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Boundary Trace of Positive Solutions of Nonlinear
Elliptic Inequalities

MOSHE MARCUS – LAURENT VÉRON

Abstract. We develop a new method for proving the existence of a boundary trace,
in the class of Borel measures, of nonnegative solutions of −�u+g(x, u) ≥ 0 in a
smooth domain � under very general assumptions on g. This new definition which
extends the previous notions of boundary trace is based upon a sweeping technique
by solutions of Dirichlet problems with measure boundary data. We also prove a
boundary pointwise blow-up estimate of any solution of such inequalities in terms
of the Poisson kernel. If the nonlinearity is very degenerate near the boundary, for
example if g(x, u) ≈ exp(−ρ−1

∂�(x))uq , we exhibit a new full boundary blow-up
phenomenon.
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Introduction

Let � be a bounded open domain in R
N with a C2 boundary ∂�. This

paper is concerned with the study of the generalized boundary value problem
for the equation

(0.1) −�u + g(x, u) = 0 in �,

where (x, r) �→ g(x, r) is a continuous function defined on �×R, nondecreasing
in the r variable, and nonnegative if r ≥ 0. When g(r) = rq this problem has
been thoroughly investigated with a probabilistic approach by Le Gall [19],
[20] in the case N = 2 = q, then by Marcus and Véron [21], [22], [23] in the
general case q > 1, N > 1 by analytic tools. Related studies were carried on
by Dynkin and Kuznetsov [10], [11] with a mixing of probabilistic and analytic
methods. In [16] the same problem is investigated with g(r) = exp(r). In
all those cases, the boundary trace dichotomy argument is settled upon duality
techniques which were first introduced by Baras and Pierre [1], but in the case
of general nonlinearity, this method fails.

Pervenuto alla Redazione il 3 luglio 2003 e in forma definitiva l’8 marzo 2004.
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In [27] an new approach of the boundary trace is developed for positive
solutions of (0.1). This approach is settled upon two ingredients:

I - The coerciveness, which asserts that the set of nonnegative solutions of
(0.1) is bounded in the local uniform topology upon C(�).

II - The strong-barrier property which is the property that for any boundary
point z and for any r > 0, small enough, there exist supersolutions ϕ of
(0.1) in � ∩ Br (z) with infinite value on ∂ Br (z) ∩ �, and zero value on
∂� ∩ Br (z).

When g depends only of r , those two notions coincide thanks to the Osserman-
Keller condition,

(0.2)
∫ ∞

a

ds√
G(s)

< ∞, for any a > 0,

where G(s) =
∫ s

0
g(t)dt . The same equivalence holds if infx∈� g(x, r) = g(r),

and g satisfies (0.2). Moreover, in these cases, the local uniform upper bound
of any positive solution of (0.1) achieves the following form

(0.3) u(x) ≤ ψg(ρ∂�
(x)), ∀x ∈ �,

where ψg(t) =
∫ ∞

t

ds√
2G(s)

, and ρ
∂�

(x)) = dist (x, ∂�).

If the strong barrier property is uniform with respect to z ∈ ∂�, it implies
the coerciveness, but when limρ

∂�
(x))→0 g(x, r) = 0 for any r > 0, (we say that

the nonlinearity degenerates near the boundary), the reverse implication may
not hold. However, if

g(x, r) ≥ ρα

∂�
(x)rq ∀(x, r) ∈ � × R+,

for some α > 0 and q > 1, it is proved in [27] that the equivalence still holds.

We adopt here a different point of view in connecting the existence of a
boundary trace and the question of solving a Dirichlet problem with measure
data. If µ ∈ M(∂�), the set of Radon measures on ∂�, and (x, r) �→ g(x, r)

is a continuous function defined on � × R, a function u defined in � is a
solution of

(0.4)
−�u + g(x, u) = 0 in �,

u = µ on ∂�,

if u ∈ L1(�), g(., u) ∈ L1(�, ρ
∂�

dx) and

(0.5)
∫

�

(−u�ζ + g(x, u)ζ ) dx = −
∫

∂�

∂ζ

∂n
dµ(y),
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for any ζ ∈ C1,1
c (�̄), the subspace of C1(�̄) functions with Lipschitz continuous

gradient and zero value on ∂�. If g(., x) is nondecreasing, this solution is
unique whenever it exists and we denote it by u = uµ, since

(0.6)
∥∥uµ − uµ∗

∥∥
L1(�)

+∥∥ρ
∂�

(
g(uµ, .) − g(uµ∗, .)

)∥∥
L1(�)

≤ C
∥∥µ − µ∗∥∥

M(∂�)
.

The mapping µ �→ uµ is nondecreasing, moreover if g(x, 0) = 0, µ ≥ 0 �⇒
uµ ≥ 0. Conditions for existence are various.

Let G0 be the set of continuous functions g defined in � × R such that
g(x, 0) = 0 and r �→ g(r, x) is nondecreasing for any x ∈ �, and (x, y) �→
P(x, y) be the Poisson kernel in �× ∂�. If µ ∈ M(∂�), we denote by Pµ its
Poisson’s potential. If g ∈ G0 we say that µ is g-admissible if

(0.7)
∫

�

g(x, P|µ|(x))ρ
∂�

(x) < ∞.

It is proved in [27] that problem (0.4) is uniquely solvable if µ is g-admissible.
However to check this condition on every measure might be far out of

reach and a more tractable condition is introduced. We denote HG0 the subset
of g ∈ G0 such that there exist two continuous, nondecreasing and nonnegative
functions h and f defined on R+, such that

(0.8)

0 ≤ |g(x, r)| ≤ h(ρ
∂�

(x)) f (|r |), ∀(x, r) ∈ � × R,∫ 1

0
h(s) f (σ s1−N )s N ds < ∞, ∀σ ≥ 0,

either h(s) = sα, for some α ≥ 0, or f is convex .

In the first section of this article we prove the following.

If g ∈ HG0, then for any µ ∈ M(∂�), problem (0.4) admits a unique solution uµ.
Moreover the problem is stable, in the sense that if {µn} ⊂ M(∂�) converges to µ

in the weak sense of measures on ∂�, the corresponding solutions {uµn } converge
to uµ, locally uniformly in �.

In the second section we introduce a new definition of the boundary trace
for nonnegative solutions of elliptic inequalities.

(0.9) −�u + g(x, u) ≥ 0 in �,

which extends the previous results concerning equations. A key observation for
defining this notion is a supremum technique introduced by Richard and Véron
[30] in the study of isolated singularities of elliptic inequalities. Following [27]
we say that a function g ∈ G0 is positively subcritical if for any µ ∈ M+(∂�),
problem (0.4) admits a solution uµ (unique and nonnegative). If u ∈ C(�) such
that �u ∈ L1

loc(�) is a nonnegative solution of (0.9), then wµ = min{u, uµ}
satisfies (0.9), and it admits a boundary trace γu(µ) ∈ M+(∂�). Furthermore
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µ �→ γu(µ) is nondecreasing, concave if r �→ g(x, r) is convex. Therefore the
formula

(0.10) ν = sup
µ∈M+(∂�)

γu(µ)

defines a Borel measure ν = Tre
∂�

(u) on ∂�, that we call the extended boundary
trace of u. This measure may not be an outer regular one except in some
particular cases. A particularly important case deals with the choice µ = λδa

for λ > 0, a ∈ ∂�. The corresponding solution uλδa is called a fundamental
solution. In such a case the boundary trace of wλδa is a measure concentrated
at a, that we denote γ̃u(a, λ)δa . The mapping λ �→ γ̃u(a, λ) is a nondecreasing
on R+, and satisfies

0 ≤ γ̃u(a, λ) ≤ λ, ∀λ ≥ 0, ∀a ∈ ∂�.

We define
γ̃u(a) = lim

λ→∞
γ̃u(a, λ),

and denote by A(u) the set of atoms of u,

A(u) = {a ∈ ∂� : γu(a) > 0}.

The regular set R(u) of u is the relatively open subset of the boundary points
a with the property that there exists a relatively neighborhood of a, O ⊂ ∂�

such that ∑
ω∈O

γ̃u(ω) < ∞.

The singular set S(u) of u is the closed subset of the boundary points a with
the property that for any relatively open neighborhood O ⊂ ∂� of a, there
holds ∑

ω∈O
γ̃u(ω) = ∞.

Those two definitions extend the classical notions of regular or singular sets of
the boundary trace of the solution of an equation (see [22], [24]).
We prove in particular

ν(a) = γ̃u(a), ∀a ∈ ∂�,

and the equivalence between

(i) ν(O) = ∞, for any relatively open neighborhood O ⊂ ∂� of a,

and

(ii) u∞,a ≤ u,

under a general stability condition which holds in particular if g ∈ HG0.
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As for u∞,a , different features may occur, in particular,

• u∞,a ≡ +∞, the full blow-up case.

• u∞,a(x) < ∞ for any x ∈ �, but limρ
∂�

(x)→0 u∞,a(x) = ∞, the uniform
boundary blow-up case.

• u∞,a(x) < ∞ for any x ∈ �̄\{a}, and limx→a u∞,a(x) = ∞ (non-tangential
limit), the strong isolated singularity case.

Using precise pointwise estimates of positive super-harmonic functions near the
boundary and the sweeping of any positive solution u of (0.9) by the solutions
of (0.4) with Dirac masses as boundary data, we prove that for any a ∈ ∂�,

x �→ |x − a|N−1 u(x)

converges in measure on the set {σ = (y−a)/ |y − a| : y ∈ �} to C(N )γ̃u(a) as
x → a, where C(N ) is some positive constant depending only on the dimension.

If g(x, r) satisfies

(0.11) g(x, r) ≥ h̃(x)g̃(r), ∀(x, r) ∈ � × R+,

where h̃ ∈ C(�) takes positive values, and g̃ is nondecreasing and satisfies
(0.2), there exists a maximal solution UM to (0.1) in � (actually the global
positivity of h̃ can be weakened, since the positivity near ∂� is sufficient for
the existence of UM ). In that case (ii) implies

u∞,a(x) ≤ u(x) ≤ UM (x),

which rules out the full blow-up case. The nature of u∞,a depends strongly
on h̃ and g̃. For example if it is assumed that h̃ is a positive constant, it
follows from the method of construction of maximal solutions that the uniform
boundary blow-up case does not hold, and we are left with the strong isolated
singularity case. However, this situation also holds even if h̃ depends truly of
x . It is proved in [27] that if

(0.12) h(x)=ρα

∂�
(x), with α > −2 and 1 < q < (N + α + 1)/(N −1) = qc(α),

the strong isolated singularity case occurs. We prove here that if

(0.13) g(x, r) = exp(−1/ρ
∂�

(x))rq , with q > 1,

the uniform boundary blow-up case occurs for any a ∈ ∂�. In such a case,
either the boundary trace is a bounded Borel measure, or u ≡ UM .

A parabolic version of this phenomenon has been observed in [28].
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When the nonlinearity is not degenerate in the sense that the function
g ∈ HG0 satisfies

(0.14) 0 ≤ |g(x, r)| ≤ f (|r |), ∀(x, r) ∈ � × R, and
∫ 1

0
f (s1−N )s N ds < ∞,

where f is a continuous nondecreasing function defined on R+, we recover
the classical definition of the boundary trace in the class of outer regular Borel
measures. More precisely, if u is a nonnegative solution of (0.9) with extended
boundary trace ν, then for any point a ∈ ∂� the following dichotomy occurs:
either

(i) a ∈ S(u) and for any O ∈ Na (the set of its relatively open neighborhoods
O ⊂ ∂�), ν(O) = ∞. This is equivalent to

lim
t→0

∫
Ot

u(y)d St = ∞, ∀O ∈ Na,

where Ot is the subset of points in � at distance t > 0 from ∂�, with
projection in O and d St the induced (N−1)-dimensional Hausdorff measure,
or

(ii) a ∈ R(u), there exists O ∈ Na such that ν(O) < ∞ and for any O′ ⊂
Ō′ ⊂ O

sup
t∈(0,β0]

∫
Ot

u(y)d S < ∞.

Furthermore, for any φ ∈ Cc(R(u))

lim
t→0

∫
Ot

u(y)φd St =
∫
R(u)

φdν .

Our paper is organised as follows: In Section 1 we study the boundary value
problem with Radon measures. In Section 2 we define and study the extended
boundary trace of nonnegative solutions of inequalities. In Section 3 we give a
boundary pointwise estimate for solutions of inequalities. In Section 4 we give
properties of the boundary trace when the nonlinearity is not degenerate at the
boundary. In Section 5 we study different examples of limit of a fundamental
solution when the mass goes to infinity.

1. – Measure boundary data

Throughout this section, � is a bounded domain with a C2 boundary ∂�

and ρ
∂�

(x) = dist (x, ∂�). We put

(1.1) G0 ={g ∈C(�×R) s.t. g(x,0)=0 and r �→ g(x,r) nondecreasing, ∀x ∈�}.
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We denote by C1,1
c (�̄), the subspace of C1(�̄)-functions with Lipschitz contin-

uous gradient and zero value on ∂�, M(∂�) the space of Radon measures on
∂�, and M+(∂�) its positive cone. If P(x, y) is the Poisson kernel in �×∂�,
the Poisson potential of µ denoted by Pµ is defined by

(1.2) Pµ(x) =
∫

∂�

P(x, y)dµ(y), ∀x ∈ �.

The next variant of Herglotz’ theorem is due to Brezis [5] (see [32] for a proof).

Lemma 1.1. Let f ∈ L1(�; ρ
∂�

dx) and ϕ ∈ L1(∂�). Then there exists a
unique u ∈ L1(�) such that

(1.3) −
∫

�

u�ζ =
∫

�

f ζdx −
∫

∂�

∂ζ

∂n
ϕd S

for any ζ ∈ C1,1
c (�̄). Moreover there exists C = C(�) > 0 such that

(1.4) ‖u‖L1(�) ≤ C
(∥∥ρ

∂�
f
∥∥

L1(�)
+ ‖ϕ‖L1(∂�)

)
.

