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Remarks on the Blow-up for the Schrödinger Equation
with Critical Mass on a Plane Domain

VALERIA BANICA

Abstract. In this paper we concentrate on the analysis of the critical mass blowing-
up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary
conditions, posed on a plane domain. We bound the blow-up rate from below,
for bounded and unbounded domains. If the blow-up occurs on the boundary, the
blow-up rate is proved to grow faster than (T − t)−1, the expected one. Moreover,
we show that blow-up cannot occur on the boundary, under certain geometric
conditions on the domain.
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1. – Introduction

Let us first recall the known results for the R
n case. Consider the nonlinear

Schrödinger equation on R
n , for p ≥ 1,

(S)

{
i∂t u + �u + |u|p−1u = 0,

u(0) = u0.

The associated Cauchy problem is locally well posed in H
1 for p < 1+ 4

n−2 [8,
10, 5]. In the endpoint case p = 1 + 4

n−2 , the local well-posedness was treated
in [6].

The Gagliardo-Nirenberg inequality

‖v‖p+1
p+1 ≤ Cp+1‖v‖2+(p−1) 2−n

2
2 ‖∇v‖(p−1) n

2
2

implies that the energy of the solution u of the equation (S),

E(u) = 1

2

∫
Rn

|∇u|2dx − 1

p + 1

∫
Rn

|u|p+1dx,
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is bounded from below by

‖∇u‖2
2

(
1

2
− Cp+1

p + 1
‖u‖2+(p−1) 2−n

2
2 ‖∇u‖(p−1) n

2 −2
2

)
.

As a consequence, if p < 1 + 4
n , since the mass is conserved, the gradient of

u is controlled by the energy. Therefore the solution does not blow up and
global existence occurs.

The power p = 1 + 4
n is a critical power, in the sense that the nonlinearity

is strong enough to generate solutions blowing up in a finite time. However,
even in this case, we have a global result for small initial conditions.

Indeed, in the case p = 1 + 4
n , if the mass of the initial condition is small

enough so that
C2+ 4

n

2 + 4
n

‖u‖
4
n
2 <

1

2
,

then the energy controls the gradient and again, the global existence is proved
for the equation (S).

For this particular value of p, Weinstein has given a sharpening of the
Gagliardo-Nirenberg inequality [27]. By variational methods using Lions concen-
tration-compacity lemma [13, 14], he obtained the existence of a minimizer Q
for the optimal constant of Gagliardo-Nirenberg’s inequality

1

C2+ 4
n

= inf
v∈H1(Rn)

‖v‖
4
n
2 ‖∇v‖2

2

‖v‖2+ 4
n

2+ 4
n

.

This minimizer satisfies the Euler-Lagrange equation

�Q + Q1+ 4
n = 2

n
Q.

Such a positive function, called ground state of the nonlinear Schrödinger equa-
tion, is radial, exponentially decreasing at infinity and regular. Recently, Kwong
has shown that it is unique up to a translation [12]. Moreover, it verifies Po-
hozaev’s identities


‖∇Q‖2

2 − ‖Q‖2+ 4
n

2+ 4
n

+ 2

n
‖Q‖2

2 = 0,

(n − 2)‖∇Q‖2
2 − n2

n + 2
‖Q‖2+ 4

n
2+ 4

n
+ 2‖Q‖2

2 = 0,

which lead to the following relations between the norms of Q

(1)

{ ‖Q‖2+ 4
n

2+ 4
n

= n + 2

n
‖Q‖2

2,

‖∇Q‖2
2 = ‖Q‖2

2.
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Then the optimal value for the constant of the Gagliardo-Nirenberg inequality
is

C2+ 4
n

= n + 2

n

1

‖Q‖
4
n
2

.

In conclusion, if p = 1 + 4
n , the solutions of the equation (S) with initial

condition of mass smaller than the one of the ground state

‖u‖2 < ‖Q‖2,

are global in time.
The mass ‖Q‖2 is critical, in the sense that we can construct as follows

solutions of mass equal to ‖Q‖2, which blows up in finite time. Since p = 1+ 4
n ,

the pseudo-conformal transform of a solution u of (S)

