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On the CR-Structure of Certain Linear Group Orbits
in Infinite Dimensions

WILHELM KAUP

Abstract. For large classes of complex Banach spaces (mainly operator spaces)
we consider orbits of finite rank elements under the group of linear isometries.
These are (in general) real-analytic submanifolds of infinite dimension but of
finite CR-codimension. We compute the polynomial convex hull of such orbits M
explicitly and show as main result that every continuous CR-function on M has a
unique extension to the polynomial convex hull which is holomorphic in a certain
sense. This generalizes to infinite dimensions results from a recent joint paper
with D. Zaitsev in Inventiones math. 153, 45-104.
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32E20, 32M15, 46G20 (secondary).

The purpose of this note is to partially extend the results of [13] to infinite
dimensions. We illustrate this for the simplest possible example: let E be a
complex Hilbert space of infinite or of finite dimension ≥ 2 with open unit
ball B and unit sphere S. Let K be the group of all surjective linear isometries
of E (the unitary group of E). Then S is a K -orbit in E . From the classical
maximum principle it is obvious that if D ⊂ C is any domain, then every
holomorphic map D → E with image in S is constant. On the other hand,
there are many holomorphic functions on S in the sense that they satisfy the
tangential Cauchy-Riemann differential equations (instead of holomorphic these
are usually called CR-functions): S is obviously a real-analytic submanifold of
E with (real) tangent space Ta S = {z ∈ E : �(z|a) = 0} at every a ∈ S.
The maximal complex linear subspace of E contained in Ta S clearly is Ha S: =
Ta S ∩ i Ta S = {z ∈ E : (z|a) = 0}, called the holomorphic tangent space to S at
a. Now for every complex Banach space F the smooth function f : S → F is
called CR if for every a ∈ S the differential d fa: Ta S → F is complex linear
on the subspace Ha S ⊂ Ta S. A continuous function S → F is called CR if it
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is locally the uniform limit of a sequence of smooth CR-functions, a concept,
that in finite dimensions (on arbitrary CR-manifolds) is equivalent to the more
traditional requirement, that CR-functions satisfy the tangential Cauchy-Riemann
differential equations in the distribution sense, see [2] for this and [3], [1] as
general references for CR-manifolds and CR-functions.

In case dim(E) < ∞ it is well known that the continuous C-valued CR-
functions on the unit sphere S ⊂ E are precisely those functions f on S that
have a continuous extension to the closed unit ball B with f |B holomorphic.
In case E has infinite dimension it is not too difficult to get the same statement
by a reduction argument to the finite dimensional case. In the present paper we
get similar results for a large class of infinite dimensional CR-manifolds that
occur in certain complex Banach spaces E as orbits of the connected identity
component K of the full group of isometries of E . These E all have the property
that their open unit ball is homogeneous under its biholomorphic automorphism
group and hence is a bounded symmetric domain. These Banach spaces come
with a canonical Jordan algebraic structure that is heavily exploited.

For instance, the following examples occur in our treatment: let H, L �= 0
be complex Hilbert spaces with H of infinite dimension and let E : = L(L , H)

be the complex Banach space of all bounded linear operators L → H (which is
a Hilbert space only in case dim(L) = 1). Denote by K the connected identity
component of the group of all linear isometries of E . Then K consists of all
transformations z 	→ uzv, where u, v are unitary operators on L , H respectively.
Fix an operator a ∈ E of finite rank r ≥ 1 and denote by M : = K (a) the
corresponding K -orbit. Then M ⊂ E is a real-analytic CR-submanifold of
infinite dimension and finite CR-codimension ≥ r . We compute the polynomial
convex hull Z of M in E explicitly, and our main result (Theorem 7.5) states in
this special case that every continuous CR-function with values in an arbitrary
complex Banach space F has a unique continuous extension to Z which in a
certain sense is holomorphic on the interior of Z .

1. – Preliminaries

For Banach spaces E, F over the field K = C (or K = R) we denote by
L(E, F) the K-Banach space of all bounded (= continuous) linear operators
E → F and by K(E, F) the linear subspace of all compact operators. In case
E = F we also write L(E) as well as K(E) instead of L(E, E) and K(E, E).
The group of all invertible operators in the Banach algebra L(E) is denoted by
GL(E). By E∗: = L(E, K) we denote the dual of E . We always consider E
in the canonical way as closed linear subspace of the bidual E∗∗.

For a Banach space E we call a smooth Banach manifold M together
with an injective smooth mapping ϕ : M → E an immersed submanifold of E
if for every a ∈ M the corresponding differential dϕa : Ta M → Tϕ(a)E ≈
E is injective. In this sense every subset S ⊂ E occurs as (0-dimensional)
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immersed submanifold of E with respect to the discrete topology. We avoid
trivial situations like this by considering mainly connected manifolds M .

For every immersed submanifold M of the complex Banach space E and
every a ∈ M the tangent space Ta M at a to M is a real (complete normable)
topological vector space that we may consider as an R-linear subspace of E (not
necessarily having the induced topology). In this sense, Ha M := Ta M ∩ iTa M ,
called the holomorphic tangent space to M at the point a, is the biggest C-linear
subspace contained in Ta M . In a similar way we let CTa M := (Ta M⊕iTa M)/L
for L = {(x, iy) : x, y ∈ Ha M with x + iy = 0} be the ‘smallest complex linear
space’ containing Ta M as closed R-linear subspace.

The immersed submanifold ϕ : M → E of E is called direct if for every
a ∈ M the tangent space Ta M is closed in E and admits a closed R-linear
complement in E . If in addition ϕ is a homeomorphism onto its image we
identify M with ϕ(M) and call it a direct submanifold of E .

For complex Banach spaces E, F a smooth function f : U → F , U ⊂ E
open, is called holomorphic if the (R-linear) Fréchet derivative d fa: E → F
actually is C-linear for every a ∈ U , see [5] or [7] as reference for infinite
dimensional holomorphy. A complex Banach manifold is a manifold locally mod-
eled over open subsets of complex Banach spaces with biholomorphic transition
functions. For complex Banach manifolds X, Y and every subset S ⊂ X we
call a mapping f : S → Y pull-back holomorphic if f is continuous and if for
every complex Banach manifold Z and every holomorphic mapping ϕ: Z → X
with ϕ(Z) ⊂ S the pull-back f ◦ ϕ: Z → Y also is holomorphic. A subset
C ⊂ S is called a holomorphic arc component of S ⊂ X if the following two
conditions are satisfied, where � ⊂ C is the open unit disk:

(i) C �= ∅, and ϕ(�) ⊂ C for every holomorphic mapping ϕ: � → X with
ϕ(�) ⊂ S and ϕ(�) ∩ C �= ∅,

(ii) C is minimal with respect to property (i).