Finally u satisfies

(1.5) −
∫

�

|u| �ζ +
∫

∂�

∂ζ

∂n
|ϕ| d S ≤

∫
�

f ζ sgn(u)dx,

and

(1.6) −
∫

�

u+�ζ +
∫

∂�

∂ζ

∂n
ϕ+d S ≤

∫
�

f ζ sgn+(u)dx,

for any ζ ∈ C1,1
c (�̄), ζ ≥ 0.

Definition 1.2. Let µ ∈ M(∂�). A function u ∈ L1(�) is a solution of

(1.7)
−�u + g(x, u) = 0 in �,

u = µ on ∂�,

if g(., u) ∈ L1(�; ρ
∂�

dx) and

(1.8)
∫

�

(−u�ζ + g(x, u)ζ ) dx = −
∫

∂�

∂ζ

∂n
dµ(y),

for any ζ ∈ C1,1
c (�̄).

Uniqueness is a straightforward consequence of (1.5). In the case where
g(x, r) = g(r) and µ ∈ L1(∂�), existence of a solution to (1.7) is due to Brezis
[5]. If g is continuous in �̄×R, the proof of Brezis result goes through without
any difficulty. If x �→ g(x, r) is merely continuous in � and unbounded near
∂�, problem (1.7) may not have any solution, even with very regular data µ.

Definition 1.2. A measure µ ∈ M(∂�) is g-admissible if

(1.9) g(., P|µ|) ∈ L1(�; ρ
∂�

dx).

The two next results can be found in [27]
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Proposition 1.1. Let g ∈ G0 and µ ∈ M(∂�) be g-admissible. Then problem
(1.7) possesses a unique solution uµ. Moreover the mapping µ �→ uµ is increasing
and continuous from M(∂�) endowed with the total variation norm into C(�) with
the local uniform topology.

Proposition 1.2. Let g ∈ G0 satisfy

(1.10) g(., c) ∈ L1(�; ρ
∂�

dx), ∀c ∈ R.

Then for any µ ∈ L1(∂�), problem (0.4) admits a unique solution.

Let d HN−1 be the (N-1)-dimensional Hausdorff measure. If µ ∈ M(∂�)

we denote by µR (resp. µs) its regular (resp. singular) part in the Lebesgue
decomposition

µ = µR + µs,

where µR ≺ d HN−1) and µs⊥µR . A variant of the next result can be found
in [25].

Proposition 1.3. Assume g ∈ G0 satisfies (1.10) and

(1.11) |g(x, 2r)| ≤ K (|g(x, r)| + �(x), ∀(x, r) ∈ � × R,

for some fixed K > 0 and � ∈ L1(�; ρ
∂�

dx). If µ ∈ M(∂�), µ = µR + µs and
µs is g-admissible, then the conclusions of Proposition 1.1 still hold.

Proof. First notice that relation (1.11), called the �2-condition, implies

(1.12)
∣∣g(x, r + r ′)

∣∣ ≤ K (|g(x, r)| + ∣∣g(x, r ′)
∣∣) + �(x), ∀(x, r, r ′) ∈ � × R

2.

Step 1. Assume that µ is nonnegative, and so are µR and µs . Let {µR,n}
be a sequence of smooth functions on ∂� converging to µR in L1(∂�). Since
PµR,n is bounded, g(x, .) is nondecreasing and (1.10) is satisfied, it follows from
(1.12) that µn = µR,n + µS is g-admissible. Let un and vn be the solutions of
(0.4) with respective measure boundary data µn and µR,n . Applying (1.5) with
u = vn − vp, f = −g(., vn) + g(., vp) and ζ = P1, we obtain

(1.13)
∥∥vn − vp

∥∥
L1(�)

+∥∥ρ
∂�

(g(., vn) − g(., vp))
∥∥

L1(�)
≤C

∥∥µR,n − µR,p
∥∥

L1(∂�)
.

Thus {vn} and {g(., vn} converge to v and g(., v), respectively in L1(�) and
L1(�; ρ

∂�
dx). Furthermore v is the solution of (0.4) with measure boundary

data µR . Because vn + PµS is a supersolution of (0.1) with boundary data µn ,
there also holds

(1.14) 0 ≤ un ≤ vn + PµS ,
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thus {un} is uniformly integrable in L1(�), and also locally compact in the
C1

loc(�) topology, by the elliptic equations regularity theory. Since inequality
(1.12) leads to

(1.15) 0 ≤ g(x, un) ≤ K (g(x, PµS ) + g(x, vn)) + �(x),

it follows from the assumption on µS that the sequence {g(., un)} is uniformly
integrable in L1(�; ρ

∂�
dx). By the Vitali theorem unk → u and g(., unk ) →

g(., u) respectively in L1(�) and L1(�; ρ
∂�

dx) and u is the solution of (0.4).

Step 2. Let µ̃R,n and µ̄R,n be smooth L1-approximations of µ+
R and µ−

R ,
and denote by un , ṽn and v̄n the solutions of (0.4) with respective measure
boundary data µn = µ̃R,n + µ̄R,n + µS , µ̃R,n and −µ̄R,n . By monotonicity and
(1.12) there holds

v̄n − P
µ−

S
≤ un ≤ ṽn + P

µ+
S
,

and

K (g(x, −P
µ−

S
) + g(x, v̄n)) − �(x) ≤ g(x, un) ≤ K (g(x, P

µ+
S
) + g(x, ṽn)) + �(x).

Since v̄n , ṽn , g(., ṽn) and g(., v̄n) inherit the uniform integrability properties of
Step 1, we conclude again by the Vitali theorem.

Let uµ denote the solution of (0.4) with boundary data µ. The g ad-
missibility condition on µ does not imply the weak continuity of the mapping
µ �→ uµ, thus a more uniform assumption is needed.

Definition 1.3. We denote by HG0 the subset of the g ∈ G0 such that
there exist two continuous, nondecreasing and nonnegative functions h and f
defined on R+, with the property

0 ≤ |g(x, r)| ≤ h(ρ
∂�

(x)) f (|r |), ∀(x, r) ∈ � × R,(1.16)

∫ 1

0
h(s) f (σ s1−N )s N ds < ∞, ∀σ ≥ 0(1.17)

either h(s) = sα, for some α ≥ 0, or f is convex .(1.18)

The main result of this section is an existence and stability theorem which
extends a previous one due to Gmira and Véron [15]. The technique involved
is based upon the use of Marcinkiewicz spaces first introduced by Benilan and
Brezis [3], [6] for solving semilinear equations with right-hand side measure.

Theorem 1.1. Let g ∈ HG0. Then any measure µ on ∂� is g-admissible.
Moreover, if {µn} ⊂ M(∂�) converges to µ in the weak sense of measures, the
corresponding solutions uµn of (0.4) with boundary data µn converge to uµ locally
uniformly in � and g(., uµn ) → g(., uµ) in L1(�; ρ

∂�
dx).
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Proof. Step 1. The Marcinkiewicz space framework. For any nonnegative
locally bounded Borel measure β in � and real number p > 1, we denote

(1.19) M p(�; dβ) = {v ∈ L1
loc(�; dβ) : ‖v‖M p(�;dβ)} < ∞},

where

(1.20) ‖v‖M p(�;dβ) = inf

{
c∈ [0, ∞] s.t.

∫
K

|v| dβ ≤c
(∫

K
dβ

)1−1/p

∀K ⊂�, K Borel

}
.

Besides the classical imbedding of M p(�; dβ) into L p̃
loc(�; dβ) for any 1 ≤

p̃ < p, the next inequality plays an important role

(1.21) C(p)‖v‖M p(�;dβ)} ≤ sup
λ>0

{
λp

∫
{|u|>λ}

dβ

}
≤ ‖v‖M p(�;dβ).

Moreover the following estimates are proved in [16]: there exists K = K (�) > 0
such that for any ν ∈ M(∂�),

‖Pν‖M(N+1)/(N−1)(�;ρ
∂�

dx) ≤ K‖ν‖L1(∂�),(1.22)

‖Pν‖M
N/(N−1)

(�)
≤ K‖ν‖L1(∂�),(1.23)

‖Pν‖L∞(�c
r ) ≤ Kr

1−N ‖ν‖L1(∂�),(1.24)

where �r = {x ∈ � : ρ
∂�

(x) ≤ r}, and �c
r = � \ �̄r = {x ∈ � : ρ

∂�
(x) > r}.

Step 2. We claim that there exist two positive constants C1 = C1(�) and
C2 = C2(N ) such that for any a ∈ ∂� and λ > 0

(1.25) βa(λ) =
∫

�a(λ)

h(ρ(x))ρ(x)dx ≤ C2

∫ (C1/λ)
1/(N−1)

0
h(s)s

N
ds,

where
�a(λ) = {x ∈ � : P(x, a) > λ}.

Since

(1.26) C−1
1 ρ

∂�
(x)|x − a|−N ≤ P(x, a) ≤ C1ρ∂�

(x)|x − a|−N
,

for some C1 > 0 independent of (x, a) ∈ � × ∂�,

�a(λ) ⊂
{

x ∈ � : ρ
∂�

(x)|x − a|−N
> λ/C1

}
⊂ � ∩ Brλ(a),
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with rλ = (C1/λ)
1/(N−1)

. Since h is nondecreasing,∫
�a(λ)

h(ρ(x))ρ(x)dx ≤
∫

Brλ (a)

h(|x |)ρ(|x |)dx =
∣∣∣SN−1

∣∣∣ ∫ rλ

0
h(s)s

N
ds,

which implies (1.25).

Step 3. Let G ⊂ � be a Borel subset, then for any m > 0, λ > 0, and
a ∈ ∂� there holds

(1.27)

∫
G

h(ρ
∂�

) f (m P(., a)ρ
∂�

dx ≤ f (λ)

∫
G

h(ρ
∂�

)ρ
∂�

dx

+ C3m
(N+1)/(N−1)

∫ ∞

λ

f (s)h((mC1/s)
1/(N−1))s

−2N/(N−1)
ds,

with C3 = C3(N ) > 0. Actually,∫
G
h(ρ

∂�
(x)) f (m P(x,a)ρ

∂�
(x)dx =

∫
G∩{P(x,a)≤λ/m}

h(ρ
∂�

(x)) f (m P(x,a)ρ
∂�

(x)dx

+
∫

G∩�a(λ/m)

h(ρ
∂�

(x)) f (m P(x, a)ρ
∂�

(x)dx .

Since f is nondecreasing,∫
G∩{P(x,a)≤λ/m}

f (m P(x, a)h(ρ
∂�

(x))ρ
∂�

(x)dx ≤ f (λ)

∫
G

h(ρ
∂�

(x))ρ
∂�

(x)dx .

Moreover∫
G∩�a(λ/m)

h(ρ
∂�

(x)) f (m P(x, a)ρ
∂�

(x)dx ≤ −
∫ ∞

λ/m
f (ms)dβa(s).

But

−
∫ ∞

λ/m
f (ms)dβa(s) = f (λ)βa(λ) +

∫ ∞

λ/m
βa(s)d f (ms).

Using (1.25) in Step 2 infers

−
∫ ∞

λ/m
f (ms)dβa(s) ≤ f (λ)βa(λ) + C2

∫ ∞

λ/m

∫ (C1/s)
1/(N−1)

0
h(τ )τ

N
dτd f (ms).

Since

∫ ∞

λ/m

∫ (C1/s)
1/(N−1)

0
h(τ )τ

N
dτd f (ms) = − f (λ)

∫ (mC1/λ)
1/(N−1)

0
h(s)s

N
ds

+ C
(N+1)/(N−1)

1

N − 1

∫ ∞

λ/m
h((C1/s)

1/(N−1)
)s

−2N/(N−1)
f (ms)ds,



492 MOSHE MARCUS – LAURENT VÉRON

(1.27) follows by change of variable, with C3 = C2C
(N+1)/(N−1)

1 . It is important
to notice that this integral is convergent because of (1.16).

Step 4. Suppose f is convex, then for any µ ∈ M+(∂�) with total mass
m and any Borel subset G ⊂ �, there holds

(1.28)

∫
G

f (Pµ)h(ρ
∂�

)ρ
∂�

dx ≤ f (λ)

∫
G

h(ρ
∂�

)ρ
∂�

dx

+ C3m
(N+1)/(N−1)

∫ ∞

λ

f (s)h((mC1/s)
1/(N−1))s

−2N/(N−1)
ds.

First, let us assume that

µ = m
k∑

i=1

θiδai

for some ai ∈ ∂� and θi > 0 with
∑k

i=1 θi = 1. Then

Pµ(x) = m
k∑

i=1

θi P(x, ai ).

Since

f (Pµ(x)) = f (m
k∑

i=1

θi P(x, ai )) ≤
k∑

i=1

θi f (m P(x, ai )

∫
G

f (Pµ)h(ρ
∂�

)ρ
∂�

dx ≤
k∑

i=1

θi

∫
G

f (m P(x, ai )h(ρ
∂�

)ρ
∂�

dx .

Therefore (1.28) follows from (1.27).
For a general nonnegative measure µ with total mass m, there exists a

sequence of finite combinations of positive Dirac measures µn with same total
mass converging to µ in the weak sense of measures. Then Pµn converges to
Pµ locally uniformly in � and in L p(�) for any 1 ≤ p < N/(N − 1). Thus
(1.28) follows by the Fatou’s lemma.

Step 5. Suppose h(s) = sα , then for any µ ∈ M+(∂�) with total mass m
and any Borel subset G ⊂ �, there holds

(1.29)

∫
G

f (Pµ)h(ρ
∂�

)ρ
∂�

dx

≤ f (λ)

∫
G

ρ
1+α

∂�
dx + C7m

(N+1+α)/(N−1)
∫ ∞

λ

s
−(2N+α)/(N−1)

f (s)ds .

By Step 2 there exists C4 = C4(�, α) > 0 such that

βa(λ) ≤ C4λ
(N+1+α)/(N−1)
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for any λ > 0. Thus we derive an estimate of P(., a) in M (N+1+α)/(N−1),

(1.30)
∫

G
P(x, a)ρ

1+α

∂�
dx ≤ C5

(∫
G

ρ
1+α

∂�
dx

)(2+α)/(N+1+α)

.