1

t
n
2

ei |x |2
4t u

(
−1

t
,

x

t

)
,

is also a solution of (S) [4]. So, from a stationary solution on R
n

eit Q(x),

for all positive T ,

u(t, x) = e
i

T −t

(T − t)
n
2

e
−i |x |2

4(T −t) Q
(

x

T − t

)
,

is a solution blowing up at the time T . Moreover, Merle proved in [17] that all
blowing-up solutions on R

n with critical mass ‖Q‖2 are of this type, up to the
invariants of the equation. The proof is based on a result of concentration of
Weinstein ([28], see Lemma 1.2) and on the study of the first order momentum

f (t) =
∫

Rn
|u(t, x)|2xdx,

and of the virial

g(t) =
∫

Rn
|u(t, x)|2|x |2dx

associated to a solution u of the equation (S). The conservative properties of
these two quantities on R

n , in the case of the critical power 1 + 4
n , play an

important role in Merle’s proof. The derivative of the first order momentum is
constant in time

∂2
t f = 0,

and g satisfies the virial identity [4]

∂2
t g = 16E(u) − 4

n(p − 1) − 4

p + 1

∫
Rn

|u|p+1dx = 16E(u).
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In certain cases of initial conditions with mass larger than ‖Q‖2 recent
achievements were done by Merle and Raphaël, concerning the blow-up rate
and the blow-up profile [19, 20].

For the equation (Sp) with p ≥ 1 + 4
n , Zakharov [30] and Glassey [9]

had obtained that the solutions of negative energy are blowing up in finite
time. The same result for solutions of nonnegative energy is valid under certain
conditions on the derivatives of the virial [25]. The proof is based on an upper
bound of the virial in terms of its first and second derivative, which implies
the cancellation of the virial at a finite time T . Since the mass is conserved,
it follows that the solution must blow up at the time T .

In this paper we are concerned with the nonlinear Schrödinger equation
posed on a regular domain � of R

n , with Dirichlet boundary conditions


i∂t u + �u + |u|p−1u = 0,

u|R×∂� = 0,

u(0) = u0.

The Cauchy problem is locally well posed on H
2 ∩ H

1
0(�) in dimension 2

and 3. In dimension 2, for nonlinearities less than cubic, Vladimirov [26] and
Ogawa and Ozawa [22] have shown the well-posedness of the Cauchy problem
on H

1
0(�), but without the uniform continuity of the flow on bounded sets of

H
1
0(�). For nonlinearities stronger than cubic in dimension 2, or for any power

nonlinearity p, in dimension higher than 2, the Cauchy problem on H
1
0(�) is

open.
For the equation with power p < 1 + 4

n , one can show as for the case
R

n that the H
1
0(�) solutions are global in time. For the equation with power

p ≥ 1 + 4
n , posed on a star-shaped domain of R

n , Kavian has proved the blow-
up in finite time of the H

2 ∩ H
1
0(�) solutions of negative energy or of positive

energy but under some conditions on the first and second derivatives of the virial
[11]. His proof follows the one on R

n [9], by estimating via the geometric
condition on � the boundary terms which appear in the second derivative of
the virial.

From now on we will analyze the cubic equation on �

(S�)




i∂t u + �u + |u|2u = 0,

u|R×∂� = 0,

u(0) = u0.

Let us first notice that the conservations of the mass and of the energy of
the solutions are still valid. The Cauchy problem is locally well posed on
H

2 ∩ H
1
0(�), and also on H

1
0(�) apart from the property of uniform continuity

of the flow, not known to hold. The usual Strichartz inequalities are no longer
valid and the loss of derivatives is stronger than in the case of a compact
manifold [3].

As in the case of the plane, for initial conditions with mass smaller than
the one of the ground state, the Cauchy problem is globally well-posed on
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H
2 ∩ H

1
0(�). The proof, given by Brézis and Gallouët, is based on logarithmic

type estimates [2]. This result has been extended to the natural space H
1
0(�),

apart from the uniform continuity of the flow [26, 22, 4].
The critical mass for blow-up is ‖Q‖2, as in the case of the equation posed

on R
2. More precisely, the following result holds.

Theorem 1.1 (Burq-Gérard-Tzvetkov [3]). Let � be a regular bounded domain
of R

2. Let x0 ∈ � and ψ ∈ C∞
0 (�) be a function equal to 1 near x0. Then there

exist positive numbers κ and α0 such that for all α > α0, there exists a time Tα and
a function rα defined on [0, Tα[×�, satisfying

‖rα(t)‖
H2(�) ≤ ce− κ

Tα−t ,

such that

u(t, x) = ψ(x)
e

i
α2(Tα−t)

α(Tα − t)
e
−i

|x−x0|2
4α(Tα−t) Q

(
x − x0

α(Tα − t)

)
+ rα(t, x),

is a critical mass solution of (S�), blowing up at x0 at the time Tα with the blow-up
rate 1

Tα−t .