Clearly, S is the disjoint union of its holomorphic arc components, and for
every connected complex Banach manifold Z every holomorphic map ϕ: Z → X
with ϕ(Z) ⊂ S has its image in a holomorphic arc component of S. Finally,
for every subset S of a complex Banach space E by

pch(S):={z ∈ E : | f (z)| ≤ sup | f (S)| for all holomorphic polynomials

f : E → C}
hch(S):={z ∈ E : | f (z)| ≤ sup | f (S)| for all holomorphic functions f : E → C}

we denote the polynomial convex hull and the holomorphic convex hull of S,
where we allow sup | f (S)| = +∞ if f (S) ⊂ C is unbounded. Clearly, pch(S)

contains hch(S) and is contained in the closed (linear) convex hull cch(S) of S.
Due to the power series expansion of holomorphic functions on E polynomial
and holomorphic convex hulls of relatively compact subsets S ⊂ E coincide.
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2. – JB∗-triples

In the following we recall some basic facts on JB∗-triples. These are the
complex Banach spaces in which we want to study certain orbits under its group
of isometries. We start with a slightly more general structure.

Definition 2.1. A complex Banach space E together with a continuous map

E × E × E → E, (x, y, z) 	→ {xyz}
is called a J∗-triple (compare [9]), if for all a, b, x, y, z ∈ E the following
conditions hold

(i) {xyz} is symmetric bilinear in the outer variables (x, z) and conjugate linear
in the inner variable y.

(ii) {ab{xyz}} = {{abx}yz} − {x{bay}z} + {xy{abz}}.
(iii) The operator La ∈ L(E) defined by c 	→ {aac} is hermitian, i.e. exp(i t La) ∈

GL(E) is an isometry for every t ∈ R.

More generally, we denote for every a, b ∈ E by L(a, b) ∈ L(E) the
operator z 	→ {abz} and by Qa the antilinear endomorphism z 	→ {aza}, that
is, La = L(a, a). The (not necessarily closed) linear subspace I ⊂ E is
called a subtriple if {I I I } ⊂ I holds, and I is called an ideal in E if even
{E E I } + {E I E} ⊂ I is true. The J∗-triple is called irreducible if it is not the
direct sum of two nonzero closed ideals.

The J∗-triples form a category in an obvious way – the morphisms are the
bounded linear operators g satisfying

g{xyz} = {(gx)(gy)(gz)}
for all x, y, z in the domain of g. We always denote by

Aut(E): = {g ∈ GL(E) : g morphism}
the automorphism group of E , which is a real algebraic subgroup of GL(E) in
the sense of [8]. In particular, Aut(E) is a real Banach Lie group in the norm
topology of L(E). The corresponding Lie algebra is the derivation algebra

Der(E): = {
δ ∈ L(E) : δ{xyz} = {(δx)yz} + {x(δy)z} + {xy(δz)}

for all x, y, z ∈ E
}
.

Besides the automorphism group also the structure group Str(E) of E is of
importance, which is defined as follows, compare [14]: let E be the J∗-triple
obtained from E by changing the complex structure to its conjugate one and
keeping the triple product. Then

Str(E): ={
(g, h)∈GL(E)×GL(E) :g{xyz} = {(gx)(hy)(gz)}

and h{xyz}={(hx)(gy)(hz)} for all x,y,z
}
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is a complex Banach Lie subgroup of GL(E)×GL(E) with respect to the norm
topology.

Definition 2.2. A J∗-triple E is called a JB∗-triple if for all a ∈ E

(i) the hermitian operator La has real spectrum ≥ 0 and
(ii) ‖{aaa}‖ = ‖a‖3.

A complex Banach space E carries the structure of a JB∗-triple if and
only if the open unit ball B of E is homogeneous under its group Aut(B)

of all biholomorphic transformations, and then the triple product is uniquely
determined by the norm of E . In the following, E will always be a JB∗-
triple. The real Banach Lie group Aut(E) of all automorphisms is a real
Banach Lie group that coincides with the group of all linear surjective isometries
of E . With K := Aut(E)0 we denote its connected identity component. The
canonical projection GL(E) × GL(E) → GL(E) induces a biholomorphic group
isomorphism from the structure group Str(E) onto a closed complex Banach
Lie subgroup of GL(E). We may therefore consider Str(E) as a complex Lie
subgroup of GL(E) and denote by �: = Str(E)0 its connected identity component
in the following. The Lie algebra of � is Der(E) ⊕ iDer(E) and K ⊂ � is a
real form of �.

We are interested in various structures on the orbits M : = K (a) and X : =
�(a), a ∈ E . Clearly, the isotropy subgroup Ka := {g ∈ K : g(a) = a} is closed
in K and the orbital map K/Ka → M given by g 	→ g(a) is a continuous
bijection. In case Ka is a direct real-analytic subgroup of K , as a consequence
of Godement’s theorem, the quotient K/Ka has the structure of a real-analytic
(Banach) manifold in such a way that the canonical projection K → K/Ka

is a real-analytic submersion. Furthermore, K/Ka then is an immersed real-
analytic submanifold of E via the orbital map. The same holds for the complex
(Banach) manifold �/�a if the isotropy subgroup �a is direct in �.

3. – (Von Neumann) regular orbits

Fix a JB∗-triple E in the following. The elements a, b ∈ E are called
(triple) orthogonal, and we write a ⊥ b, if L(a, b) = 0 is satisfied. Then
a ⊥ b and b ⊥ a are equivalent conditions. Every odd continuous function
f : R → R induces an odd continuous function f : E → E (odd functional
calculus, compare [11]) with f(a + b) = f(a) + f(b) if a ⊥ b. For instance,
if f ∈ R[t] is an odd polynomial, f(a) = p(La)(a), where p ∈ R[t] satisfies
f (t) = t p(t2). In particular, f(a) = {aaa} for the cube function f (t) = t3.
The fixed points in E of the cube function, i.e. the elements e ∈ E with
{eee} = e, are called tripotents. For tripotents e, c ∈ E we write e ≤ c if c−e
is a tripotent orthogonal to e. The identity f(te) = f (t)e holds for all t ∈ R
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and all tripotents e ∈ E . Every tripotent e ∈ E induces a Peirce decomposition

(3.1) E = E1(e) ⊕ E1/2(e) ⊕ E0(e),

where Ek(e) is the k-eigenspace in E of the operator Le for every k ∈ R.
Furthermore,

A(e) := {z ∈ E : {eze} = z}
is a JB-algebra with unit e with respect to product x ◦ y := {xey}, satisfying

E1(e) = A(e) ⊕ i A(e).