Therefore ∫
G

Pµ(x))ρ
1+α

∂�
dx =

∫
∂�

dµ(a)

∫
G

P(x, a)ρ
1+α

∂�
dx,

≤
(∫

∂�

dµ(a)

)
max
a∈∂�

∫
G

P(x, a)ρ
1+α

∂�
dx .

From this estimate follows

(1.31)
∫

G
Pµ(x))ρ

1+α

∂�
dx ≤ C5‖µ‖L1(∂�)

(∫
G

ρ
1+α

∂�
dx

)(2+α)/(N+1+α)

.

Now

(1.32)

∫
G

f (Pµ)h(ρ
∂�

)ρ
∂�

dx =
∫

G
f (Pµ)ρ

1+α

∂�
dx

≤ f (λ)

∫
G

ρ
1+α

∂�
dx +

∫
{Pµ>λ}

f (Pµ)ρ
1+α

∂�
dx .

But ∫
{Pµ>λ}

f (Pµ)ρ
1+α

∂�
dx = −

∫ ∞

λ

f (s)dβµ(s),

where

βµ(s) =
∫

�µ(s)
ρ

1+α

∂�
dx with �µ(s) = {x ∈ � : Pµ(x) > s}.

Moreover
βµ(s) ≤ C6m

(N+1+α)/(N−1)
λ

−(N+1+α)/(N−1)

by (1.30), with G = �µ(λ) and C6 = C
(N+1+α)/(N−1)

5 . Therefore

(1.33)

−
∫ ∞

λ

f (s)dβµ(s) = f (λ)βµ(λ) +
∫ ∞

λ

βµ(s)d f (s),

≤ C6m
(N+1+α)/(N−1)

λ
−(N+1+α)/(N−1)

f (λ)

+ C6m
(N+1+α)/(N−1)

∫ ∞

λ

s
−(N+1+α)/(N−1)

d f (s),

≤ C7m
(N+1+α)/(N−1)

∫ ∞

λ

s
−(2N+α)/(N−1)

f (s)ds,
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where C7 = (N + 1 + α)C6m
(N+1+α)/(N−1)

. Combining (1.32) and (1.33) yields
(1.29).

If we take G = � in (1.27) and (1.29) we derive that (1.9) holds with µ

and we conclude by Proposition 1.1. However those two estimates are much
more powerfull since they leads to uniform-integrability properties.

Step 6. Put vn = P|µn | and v = P|µ|. Then

(1.34) 0 ≤ |un| ≤ vn and 0 ≤ |u| ≤ v.

The fact that un is locally bounded in � independently of n follows from
(1.24). Since g is continuous, g(., un) remains also locally bounded in �. By
the elliptic equations regularity theory there exists a subsequence {unk } and a

C
1
(�)-function u such that unk → u in the C

1
loc(�)-topology. This clearly

implies that u solves (0.1) in �.

Step 7. We claim that u is a solution of (0.4) with µ as boundary data.
By the definition of the Marcinkiewicz norm,

∫
�

∣∣unk − u
∣∣ dx =

∫
�c

r

∣∣unk − u
∣∣ dx +

∫
�r

∣∣unk − u
∣∣ dx,

≤
∫

�c
r

∣∣unk − u
∣∣ dx + 2

∥∥unk − u
∥∥

M
N/(N−1)

(�)
(meas.�r )

1/N
.

But
∥∥unk − u

∥∥
M

N/(N−1)
(�)

remains bounded independently of nk by (1.22). Thus

unk → u in L1(�). In order to prove that g(., unk ) → g(., u) in L1(�, ρ
∂�

dx)

put mn =
∫

∂�

d |µn| and let G ⊂ � be a Borel set. Because of (1.16) and

(1.34) there holds
|g(., un)| ≤ f (vn)h(ρ

∂�
).

If f is convex (Step 4) it follows

(1.35)

∫
G

|g(., un)| ρ∂�
dx ≤ f (λ)

∫
G

h(ρ
∂�

)ρ
∂�

dx

+ C3m
(N+1)/(N−1)

n

∫ ∞

λ

f (s)h((mnC1/s)
1/(N−1))s

−2N/(N−1)
ds.

If h(s) = sα (Step 5), then

(1.36)

∫
G

|g(., un)| ρ∂�
dx

≤ f (λ)

∫
G

ρ
1+α

∂�
dx + C7m

(N+1+α)/(N−1)

n

∫ ∞

λ

s
−(2N+α)/(N−1)

f (s)ds.
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Because {mn} is bounded, for any ε > 0, we first choose λ > 0 large enough
so that, for any n ∈ N,

C3m
(N+1)/(N−1)

n

∫ ∞

λ

f (s)h((mnC1/s)
1/(N−1))s

−2N/(N−1)
ds ≤ ε/2

in the case f is convex, or

C7m
(N+1+α)/(N−1)

n

∫ ∞

λ

s
−(2N+α)/(N−1)

f (s)ds ≤ ε/2

in the case h(s) = sα . Then we take meas. G small enough so that

f (λ)

∫
G

h(ρ
∂�

)ρ
∂�

dx, ≤ ε/2

and we conclude that ∫
G

|g(., un)| ρ∂�
dx ≤ ε

independently of n. Therefore {g(., un} is uniformly integrable for the measure
ρ

∂�
dx . Since g is continuous and un → u in �, it follows that g(., un) →

g(., u) in L1(�, ρ
∂�

dx). Letting n → ∞ in the integral formulation of un for
(0.4) implies that u solves (0.4) with µ as boundary data.

The next stability result is a straightforward extension of the previous result

Proposition 1.4. Let (x, r) �→ gn(x, r) be a sequence of functions in ∈ C(�×
R), nondecreasing with respect to r , vanishing at r = 0 for any x ∈ �, and
satisfying (1.16)-(1.18) uniformly with respect to n. If there exists g ∈ C(� × R)

such that gn(x, r) → g(x, r) pointwise in �× R, then g satisfies (1.16). Moreover,
if µn ∈ M(∂�) converges to µ in the weak sense of measures, the sequence of
solutions uµn ,gn of

−�un + gn(x, un) = 0 in �,

un = µn on ∂�,

converges locally uniformly in � to the solution uµ of (0.4).

Proof. By assumption

0 ≤ gn(x, r) ≤ h(ρ
∂�

(x)) f (r), ∀n ∈ N
∗, ∀(x, r) ∈ �̄ × R,

and (1.16) holds. Then g satisfies the same upper bound. Since 0 ≤ |un| ≤ P|µn |,
the inequalities (1.35)-(1.36) hold with g replaced by gn which infers the uniform
integrability of {gn(., un)} in L1(�; ρ

∂�
dx). The rest of the proof is similar to

the one of Proposition 1.1.
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2. – The extended boundary trace

If � is a C3 bounded domain in R
N and x ∈ ∂�, let nx denote the normal

pointing outward unit vector at x . Let us recall some notations and definitions
from [25]. The mapping � from ∂� × (0, ∞) into R

N
is defined by

(2.1) �(x, t) = x − tnx ∀(x, t) ∈ ∂� × (0, 1).

It is known that there exists 0 < β0 such that � is a diffeomorphism from
∂� × [0, β0) onto

(2.2) �β0
= {x ∈ � : ρ

∂�
(x) < β0}.

In particular, for any t ∈ [0, β0) the set

(2.3) �t = {y = x − tnx : x ∈ ∂�}
is diffeomorphic to ∂� = �0 (for the sake of simplicity, we shall denote
�0 = �), and for any y ∈ �t , ρ

∂�
(y) = t . If U ⊂ ∂�, we denote

Ut = {y = x − tnx : x ∈ U },
and if ζ is a function defined in Ut ,

ζt (y) = ζ(x) for any y = x − tnx ∈ Ut .

We denote by Ht the mapping from �t to � defined by Ht(x) = σ(x) for
x ∈ �t . Thus H

−1
t (x) = �

−1
(., t).

Given t ∈ [0, β0), a Borel measure µ and a function f on �t , we define
a corresponding measure µt and function f t on � by

(2.4)
{

µt (E) = µ(H
−1
t (E)), ∀E ⊂ �, E Borel,

f t (σ ) = f (σ − tnσ ), ∀σ ∈ �.

Then

(2.5) µ ∈ M(�t ), f ∈ L
1
(�t , |µ|) �⇒




f t ∈ L
1
(�,

∣∣µt
∣∣),∫

�t

f dµ =
∫

�

f t dµt .

This section is devoted to the definition and properties of the notion of extended
boundary trace for nonnegative solutions of

(2.6) −�u + g(x, u) ≥ 0 in �,

and of the associated equation

(2.7) −�u + g(x, u) = 0 in �.
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Definition 2.1. I- We say that a function g ∈ G0 is positively subcritical
if for any µ ∈ M+(∂�), problem (0.4) admits a solution uµ.

II- The function g is said positively subcritical and stable if µn → µ weakly in
M+(∂�) implies

uµn → uµ locally uniformly in � and g(., uµn ) → g(., uµ) in L1(�; ρ
∂�

dx).

Remark 2.1. I- The convergence of µn to µ in the weak sense of measures
implies that Pµn converges to Pµ in Ls(�) for any 1 ≤ s < N/(N − 1), by
classical potential analysis. Because 0 ≤ uµn ≤ Pµn , uµn → uµ in Ls(�) (by
Vitali’s theorem) and in the local uniform topology of C(�)). If ζ ∈ C2

c (�̄),
ζ ≥ 0, then

∫
�

(−uµn �ζ + g(x, uµn )ζ
)

dx = −
∫

∂�

∂ζ

∂n
dµn.

Since uµnk
→ ũ and g(., uµnk

) → g(., ũ) locally uniformly in �, Fatou’s lemma
infers ∫

�

(−ũ�ζ + g(x, ũ)ζ ) dx ≤ −
∫

∂�

∂ζ

∂n
dµ,

and there always holds ũ ≤ uµ. If it is assumed that ũ = uµ, then

lim
n→∞

∫
�

g(x, uµn )ζdx =
∫

�

g(x, uµ)ζdx,

and this convergence holds for any ζ ∈ Cc(�̄) such that ζ/ρ
∂�

is bounded.
However it does not imply weak convergence in L1(�; ρ

∂�
dx). Notice that in

such a case, weak convergence in L1(�; ρ
∂�

dx) implies strong convergence by
Dunford-Pettis and Vitali’s theorems.

II- It follows by Theorem 1.1 that any g ∈ HG0 is positively subcritical and
stable.

Definition 2.2. Let U be a relatively open subset of � and µ ∈ M(U ).
We say that a function v ∈ C(�) admits µ for trace on O, and we denote it
by TrU (v), if

(2.8) lim
t→0

∫
Ut

v(x)φ(σ (x))d S =
∫

U
φdµ, ∀φ ∈ Cc(U ).

It is proved in [27, Corollary 1.3] that the solution uµ of (0.4) admits µ

for trace on ∂�. The role of nonnegative super-solutions is enlighted by the
next result.
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Proposition 2.1. Let g ∈ G0 and u ∈ C(�) be a nonnegative solution of
(2.6) in � such that g(., u) ∈ L1(�, ρ

∂�
dx). Then u admits a boundary trace

µ ∈ M+(∂�). Moreover, if

(2.9) u∗ = sup{v ∈ C(�) : 0 ≤ v ≤ u, v solution of (2.7)},
then u∗ is a solution of (2.7) and

Tr
∂�

(u) = Tr
∂�

(u∗).

Proof. Let ψ = Gg(.,u) be the Green potential of the function g(., u). Then
ψ + u is nonnegative and super-harmonic. Therefore ψ + u admits a boundary
trace belonging to M+(∂�). Thus the same holds for u since ψ vanishes on ∂�

and the boundary trace of u is a nonnegative Radon measure. The construction
of u∗ is performed in considering the sequence of smooth domains �n (n ≥ 1),
defined by

�n = {x ∈ � : ρ
∂�

(x) > βn},
where 0 < βn+1 < βn < β0 and βn → 0 as n → ∞. For each n we denote by
un the solution of

−�un + g(x, un) = 0 in �n,

un = u on ∂�n.

Since u is a super solution, u ≥ un ≥ 0 and consequently the sequence {un}
is decreasing. Therefore u∗ exists as the decreasing limit of the un . By the
regularity theory of elliptic equations, the convergence holds in C1

loc(�) and u∗
satisfies (2.7). If ũ is any nonnegative solution of (2.7) dominated by u, then
ũ ≤ u∗ = un on ∂�n , thus ũ ≤ un in �n . Letting n → ∞ yields ũ ≤ u∗.
Clearly the correspondence u �→ u∗ which associates to a solution u of (2.6)
the largest solution of (2.7) dominated by u inherits the following properties:

(2.10) u1 ≤ u2 �⇒ u∗
1 ≤ u∗

2,

and

(2.11)
(
u∗)∗ = u∗.

In the above construction, the boundary trace of u plays no role. In order to
prove that Tr

∂�
(u∗) = µ, let ζ ∈ C1,1

c (�̄) and ζn be the solution of

−�ζn = −�ζ in �n,

ζn = 0 on ∂�n.

Although ζn /∈ C1,1
c (�̄n), ζn remains uniformly bounded in C1,α

c (�̄n) for any
α ∈ (0, 1), �ζn is bounded and∫

�n

(−un�ζn + g(x, un)ζn) dx = −
∫

�βn

∂ζn

∂n
u(y)d S,
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by approximation. We extend un by putting the zero value outside �̄n and call
ũn this extension. For ζn we perform an extension by reflexion following the
normal direction and define ζ̃n thanks to the following formula

∀x ∈ �̄ \ �n with ρ
∂�

(x) = tx and x = σ(x) − tx nσ(x),

ζ̃n(x) = −ζn(σ (x) − (2βn − tx)nσ(x)).