The proof, following an idea of Ogawa and Tsutsumi [23], is based on a
fixed point method which allows to complete the cut-off of the explicit blowing
up solution on R

2 at x0 to a blowing up solution on � at x0. Theorem
4.1.1 implies in particular that at every point of � there are explosive solutions.
Moreover, the proof is still valid for the torus T

2 and for a larger class of subsets
of the plane, which satisfy the property of 2-continuation, from H

2 ∩ H
1
0(�) to

H
2(R2), and for which the Laplacian domain

D(−��) = {u ∈ H
1
0(�), �u ∈ L

2(�)},
is H

2 ∩ H
1
0. Such subsets are for example the domains with compact regular

boundary and convex polygons bounded or unbounded.

As in the R
n case, the following lemma, due to Weinstein, will give us

the general behavior of a blowing-up solution of critical mass on a domain.

Lemma 1.2 (Weinstein [28]). Let uk ∈ H
1(Rn) be a sequence of functions of

critical mass satisfying {
βk = ‖∇uk‖2 −→

k→∞
∞,

E(uk) −→
k→∞

c < ∞.

Then there exist points xk ∈ R
d and θk ∈ R such that in H

1(Rn)

eiθk

β
n
2

k

uk

(
x

βk
+ xn

)
−→
k→∞

1

ω
n
2

Q
(

x

ω

)
,

where ω = ‖∇Q‖2.
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Let u be a solution of (S�) that blows up at the finite time T , that is

λ(t) = ‖∇u(t)‖2

‖∇Q‖2
−→
t→T

∞.

Consider u to be extended by zero outside �. By combining Lemma 1.2 for
families uk = u(tk) with tk sequences convergent to T with the result of Kwong
on the uniqueness of the ground state [12], there exist θ(t) real numbers and
x(t) ∈ R

2 such that in H
1(R2)

(2)
eiθ(t)

λ(t)
u

(
t,

x

λ(t)
+ x(t)

)
−→
k→∞

Q(x).

Then, in the space of distributions,

(3) |u(t, · + x(t))|2 −→
t→T

‖Q‖2
2 δ0.

In this paper we concentrate on the further analysis of the blowing-up
solutions with critical mass on a plane domain. The results are the following.

Theorem 1.3. Let u be a C([0, T [, H
1
0) solution of the Schrödinger equation

(S�), which has critical mass and blows up at the finite time T .

i) For bounded domains, the blowing-up rate is lower bounded by

1

T − t
� ‖∇u(t)‖2.

i) If there exist solutions u of critical mass blowing up at a finite time T on the
boundary of �, that is if the concentration parameter x(t) converges as t→T
to a point on the boundary, then the blowing-up rate satisfies

lim
t→T

(T − t)‖∇u(t)‖2 = ∞.

The main difficulty for the Schrödinger equation posed on a domain is that
the conservation of the derivative of the first momentum and the virial identity
fail.

In order to avoid this difficulty, we shall use systematically in the proof
of Theorem 1.3 a Cauchy-Schwarz type inequality derived from Weinstein’s
inequality. Precisely, we show that if v is a H

1(R2) function of critical or
subcritical mass, then∣∣∣∣

∫
	(v∇v )∇θdx

∣∣∣∣ ≤
(

2E(v)

∫
|v|2|∇θ |2dx

) 1
2

for all real function θ . This inequality allows us to estimate the virial, that we
shall assume to be localized if � is unbounded (see Remark 1.6). The lower
bound for the blowing-up rate is the same as the one found by Antonini on the
torus [1].

By following the approach of Weinstein in [29], and the recent results of
Maris in [16], we analyze the convergence to the ground state of the modula-
tions of the solutions (2), and we obtain, for bounded domains, the following
additional informations.
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Proposition 1.4.
i) The blow-up rate verifies∫

�

|u(t, x)|2|x − x(t)|2dx ≈ 1

‖∇u(t)‖2
2
.

ii) The concentration parameter x(t) can be chosen to be as the first order mo-
mentum

x(t) =
∫
� |u(t, x)|2xdx

‖Q‖2
2

.

Corollary 1.5. If � is a disc centered at 0 and if equation (S�) is considered
to be invariant under rotations, then x(t) can be chosen to be 0, and we have

g(t) ≈ 1

‖∇u(t)‖2
2
.