Every tripotent e �= 0 with A(e) = Re is called minimal.

Definition 3.2. For every a ∈ E denote by [a] the smallest closed subtriple
of E containing a and call a ∈ E (von Neumann) regular, compare [14, p. 42]
and [11, Section 4], if one of the following equivalent conditions is satisfied:

(i) {aba} = a for some b ∈ E ,
(ii) the restriction of La to [a] is an invertible operator on [a],

(iii) there is a tripotent e ∈ [a] with a ∈ A(e).

For the element a ∈ E the element b in (i) can be chosen uniquely from [a]
and the tripotent e in (iii) can be chosen uniquely in such a way that a is a square
in the JB-algebra A(e). Indeed, for every a ∈ E there exists a unique compact
subset � ⊂ R with 0 ∈ � = −� together with a unique triple isomorphism
ϕ from [a] onto the JB∗-triple C−(�) of all odd continuous functions � → C

such that ϕ(a) = id�. Then a is regular if and only if 0 is isolated in �.

Proposition 3.3. For every regular a ∈ E the operator La has closed image
im(La) in E and

E = im(La) ⊕ ker(La)

holds as direct sum of closed linear subspaces. Furthermore, the orbit X : = �(a),

� = Str(E)0 ⊂ GL(E), is a locally closed direct complex submanifold of E with
tangent space Ta X = im(La) at a ∈ X. Every x ∈ X is regular and � acts
transitively as holomorphic transformation group on X.

Proof. Fix a tripotent e ∈ [a] with a ∈ A(e). Then

im(La) = E1(e) ⊕ E1/2(e), ker(La) = E0(e)

together with (3.1) shows the first claim. For shorter notation put T : = im(La),
N : = ker(La) for a while and define a holomorphic map ϕ : E → E by
ϕ(t + n): = ht (a + n) for all t ∈ T and all n ∈ N , where ht := exp

(
L(t, a)

)
.

Because of ht ∈ � for all t we have ϕ(T ) ⊂ X . Now ϕ has invertible
derivative at 0 ∈ E , by the implicit function theorem we may therefore assume
that the restriction of ϕ to U ⊕ V is biholomorphic to an open neighbourhood
of a = ϕ(0), where U, V are suitable open neighbourhoods of the origins in T
and N respectively. The restriction of La to [a] has spectrum > 0. Therefore,
the element a is isolated in ϕ(N ) = a + N , and we may assume without loss
of generality that ϕ(V ) ∩ X = {a}, that is, ϕ(U ⊕ V ) ∩ X = ϕ(U ) and X is a
direct complex submanifold of E with tangent space T at a.
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4. – Algebraic orbits

The element a ∈ E is called algebraic, if p(a) = 0 holds for some nonzero
odd polynomial p ∈ R[t], or equivalently, if the closed complex subtriple [a] ⊂
E generated by a has finite dimension. This is also equivalent to the existence
of a representation

(4.1) a = λ1e1 + λ2e2 + . . . + λses

with pairwise orthogonal tripotents ej �= 0 and real coefficients satisfying

‖a‖ = λ1 > λ2 > . . . > λs > 0.

Clearly, every algebraic element is regular. The representation (4.1) is uniquely
determined by the algebraic element a. For instance, the squares of the coef-
ficients λk(a) := λk are precisely the eigenvalues of the operator La restricted
to [a]. Also, every tripotent ek can be recovered from a in the form ek = f(a),
where f : R → R is an arbitrary odd continuous function satisfying f (λj ) = δjk

for j = 1, . . . , s.
For the rest of the section let a ∈ E satisfy (4.1) and set λ0 := 0 as well

as λ− j := −λj for j = 1, . . . , s. Following [13] we define operators on E by

(4.2) �a := 2(La + Qa), �a := 2(La − Qa) and 	a := �a�a = 4(L2
a − Q2

a).

Also we put

(4.3) Na := ker(�a), Ta := im(�a) and Ha := im(	a).

Clearly a ∈ Na , ia ∈ Ta and a /∈ Ha . We will see below that Ta is the tangent
space and Na will be sort of a normal space to the K -orbit through a.

For all j, k ∈ Z with | j | ≤ k ≤ s consider the refined Peirce space

E jk = E jk(a) := {z ∈ E : 2Laz = (λ2
j + λ2

k)z and Qaz = λjλk z}.

Then we have the refined Peirce decompositions

(4.4) E =
⊕

| j |≤k≤s

E jk, Na =
s⊕

j=0

E j j and Ta =
⊕
j<k

E jk,

and the following statement is obvious.

Lemma 4.5. E = Ta ⊕ Na is a direct sum of closed R-linear subspaces.
Furthermore, Ha is the maximal complex linear subspace of Ta. The restrictions of
the R-linear operator �a and of the C-linear operator 	a to their respective images
are invertible.

For use in the following proposition we state for Na = Na+a
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Lemma 4.6. The intersection of the orbit M = K (a) with Na contains a as
isolated point.

Proof. Fix an ε > 0 with ε < (λk − λj ) for all k > j ≥ 0. Assume that
c ∈ (M ∩ Na) satisfies ‖a − c‖ < ε. Fix j ≥ 0 and denote by aj , cj ∈ E j j the
corresponding components of a, c with respect to the direct sum decomposition
of Na in (4.4). Clearly aj = λj ej if we put e0 := 0 ∈ E . Since c is in M , the
element cj is a linear combination of orthogonal tripotents in E j j with certain
coefficients from {λ1, . . . , λs}. Denote by F ⊂ E j j the closed real subtriple
generated by aj and cj . Then F can be identified with the real Banach algebra
C0(�, R) of all continuous real functions vanishing at infinity on a suitable
locally compact topological space � in such a way that aj ≡ λj . But the
function aj − cj takes only values from {λj−λk : −s ≤ k ≤ s}, which implies
aj = cj because of ‖aj − cj‖ < ε. This implies a = c since j was arbitrarily
chosen.