Notice that we have to assume 2βn ≤ β0. It follows by the elliptic equations
regularity theory that there exist a subsequence ζnk and some ζ̃ ∈ C1,α

c (�̄) such
that ζnk → ζ̃ in C1(�̄). By the uniqueness of the solution of the Dirichlet
problem ζ̃ = ζ , and the wole sequence {ζn} is convergent. Moreover

0 ≤ ũn(x) ≤ u(x) �⇒ 0 ≤ g(x, ũn) ≤ g(x, u), ∀x ∈ �.

Thus the sequence {g(., ũn)ρ∂�
} is uniformly integrable in �. By Vitali’s the-

orem∫
�

(−u∗�ζ + g(x, u∗)ζ
)

dx = − lim
nk→0

∫
�βnk

∂ζnk

∂n
u(y)d S =

∫
∂�

∂ζ

∂n
dµ.

This indicates that u∗ is a solution of (0.4) with boundary µ and therefore
Tr

∂�
(u∗) = µ.

The key observation on which is based the definition of the boundary trace
is the following

Proposition 2.2. Let g ∈ G0 is positively subcritical and u a nonnegative
solution of (2.6) in �. If µ ∈ M+(∂�) set wµ = min(u, uµ). Then wµ satifies

(2.12) −�wµ + g(., wµ) ≥ 0 in �,

and there exists γu(µ) ∈ M+(∂�) such that Tr
∂�

(wµ) = γu(µ). The mapping
µ �→ γu(µ) is nondecreasing and 0 ≤ γu(µ) ≤ µ. Moreover, if for any x ∈ �

the function r �→ g(x, r) is convex on R+, the mapping µ �→ γu(µ) is concave on
M+(∂�).

Proof. Let δ > 0 and p be the C1,1 even convex function defined on R by

p(t) =
{ |t | − δ/2 for |t | ≥ δ,

t2/2δ for |t | ≤ δ .

Then ωδ = 1

2
(u + uµ − p(u − uµ)) satisfies

�ωδ = 1

2

(
�u + �uµ − p′(u + uµ)�(u − uµ) − p′′(u − uµ)

∣∣D(u − uµ)
∣∣2

)
,

≤ 1

2

(
�u + �uµ − p′(u + uµ)�(u − uµ)

) = F.
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Put

(2.13)

G1 = {x ∈ � : (u − uµ)(x) > δ},
G2 = {x ∈ � : (u − uµ)(x) < −δ},
G3 = {x ∈ � :

∣∣u − uµ

∣∣ (x) ≤ δ}.

On G1, p′(u − uµ) = 1 and

F = �uµ = g(., uµ) = g(., ωδ − δ/4).

On G2, p′(u − uµ) = −1 and

F = �u ≤ g(., uµ) = g(., ωδ − δ/4).

On G3, p′(u − uµ) = δ−1(u − uµ) and

F = 1

2

(
1 − u − uµ

δ

)
�u + 1

2

(
1 + u − uµ

δ

)
�uµ

≤
(

1 − u − uµ

δ

)
g(., u) + 1

2

(
1 + u − uµ

δ

)
g(., uµ).

By continuity of r �→ g(x, r) there exists θ = θ(x) ∈ [0, 1] such that

F ≤ g(., θu + (1 − θ)uµ)) ≤ g(., ωδ + 3δ/4) ≤ g(., v + δ).

Combining those inequalities infers

(2.14) �ωδ ≤ g(., ωδ + 3δ/4) ≤ g(., uµ + δ).

If we let δ → 0, ωδ → wµ = min(u, uµ) and (2.12) holds in the sense of
distributions in �. Since 0 ≤ g(., wµ) ≤ g(., uµ), g(., wµ) ∈ L1(�; ρ

∂�
)dx . For

the last assertion let µi ∈ M+(∂�) (i = 1, 2), θ ∈ [0, 1], µθ = θµ1 + (1− θ)µ2
and uθ = θuµ1 + (1 − θ)uµ2 . Since

g(x, uθ ) ≤ θg(x, uµ1) + (1 − θ)g(x, uµ2),

there holds
−�uθ + g(x, uθ ) ≤ 0,

and uθ ≤ uµθ
by the comparison principle between solutions of (0.4). Moreover,

u+uθ −|u − uθ |= θ(u+uµ1)+ (1−θ)(u+uµ2)−
∣∣θ(u−uµ1) + (1−θ)(u−uµ2)

∣∣
≥ θ

(
u + uµ1 − ∣∣u − uµ1

∣∣) + (1 − θ)
(
u + uµ2 − ∣∣u − uµ2

∣∣)
= θ min{u, uµ1} + (1 − θ) min{u, uµ2}.
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Thus

min{u, uµθ
} ≥ min{u, uθ } ≥ θ min{u, uµ1} + (1 − θ) min{u, uµ2},

which implies

γu(θµ1 + (1 − θ)µ2) ≥ θγu(µ1) + (1 − θ)γu(µ2).

Remark 2.2. It follows also from [8], [9] that �wµ ∈ L1(�; ρ
∂�

dx).
Moreover

(2.15)
∫

�

(−wµ�ζ + g(x, wµ)
)

dx =
∫

�

�ζdx −
∫

∂�

∂ζ

∂n
dγu(µ), ∀ζ ∈ C1,1

c (�̄),

where � = [−�wµ + g(x, wµ)].

Proposition 2.3. Under the assumptions of Proposition 2.2 set

(2.16) ν = sup{γu(µ) : µ ∈ M+(∂�)}.

Then ν is a Borel measure on ∂�.

Proof. It is clear that ν is an outer measure in the sense that

(2.17) ν(∅) = 0, and ν(A) ≤
∞∑

k=1

ν(Ak), whenever A ⊂
∞⋃

k=1

Ak .

Let A and B ⊂ ∂� be disjoint Borel subsets. In order to prove that

(2.18) ν(A ∪ B) = ν(A) + ν(B),

we first notice that the relation holds if max{ν(A), ν(B)} = ∞. Therefore we
assume that ν(A) and ν(B) are finite. For ε > 0 there exist two bounded
positive measures µ1 and µ2 such that

γu(µ1)(A) ≤ ν(A) ≤ γu(µ1)(A) + ε/2

and
γu(µ1)(B) ≤ ν(B) ≤ γu(µ1)(B) + ε/2

Hence
ν(A) + ν(B) ≤ γu(µ1)(A) + γu(µ2)(B) + ε

≤ γu(µ1 + µ2)(A) + γu(µ1 + µ2)(B) + ε

= γu(µ1 + µ2)(A ∪ B) + ε

≤ ν(A ∪ B) + ε.



502 MOSHE MARCUS – LAURENT VÉRON

Therefore ν is a finitely additive measure. If {Ak} (k ≥ 0) is a sequence of of
disjoint Borel sets and A = ∪Ak , then

ν(A) ≥ ν


 ⋃

1≤k≤n

Ak


 =

n∑
k=1

ν(Ak) �⇒ ν(A) ≥
∞∑

k=1

ν(Ak).

By (2.17), it implies that ν is a countably additive measure.

Remark 2.3. The measure ν may not be regular. If ν(B) = ∞ then
ν(O) = ∞ for any relatively open subset O containing B. On the other hand,
if ν(B) < ∞, there exists a sequence of positive Radon measures µn such that

γu(µn)(B) ↑ ν(B) as n → ∞.

Even if for each n ∈ N∗ and ε > 0 there exists a relatively open subset On,ε

containing B such that

γu(µn)(On,ε) ≤ γu(µn)(B) + ε,

there is no reason that there exists some open subset containing B such that
γu(µn)(O) would remain bounded independently of n.

Definition 2.3. The outer Borel measure ν defined by the above process
is called the extended boundary trace of u and denoted by Tre

∂�
(u).

The next result shows that in the study of the extended boundary trace, it
is always possible to replace the inequation by an equation.

Proposition 2.4. Let g ∈ G0 be positively subcritical. If u is a nonnegative
solution of (2.6) and u∗ is the largest solution of (0.1) dominated by u, then

(2.19) Tre
∂�

(u) = Tre
∂�

(u∗).

If, in addition, there exist an open domain O ⊂ R
N and a nonnegative Radon

measure µ̃ on O ∩ ∂� such that

(2.20) lim
β→0

∫
�β∩O

u(x)φ(σ (x))d S =
∫
O∩∂�

φdµ̃.

for any φ ∈ C(O ∩ ∂�), then

(2.21) Tre
∂�

(u)|∂�∩O = µ̃.

Proof. Because of the definition of the extended boundary trace, it is
sufficient to prove that for any µ ∈ M+(∂�),

(2.22) γu(µ) = γu∗(µ).
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Because u∗ ≤ u, then min{u∗, uµ} ≤ min{u, uµ} and γu∗(µ) ≤ γu(µ). Con-
versely

u ≥ min{u, uµ} �⇒ u∗ ≥ [min{u, uµ}]∗,
and

uµ ≥ min{u, uµ} �⇒ u∗
µ = uµ ≥ [min{u, uµ}]∗,

by (2.10). Therefore

min{u∗, uµ} ≥ [min{u, uµ}]∗,
and

[min{u∗, uµ}]∗ ≥ (
[min{u, uµ}]∗)∗ = [min{u, uµ}]∗,

by (2.11). By Proposition 2.1, min{u, uµ} and [min{u, uµ}]∗ have the same
boundary trace, and the same holds min{u∗, uµ} and [min{u∗, uµ}]∗. Therefore

γu∗(µ) ≥ γu(µ),

which implies (2.22).

For the second assertion, we assume that u admits µ̃ for boundary trace
on O ∩ ∂�. Let λ ∈ M+(∂�) and φ ∈ Cc(∂� ∩ O), φ ≥ 0. Since∫

�β∩O
u(x)φ(σ (x))d S ≥

∫
�β∩O

min{u(x), uλ(x)}φ(σ(x))d S,

there holds, as β → 0, ∫
∂�∩O

φdµ̃ ≥
∫

∂�∩O
φdγu(λ),

thus

(2.23) µ̃ ≥ Tre
∂�

(u)|∂�∩O.

Conversely, by reducing the set O, we first suppose that µ̃ is bounded and we
extend it by 0 outside O∩ ∂�. We can also suppose that O∩� is C2 and that
u ∈ L1(� ∩ ∂O) by (2.20) and Fubini’s theorem. Let v = vO

µ̃ be the solution
of

(2.24)

−�v + g(x, v) = 0 in O ∩ �,

v = 0 in � ∩ ∂O,

v = µ̃ in ∂� ∩ O.

Since u|O∩� satisfies the same equation, with the exception of the data on �∩∂O
which is an integrable nonnegative function, g(., u)|O∩� ∈ L1(O∩�; ρ

∂(O∩�)
dx)

and
vO

µ̃ ≤ u in O ∩ �,
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by the maximum principle and [5]. If ṽ = ṽO
µ̃ , is the extension of v by zero

in � \ (O ∩ �), then
ṽ ≤ uµ̃ ≤ min{u, uµ̃}.

Therefore ∫
O

φdµ̃ ≤
∫
O

φdγu(µ̃),

for any φ ∈ Cc(∂� ∩O). Clearly the same relation holds even if we no longer
assume that µ̃ is bounded. Thus

µ̃(E) ≤ γu(µ̃)(E), ∀E ⊂ ∂� ∩ O, E Borel,

and consequently

(2.25) µ̃ ≤ Tre
∂�

(u)|∂�∩O.

Remark 2.4. The relation (2.20) means that u admits a boundary trace
in the usual sense on O ∩ ∂� which is precisely µ̃. The reverse implication
“(2.21) �⇒ (2.20)” holds under an additional strong stability assumption which
will be developped in Section 4. However we can give a weaker form of this
implication if u∗ is dominated by the minimal large solution of (2.7), whenever
it exists.

Let us denote by λn (n ≥ 0) the measure nχ
∂�

d S and

(2.26) um = sup{uλn : n ∈ N}.

If um is locally bounded in �, it is a solution of (2.7) which blows up on
the boundary. In such a case it is called the minimal large solution. Depending
upon the nonlinearity, um may also be infinite in whole � or in part of �.
Moreover, by the maximum principle, it dominates any solution u of the same
equation which is obtained by approximation by solutions with finite values as
boundary data.

Proposition 2.5. Let g ∈ H0 be positively subcritical. If Tre
∂�

(u) is a bounded
Borel measure and u∗ ≤ um, then

(2.27) Tre
∂�

(u∗) = Tr
∂�

(u∗) ∈ M+(∂�).

Proof. By assumption ν = Tre
∂�

(u) is bounded. Thus there exists a se-
quence {µn} ⊂ M+(∂�) such that

γu(µn)(1) = γu∗(µn)(1) = Tr
∂�

([min{u∗, uµn }]∗)(1) ↑ ν(1),

since u and u∗ have the same extended boundary trace. Because the extended
boundary trace is defined by a supremum over all measures, it can also be
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assumed that the regular part of µn is a.e. bounded from below by n. Let
ζ ∈ C1,1

c (�̄) be the solution of

−�ζ = 1 in �,

ζ = 0 on ∂�.

By the definition of the boundary trace in M+(∂�),

∫
�

(
[min{u∗, uλn }]∗+ζg(x, [min{u∗, uλn }]∗) dx =−

∫
∂�

∂ζ

∂n
d Tr

∂�
([min{u∗, uλn }]∗),

≤ Cν(1).

Since um dominates u∗, limn→∞ min{u∗, uλn } = u∗ and

(2.28) u∗ ∈ L1(�), and g(., u∗) ∈ L1(�; ρ
∂�

dx).

It follows from [27, Corollary 1.3] that u∗ has a boundary trace, say µ∗ in
M+(∂�), and u∗ = uµ∗ . Consequently for any measure µ larger than µ∗,
min{uµ, uµ∗} = uµ∗ and

Tre
∂�

(u∗) = Tre
∂�

(uµ∗) = sup
µ≥µ∗

γu∗(µ) = µ∗ = Tr
∂�

(u∗).