Remark 1.6. For unbounded domains, it is expected that a blowing-up
solution of critical mass concentrates at one point, that is the concentration
parameter x(t) converges as t→T . Under this assumption, the first assertion
of Theorem 1.3 is also true for unbounded domains, and so are the assertions
of Proposition 1.4, for the virial and the first order momentum localized at the
blow-up point (see Section 4).

There is no known example of a solution of nonlinear Schrödinger equation
with a blow-up rate larger than 1

T −t , neither in the case of supercritical mass,
nor in the case of supercritical nonlinearities.

Therefore we expect that the blowing-up rate grows exactly like 1
T −t and

that the profiles are the ones on R
2 modulo an exponentially decreasing in H

1

function.
Since it is not likely that the blowing-up rate at the boundary grows strictly

faster than 1
T −t , we also expect that there are no solutions blowing-up on the

boundary of a domain. This is confirmed for certain simple cases by the
following result.

Theorem 1.7. If � is a half-plane or a plane sector, then there are no solutions
blowing-up in a finite time on the boundary of the half-plane or in the corner of the
sector respectively.

Indeed, under these geometric hypotheses on �, the boundary terms which
appear in the second derivative of the virial associated to a blowing-up solution
of (S�) cancel, so we have, as on R

n , the virial identity

∂2
t g = 16E(u).

The proof then follows the one by Merle in [17] for the equation posed on R
n ,

and we obtain that all explosive solutions on � must be of the type

e
i

T −t

(T − t)
n
2

e
−i |x |2

4(T −t) Q
(

x

T − t

)
,
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up to the invariants of the equation. Therefore we arrive at a contradiction by
looking at the support of the solution.

Remark 1.8. The results of this paper are valid also in higher dimension,
but are presented in the 2-dimensional case. The reason is that the only existence
result of blowing-up solutions with critical mass on a domain is Theorem 1.1.

Remark 1.9. In the case of Neumann boundary conditions, the situation
changes radically for blow up at the boundary. For blow up inside the domain,
the situation is expected to be similar to the Dirichlet case. Blow-up can appear
at the boundary of a half-plane, as it can easily be seen by taking the restriction
to the half-plane of the explicit solution on R

2, blowing-up at zero. Notice also

that this is a blowing-up solution of mass
‖Q‖2

2
2 . By the same method one can

construct solution of mass
‖Q‖2

2
n , blowing-up at the corner of a plane sector

of angle 2π
n . So for unbounded domains the critical mass for blow up on the

boundary probably depends on the domain.
By using the techniques of Theorem 1.1, blowing-up solution of this mass

‖Q‖2
2

2 can be contructed to blow up on the boundary of a bounded set, in a
point around which the boundary is locally a line. For bounded domains, we

expect that the critical mass for blow up on the boundary should be
‖Q‖2

2
2 .

One of the difficulties is that the best constant in the corresponding Gagliar-
do-Nirenberg inequality

‖v‖4
4 ≤ A‖v‖2

2(‖∇v‖2
2 + B‖v‖2

2),

is not known for the case of Neumann boundary conditions.

The paper is organized as follows. Section 2 contains some results on
general domains. We prove a Cauchy-Schwarz type inequality for critical and
subcritical mass functions, which we will use to show Theorem 1.3. The nature
of the convergence to the ground state of the modulations of the solutions is
analyzed, by spectral theory techniques given in the Appendix. These concen-
tration results will be used later to prove Theorem 1.7 and Proposition 1.4.
Moreover, we calculate the derivatives in time for a virial type function. In
Section 3, by studying the virial, the lower-bound of the blowing-up rate is
proved for bounded domains �. In this section, we also give the proof of
Proposition 1.4. In Section 4, by introducing a localized virial, we find the
same lower-bound for the blowing-up rate for unbounded domains (see Remark
1.6). Section 5 contains the results regarding the explosion on the boundary
of �.

Acknowledgment. I would like to thank my advisor Patrick Gérard for
having introduced me to this beautiful subject and for having guided this work. I
am also grateful to Mihai Maris for useful discussions concerning the Appendix.
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2. – Results on general domains

2.1. – A Cauchy-Schwarz inequality for subcritical mass functions

Lemma 2.1. Let θ be a real valued function. All v ∈ H
1(R2) with critical or

subcritical mass satisfy

(∗)

∣∣∣∣
∫

	(v∇v )∇θdx

∣∣∣∣ ≤
(

2E(v)

∫
|v|2|∇θ |2dx

) 1
2
.