Proposition 4.7. Let f : R → R be an odd continuous function having only
isolated zeros in R. Then

S := {a ∈ E : f(a) = 0}
is a closed direct real-analytic submanifold of E. Every connected component M
of S is an orbit of the linear group K := Aut(E)0. Every a ∈ S is algebraic and Ta

as defined in (4.3) is the tangent space to S at a.

Proof. Fix a ∈ S. Since f has only finitely many zeros in the interval
[0, ‖a‖] there exists a representation (4.1) for a and hence a is algebraic. Define
a real-analytic map ϕ : E → E by ϕ(t + n) := kt(a + n) for all t ∈ Ta and
all n ∈ Na , where kt := exp

(
L(t, a) − L(a, t)

)
. Then kt ∈ K for all t and

with Lemma 4.6 it is shown as in Proposition 3.3 that S is a real-analytic
submanifold of E around a with tangent space Ta S = Ta . Since the orbit K (a)

is a neighbourhood of a in S and a ∈ S was arbitrarily chosen, the connected
group K acts transitively on every connected component of S.

Proposition 4.7 for the special function f (t) = t3 − t (i.e. S is the subset
of all tripotents in E) is already contained in [16, Satz 4.4].

It is easily seen that for the algebraic element a with representation (4.1)
and tripotent e := e1 + . . . + es we have

E00 = E0(e) and E j j = A(ej ) if j > 0.

In particular

A(a) :=
s⊕

j=1

A(ej )

is a JB-subalgebra of A(e) with unit e. For the complex linear operator Pa :=
Qe Qa put

E1(a) := ker(La − Pa), E1/2(a) := im(La − Pa) and E0(a) := E0(e).



ON THE CR-STRUCTURE OF CERTAIN LINEAR GROUP ORBITS IN INFINITE DIMENSIONS 543

Then we have the generalized Peirce decomposition for the algebraic element
a ∈ E

(4.8) E = E1(a) ⊕ E1/2(a) ⊕ E0(a)

with
E1(a) = A(a) ⊕ i A(a), Na = A(a) ⊕ E0(a) and

Ta = i A(a) ⊕ E1/2(a) =
s⊕

j=1

(A(ej ) ⊕ E1/2(ej )).

Consider again an algebraic element a ∈ E with representation (4.1). Then
the s-fold �∞-sum Es is also a JB∗-triple and we have the diagonal action of
K = Aut(E)0 on it, i.e. g(z1, . . . , zs) = (gz1, . . . , gzs). It is easily seen that

S := {(c1, . . . , cs) ∈ Es : cj pairwise orthognonal tripotents in E}
is a real-analytic submanifold of Es and that every connected component of
S is a K -orbit. Let ẽ := (e1, . . . , es) and put M̃ := K (ẽ). Then the tangent
space to M̃ at ẽ can easily be computed. The mapping ϕ : M̃ → M defined by
ϕ(c1, . . . , cs) = λ1c1 + . . . + λscs is a real-analytic diffeomorphism. ϕ is CR,
but its inverse in general is not CR.

Every orbit M = K (a), a ∈ M , has the structure of a homogeneous K -
space. For every odd continuous function f : R → R and b := f(a) then f
induces a continuous K -equivariant mapping from M onto the orbit N := K (b).
In case a is algebraic also b has the same property and f : M → N is a
real-analytic fiber bundle, compare [13] for the finite dimensional case. The
complex subbundle H M ⊂ T M gives a contact structure on M . As in [13,
(7.9)] it is seen that f : M → N always is a contact transformation (i.e. its
differential maps H M into H N ). On the other hand, in case E is irreducible,
f : M → N is a CR-mapping (i.e. a contact transformation whose differential
is complex linear on every holomorphic tangent space Hx M , x ∈ M) if and
only if f (λj (a)) = c λj (a) for all j and some real constant c ≥ 0, i.e. the
orbits differ by the homothety with the factor c. As an extension of [13] we
therefore ask: when are the orbits K (a), K (b) CR-equivalent in case a, b ∈ E are
algebraic?

5. – Some counterexamples

What happens if in Proposition 4.7 the continuous odd function f is allowed
to have accumulation points of its zeros? We show that then S in general no
longer is a submanifold of E in the induced topology.

For this let H be a complex Hilbert space of infinite dimension with inner
product (z|w) that is complex linear in the first variable and put E : = L(H).
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For every pair x, y of unit vectors in H let x ⊗ y∗ ∈ E be defined as the rank
one operator h 	→ (h|y)x . Then x ⊗ y∗ is a minimal tripotent in E and every
minimal tripotent in E occurs this way. The group K = Aut(E)0 consists of
all transformations z 	→ uzv∗ with u, v unitary operators on H .

Now fix a family (eλ)λ∈� of pairwise orthogonal minimal tripotents in E ,
where � ⊂ R is an infinite subset with 0 < � ≤ 1. Then the infinite sum

a :=
∑
λ∈�

λ eλ

converges in the w∗-topology to an element a ∈ E with ‖a‖ ≤ 1. Assume that
there is an orthonormal basis (xλ)λ∈� of H with eλ = xλ ⊗ x∗

λ for all λ ∈ �.
Then the isotropy subgroup Ka consists of all transformations z 	→ uzu∗, where
u runs over all unitary operators on H that are diagonal with respect to the
basis (xλ) (i.e. have every xλ as eigen vector). It is easily seen that Ka is
a direct subgroup of K , i.e. M is an immersed real-analytic submanifold of
E (with respect to the orbital map K/Ka → M). The tangent space at a is
given by

Ta M = {i(ua − av) : u, v ∈ H},
where H ⊂ E = L(H) is the R-linear subspace of all hermitian operators.
Consider the direct sum decomposition into w∗-closed R-linear subspaces

E = Na ⊕ Ra,

where

Na := ker(La − Qa) = {z ∈ E : (zeλ|eµ) ∈ δλµR for all λ, µ ∈ �}
and

Ra := {z ∈ E : (zeλ|eλ) ∈ iR for all λ ∈ �}.
The inclusion Ta M ⊂ Ra is easily seen, but equality does not hold in general.
This happens for instance, if a is not regular, that is, if inf � = 0. In any case,
for every ε > 0 there exists an element aε ∈ Na ∩ M with 0 < ‖a − aε‖ < ε.
Indeed, choose λ, µ ∈ � with 0 < (λ−µ) < ε and put aε := a+(λ−µ)(eµ−eλ).
As a consequence, the induced topology from E to M is not locally connected
and, in particular, the orbital map K/Ka → M is not a homeomorphism onto
its image, and M is not a submanifold of E .