Remark 2.5. The previous result still holds if, in the domination assumption
u∗ ≤ um , the function um is no longer the minimal large solution, but any σ -
moderate solution in the sense of Dynkin and Kuznetsov [12], that is a solution
of (2.7) which is an increasing limit of solutions uµn for some µn ∈ M+(∂�)

Proposition 2.6. Let g ∈ G0 be positively subcritical and stable, and let u be
a nonnegative solution of (0.9). If {µn} ⊂ M+(∂�) converges weakly to µ, then
lim supn→∞ γu(µn) ≤ γu(µ). If we assume moreover that the sequence {µn} is
nonincreasing, limn→∞ γu(µn) = γu(µ).

Proof. Since µn → µ in the weak sense of measures on ∂�, uµn → uµ

locally uniformly in � by definition of the positive subcriticality and stability.
Thus

wµn = min{u∗, uµn } → wµ = min{u∗, uµ} in the Cloc(�)-topology.

Since uµn ≤ Pµn and Pµn → Pµ in L1(�), the convergence of wµn to wµ

holds also in L1(�). Moreover

g(., wµn ) → g(., wµ)

in Cloc(�). Since
0 ≤ g(., wµn ) ≤ g(., uµn ),
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and
g(., uµn ) → g(., uµ)

in L1(�; ρ
∂�

dx),

(2.29) g(., wµn ) → g(., wµ)

also in L1(�; ρ
∂�

dx). Put v∗
n = [wµn ]∗. By the elliptic equations regularity

theory, {v∗
n} remains bounded in C1

loc(�). Since γu(µn) is dominated by µn

which is bounded let us consider a subsequence γu(µnk ) weakly convergent to
some nonnegative measure λ. Up to an extraction of a subsequence, it is always
possible to assume that v∗

nk
converges (in the Cloc(�)-topology) to v̄. Clearly

v̄ is a solution of (0.1) in � and

(2.30) v∗
n ≤ wµn �⇒ v̄ ≤ lim

n→∞ wµn = wµ.

Therefore

(2.31) v̄ = v̄∗ ≤ v∗ = [wµ]∗.

Inasmuch

v∗
nk

→ v̄ in L1(�) and g(., v∗
nk

) → g(., v̄) in L1(�; ρ
∂�

dx),

(for the second relation we use 0 ≤ g(., v∗
nk

) ≤ g(., wµn ), together with (2.29)
and Vitali’s theorem) and

vnk + Gg(.,v∗
nk

) = Pγu (µn),

it follows
v̄ + Gg(.,v̄) = Pλ.

But
v∗ + Gg(.,v∗) = Pγu (µ).

As v̄ ≤ v∗ and g(., v̄) ≤ g(., v∗),

(2.32) Pλ ≤ Pγu (µ) �⇒ λ ≤ γu(µ),

which is the first assertion.
If we assume that {µn} is nonincreasing, the same holds with {uµn }, {wµn },

{γu(µn)} and {v∗
n}. If µn ↓ µ, any solution of (0.1) dominated by wµ is

dominated by wµn . Thus v∗ ≤ v∗
n and v̄ = limn→∞ v∗

n = v∗ by (2.30) and
(2.31).

A particularly important case deals with the choice µ = λδa , with a ∈ ∂�

and λ > 0. Let u = uλδa be the solution of

−�u + g(x, u) = 0, in �,

u = λδa, on ∂�.

Since g(x, .) is nondecreasing, λ �→ uλδa is increasing. Set

u∞,a = lim
λ→∞

uλδa .

On any open subset of � where it is locally finite, u∞,a is a solution of (0.1).
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Lemma 2.1. Let a ∈ ∂�, λ > 0 and wλδa = min{u, uλδa }. Then

(2.34) Tr
∂�

(wλδa ) = γu(λδa) = γ̃u(a, λ)δa,

where 0 ≤ γ̃u(a, λ) ≤ λ. Moreover the mapping λ �→ γ̃u(a, λ) is nondecreasing,
there exists

(2.35) γ̃u(a) = lim
λ→∞

γ̃u(a, λ),

and

(2.36) min(u, u∞,a) ≥ uγ̃u (a).

Proof. Because Tr
∂�

(wλδa ) ≤ λδa , this trace is concentrated at a and
achieves the form γ̃u(a, λ)δa . Moreover λ �→ γ̃u(a, λ) is nondecreasing as is
the mapping λ �→ min(u, uλδa ). Since

wλδa ≥ uγ̃u (a,λ)δa ,

and uλδa admits a limit, finite or not, when λ → ∞, assertions (i) or (ii) follow.

The next result points out the role of u∞,a

Proposition 2.7. Let g ∈ G0 be positively subcritical. If u is a nonnegative
solution of (2.6) with boundary trace ν and a ∈ ∂�, then

(2.37) u ≥ u∞,a �⇒ ν(a) = ∞.

If we assume moreover that g is positively subcritical and stable, then

(2.38) ν(a) = ∞ �⇒ u ≥ u∞,a.

Proof. Let a ∈ ∂� be such that

ν(a) = ∞.

Then for any relatively open subset O ⊂ ∂� containing a,

ν(O) = ∞,

which means that there exists a sequence of positive Radon measures µn such
that

lim
n→∞ γu(µn)(O) = ∞.

Without any restriction we can suppose that the sequence of restricted measures
γ ′

u(µn) = χOγu(µn) is increasing and

u ≥ uγ ′
u (µn),
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because u ≥ uγu (µn) and γu(µn) ≥ γ ′
u(µn). For any k ∈ N∗, there exists εn,k > 0

such that, if we take On,k = Bεn,k (a) ∩ ∂�, there holds

γu(µn)(On,k) = k.

Set µn,k = χOn,k
γu(µn). Then

γu(µn) ≥ µn,k �⇒ uγu (µn) ≥ uµn,k .

Since limn→∞ εn,k = 0, limn→∞ µn,k = kδa . Consequently

u(x) ≥ ukδa (x).

Letting k → ∞ yields to the following implication

ν(a) = ∞ �⇒ u ≥ u∞ a.

Conversely, assume u ≥ u∞ a , then for any k > 0, u ≥ ukδa . On one hand
the boundary trace of wkδa = min{u, ukδa } is the measure γu(a, k)δa . But
min{u, ukδa } = ukδa implies γu(a, k) = k and therefore γu(kδa) = kδa . By the
definition of ν,

ν(a) ≥ γu(kδa)(a) = k.

Since this holds for any k > 0, ν(a) = ∞.

The characterisation of Borel subsets on which the boundary trace of u
takes finite values is less complete, however there holds

Proposition 2.8. Assume the assumptions of Proposition 2.2 are fulfilled and
u is a nonnegative solution of (2.6) with boundary trace ν. If O ⊂ ∂� is a relatively
open subset of ∂� such that ∫

Ot

u(y)d St

remains bounded independently of t ∈ (0, β0], then ν(O) is finite.

Proof. Let µ be a nonnegative measure. Since uγu (µ) ≤ u in �,

∫
Ot

uγu (µ)(y)d St ≤
∫
Ot

u(y)d St .

Thus

γu(µ)(O) ≤ sup
0<β≤β0

∫
Ot

u(y)d St = M.

Therefore
ν(O)) = sup

µ∈M+(∂�)

γu(µ)(O) ≤ M.
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Remark 2.6. The reverse implication

ν(O) < ∞ �⇒
∫
Kt

u(y)d St ≤ M, ∀t ∈ (0, β0],

for any compact subset K ⊂ O, where M = M(K ) > 0, may not hold in the
case of general inequalities. However, g ∈ HG0 with α = 0, that is g satisfies
(0.14), or if

g(x, r) ≤ ρα
∂�(x)rq = 0, in � × R+,

with α > −2, and 1 < q < (N + 1 + α)/(N − 1), such a result is still valid.
Under both assumptions the proof is much intricated : in the first one it is given
in next section, and in the second one, in [27]. In both cases the proof is settled
on the notion of stability from inside approximations of the Dirichlet problems
(0.4) which means that if a sequence of measures λn ∈ M+(�) converges
weakly to a measure µ ∈ M+(∂�) the solutions vn of the semilinear equation
with forcing term

−�vn + g(x, vn) = λn in �,(2.39)

vn = 0 on ∂�,(2.40)

converges to uµ locally uniformly in �.

The real number γu(a) plays an important role in the study of the boundary
behavior of u at a. If a ∈ ∂�, we denote by Na the set of relatively open
neighborhoods of a in ∂�.

Definition 2.4. We define by A(u) the set of atoms of u,

A(u) = {a ∈ ∂� : γu(a) > 0},

by S(u) the singular set of u,

S(u) = {a ∈ A : ∀ Na ∈ Na,
∑

ω∈Na

γu(ω) = ∞},

the symbol
∑

being taken in the sense of summable family, and by R(u) the
regular set of u,

R(u) = ∂� \ S(u) = {a ∈ A : ∃ Na ∈ Na,
∑

ω∈Na

γu(ω) < ∞}.

The set S(u) is closed and R(u) relatively open. Moreover, if a ∈ R(u),
there exists a relatively open neighborhood Na ∈ Na such that A(u) ∩ Na is at
most countable.

The next result complements Propositions 2.7 and 2.8
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Theorem 2.1. Assume the assumptions of Proposition 2.2 are fulfilled, u is
a nonnegative solution of (2.6) with boundary trace ν, and O is a relatively open
subset of ∂� such that ν(O) < ∞. Then∑

a∈O
γ̃u(a) < ∞.

If we assume moreover that g ∈ HG0, then, for any ω ∈ ∂�, there holds

ν(ω) = γ̃u(ω),

and the measure χOν − ∑
ω∈O γ̃u(ω)δω has no atom.

Proof. Let K be a finite subset of R(u) ∩ O and put µK = ∑
a∈K δa .

Then for any λ > 0 ∑
a∈K

γ̃u(a, λ) ≤ γu(λµK )(O) ≤ ν(O).

Therefore the following family {γ̃u(a)}a∈O is summable, and∑
a∈O

γ̃u(a) ≤ ν(O).

For the next statement, for any λ > 0 and ω ∈ ∂�, there holds

ν(ω) ≥ γ̃u(ω, λ) �⇒ ν(ω) ≥ γ̃u(ω).

Conversely, for any relatively open neighborhood of ω, Oω , there exists a
sequence of Radon measures µn ∈ M+(∂�) such that∫

Oω

dµn ↑ ν(Oω), as n → ∞.

If we assume that ν(ω) = ∞, we know from Proposition 2.7 that γ̃u(ω) = ∞.
Thus we assume ν(ω) < ∞. For ε > 0, there exists µε ∈ M+(∂�) such that

γu(µε)(ω) ≤ ν(ω) ≤ γu(µε)(ω) + ε ,

and there exists η0 > 0 such that 0 < η ≤ η0 implies∫
�η(ω)

dγu(µε) − ε ≤ ν(ω) ≤
∫

�η(ω)

dγu(µε) + ε,

where �η(ω) = Bη(ω) ∩ ∂�, which yields to∣∣∣∣∣
∫

�η(ω)

dγu(µε,η) − ν(ω)

∣∣∣∣∣ ≤ 2ε.
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If we take ε = 1/n, then η0 = η0(n) → 0 and χ
�η(ω)

γu(µε) → ν(ω)δω as
n → ∞. But

uχ
�η(ω)

γu (µε) ≤ uγu (µε) ≤ wγu (µε) ≤ u.

Letting n → ∞ and using the fact that uχ
�η(ω)

γu (µε) → uν(ω)δω implies

uν(ω)δω ≤ u.

Therefore

uν(ω)δω = min{u, uν(ω)δω} = wν(ω)δω = uγ̃u (ω,ν(ω))δω ≤ uγ̃u (ω)δω .

This implies ν(ω) ≤ γu(ω) and the equality follows. Consequently χOν −∑
ω∈O γ̃u(ω)δω has no atom.

3. – Pointwise boundary behaviour of solutions of general inequalities

In this section, we give a precise description of the behaviour of a solution
u of (2.6) near an atom of its extended boundary trace. We say that the
coordinates are proper at a = (a1, . . . , aN ) ∈ ∂� relatively to � if the plane
x1 − a1 = 0 is tangent to ∂� at a, and that the inward pointing vector to ∂�

is the direction x1 − a1 > 0.

Definition 3.1. Let (E, �, µ) be a measured space, where � is σ -algebra
of subsets of E and µ a positive and σ -additive measure with finite mass. We
recall that a set of µ-measurable functions x �→ ψr (x) (r > 0), defined over E
converges in measure to ψ when r → 0, if for any ε > 0 there holds

lim
r→0

µ {x ∈ E : |ψr (x) − ψ(x)| > ε} = 0.

The functions ψr converges in measure to ∞, if for any k > 0,

lim
r→0

µ {x ∈ E : ψr (x) ≤ k} = 0.

The convergence is equivalent to the following statement: from any se-
quence {rn} converging to 0 one can extract a subsequence {rnk } such that ψrnk
converges to ψ (or ∞), µ-a.e. in E .
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Theorem 3.1. Assume g ∈ G0 is positively subcritical, u is a nonnegative
solution of (2.6) and a ∈ ∂�. If the coordinates are proper at a relatively to �, the
following alternative holds. Either

(i) γ̃u(a) is finite and the following convergence holds

(3.1) lim
x→a

(x1−a1)/|x−a|→η1

|x − a|N−1u(x) − C(N )γ̃u(a)η1 = 0,

in measure on SN−1
+ ,

or

(ii) γ̃u(a) is infinite and

(3.2) lim
r→0

|x − a|N−1u(x) = ∞,

in measure on SN−1
+ .

For s > 0, put � ∩ Bs(a) = �s(a), �c
s(a) = � \ �̄s(a) and ∂ Bs(a) ∩

� = ��
s (a). The next series of results deals with the boundary behaviour of

the Green potential of a weighted integrable function. In the flat case where
� = R

N
+ = {x = (x1, . . . , xN ) : x1 > 0} the computation can be explicited

Lemma 3.1. Let � = R
N
+ , N ≥ 2, � ∈ L1(RN

+; x1dx) and v = G�. Then for
any a ∈ ∂R

N
+ there holds

(3.3) lim
x→a

|x − a|−1
∫

��
s (a)

|v| x1d S = 0.