Proof. The precised version of the Gagliardo-Niremberg inequality, pre-
sented in the introduction, is, for function w in H

1(R2),

‖w‖4
4 ≤ 2

‖Q‖2
2

‖w‖2
2‖∇w‖2

2.

As a consequence, if
‖w‖2 ≤ ‖Q‖2,

then the energy of w is nonnegative.
Therefore on the one hand,

0 ≤ E(eiαθv)

for every real number α and for all real function θ , since eiαθv is still a function
of critical or subcritical mass. On the other hand

E(eiαθv) = 1

2

∫
|iα∇θ v + ∇v|2dx − 1

4

∫
|v|4dx

= α2

2

∫
|v|2|∇θ |2dx − α

∫
	(v∇v )∇θdx + E(v)

Thus the discriminant of the equation in α must be negative or null and we
obtain the claimed Cauchy-Schwarz type inequality (∗).

2.2. – The concentration of the solution

In this subsection we shall give a refined description of a critical mass
blowing-up solution u of (S�), by following the approach of Weinstein in [29].

In order to deal with real functions, we shall analyze the modulus of u.
However, the same arguments below can be used to get the corresponding results
on u (see Remark 6.1).

One can write the convergence (2)

u(t, x) = e−iθ(t)λ(t)(Q + R(t))(λ(t)(x − x(t))),
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with R a complex function such that

‖R(t)‖
H1(R2) −→

t→T
0.

Since the modulus is a continuous function on H
1(R2) [15], this implies

|u(t, x)| = λ(t)|Q + R(t)|(λ(t)(x − x(t))) = λ(t)(Q + ˜̃R(t))(λ(t)(x − x(t))),

with ˜̃R a real function strongly converging to 0 in H
1(R2).

Let us set

λ̃(t) = ‖∇|u(t)|‖2

‖∇Q‖2
.

By noticing that |u(t)| is also of critical mass, its energy is nonnegative, and

(4) 0 ≤ ‖∇u(t)‖2
2 − ∥∥∇|u(t)|∥∥2

2 = 2E(u) − 2E(|u(t)|) ≤ 2E(u),

which implies
(λ(t) + λ̃(t))(λ(t) − λ̃(t)) = O(1).

Since 0 ≤ λ̃(t) ≤ λ(t),

λ(t) − λ̃(t) = O
(

1

λ(t)

)
,

and we have

(5) |u(t, x)| = λ̃(t)(Q + R̃(t))(λ̃(t)(x − x(t))),

with R̃(t) a real function such that

‖R̃(t)‖
H1(R2) −→

t→T
0.

Proposition 2.2. The remainder term R̃ has the decay

(6) ‖R̃(t)‖
H1 ≤ C̃

λ̃(t)
≤ C

λ(t)
.

The proof follows Merle’s one in [18]. However, for the sake of complet-
ness, we give in the Appendix a proof by a slightly different method.

Finally, let us give the following property of decay of the solution.
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Lemma 2.3. Let u be a critical mass solution of (S�), blowing up at the finite
time T , at one point x0 ∈ �, which means that the concentration parameter x(t)
converges to x0. Then, the gradient of u(t) restricted outside any neighborhood V
of x0 satisfies

sup
t∈[0,T [

∫
cV

|∇u(t)|2dx < ∞.

Proof. The inequality (4) implies

sup
t∈[0,T [

∫
cV

|∇u(t)|2dx ≤ 2E(u) + sup
t∈[0,T [

∫
cV

∣∣∇|u(t)|∣∣2dx .

By using (5),

∫
cV

∣∣∇|u(t)|∣∣2dx = λ̃2(t)
∫

c λ̃(t)(V −x(t))
|∇Q + ∇ R̃(t)|2.

Since x(t) converges to x0 and Q is exponentially decreasing,

λ̃2(t)
∫

c λ̃(t)(V −x(t))
|∇Q|2 = o(1).

Then it follows that∫
cV

∣∣∇|u(t)|∣∣2dx � λ̃2(t)
∫

c λ̃(t)(V −x(t))
|∇ R̃|2,

and the decay (6) of R implies

∫
cV

∣∣∇|u(t)|∣∣2dx = O(1),

so the lemma is proved.

Remark 2.4. Another proof of this lemma can be done by using the ap-
proach of Merle in [17]. However, we shall need the full strength of Proposition
2.2 later in Subsection 3.3 and Subsection 3.4.