As a second example consider the (commutative) C∗-algebra E = C(�) of
all continuous complex valued functions on a compact connected topological
space � that contains more than one point. Then E also is a JB∗-triple with
respect to { f gh} = f gh. Fix a function a �≡ 0 in E . Then a is regular
in E if and only if a(ω) �= 0 for all ω ∈ �. The group � consists of all
transformations z 	→ egz with g ∈ E . We know from Proposition 3.3 that the
orbit X : = �(a) is a locally closed direct complex submanifold of E if a is
regular. Otherwise, there exists ω0 ∈ � with z(ω0) = 0 for all z ∈ X and hence
X not even is locally closed in E . Also, in this case im(La) is not closed in
E and im(La) + ker(La) is a proper subspace of E .
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6. – Finite rank orbits

For the rest of this section let us assume that a ∈ E has finite rank r , that
is, a has a representation

(6.1) a = σ1e1 + σ2e2 + . . . + σr er

with uniquely determined real coefficients

σ1 ≥ σ2 ≥ . . . ≥ σr > 0

and pairwise orthogonal minimal tripotents ej in E . For every j ≤ r the
number σj (a) := σj is called the j th singular value of a. For convenience
we put σj (a) = 0 for all j > r . Then clearly every element z in the orbit
M = K (a) has finite rank r and σj (z) = σj (a) for all j . The minimal tripotents
in E are precisely the unit vectors of rank 1.

Denote by F the subspace of all finite rank elements in E , which is closed
in E if and only if it has finite dimension. F is an ideal in E and there exist
pairwise different minimal ideals I1, . . . , Ip of F such that a ∈ I1 ⊕ . . . ⊕ Ip,
i.e. a = a1 + . . . + ap with 0 �= ak ∈ Ik . But then the orbit M = K (a) also
is a direct product M = M1 × . . . × Mp of orbits Mk := K (ak) of positive
dimensions. As a consequence, it is not a real restriction to assume in the
following that F itself is a minimal ideal in E . But then the closure K of F
in E is an irreducible JB∗-triple in which the closed linear span of all minimal
tripotents is the whole space. JB∗-triples of this type are called elementary
Cartan factors. In generalization of (6.1) z ∈ K has a representation

z =
∞∑

j=1

σj cj

with pairwise orthogonal tripotents cj in E and uniquely determined real coef-
ficients

σ1 ≥ σ2 ≥ . . . ≥ σj ≥ . . . satisfying lim
j→∞

σj = 0

such that cj is minimal if σj �= 0 and cj = 0 otherwise. Again we put σj (z) := σj

for all j .
There exists a unique hermitian form (z|w) on F with

(z|z) =
∞∑

k=1

σk(z)
2

for all z ∈ F . The corresponding norm ‖z‖2 = √
(z|z) satisfies ‖z‖2 ≥ ‖z‖

on F . Therefore the completion HS of F with respect to ‖ ‖2 is a complex
Hilbert space that can be identified with the linear subspace

HS =
{

z ∈ K :
∞∑

k=1

σk(z)
2 < ∞

}
.
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Actually, HS is a Hilbert J∗-triple in the triple product induced from K and
Aut(HS) = Aut(K) for the corresponding automorphism groups.

For the study of finite rank orbits in E it will be enough to study the case
where E is an elementary Cartan factor. Since the finite dimensional case is
already taken care of in [13] we may even restrict to the infinite dimensional
case. The elementary Cartan factors are completely classified: besides two
exceptional types V and VI in dimensions 16 and 27 there are precisely the
following four types I - IV. For their description let 1 ≤ m ≤ n be arbitrary
cardinal numbers. Let furthermore L and H be complex Hilbert spaces of
dimensions m and n respectively. On H we fix a conjugation x 	→ x (i.e. a
conjugate linear involutory isometry). The unitary group of all surjective linear
isometries of H is denoted by U(H).

Type Im,n: E = K(L , H) is the space of all compact linear operators
L → H with triple product {abc} = (ab∗c + cb∗a)/2 where b∗ ∈ K(H, L) is
the adjoint of b. For every z ∈ E the triple rank coincides with the operator
rank of z, that is, with the dimension of its range. HS is the subspace of
all Hilbert-Schmid operators in E . The group K = Aut(E)0 consists of all
transformations z 	→ uzv with v ∈ U(L) and u ∈ U(H), the group � = Str(E)0

consists of all transformations z 	→ xzy with y ∈ GL(L) and x ∈ GL(H).
Type IIn: E = {z ∈ K(H) : z′ = −z}, where the transpose z′ : H → H

is defined by z′(x) = z∗(x) for every x ∈ H . For every z ∈ E the triple rank
of z is half the operator rank of z. The group K = Aut(E)0 consists of all
transformations z 	→ uzu′ with u ∈ U(H).

Type IIIn: E = {z ∈ K(H) : z′ = z}. Triple rank and operator rank
coincide. Again, the group K = Aut(E)0 consists of all transformations z 	→
uzu′ with u ∈ U(H).

Type IVn: for dim(H) ≥ 3, E is the Hilbert space H endowed with the
equivalent norm ‖ ‖ defined by

‖z‖2 = (z|z) +
√

(z|z)2 − |〈z|z〉|2
and triple product

{xyz} := (x |y)z + (z|y)x − 〈x |z〉y,

where 〈z|w〉 := (z|w) defines a symmetric bilinear form 〈 | 〉 on H . Every
z ∈ E has rank ≤ 2, and z has rank ≤ 1 if and only of 〈z|z〉 = 0. Clearly,
X := {z ∈ H : z = z} is a real Hilbert space and the orthogonal group O(X) of
all surjective R-linear isometries of X can be considered in a canonical way as
a subgroup of U(H). The group K = Aut(E)0 consists of all transformations
eitλ with t ∈ R and λ ∈ O(X). The Hilbert space HS is nothing but H with
its original norm.