Proof. We can assume that a = 0, � ≥ 0, and so is v. For ε > 0, let
s > 0 such that ∫

Bs (a)

�ρ
∂�

dx ≤ ε.

Let (r, σ ) ∈ (0, +∞) × SN−1 be the spherical coordinates in R
N , SN−1

+ =
SN−1 ∩ R

N
+ and v(x) = v(r, σ ), then

−∂rrv − N − 1

r
∂rv − 1

r2
�σv = �,

where �σ is the Laplace Beltami operator on SN−1. Since N − 1 is the first
eigenvalue of −�σ in W 1,2

0 (SN−1
+ ) and φ1(σ ) = x1|SN−1

+
, the first eigenfunction,

there holds

−v̄rr − N − 1

r
v̄r + N − 1

r2
v̄ = �̄,

where

v̄(r) =
∫

SN−1
+

v(r, σ )φ1(σ )dσ and �̄(r) =
∫

SN−1
+

�(r, σ )φ1(σ )dσ.
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Integrating the above differential equation yields to

v̄(r) = αr1−N + βr − r

N

∫ r

0
�̄(s)ds + r1−N

N

∫ r

0
�̄(s)s N ds,

for some constants α ≥ 0 and β. But α = 0 otherwhile v would be bounded
from below by αC(N )P(x, 0). This is impossible because v admits the zero
measure for trace on the boundary. Thus

lim sup
r→0

r N−1v̄(r) = 0,

since ∫ r

0
�̄(s)s N ds =

∫
Br (0)

�(x)x1dx,

and the result follows.

This result is immediately extendable for any domain which can be deduced
by a conformal transformation from a half space.

Lemma 3.2. Let � be a ball or the complementary of a ball, � ∈ L1(�; ρ
∂�

dx)

and v = G�. Then for any a ∈ ∂� there holds

(3.4) lim
x→a

|x − a|−1
∫

��
s (a)

|v| ρ
∂�

d S = 0.

In the next lemma we prove that this result is actually always valid.
Our proof involves Marcinkiewicz space estimates on the Green potential of a
weighted integrable function. The following estimates, similar to (1.22), (1.23),
can be found in [4, Theorem 2.6]

‖G�‖M(N+1)/(N−1)(�;ρ
∂�

dx) ≤ K‖�‖L1(�;ρ
∂�

dx),(3.5)

‖G�‖M N/(N−1)(�) ≤ K‖�‖L1(�;ρ
∂�

dx).(3.6)

Actually (3.5) is obtained in [4] only in the case N ≥ 3, but an easy adaptation
of the proof fills the gap.

Lemma 3.3. Let N ≥ 2, � ∈ L1(�; ρ
∂�

dx) and v = G�. If a ∈ ∂�, there
holds

(3.7) lim
r→0

r−1
∫

��
s (a)

|v| ρ
∂�

d S = 0.

Proof. We still assume � ≥ 0. For ε > 0 let s > 0 be such that∫
�s (a)

�ρ
∂�

dx ≤ ε.
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Set �s = χ�c
s (a) and vs = G�s . Since vs is harmonic in �s(a), with zero trace

on ∂� ∩ Bs(a), it is continuous in a neighborhood of a and

lim
r→0

r−1
∫

��
s (a)

|v|s ρ
∂�

d S = 0.

Thus there is no loss of generality in assuming that � has support in �s(a)

and
‖�‖L1(�;ρ

∂�
dx) ≤ ε.

For any r > 0 and any ζ ∈ C1,1
c (�̄r (a)), there holds

(3.8) −
∫

�r (a)

v�ζdx +
∫

��
r (a)

∂ζ

∂n
vd S =

∫
�r (a)

�ζdx .

This can be established in assuming first that � = �n is regular, and then by
density in L1(�; ρ

∂�
dx). By translation it can be assumed that a = 0. We

set ζ(x) = |x | ηr (x), where ηr is the first eigenfunction of −� in W 1,2
0 (�r (0)),

and let λr be the corresponding eigenvalue. Notice that r2λr ≈ λ1 where λ1 is
the first eigenvalue of the operator

(3.9) � �→ −�′′ − N − 1

s
�′ + N − 1

s2
� on (0, 1),

subject to the limit conditions �′(0) = 0, �(1) = 0 (thus the corresponding
eigenfuction for (3.9) is a Bessel function, say B1, and ηr (x) ≡ B1(x/r)x1 as
r → 0). Then (3.8) becomes

λr

∫
�r (0)

v |x | ηr (x)dx −
∫

�r (0)

v|x |−1〈x .∇ηr 〉dx

= (N − 1)

∫
�r (0)

ηr udx −
∫

��
r (0)

(r + 〈x .∇ηr 〉)vd S +
∫

�r (0)

� |x | ηr dx .

Thus

(3.10)

lim sup
r→0

∫
��

r (0)

〈x .∇ηr 〉vd S ≤ lim sup
r→0

λr

∫
�r (0)

v |x | ηr (x)dx

+ lim sup
r→0

∫
�r (0)

v|x |−1 |〈x .∇ηr 〉| dx .

But
|x | ηr (x) ≤ Cρ

∂�
(x) |〈x .∇ηr 〉| ≤ C |x | /r,

and more precisely,

lim
r→0

〈x .∇ηr 〉||x |=r = φ1(σ ) = x1/ |x | .
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Then

(3.11)

∫
�r (0)

v |x | ηr (x)dx ≤ C
∫

�r (0)

ρ
∂�

(x)vdx,

≤ C‖v‖M(N+1)/(N−1)(�;ρ
∂�

dx)

(∫
�r (0)

ρ
∂�

dx
)2/(N+1)

,

≤ CC ′r2‖�‖L1(�;ρ
∂�

dx),

and

(3.12)

∫
�r (0)

v|x |−1 |〈x .∇ηr 〉| dx ≤ Cr−1
∫

�r (0)

vdx,

≤ Cr−1‖v‖M N/(N−1)(�) |�r (0)|1/N ,

≤ CC ′‖�‖L1(�;ρ
∂�

dx) .

Combining (3.10), (3.11) and (3.12) yields to

(3.13) lim sup
r→0

r−1
∫

��
r (0)

vρ
∂�

d S ≤ C”‖�‖L1(�;ρ
∂�

dx) ≤ Cε,

which ends the proof since ε is arbitrary.

Lemma 3.4. Assume the assumptions of Theorem 3.1 are fulfilled, u is a non-
negative solution of (2.6), λ > 0 and a ∈ ∂�. If the coordinates are proper at a
relatively to �, then for any q ∈ [1, ∞),

(3.14) lim
r→0

r N−2

(∫
��

r (a)

∣∣uλδa (y) − λP(y, a)
∣∣q

ρ
∂�

(y)d S

)1/q

= 0.

Proof. Recall that g(., uλδa ) ∈ L1(�; ρ
∂�

dx), we put v = Gg(.,uλδa ). Since
uλδa = λP(., a) − v, it follows from Lemma 3.2

(3.15) lim
r→0

r−1
∫

��
r (a)

∣∣uλδa (y) − λP(y, a)
∣∣ ρ

∂�
(y)d S = 0.

Since 0 ≤ uλδa ≤ λP(., a),

y �→ r N−2 sup
y∈��

r (a)

∣∣uλδa (y) − λP(y, a)
∣∣ ρ

∂�
(y)

is bounded independently of r . Thus the result follows by Hölder’s inequality.

Under a pointwise growth estimate on g the convergence of uλδa is much
more precise.
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Lemma 3.5. Let the conditions of Theorem 3.1 be fulfilled. Assume also that
there exists ε0 > 0 such that the mapping (k, x) �→ k N+1g(k(x − a) + a, k1−N )

remains bounded for (k, x) ∈ (0, ε0]×{x ∈ a+k−1(�−a) : 1−ε0 ≤ |x | ≤ 1+ε0}.
Then for any η1 > 0,

(3.16) lim
x→a

(x−a)/|x−a|→η1

|x − a|N−1uλδa (x) = λC(N )η1,

for some constant C(N ) > 0. Moreover, for any η > 0, the convergence is uniform
in the cone η1 ≥ η.

Proof. We can assume a = 0 and set uk(x) = k N−1u(kx). Then

�uk(x) = k N+1g(kx, u(kx)).

Since 0 ≤ u ≤ λP(x, 0) ≤ λC(N )|x |1−N , uk(x) and (k, x) �→ k N+1g(kx, u(kx))

remains bounded for (k, x) ∈ (0, ε0] ×{x ∈ k−1� : 1 − ε0 ≤ |x | ≤ 1 + ε0}. Thus
{uk} is relatively compact in {x ∈ k−1� : 1 − ε0/2 ≤ |x | ≤ 1 + ε0/2}, and there
exist a sequence {kn} and some function ζ ∈ C1

(
R

N
+ ∩ (

B̄1+ε0(0) \ B1−ε0(0)
))

such that ukn → ζ and ∇ukn → ∇ζ uniformly on R
N
+∩(

B̄1+ε0/2(0) \ B1−ε0/2(0)
)
.

Putting |x | = 1, it implies

lim
kn→0

k N−1
n u(kn, σ ) = ζ(σ ),

uniformly on any compact subset of SN−1
+ . Since P(x, 0) = P(r, σ, 0) =

C(N )r1−N φ1(σ ), with φ1(σ ) = x1|SN−1
+

, the relation (3.15) yields to ζ(σ ) =
C(N )λφ1(σ ), and finally

lim
k→0

k N−1
n u(k, .) = C(N )λφ1(.).

When uλδa is replaced by wλδa , the convergence is comparable to the one
of Lemma 3.4.

Lemma 3.6. Let the assumption of Theorem 3.1 be fulfilled. If λ > 0, a ∈ ∂�

and the coordinates are proper at a relatively to �, there holds

(3.17) lim
r→0

r N−2

(∫
��

r (a)

∣∣wλδa(y) − γ (a, λ)P(y, a)
∣∣q

ρ
∂�

(y)d S

)1/q

= 0,

for any 1 ≤ q < ∞.
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Proof. Since �wλδa and g(., wλδa ) belong to L1(�; ρ
∂�

dx), there exists
� ∈ L1(�; ρ

∂�
dx) such that

−�wλδa = � in �,

wλδa = γ (a, λ)δ0 on ∂�.

Then wλδa = G� + γ (a, λ)P(., a) and

∣∣wλδa − γ (a, λ)P(., a)
∣∣ ≤ G|�|.

By Lemma 3.3

lim
r→0

r N−2
∫

��
r (a)

|G�(y)| d S = 0,

thus

(3.18) lim
r→0

r N−2
∫

��
r (a)

∣∣wλδa (y) − γ (a, λ)P(y, a)
∣∣ ρ

∂�
(y)d S = 0.

Since 0 ≤ wλδa ≤ λP(., a), and r N−2ρ
∂�

P(., a) is bounded on ��
r (a), (3.17)

follows.

Proof of Theorem 3.1. Up to a translation, we can assume that a = 0. We
can assume that SN−1

+ is the intersection of the unit sphere with the half space
{x1 > 0} and ∂SN−1

+ the intersection of SN−1 with the hyperplane {x1 = 0}. Thus
φ1, the first eigenvalue of the Laplace-Beltrami operator −�σ in W 1,2

0 (SN−1
+ ) is

the restriction to SN−1 of the coordinate function x �→ x1, and the corresponding
eigenvalue is N − 1. We normalize by max φ1 = 1.

Case 1. γ (a) < ∞. For λ > γ (a) the following convergences hold in Lq(SN−1
+ )

for 1 ≤ q < ∞:
lim
r→0

r N−1wλδa (r, .) = C(N )γ (a, λ)φ1

by Lemma 3.6, and

lim
r→0

r N−1uλδa (r, σ ) = C(N )λφ1(σ )

by Lemma 3.4. If {rn} is some sequence converging to 0, there exists a sub-
sequence {rnk } such that

lim
rnk →0

r N−1
nk

wλδa (rnk , σ ) = C(N )γ̃u(a, λ)φ1(σ ),

and
lim

rnk →0
r N−1

nk
uλδa (rnk , σ ) = C(N )λφ1(σ ),
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for almost all σ ∈ SN−1
+ . Therefore for almost all σ ∈ SN−1

+ , there exists nk0
such that for nk ≥ nkO , wλδa (rnk , σ ) = u(rnk , σ ). Consequently there holds

lim
r→0

r N−1u(rnk , σ ) = C(N )γ̃u(a, λ)φ1(σ ),

for almost all σ ∈ SN−1
+ . Let θ > λ. It follows from Lemma 3.5 applied to the

wθδa (rnk , .) and the previous argument, that, up to some subsequence rnk�
,

lim
r→0

r N−1u(rnk�
, σ ) = C(N )γ̃u(a, θ)φ1(σ )

almost everywhere. Therefore γ̃u(a, θ) = γ̃u(a, λ) = γ̃u(a). This infers (i).

Case 2. γ̃u(a) = ∞. From Lemma 2.1,

min(u, u∞,a) ≥ u∞,a �⇒ u ≥ u∞,a > uλδa , ∀λ > 0.

By Lemma 3.4, for any ε > 0,

(3.19) lim inf
x→a

(x1−a1)/|x−a|→η1
η1≥ε

|x − a|N−1u(x) ≥ C(N )λε.

Since λ is arbitrary, (ii) holds.

Remark 3.1. In the core of the proof in Case 1 we have seen that
γ̃u(λ, a) = γ̃u(a) for any λ > γ (a). Actually the same proof gives also
γ̃u(λ, a) = γ̃u(a) for λ = γ̃u(a).

Remark 3.2. If it is supposed moreover that (k, x) �→ k N+1g(k(x − a) +
a, k1−N ) remains bounded for (k, x) ∈ (0, ε0] × {x ∈ a + k−1(� − a) : 1 − ε0 ≤
|x | ≤ 1 + ε0}, assertion (ii) can be replaced by:

or

(ii*) γ̃u(a) is infinite and

(3.20) lim
x→a

(x1−a1)/|x−a|→η1

|x − a|N−1u(x) = ∞,

uniformly for η1 > 0.
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4. – Boundary trace of solutions with uniform absorption

In this section � is a C2 bounded domain in R
N , g ∈ G0 satisfies a

uniform condition with respect to x in the sense that

(4.1)
0 ≤ |g(x, r)| ≤ f (r), ∀(x, r) ∈ � × R+,

with
∫ 1

0
f (σ s1−N )s N ds < ∞, ∀σ > 0,

where f is a continuous nondecreasing function defined on R+. The next
result provides a precise characterisation of the boundary trace of solutions of
inequalities with a uniform absorption in terms of outer regular Borel measures,
without introducing the notion of coercivity and the strong barrier property as
in [27].

