ”inclusive” (see [AM], [ES], [R], [Sa] and the references therein).

It is not difficult to see that if f satisfies (3.3) then f is conformal. Further-
more, any conformal immersion from (�, J�) to a 4-dimensional hyperkähler man-
ifold satisfies the equation (3.3). In fact, suppose that e1, e2 is an orthonormal frame
of �. Because f is conformal and d f (e1) ⊥ d f (e2), we have

d f (e1) = ci J i d f (e2) and d f (e2) = di J i d f (e1)

with
∑

i c2
i = 1 and

∑
i d2

i = 1. It is clear that

ci |d f (e2)|2 = 〈d f (e1), J i d f (e2)〉 = −〈J i d f (e1), d f (e2)〉 = −di |d f (e1)|2.
Since |d f (e2)|2 = |d f (e1)|2 = 1/2|d f |2, we have ci = −di hence (3.3) holds.

Lemma 3.3. Let u : �1 → �2 be a holomorphic map between two Riemann sur-
faces with complex structures J�1 and J�2 respectively. Then for any smooth map
f : �2 → N which satisfies (3.3) with �a : �1 → S2, f ◦ u : �1 → N satisfies
(3.3) with �a ◦ u : �1 → S2 . If f (�2) is a quaternionic minimal surface, then
f ◦ u(�1) is also a quaternionic minimal surface.
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Proof. Then for any x ∈ �1

d( f ◦ u)x J�1(x) = d fu(x) ◦ dux J�1(x)

= d fu(x) ◦ J�2(u(x)) dux

= −ai (u(x))J i
u(x)d fu(x) ◦ dux

= −ai (u(x))J i
u(x)d( f ◦ u)x .

If f is harmonic and u is holomorphic, f ◦ u is harmonic.

Proposition 3.4. A quaternionic surface in N 4n is a minimal surface if and only if
�a is holomorphic with respect to the complex structure on � which makes the metric
g Hermitian and the standard complex structure on S2. �a is constant if and only if
the quaternionic surface is a holomorphic curve.

Proof. Since f is conformal, a quaternionic surface in N 4n is a minimal surface if
and only if f is a harmonic map from � to N . Let e1, e2 be an orthonormal frame
on � which satisfies I e1 = e2, I e2 = −e1. Note that, by the definition,

f1 := d f (e1) =
3∑

i=1

ai J i f2, f2 := d f (e2) = −
3∑

i=1

ai J i f1.

Taking the normal coordinates centred at x and f (x), we have

 f = −∇2

(
3∑

i=1

ai J i

)
f1 + ∇1

(
3∑

i=1

ai J i

)
f2

=
(

−
3∑

i=1

∇2ai J i −
(

3∑
i=1

∇1ai J i

) (
3∑

i=1

ai J i

))
f1

= (−∇2a1 − a3∇1a2 + a2∇1a3) J 1 f1

+ (−∇2a2 − a1∇1a3 + a3∇1a1) J 2 f1

+ (−∇2a3 − a2∇1a1 + a1∇1a2) J 3 f1. (3.4)

Since f is harmonic, it follows that ∇2a1 + a3∇1a2 − a2∇1a3 = 0
∇2a2 + a1∇1a3 − a3∇1a1 = 0
∇2a3 + a2∇1a1 − a1∇1a2 = 0.

(3.5)

Solving (3.5) and using a1∇2a1 + a2∇2a2 + a3∇2a3 = 0, one gets ∇1a1 + a2∇2a3 − a3∇2a2 = 0
∇1a2 + a3∇2a1 − a1∇2a3 = 0
∇1a3 + a1∇2a2 − a2∇2a1 = 0.

(3.6)
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We can rewrite (3.5) as
∇2�a = �a × ∇1�a,

and rewrite (3.6) as
∇1�a = −�a × ∇2�a.