For the following let us assume that E is an elementary Cartan factor.
The following statements are well known in the finite dimensional case and
can easily be seen by checking every infinite dimensional case separately. For
every integer r ≥ 1 let us call every length-r -sequence e1, . . . , er an r-frame
in E if the members are pairwise orthogonal minimal tripotents in E .
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Lemma 6.2. Let e1, . . . , er and c1, . . . , cr be two r-frames in E. Then there
exists a transformation g ∈ K with

(i) g(ek) = ck for k = 1, . . . , r,
(ii) g(x) = x for all x ∈ E with ek ⊥ x ⊥ ck for all k.

In particular, the group K acts transitively on the space of all r-frames in E.

Lemma 6.3. For every integer r ≥ 0 the set Fr of all elements of rank ≤ r in E
is closed in E as well as in the Hilbert space HS. Actually, there exists a set P of
holomorphic homogeneous polynomials of degree r + 1 on E with

Fr = {z ∈ E : f (z) = 0 for all f ∈ P}.
Lemma 6.4. For every a ∈ E of finite rank the orbit M = K (a) is given by

M = {z ∈ E : σk(z) = σk(a) for all k}
and is also a closed direct real-analytic submanifold of the complex Hilbert space
HS. In particular, HS induces on M a K -invariant Riemannian metric.

Lemma 6.2 is not true in general for infinite sequences (ek)k≥1, (ck)k≥1 of
pairwise orthogonal minimal tripotents. Counter examples occur in case n = ℵ0
and E of type In,n , IIn or IIIn: choose (ek) in such a way that {z ∈ E : z ⊥
ek for all k} = {0}. Then there does not exist a transformation g ∈ K with
g(ek) = ek+1 for all k. Furthermore, for every strictly decreasing sequence (σk)

in R with limk→∞ σk = 0 the elements a: = ∑
σkek and b: = ∑

σkek+1 in E
have the same singular values but satisfy b /∈ M = K (a), that is, Lemma 6.4
also is not true if a is not of finite rank.

7. – Holomorphic structure of finite rank orbits

Suppose a is an algebraic element in the JB∗-triple E . Then for K =
Aut(E)0 and � = Str(E)0 the corresponding orbits M = K (a) and X = �(a)

are direct submanifolds of E , more precisely, X is a complex manifold and M
is a closed real analytic submanifold of X with Tx X = Tx M + i Tx M for all
x ∈ M .

M has a natural Cauchy-Riemann structure that is given by the distribution
of the so called holomorphic tangent spaces Hx M : = Tx M ∩ iTx M , x ∈ M ,
together with the complex structure on every Hx M . As in the finite dimensional
setting, for every complex Banach space F , a smooth function f : M → F is
called CR, if for every x ∈ M the differential d fx : Tx M → F is complex linear
on the complex subspace Hx M ⊂ Tx M . A continuous function M → F is called
CR, if it is locally the uniform limit of a sequence of smooth CR-functions.
As an example, every holomorphic function defined in an open neighbourhood
of M ⊂ E gives by restriction a real-analytic CR-function on M .



548 WILHELM KAUP

Natural questions about the CR-submanifold M ⊂ E are for instance: What
is the (linear, polynomial, holomorphic) convex hull of M in E? To which subsets
of E can every continuous CR-function on M be holomorphically extended, and in
what sense? Complete answers in the finite dimensional case with F = C have
been given in [13]. In the following we want to extend some of these results
to the infinite dimensional setting, at least for elements of finite rank.

We assume for the rest of the section that E is an elementary Cartan factor
and F : = F(E) is the ideal of all finite rank elements in E . We start with the
following statement that allows reduction arguments to the finite dimensional
case.

Lemma 7.1. To every linear subspace V ⊂ F of finite dimension there exists
an irreducible JB*-subtriple U ⊂ F of finite dimension with V ⊂ U.

Proof. Type I: here E = K(L , H) for complex Hilbert spaces L , H . There
exist linear subspaces L1 ⊂ L and H1 ⊂ H of finite dimensions with V (L) ⊂ H1
and V ∗(H) ⊂ L1. Then

U : = {z ∈ E : z(L) ⊂ H1, z∗(H) ⊂ L1}

is a JB∗-subtriple of F isomorphic to the irreducible JB∗-triple L(L1, H1) of
finite dimension.

Types II, III: for ε = ±1 we have E = {z ∈ K(H) : z′ = εz}, where H
is a complex Hilbert space with conjugation x 	→ x . We may assume that H
has infinite dimension. Then there exists a conjugation invariant linear subspace
H1 ⊂ H of finite dimension ≥ 5 with V (H) ⊂ H1. Then put

U := {z ∈ E : z(H) ⊂ H1}.

Type IV: without loss of generality we may assume that V ⊂ E is conjugation
invariant and has dimension ≥ 3. But then V is a subtriple isomorphic to IVd

for d: = dim V .

Now fix an element a ∈ E of finite rank, say r ∈ N. As before let
X : = �(a) and M : = K (a). Then X ⊂ F consists of all elements of rank r
in E , and the closure of X in E is the algebraic subset Fr of all elements of
rank ≤ r in E . According to Section 6 let σj : E → R be the j th singular value
map for every integer j ≥ 1. Then

M = {z ∈ E : σj (z) = σj (a) for all j},

since a is algebraic. For every j ≥ 1 define on E real valued functions

αj : = σ1 + σ2 + . . . + σj (additive variant)

µj : = σ1 · σ2 · . . . σj (multiplicative variant).

Then [13, Proposition 11.1] together with Lemma 7.1 immediately gives
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Proposition 7.2. The closed convex hull of the orbit M is

cch(M) = {z ∈ E : αj (z) ≤ αj (a) for all j}.

The convex hull of M is the intersection cch(M) ∩ F .

In accordance with [13] we put

Z: = Z(a): = {z ∈ E : µj (z) ≤ µj (a) for all j},
D: = D(a): = {z ∈ Z : µj (z) < µj (a) for all j ≤ r}.

Clearly, Z is a closed balanced subset of Fr and D is the interior of Z with
respect to the space Fr . Furthermore, D ∩ X is a domain in the complex
manifold X = Fr\Fr−1 and also is dense in Z .

The set Z has a rich structure with respect to its holomorphic arc compo-
nents. Let us denote by Q the set of all z ∈ Z with the property: for every
integer j ≥ 1 with µj (z) < µj (a) the identity σj (z) = σj+1(z) holds. Then it is
easy to see that every holomorphic arc component of Z intersects Q in at least
one point, and we conjecture that this intersection point always is unique. At
least, we give a proof for the following partial result.