Theorem 4.1. Assume g ∈ G0 satisfies (4.1) and u is a nonnegative solution
of (2.6) with boundary trace ν. For any a ∈ ∂� the following dichotomy occurs.
Either,

(i) ν(O) = ∞ for any O ∈ Na. In this case a ∈ S(u) and u ≥ u∞,a. Consequently

(4.2) lim
t→0

∫
Ot

u(y)d St = ∞, ∀O ∈ Na.

Or

(ii) there exists O ∈ Na such that ν(O) < ∞. In this case a ∈ R(u) and

(4.3) sup
0<t≤β0

∫
O′

t

u(y)d St < ∞.

for relatively every open subset O′ ⊂ Ō′ ⊂ O. Furthermore

(4.4) lim
t→0

∫
�t

u(y)φ(σ (y))(y)d St =
∫
R(u)

φ(y)dν(y), ∀φ ∈ Cc(R(u))

A major point in the proof of the theorem is the following completion of
Proposition 2.7 which gives a characterization of the regular part of the extended
boundary trace of a solution u based upon a local L1 bound.

Proposition 4.1. Assume g ∈ G0 satisfies (4.1) and u is a nonnegative solution
of (2.6) with extended boundary trace ν. Let O be a relatively open subset of ∂�.

If ν(O) < ∞, then for any compact subset K ⊂ O,
∫

Kt

u(y)d St remains bounded

independently of t ∈ (0, β0].

We recall some notations introduced in Section 2 : for 0 < β ≤ β0, we
put �c

β = � \ �̄β = {x ∈ � : ρ
∂�

(x) > β}, and �β = ∂�β = ∂�c
β . The

next result which extends Theorem 1.1 deals with the stability of the boundary
value problem when the boundary is approximated from inside by a sequence
of smooth domains.
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Lemma 4.1. Let µ ∈ M+(∂�), {εn} be a sequence of positive numbers con-
verging to 0, µn ∈ L1

+(�εn ), with corresponding pull-back µεn
n ∈ L1

+(∂�). If
µεn

n → µ in the weak sense of measures, as n → ∞, then the sequence of solutions
un = uµn ,εn of

(4.5)
−�un + g(x, un) = 0 in �c

εn
,

un = µn on ∂�c
εn

,

converges locally uniformly in � to the solution uµ of (0.4).

Proof. Step 1. Since g is continuous on �̄c
εn

× R, existence of a unique
solution to (4.6) follows from Brezis’ result. The shred of the proof of the
convergence is parallel to Theorem 1.1 and Proposition 1.4. Set Pεn the Poisson
kernel in �c

εn
and P

εn
ν the Poisson potential of any given Radon measure ν on

�εn . Since the mapping � is C2 there exists C2 > 0 independent εn such that
for any (x, a) ∈ �c

εn
× �εn ,

(4.6) C−1
2 ρ

∂�c
εn

(x)|x − a|−N ≤ Pεn (x, a) ≤ C2ρ∂�c
εn

(x)|x − a|−N ,

provided 0 ≤ εn ≤ β0, and ρ
∂�c

εn
(x) = ρ

∂�
(x) − εn . Estimates (1.22), (1.23),

(1.24) are valid under the form

∥∥P
εn
ν

∥∥
M(N+1)/(N−1)(�c

εn ;ρ
∂�c

εn
dx)

≤ K‖ν‖L1(�εn ),(4.7)

∥∥P
εn
ν

∥∥
M

N/(N−1)
(�c

εn )
≤ K‖ν‖L1(�εn ),(4.8)

∥∥P
εn
ν

∥∥
L∞(�c

r+εn
)
≤ Kr

1−N ‖ν‖L1(�εn ),(4.9)

Since 0 ≤ un ≤ vn = P
εn
µn

, estimates (4.9) and (1.16)-(1.18) and the classical
regularity theory for elliptic equations imply that the set of un is relatively
compact in the C1

loc(�)-topology, and any cluster point of the sequence {un} is
a solution of (0.1) in �. If η ∈ C1,1

c (�̄c
εn

) there holds

(4.10)
∫

�c
εn

(−un�η + g(., un)η)dy = −
∫

�n

∂η

∂ny
µnd S(y)

If ζ ∈ C1,1
c (�̄), with support in �̄β0 , we set

ζn(y) = ζ(y + εnny), ∀y ∈ �̄c
εn

⇐⇒ ζ(x) = ζn(x − εnnx), ∀x ∈ �̄.

In relation (4.10) we take η = ζn and get

(4.11)
∫

�c
εn

(−un�ζn + g(., un)ζn)dy = −
∫

�n

∂ζn

∂n
µnd Sεn .
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But the pointing outward normal vector ny at y ∈ �n is the same as the pointing
outward normal vector at y + εnny y ∈ ∂�, therefore

(4.12)
∫

�n

∂ζn

∂n
µnd Sεn =

∫
∂�

∂ζ

∂n
µεn

n d S,

by (2.5). Moreover, if we perform the change of variable x = y + εnny in
(4.11) and denote by n j

y the coordinates of ny , we get

∂ζn

∂yi
(y) =

∑
j

∂ζ

∂xj
(x)

(
δi j + εn

∂n j
y

∂yi

)
,

∂2ζn

∂y2
i

(y) =
∑
k, j

∂2ζ

∂xk∂xj
(x)

(
δi j + εn

∂n j
y

∂yi

) (
δik + εn

∂nk
y

∂yi

)

+ εn

∑
j

∂ζ

∂xj
(x)

(
∂2n j

y

∂y2
i

)
,

�ζn(y) =
∑

i

∂2ζ

∂xi
(x)

(
1 + εn

∂ni
y

∂yi

)2

+
∑
i, j,k

k �=i ou j �=i

∂2ζ

∂xk∂xj
(x)

(
δi j + εn

∂n j
y

∂yi

) (
δik + εn

∂nk
y

∂yi

)

+ εn

∑
j

∂ζ

∂xj
(x)�n j

y .

Then

(4.13) �ζn(y) = �ζ(x) + εnL(Dζ(x), D2ζ(x)),

where L(Dζ, D2ζ ) is a linear second order operator with continuous coefficients.
Plugging (4.12) and (4.13) into (4.11) yields

(4.14)
∫

�

(
−ũn(�ζ + εnL(Dζ, D2ζ )) + gn(., ũn)ζ

)
Jdx = −

∫
∂�

∂ζ

∂n
µεn

n d S,

where ũn(x)=un(x−εnnx), gn(x, r)=g(x−εnnx , r) and J (x)= ∣∣det(I −εn Dny)
∣∣.

Step 2 From (1.26) and (4.6) there exists C3 > 0 independent of εn and
(y, b) ∈ �c

εn
× �n such that

(4.15) C−1
3 P(y + εnny, b + εnny) ≤ Pεn (y, b) ≤ C3 P(y + εnny, b + εnny),
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provided εn ≤ β0. Because 0 ≤ un(y) ≤ P
εn
µn

, the above inequality and the
Poisson representation formula imply

(4.16) 0 ≤ ũn ≤ C3Pµ
εn
n

in �̄β0−εn . Jointly with (1.23) it implies that {ũn} is uniformly integrable in
�β0−εn , and thus in �.

Step 3 From (4.1), (4.16),

(4.17) 0 ≤ gn(x, ũn)(x) ≤ f (C3Pµ
εn
n

(x)),

for any x ∈ �β0−εn . For λ ≥ 0, put �λ = {x ∈ � : P(x, a) ≥ λ} and

βεn (λ) =
∫

�λ

ρ
∂�

dx .

Then (see Step 2 in the proof of Theorem 1.1),

(4.18) βεn (λ) ≤ C2

∫ (C1/λ)1/(N−1)

0
s N ds ≤ C2

N + 1

(
C1

λ

)(N+1)/(N−1)

.

It follows from (4.17) that for any Borel set G ⊂ �,

(4.19)
∫

G
gn(., ũn)ρ∂�

dx ≤
∫

G
f (C3Pµ

εn
n

)ρ
∂�

dx .

In order to estimate the right-hand side of (4.19), we follow the proof of
Theorem 1.1. Let m > 0 and a ∈ ∂�, then

(4.20)

∫
G

f (m P(., a))ρ
∂�

dx

≤ f (λ)

∫
G

ρ
∂�

dx + C4m(N+1)/(N−1)

∫ ∞

λ

f (s)s−2N/(N−1)ds.

We take m = mn =
∫

∂�

dµεn
n and we deduce that the {gn(., ũn)} are uniformly

integrable, as in the proof of Theorem 1.1-Step 7. If ũnk is a subsequence
converging in the C1

loc topology to some function u, we can pass to the limit
in (4.14) and get

(4.21)
∫

�

(−u�ζ + g(., u)ζ )dy = −
∫

∂�

∂ζ

∂n
dµ.

Because of uniqueness, the whole sequence ũn converges to u.
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Remark 4.1. This above stability result of solutions with respect to approx-
imations from inside is no longer valid if the absorption term is truly degenerate,
for example if

g(x, r) = ρα

∂�
(x)|u|q−1u,

for some α > 0 and q > 1. In that case Problem (0.4) is solvable in � for any
Radon measure µ when 1 < q < (N +1+α)/(N −1) and is not solvable when
µ is a Dirac mass if q ≥ (N + 1 + α)/(N − 1) (see [27]). Therefore, even if
the data µn are smooth functions on �εn , if they concentrate too quickly to a
Dirac mass on the boundary, the corresponding solutions un of (4.6) converge
to 0.

Proof of Proposition 4.1. We proceed by contradiction in assuming that
there exist a compact K ⊂ O and a sequence {εn} converging to 0 such that

(4.22) lim
n→∞

∫
Kεn

u(y)d Sεn = ∞.

Since K is compact, there exist a sequence {an{⊂ K converging to some a ∈ K
and a sequence {tn} converging to 0 such that

(4.23) lim
n→∞

∫
Kεn ∩Btn (an)

u(y)d Sεn = ∞.

For k > 0 , there exists �k > 0 such that

(4.24) lim
n→∞

∫
Kεn ∩Btn (an)

min{�k, u(y)}d Sεn = k,

and �k → 0 as n → ∞. We set µn = min{�k, u(y)}χKεn ∩Btn (an )
and denote by

un the solution of (4.6) in �c
εn

with this specific boundary data. Then

u ≥ un in �c
εn

.

Since the corresponding measure γu(µn) = µεn
n on ∂� converges to kδa , and

un converges to ukδa by Lemma 4.1, it leads to u ≥ ukδa in �. Since k is
arbitrary,

u ≥ u∞,a in �.

Therefore
ν(O) ≥ ν(a) = γ̃ (a) = ∞,

by Proposition 2.7, a contradiction.
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For any a ∈ ∂�, we recall that Na is the set of relatively open neighbor-
hoods of a in ∂�.

Proof of Theorem 4.1. Let a ∈ ∂�. If (i) holds, inequality u ≥ u∞,a

follows from Proposition 2.7, and

lim
t→0

∫
Ot

u(y)d St ≥ lim
t→0

∫
Ot

u∞,a(y)d St = ∞,

which is equivalent to ν(O) = ∞.

Next we assume that (i) does not hold, and there exists O ∈ Na such that
ν(O) < ∞. By Proposition 4.1, for any compact subset K ∈ Na such that
K̄ ⊂ O , there exists a constant MK > 0 such that∫

Kt

u(y)d St ≤ MK , on (0, β0].

Let O be any relatively open subset with compact closure in R(u), 0 < β < β0
and

Oβ = {x = σ(x) − tnx : σ(x) ∈ O, β < t < β0},
then u ∈ L1(O0). As in the proof of [27, Lemma 1.8], if ϕ ∈ C2

c (O), ϕ > 0,
we define a test function which vanishes on Gsβ by

ζ(x) = ϕ(σ(x))(ρ
∂�

(x) − β) ∀x ∈ Oβ,

and derive that the largest solution u∗ of (0.1) dominated by u satisfies

(4.25)

∫
Oβ

(−u∗�ζ + g(x, u∗)ζ
)

dx =
∫
Oβ

u∗ϕβd Sβ −
∫
Oβ0

u∗ϕβ0d Sβ0

+
∫
Oβ0

∂u∗

∂n
ζd S.

Therefore
∫

Oβ

g(x, u∗)ζdx is bounded independently of β. Letting β → 0

yields to

(4.26)
∫

O0

g(x, u∗)ϕρ
∂�

dx < ∞.

Since g(x, u∗) ∈ L1(O0; ρ
∂�

dx), [27, Corollary 1.3] implies that there exists a
nonnegative Radon measure µO on O such that

lim
t→0

∫
Ot

ϕt u
∗(y)d St =

∫
O

ϕdµ,
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for any ϕ ∈ Cc(O). The measure ν, which is equal to µ on R(u), is therefore
a regular Borel measure.

Because of (4.3) from any sequence {εn} converging to 0 one can extract
a subsequence, still denoted by {εn}, such that {u(εn, )χR(u)d S} converges in
the weak sense of measures to some η ∈ M+(R(u)). We claim that

(4.27) η = ν|R(u) = χR(u)ν.

Since u ≥ u∗, η ≥ ν|R(u). If O is any relatively open subset of ∂� with
compact closure in R(u), we put µn = u(εn, )χR(u)d S and denote by un the
solution of (4.6) in �c

εn
. By Lemma 4.1, {un} converges locally uniformly in

� to the solution ũ of (0.4) with boundary data χOη. Since u ≥ un , u ≥ ũ
and thus u∗ ≥ ũ. Therefore χOη ≤ νO. This implies (4.27). Finally, as η is
independent of the sequence {εn}, it follows that u(t, .)χR(u)d S converges to
χR(u)ν in the sense of measures, as t → 0. This ends the proof.