Noting that the standard complex structure on S2 at �a is �a×, we can see that �a
satisfies the equations (3.5) and (3.6) if and only if it is a holomorphic map with
respect to the complex structure on � which makes the metric g Hermitian and the
standard complex structure on S2.

Remark that if we write the equation in bi = −ai then �b is anti-holomorphic
and if N is 4-dimensional the above result was obtained in [ES] and by S.S. Chern
if N = R4.

In particular, when a quaternionic surface is minimal, the mapping �a satisfies
the harmonic map equation to the standard sphere:

��a + |∇�a|2�a = 0. (3.7)

The following theorem is known to be true for minimal surface in a Kähler-Einstein
manifold of real dimension 4 (cf. [CW]) by noticing that ak = cos αk where αk is
the Kähler angle of the surface f (�) with respect to the Kähler form ωJ k in N .

Theorem 3.5. If a quaternionic surface in N 4n is a minimal surface with �a =
(a1, a2, a3) : � → S2, then

ak + 2
|∇ak |2ak

1 − a2
k

= 0.

Proof. We only need to prove the result for a1. First we compute the Laplacian
of a1 as follows. Again we take the normal coordinates centred at x ∈ M and at
f (x) ∈ N . Differentiating in ∇2 of

∇2a1 = a2∇1a3 − a3∇1a2

yields
∇2

22a1 = ∇2a2∇1a3 + a2∇2
12a3 − ∇2a3∇1a2 − a3∇2

12a2.

Multiplying a3, a2, a1 accordingly to the following three equations

a3∇1a1 = ∇2a2 + a1∇1a3

a2∇1a1 = a1∇1a2 − ∇2a3

a1∇1a1 = −a2∇1a2 − a3∇1a3

then summing them up leads to

∇1a1 = a3∇2a2 − a2∇2a3.
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Differentiating in ∇1 gives

∇2
11a1 = ∇1a3∇2a2 + a3∇2

21a2 − ∇1a2∇2a3 − a2∇2
21a3.

Now we conclude
�a1 = 2(∇1a3∇2a2 − ∇1a2∇2a3)

and we may write the right hand side in terms which only involve ∇1 as follows:

∇1a3∇2a2 − ∇1a2∇2a3 = ∇1a3(a3∇1a1 − a1∇1a3)

−∇1a2(a1∇1a2 − a2∇1a1)

= a3∇1a1∇1a3 − a1|∇1a3|2
−a1|∇1a2|2 + a2∇1a1∇1a2

= −a1(|∇1a1|2 + |∇1a2|2 + |∇1a3|2).
So we have just shown

�a1 = −2a1(|∇1a1|2 + |∇1a2|2 + |∇1a3|2). (3.8)

On the other hand, we have

|∇a1|2 = |∇1a1|2 + |∇2a1|2
= |∇1a1|2 + (a2∇1a3 − a3∇1a2)

2

= |∇1a1|2 + a2
2 |∇1a3|2 + a2

3 |∇1a2|2 − 2a2a3∇1a2∇1a3.

However,

(1 − a2
1)(|∇1a1|2 + |∇1a2|2 + |∇1a3|2) − |∇a1|2

=−a2
1 |∇1a1|2+ (1 − a2

1 − a2
3)|∇1a2|2+ (1 − a2

1 − a2
2)|∇1a3|2+ 2a2a3∇1a2∇1a3

=−a2
1 |∇1a1|2 + a2

2 |∇1a2|2+ a2
3 |∇1a3|2 + 2a2a3∇1a2∇1a3

=0 (3.9)

by recalling a1∇1a1 = a2∇1a2 + a3∇1a3.
Putting (3.8) and (3.9) together, we have

�a1 = −2
|∇a1|2a1

1 − a2
1

,

which completes the proof.