Proposition 7.3. For every c ∈ M the one-point set {c} is a holomorphic arc
component of Z . In particular, every holomorphic map ϕ: � → E with ϕ(�) ⊂ M
is constant.

Proof. Suppose ϕ: � → E is a holomorphic map with ϕ(�) ⊂ Z and
ϕ(0) = c. Every αj is a K -invariant equivalent norm on E with αj (Z) ≤ αj (a).
Therefore, by [7, p. 68],

αj (c + ζ(ϕ(z) − c)) = αj (c)

and hence
σj (c + ζ(ϕ(z) − c)) = σj (c) = σj (a)

for all j ≥ 1 and all z ∈ �, ζ ∈ C with 2|ζ z| ≤ 1 − |z|. This implies
c + ζ(ϕ(z) − c) ∈ M for all such ζ, z. Now M is contained in the sphere with
radius ‖a‖2 of the complex Hilbert space HS. Since for every z ∈ � the affine
mapping ζ 	→ c + ζ(ϕ(z) − c) takes a neighbourhood of 0 ∈ C to M we get
ϕ(z) = c.

The following result in the special case of symmetric n × n-matrices in
finite dimensions, that is the type IIIn with n < ∞ in our notation, is already
contained in [15]. The general finite dimensional case is contained in [13,
Theorem 11.7] and [12, Proposition 3.3], compare also [6].

Proposition 7.4. The polynomial convex hull pch(M) of the orbit M is the
set Z .
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Proof. We may assume that E is of infinite dimension. Since Fr is given
by polynomial equations pch(M) ⊂ Fr holds. In a first step assume that
z ∈ pch(M) is an arbitrary element. By Lemma 7.1 there exists an irreducible
subtriple U ⊂ F of finite dimension with a, z ∈ U . The singular values
with respect to U and E coincide for elements of U . Therefore the intersection
M∩U is the orbit of a under the group Aut0(U ). Every holomorphic polynomial
function U → C can be extended to a holomorphic polynomial function E → C

since U is a direct linear subspace of E by finite dimensionality. Therefore [13,
Theorem 11.7] implies µj (z) ≤ µj (a) for all j , i.e. z ∈ Z .
Now assume that x ∈ Fr is not contained in pch(M). Then there exist y ∈
M and a holomorphic polynomial f : E → C with | f (x)| > | f (y)|. By
Lemma 7.1 there exists an irreducible subtriple U ⊂ F of finite dimension
with x, y ∈ U and hence x /∈ pch(M ∩ U ). Again [13, Theorem 11.7] implies
µk(x) > µk(y) = µk(a) for some k ≥ 1, i.e. x /∈ Z .

The element a ∈ E is called invertible if the operator Qa on E is invertible.
In case E is one of the types I - III, invertibility in this sense is the same as
the usual one in the operator sense. In case E is of type IV, invertibility of
a just means that a has rank 2, or equivalently, that 〈z|z〉 �= 0. We can now
formulate the main result of this paper.

Theorem 7.5. Let E be an elementary Cartan factor and let a ∈ E be a
noninvertible element of finite rank. Let furthermore f be a continuous CR-function
on the orbit M = K (a) with values in the complex Banach space F. Then f has
a unique F-valued pull-back holomorphic extension to the set Z = Z(a), and this
extension takes values in the holomorphic convex hull of f (M) in F. In particular,
this extension is holomorphic on the dense subset D ∩ X of Z, which is open in the
complex manifold X = �(a).

We postpone the proof of 7.5 to the next section and give some applications
instead.

Corollary 7.6. hch(M) = Z(a) for every noninvertible a ∈ E of finite rank
and M = K (a).

For a fixed integer r ≥ 1 let E = L(L , H) = K(L , H) where L is a
complex Hilbert space of finite dimension r and H is a complex Hilbert space
of infinite dimension. Then E = Fr and every element a ∈ E is noninvertible.
Let us assume for the rest of the section that a has rank r . Then D ⊂ E
is a bounded balanced domain in E with Shilov boundary M = K (a) and by
Theorem 7.5 every continuous CR-function f : M → F , F an arbitrary complex
Banach space, has a continuous extension to Z = D that is holomorphic on D.
On the other hand, every continuous function on Z that is holomorphic on D
gives by restriction a CR-function on M .

Denote by AutCR(M) the group of all homeomorphisms g of M such that
g and g−1 are CR. Every such g extends to Z and gives a biholomorphic
automorphism of the domain D. On the other hand, every g ∈ Aut(D) (the
group of all biholomorphic automorphisms of D) extends holomorphically onto
a neighbourhood of Z , that is, we have:
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Corollary 7.7. The groups AutCR(M) and Aut(D) are canonically isomor-
phic.

8. – Proof of the main result

We start with the following simple discussion: for fixed integer r ≥ 1 let
G be the group of all linear transformations

(z1, z2, . . . , zr ) 	→ (t1zπ(1), t2zπ(2), . . . , tr zπ(r))

of C
r , where t1, . . . , tr run over all unimodular complex numbers and π ∈ Sr

is an arbitrary permutation. Fix a point a = (a1, . . . , ar ) ∈ R
r with a1 ≥ a2 ≥

. . . ≥ ar > 0 and let N : = G(a) be the corresponding orbit of a, which is a
(not necessarily connected) real-analytic compact submanifold of C

r . Then the
polynomial convex hull P: = pch(N ) of N is the set of all g(x) with g ∈ G
and x ∈ R

r satisfying

x1 ≥ . . . ≥ xr ≥ 0 as well as �k
j=1xj ≤ �k

j=1aj for all k ≤ r.

Denote by A the complex Banach algebra of all continuous functions on P

whose restriction to the interior
◦
P of P is holomorphic. The evaluation mapping

A × P → C given by ( f, x) 	→ f (x) is continuous. On the other hand,
the restriction mapping A → C(N ) is a linear isometry. In particular, as a
consequence of Hahn-Banach, to every y ∈ P there exists a regular Borel
measure µy on N with f (y) = ∫

N f dµy for all f ∈ A. Unfortunately, µy is
not uniquely determined by y in general.