5. – Some examples

In this section � is a C2 bounded domain and we consider absorption
terms g which are split under the form

(5.1) g(x, r) = h̃(x)g̃(r)

where both h̃ and g̃ are nonnegative continuous functions defined respectively
on � and R+. We assume also that g̃ vanishes at 0 and is nondecreasing, and
that h̃(x) > 0 in �. If the the Keller-Osserman condition is fulfilled, that is
there exists some c ≥ 0 such that

(5.2)
∫ ∞

c

ds√
G(s)

< ∞

where G(s) =
∫ s

0
g̃(t)dt , then for any compact subset K ⊂ � there exists a

constant C(K ) > 0 such that any nonnegative solution u of

(5.3) −�u + g(x, u) ≤ 0, in �,

satisfies
u(x) ≤ C(K ), ∀x ∈ K .

If the Keller-Osserman condition is not satisfied, and h̃ is a positive constant,
no such a priori upper bound can exist [31]. If g̃(r) = kr for some k > 0 and
g is uniformly admissible, it is clear that

(5.4) lim
λ→∞

uλδa (x) = ∞, ∀a ∈ ∂�, ∀x ∈ �,
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but it appears difficult to find a general condition on g̃ which implies that (5.4)
holds. However, it is proved in [13] that if

g(x, r) = r(ln(r + 1))γ ,

with 0 < γ ≤ 2, this property holds. As a consequence we have the following

Corollary 5.1. Let u be a nonnegative solution of

(5.5) −�u + u(ln(u + 1))γ = 0, in �.

Then the boundary trace of u is a Radon measure µ, u(ln(u +1))γ ∈ L1(�; ρ
∂ω

dx)

and
u = Pµ − G(u(ln(u + 1))γ ).

Proof. It is clear that g(u) = u(ln(u + 1))γ is uniformly admissible. By
Theorem 4.1, Tre

∂�
(u) is an outer regular Borel measure, which admits no singular

part by [13], therefore it is a Radon measure. Thus the nonlinearity is integrable
for the measure ρ

∂ω
dx , and the representation follows.

Remark 5.1. If
g(x, r) = r(ln(r + 1))γ

with γ > 2, or if
g(x, r) = ρα

∂�
(x) |r |q−1 r,

with α > −2 and 1 < q < (N + 1 + α)/(N − 1), it is proved respectively in
[13] and [27] that for any a ∈ ∂�, u∞,a is a solution of (0.1) in � vanishing
on ∂� \ {a}, with a strong singularity at a. In those two cases the boundary
trace of a nonnegative solution of (0.1) can be any outer regular Borel measure
on ∂�.

Another interesting type of problems deals with the situation in which the
absorption term is strongly degenerate at the boundary. The model example is

g(x, r) = exp(−κ/ρ
∂ω

(x))uq ,

with q > 1 and κ > 0. In this case the function g belongs to HG0 for any q > 1.
Therefore fundamental solutions always exist, but a new phenomenon appears
which is to be compared with what is called instantaneous or complete blow-up
for parabolic equations ([2]) or elliptic equations ([7]), linear or nonlinear, with
an inverse square potential.

Proposition 5.1. For any q > 1, κ > 0 and a ∈ ∂�

u∞,a = um
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where um is the minimal solution of

(5.6)
−�u + exp(−κ/ρ

∂ω
(x))uq = 0 in �,

lim
ρ
∂�

(x)→0
u(x) = ∞.

Proof. Without any loss of generality we assume a = O . Let {x = (x1, x ′)}
be the coordinates in R

N . We assume that the hyperplane H0 = {x = (0, x ′)}
is tangent to ∂� at O and SN−1

+ = B1(O) ∩ {x = (x1, x ′) : x1 > 0}. We write

exp(−κ/ρ
∂ω

(x)) = h(ρ
∂ω

(x)).

Step 1 The case 1 < q < (N + 1)/(N − 1). For 0 < ε ≤ β0, the function
u∞,O is minorized in �m

ε = {x ∈ � : |x | < m , 0 < ρ
∂ω

(x) < ε} (m > 0 small
enough) by the function

�(ε)Uε

where �(ε) = h−1/(q−1)(ε) and Uε is the unique solution of

(5.7)
−�v = vq in �m

ε ,

v = ∞δO on ∂�m
ε .

Moreover there holds (see [15])

(5.8) lim
x→O
x∈�ε

|x |2/(q−1)Uε(x) = ω(x/ |x |),

where ω is the unique positive solution of

(5.9)
−�σω −

(
2

q − 1

) (
2q

q − 1
− N

)
ω + ωq = 0 in SN−1

+ ,

ω = 0 on ∂SN−1
+ .

If we write

Uε(x) = ε−2/(q−1)U1,ε(x/ε) = ε−2/(q−1)U1,ε(y), y = x/ε,

the function U1,ε satisfies

�U1,ε = U q
1,ε in D

m
ε = ε−1�m

ε .

When ε → 0, Dm
ε converges to D0 = (0, 1) × R

N−1 in the sense of sets. Thus,
for any 0 < θ1 < θ2 < 1, there exists ε0 such that if 0 < ε ≤ ε0, the following
inclusion holds

G
m
θ = {y = (y1, y′) : θ1 < y1 < θ2 , 1 <

∣∣y′∣∣ ≤ m/2ε} ⊂ D
m
ε .
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Because
U1,ε(y) ≤ C |y|−2/(q−1),

U1,ε converges uniformly, as ε → 0, on any compact subset of D0 \ {O} to the
unique solution U1 of

�U1 = U q
1 in D0,

which vanishes on ∂D0 \ {O} and satisfies

(5.10) lim
y→O
y ∈ D0

|y|2/(q−1)U1(y) = ω(y/ |y|).

Therefore there exists some η ∈ (0, 1) such that

(5.11) U1,ε(y1, y′) ≥ η sin
(

π(y1 − θ1)

θ2 − θ1

)
, for y1 ∈ [θ1, θ2] and

∣∣y′∣∣ = 1.

Notice that the function y1 �→ ψθ(y1) = sin(π(y1 − θ1)/(θ2 − θ1)) vanishes for
y1 = θ1 and for y1 = θ2.

We first suppose N = 2. Then for any β > 0 the function

(5.12) y′ �→ ϕβ(y′) =
sinh

(
β

(
m

2ε
− ∣∣y′∣∣))

sinh
(

β

(
m

2ε
− 1

)) ,

is nonnegative takes the value 1 for
∣∣y′∣∣ = 1, and vanishes for

∣∣y′∣∣ = m/(2ε).
If we set

ζθ,β(y1, y′) = ηψθ(y1)ϕβ(y′),

there holds

(5.13) �ζθ,β =
(

β2 − π2

(θ2 − θ1)2

)
ζθ,β .

Since ζθ,β ≤ η, it follows

(5.14) �ζθ,β ≥
(

β2 − π2

(θ2 − θ1)2

)
η1−qζ

q
θ,β in G

m
θ ,

furthermore

ζθ,β(y1, y′) = 0 for y1 = θi , i = 1, 2,

ζθ,β(y1, y′) = 0 for
∣∣y′∣∣ = m/2ε,

ζθ,β(y1, y′) = 0 for
∣∣y′∣∣ = 1.
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We chose β such that
π2

(θ2 − θ1)2
η1−q = 1. By (5.11) and the maximum principle

one obtains

(5.15) U1,ε(y1, y′) ≥ ζθ,β(y1, y′) in G
m
θ .

Therefore
u(x1, x ′) ≥ �(ε)ε−2/(q−1)U1,ε(x1/ε, x ′/ε)

≥ �(ε)ε−2/(q−1)ζθ,β(x1/ε, x ′/ε),

for θ1ε ≤ x1 ≤ θ1ε and ε ≤ ∣∣x ′∣∣ ≤ m/2. Take x1 = ε(θ1 + θ2)/2 = θε, then

u(θε, x ′) ≥ η�(ε)ε−2/(q−1)

sinh

(
β

(
m − 2

∣∣x ′∣∣
2ε

))

sinh
(

β

(
m

2ε
− 1

)) .

If |x |′ ≤ m/4,

sinh

(
β

(
m − 2

∣∣x ′∣∣
2ε

))

sinh
(

β

(
m

2ε
− 1

)) = eβ(1−|x |′/ε)(1 + ◦(1)) as ε → 0,

Thus
u(θε, x ′) ≥ η�(ε)ε−2/(q−1)eβe−β|x ′|/ε(1 + ◦(1)),

and
lim inf

ε→0
u(θε, x ′) ≥ ηeβ lim inf

ε→0
�(ε)ε−2/(q−1)e−β|x ′|/ε.

Since �(ε) = eκ/((q−1)ε,

�(ε)ε−2/(q−1)eβ(1−|x |′/ε) ≥ ε−2/(q−1) exp
[
ε−1 (

κ/(q − 1) − β|x |′)]

If we fix |x |′ < βκ/(q − 1), then

lim inf
ε→0

u(θε, x ′) = lim
ρ
∂�

(x)→0
u(x) = ∞,

and this limit is uniform on any compact subset of {x ′ : |x |′ < βκ/(q − 1)},
which is equivalent to any compact of {x : |σ(x)| < βκ/(q − 1)}. Put τ =
βκ/(2(q −1)). Because this blow-up holds in a fixed neighborhood ∂�∩ B̄τ (O)

of O , we can replace O by any point P in ∂� ∩ B̄τ (O) and conclude that

lim
ρ
∂�

(x)→0
u(x) = ∞,
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uniformly if |σ(x) − P| ≤ τ . Iterating this process infers that

lim
ρ
∂�

(x)→0
u(x) = ∞.

Next we assume N ≥ 3. Let β > 0 to be fixed and

�ε = {y′ ∈ R
N−1 : 1 <

∣∣y′∣∣ < m/2ε}

and let Bβ(y′) be the solution of

(5.16)

�y′ Bβ = β2 Bβ in �ε,

Bβ(y′) = 1 if
∣∣y′∣∣ = 1,

Bβ(y′) = 0 if
∣∣y′∣∣ = m/2ε.

The function ζθ,β(y1, y′) = ηψθ(y1)Bβ(y′) satisfies also (5.13) in G
m
θ . Therefore,

if we chose β as in the case N = 2, (5.15) is still valid. Since Bβ is a Bessel
function, its behaviour at infinity is classical and there holds, for |x |′ ≤ m/4,

Bβ(y) = Cβ

( |x |′
ε

)1−N/2

e−β|x |′/ε(1 + ◦(1)), as ε → 0.

We conclude as in the case N = 2.

Step 2. The general case. If q ≥ (N + 1)/(N − 1) let α > 0 such that

q < (N + 1 + α)/(N − 1).

We write
h(ρ

∂�
(x)) = ρα

∂�
(x)h̃(ρ

∂�
(x)),

with
h̃(ρ

∂�
(x)) = ρ−α

∂�
(x)h(ρ

∂�
(x)).

We can assume that r �→ h̃(r) is nondecreasing near r = 0 and we extend it
by continuity at r = 0 by putting h̃(0) = 0. Thus there holds

�u ≤ h̃(ε)ρα

∂�
(x)uq in �ε.

The equation
−�U + ρα

∂�
(x)U q = 0,

admits weak and strong isolated singularities on the boundary and any positive
solution with a strong singularity at x = O satisfies

(5.17) lim
x→O
x∈�ε

|x |(2+α)/(q−1)Uε(x) = ωα(x/ |x |),
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where ωα is the unique positive solution of

(5.18)
−�σωα −

(
2 + α

q − 1

) (
2q + α

q − 1
− N

)
ωα + ωq

α = 0 in SN−1
+ ,

ω = 0 on ∂SN−1
+ ,

we proceed as in Step 1, with some minor changes of coefficients.

Step 3. End of the proof. The minimal solution um of (5.6) is constructed
by considering the increasing sequence uk of solutions of

(5.19)
−�uk + exp(−κ/ρ

∂ω
(x))uq

k = 0 in �,

uk(x) = k on ∂�.

When k → ∞, uk → um , thus u∞,a ≥ um . On the other hand, uλδa is
constructed by approximating the Dirac mass on the boundary by bounded
functions gλ. Thus the corresponding solutions ugλ

of (0.4) are all dominated
by um . Therefore

uλδa ≤ um �⇒ u∞,a ≤ um .

Remark 5.2. If the domain � is starshaped with respect to some point, say
O , the Iscoe uniqueness method (see [17]) of scaling applies straightforwardly
to prove the uniqueness of the solution of (5.6). We recall this method. Let
� > 0 and u�(x) = �2/(q−1)u(�x), then u� satisfies

−�u� + e−κ/ρ
∂�

(�x)uq
� = 0 in �� = 1

�
�,

u� = ∞ on ∂��.

But �� ⊂ � and e−κ/ρ
∂�

(�x) ≤ e−κ/ρ
∂�

(x) if � > 1. Therefore u� satisfies

−�u� + e−κ/ρ
∂�

(x)uq
� ≥ 0, in ��.

If û is another of (5.6) in �, then u� ≥ û. Letting � → 1 infers u ≥ û. In
the same way û ≥ u. In a much more elaborated manner, if � is locally a
continuous graph, the method of local translations developped by the authors in
[21] can be adapted and once again uniqueness of the solution of (5.6) holds.

Combining Proposition 5.1, the previous remark and Theorem 4.1 (in the
case 1 < q < (N + 1)/(N − 1)) we derive,

Corollary 5.2. Let q > 1 and u be a nonnegative solution of

(5.20) −�u + exp(−1/ρ
∂ω

(x))uq = 0 in �.

Then either
(i) S(u) = ∂�, Tre

∂�
(u) the Borel measure indentically equal to ∞, and

u∞,a = um,

or

(ii) R(u) = ∂� and Tre
∂�

(u) = ν is a bounded Borel measure. Moreover, if
1 < q < (N + 1)/(N − 1), ν is a Radon measure and u = uν .
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