Theorem 3.6. Suppose that f is a minimal quaternionic surface in N 4. Then either
f is constant or the Euler characteristic number 1

2π
χ(N f (�)) of the normal bundle

of f (�) is 2g − 2 − 2 deg �a. In particular, if f ∈ C2(S2, N 4) satisfies the equation

d f JS2 = −
3∑

i=1

xiJ i d f, (3.10)

where x ∈ S2 ⊂ R3, then either f is constant or the Euler characteristic number
of the normal bundle of f (S2) is −4.
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Proof. Let �0 = f (�). �0 is a minimal surface in N because f is harmonic
and conformal. Proposition 4.2 and Proposition 4.3 in [CT] assert, for a compact
minimal surface in a Kähler-Einstein surface N , that the generalized adjunction
formula

χ(T �0) + χ(N�0) =
∫

�

�12 + �34 − 1

2

∫
�

|∇ J�0 |2

= 2π

∫
�

αc1(N ) − 1

2

∫
�

|∇ J�|2

holds for some function α on �0, where �12, �34 are the curvature tensors of N
along the tangential and normal directions of �0 respectively. The term |∇ J�0 |2 is
equal to 2|h4

12 − h3
11|2 + 2|h4

22 − h3
12|2 where hk

i j are the second fundamental forms
of �0 in N .

Since c1(N ) = 0, we have

χ(T �0) + χ(N�0) = −1

2

∫
�0

|∇ J�0 |2. (3.11)

In particular, an embedded holomorphic S2 has self-intersection number −2 in M
with C1(M) = 0.

On the other hand, for any solution of (3.5), by Proposition 3.4 and Theorem
3.5 and Proposition 3.2 in [CL2] (specializing the general formula for cosine of
the Kähler angle along the mean curvature flow to minimal surface) and (3.7), we
always have

|∇ J�0 |2 = |∇�a|2 = 2|∇ai |2
1 − a2

i

(3.12)

for i = 1, 2, 3. One then has

1

2π
χ(N�) = − 1

4π

∫
�g

|∇�a|2 + 2g − 2

= 2g − 2 − 2deg �a.

Here we recall for holomorphic �a to S2,

deg �a = 1

vol(S2)

∫
�g

Jac(�a) = 1

4π

∫
�g

|∂ �a|2 = 1

8π

∫
�g

|∇�a|2.

Now if � = S2 and �a(x) = (x1, x2, x3), f : S2 → N is harmonic because
�a : S2 → S2 is the identity map. We conclude

1

2π
χ(N�) = −2 − 1

4π

∫
S2

|∇x |2 = −4.

This completes the proof.
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Based on the results we obtained so far, we next construct an example of sta-
tionary quaternionic map from R4 with a line of singularities. For any smooth map
φ : S2 → N , we have an extension f (x, x4) := φ(x/|x |) for any x ∈ R3\{0}.
Moreover, the proof of Lemma 3.1 can be reversed to produce a quaternionic map
with the x4-axis as its singular set from a map φ which satisfies (3.2).

In the monograph [AH], Atiyha and Hitchin considered the space M0
2 of cen-

tred 2-monopoles on R3 with finite action. It is a complete hyperkähler manifold
of dimension 4. SO(3) acts on M0

2 isometrically and this action lifts to a double
(also Riemannian universal) covering M̃0

2 . The space of axisymmetric monopoles,
which constitute a special class of solutions to the monopole equations, defines an
embedded minimal RP2 in M0

2 . This RP2 lifts to an embedded minimal S2 in the
hyperkähler manifold M̃0

2 .

Corollary 3.7. There does exist a nontrivial minimal quaternionic sphere φ in the
hyperkähler manifold M̃0

2 with �a = (x1, x2, x3). The extended map f from φ is a
stationary quaternionic map from R4 to M̃0

2 with the entire x4-axis as singular set.

Proof. We take the nontrivial embedded minimal S2 in M̃0
2 discussed above. The

Euler characteristic number of the normal bundle of this minimal 2-sphere is −4 as
shown in [AH].