Now we resume the notation from the last section: E is an elementary
Cartan factor and a ∈ E is a noninvertible element of finite rank r ≥ 1. Then
a has a representation

a = a1e1 + . . . + ar er

with real coefficients aj = σj (a) and a suitable r -frame e1, . . . , er in E . Identify
C

r with the subtriple {z1e1 + . . . + zr er : zk ∈ C} of E in the obvious way. For
N and P as above we have N = M ∩ C

r and P = Z ∩ C
r . If we identify

(by restriction) the Banach algebra A with a subalgebra of C(N ) we claim in
a first step:

Lemma 8.1. For every continuous CR-function f : M → C the restriction f |N

is contained in the algebra A.

Proof. Choose an irreducible subtriple U ⊂ F of finite dimension with
C

r ⊂ U such that a also is noninvertible in U . Then the restriction h: = f |M∩U

of f to the Aut(U )0-orbit M ∩ U is CR. By [13, Proposition 12.3] h has a
continuous extension to Z ∩ U that is holomorphic on D ∩ U\{0}. Because
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of Z ∩ C
r = P this implies that f |N has a continuous extension to P that is

holomorphic on
◦
P\{0}. But then by Riemann’s extension theorem continuity

already implies holomorphy on all of
◦
P .

For the next statement let us fix the continuous CR-function f : M → C.
For every g ∈ K the function fg: = ( f ◦g)|N is in the algebra A by Lemma 8.1,
and fg(x) ∈ C is jointly continuous in the parameters g ∈ K , x ∈ P .

Lemma 8.2. There exists a unique continuous function f̃ : Z → C with

(8.3) f̃ (g(x)) = fg(x) for all g ∈ K , x ∈ P.

Proof. Because of Z = K (P) we only have to show that (8.3) produces a
well defined function f̃ on Z , that is, we have to show

fg(x) = fh(y) for all g, h ∈ K and x, y ∈ P with g(x) = h(y).

Without loss of generality we may assume that h ∈ K is the identity. Choose an
irreducible JB∗-subtriple U ⊂ F of finite dimension that contains the subtriples
C

r and g(Cr ). By 6.2 there exists an automorphism ϕ ∈ Aut0(U ) with ϕ(ej ) =
g(ej ) for 1 ≤ j ≤ r . This implies fg = fϕ . By [13, Proposition 12.3] the
restriction of f to M∩U allows a unique continuous extension f̂ to Z∩U which
is holomorphic on D∩U\{0}. This implies fh(y) = f̂ (y) = fϕ(x) = fg(x).

Clearly, the continuous function f̃ in 8.2 coincides with f on M .

Lemma 8.4. f̃ is pull-back holomorphic on Z .

Proof. Consider an arbitrary element c ∈ D ∩ X , where X = �(a) is
the complex manifold of all rank-r -elements in E . The tangent space Tc X =
E1(c) ⊕ E1/2(c) is contained in F . We claim that the complex directional
derivative limt→0

(
f̃ (c + tv) − f̃ (c)

)
/t exists for every v ∈ Tc X , where t in

the limit runs in C
∗. Indeed, choose an irreducible subtriple of F of finite

dimension containing c, v - then the restriction of f̃ to the complex manifold
D ∩ X ∩ U is holomorphic. As a consequence, the restriction of f̃ to D ∩ X
is Gateaux-holomorphic and hence holomorphic because of continuity, compare
for instance [7, p. 43].

Now let Z be an arbitrary connected complex Banach manifold and let
ϕ: Z → E be a holomorphic mapping with ϕ(Z) ⊂ Z . We have to show that
the function h: = f̃ ◦ ϕ is holomorphic on Z .

Case 1. ϕ(Z) contained in D but not in Fr−1. Since Fr−1 is defined by a
family of holomorphic equations in E there exists a non-constant holomorphic
function g on Z such that h is holomorphic on {z ∈ Z : g(z) �= 0}. Since h is
continuous we derive that h is holomorphic on Z .

Case 2. ϕ(Z) contained in D ∩ Fr−1. Choose k ≤ r−1 maximal with
ϕ(Z) ⊂ Fk . Since holomorphy of h is a local property, we may assume
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without loss of generality that there exists a tripotent v of rank r−k in E that
is orthogonal to all elements of ϕ(Z). By the same reasoning we may assume
furthermore that for suitable ε > 0 all functions ht (z): = h(z) + tv, 0 < t < ε,
on Z have range in D. Then by Case 1 every function ht is holomorphic on Z ,
implying that also h = limt→0 ht is holomorphic.

Case 3. ϕ(Z) not contained in D. For every 0 < t < 1 the function
ht : = th on Z has image in D and hence is holomorphic by Case 1. Then also
h = limt→1 ht is holomorphic on Z .

We are now ready for the

Proof of Theorem 7.5. By the considerations above the scalar function
λ ◦ f can be considered as a pull-back holomorphic function on Z for every
λ ∈ F∗ = L(F, C). Consider C

r ⊂ F , N : = M ∩ C
r and P: = Z ∩ C

r as above.
Then N is compact and for every y ∈ Z and every λ ∈ F∗

(8.5) |(λ ◦ f )(y)| ≤ ‖λ‖ · sup ‖ f (g(N ))‖ < ∞
holds, where g ∈ K is an arbitrary transformation with y = g(x) for some
x ∈ P . In particular,

λ 	→ (λ ◦ f )(y)

defines an element f̂ (y) ∈ F∗∗. We obtain this way a continuous map f̂ :Z →
F∗∗ that coincides on M with f . We claim that every τ : = f̂ (y) actually is in
F . Indeed, we may assume y ∈ P and choose a regular Borel measure µy on
N with h(y) = ∫

N h dµy for all h ∈ A. Then the integral q := ∫
N f dµy ∈ F is

well defined, compare [4, p. 80], and satisfies

λ(q) =
∫

N
(λ ◦ f ) dµy = (λ ◦ f )(y) = τ(λ)

for all λ ∈ F∗, that is, τ = q ∈ F and hence also λ ◦ f̂ = λ ◦ f for all λ ∈ F∗.
Let Z be an arbitrary complex Banach manifold and let ϕ: Z → E be

a holomorphic mapping with ϕ(Z) ⊂ Z . Then h: = f̂ ◦ ϕ is continuous and
λ ◦ h is holomorphic on Z for every λ ∈ F∗. But this is enough for h being
holomorphic itself, compare for instance [7, p. 43]. This implies that f̂ is
pull-back holomorphic on Z .
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