By Theorem 3.6, we know that the minimal 2-sphere is a minimal quaternionic
sphere φ0 with a function �a0 in its definition, and deg �a0 = 1. Since �a0 : S2 → S2

is holomorphic and of degree 1, it is diffeomorphic because the sum of orders of
the zeros of |∂ �a0| is − deg(�a0)(2 · 0 − 2) + (2 · 0 − 2) = 0, |∂ �a0| has no zeros, and
therefore the inverse �a−1

0 of �a0 exists and is holomorphic. So, φ := φ0 ◦ �a−1
0 is a

nontrivial minimal quaternionic sphere with �a = (x1, x2, x3) by Lemma 3.3.
Recall that action of the complex structure JS2 at x ∈ S2 is given by the stan-

dard cross product x×. Write �a0 = (a01, a02, a03). Then

a0i (x) = −〈dφ0(x × e),J i dφ0(e)〉x

|dφ0x (e)|2

and dφ0 at x is the same as dφ at −x because φ0 is the lift from RP2. We then
conclude

�a0(−x) = −�a0(x), �a−1
0 (−x) = −�a−1

0 (x).

The chain rule implies

|∇φ(−x)|2 = |∇φ0(�a−1
0 (−x))|2|∇�a−1

0 (−x)|2

= |∇φ0(−�a−1
0 (x))|2| − ∇�a−1

0 (x)|2

= |∇φ0(�a−1
0 (x))|2|∇�a−1

0 (x)|2 = |∇φ(x)|2
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because φ0 is the lift from RP2. Therefore for i = 1, 2, 3,∫
S2

xi |∇φ|2 = 0.

The fact that the extended map f is stationary follows from the lemma below.

The lemma below is known to experts. For the sake of completeness, we
present a proof of it.

Lemma 3.8. Let φ be a smooth harmonic map from S2 to a Riemannian manifold
N. Then the extended map f of φ, which is defined by f (x, x ′) = φ(x/|x |) for
x = (x1, x2, x3) 	= (0, 0, 0), x ′ ∈ {0}×Rm−3 ⊂ Rm, is a stationary harmonic map
if and only if φ satisfies∫

S2
xi |∇φ|2 = 0, i = 1, 2, 3, (x1, x2, x3) ∈ S

2.

Proof. In fact, we have

∇x ′ f = 0,
∂ f

∂r
= 0, r =

√
x2

1 + x2
2 + x2

3 .

Define a cut-off function by

ηε(r, α, β, x ′) =


1 r ≥ ε

2

ε

(
r − ε

2

)
ε/2 < r < ε

0 r ≤ ε/2

where x1 = r sin α cos β, x2 = r sin α sin β, x3 = r cos β.
For any smooth vector field X = (X1, · · · , Xm) in Rm with compact support,

because f is smooth away from {0} × Rm−3, we have

0 =
∫

Rm
(|∇ f |2δi j − 2∇i f ∇ j f )∇ j (ηε Xi )

=
∫

Rm
(|∇ f |2δi j − 2∇i f ∇ j f )∇ jηε Xi

+
∫

Rm
(|∇ f |2δi j − 2∇i f ∇ j f )ηε∇ j Xi .

It then follows∫
Rm

(|∇ f |2δi j − 2∇i f ∇ j f )∇ j Xi = lim
ε→0

∫
Rm

(|∇ f |2δi j − 2∇i f ∇ j f )ηε∇ j Xi

= − lim
ε→0

∫
Rm

(|∇ f |2δi j − 2∇i f ∇ j f )∇ jηε Xi
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Therefore, f is stationary if and only if

lim
ε→0

∫
Rm

(|∇ f |2δi j − 2∇i f ∇ j f )∇ jηε Xi = 0.

Direct computation shows that the above condition is equivalent to∫
Rm−3

∫
S2

|∇φ|2
3∑

i=1

xi Xi (0, x ′)dσdx ′ = 0.

Since X is arbitrary, we see the desired statement holds.
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