2.3. – Derivatives of virial type functions

Let u be a solution of (S�) and let h be a C∞(R2) function with bounded
first and second derivatives. Then, by using the fact that u satisfies (S�), we
obtain

∂t

∫
�

|u(t)|2hdx = 2
∫

�

� (u(t)ut (t)) hdx = 2
∫

�

	 (u(t)�u(t)) hdx .
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Since u cancels on the boundary of �, by integration by parts

(7) ∂t

∫
�

|u(t)|2hdx = −2
∫

�

	 (u(t)∇u(t)) ∇hdx .

By using again the equation (S�)

∂t
2
∫

�

|u|2h = −2
∫

�

�
(
(�u + |u|2u)∇u

)
∇h + 2

∫
�

�
(

u∇(�u + |u|2u)
)

∇h

=
∫

�

−|u|2�2h − |u|4�h + 2|∇u|2�h − 4� (�u∇u) ∇h.

It follows that

∂t
2
∫

�

|u|2h =
∫

�

−|u|2�2h − |u|4�h + 4�
∑
i, j

∂i u∂j u∂i j h − 2
∫

∂�

∣∣∣∣∂u

∂ν

∣∣∣∣
2 ∂h

∂ν
dσ.

Therefore, by making the energy of the solution appear, we have the following
identity.

Lemma 2.5. For a solution u of (S�) and a C∞(R2) function h with bounded
derivatives ∂i j h and �2h, we have

∂t
2
∫

�

|u|2h = 16E(u) −
∫

�

(2|∇u|2 − |u|4)(4 − �h) −
∫

�

|u|2�2h

+
∫

�


4�

∑
i, j

∂i u∂j u∂i j h − 2|∇u|2�h


 − 2

∫
∂�

∣∣∣∣∂u

∂ν

∣∣∣∣
2 ∂h

∂ν
dσ.

Corollary 2.6. For a solution u of (S�) and a C∞(R2) function h equal to
|x |2 on B(0, R), with bounded derivatives ∂i j h and �2h, we have the estimate

∣∣∣∣∂2
t

∫
�

|u(t)|2hdx − 16E(u)

∣∣∣∣ ≤ C
∫

{|x |≥R}∩�

(|u(t)|2 + |∇u(t)|2)dx

+
∫

∂�

∣∣∣∣∂u(t)

∂ν

∣∣∣∣
2 ∣∣∣∣∂h

∂ν

∣∣∣∣ dσ.
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3. – The blow-up rate on bounded plane domains

3.1. – The convergence of the concentration points x(t)

Lemma 3.1. Let � be a bounded domain and let u be a critical mass solution
of (S�), blowing up at the finite time T . Then the concentration parameter x(t) has
a limit at the time T .

Proof. From (3) it follows that for a test function ψ ,∫
�−x(t)

|u(t, x + x(t))|2ψ(x)dx −→
t→T

‖Q‖2
2ψ(0).

If ψ is chosen such that ψ(0) = 0 then, since the set � is bounded, it follows
that

(8) lim sup
t→T

|x(t)| < ∞.

The first order momentum

f (t) =
∫

�

|u(t, x)|2xdx,

stays finite in time since � is bounded and u conserves its mass. By using the
formula (7) for vector-valued functions h, one can calculate the derivative

f ′(t) = −2
∫

�

	(u(t)∇u(t) )dx .

The inequality (∗) in the special case θi (x) = xi implies that this derivative is
bounded in time

| f ′(t)|2 ≤ 4
∑

i∈{1,2}

∣∣∣∣
∫

�

	(u(t)∇u(t) )∇θi dx

∣∣∣∣
2

≤ 16E(u)‖u‖2
2.

Therefore f admits a limit at the time T . Let us define x0 by

f (T ) = x0‖Q‖2
2.

Using the convergence (3) and (8) which implies that � − x(t) is a uniformly
bounded set, one has

f (t) − x(t)‖Q‖2
2 =

∫
�−x(t)

|u(t, x + x(t))|2xdx −→
t→T

0.

Therefore the point x0 is the limit of x(t), and the square of the solution
behaves like a Dirac function

(9) |u(t, ·)|2 −→
t→T

‖Q‖2
2 δx0 .

In the following, we shall suppose, up to a translation, that the solution
blows up at the point 0 ∈ �.



152 VALERIA BANICA

3.2. – Lower bound for the blow-up rate

The derivative in time of the the virial of the solution u,

g(t) =
∫

�

|u(t, x)|2|x |2dx,

can be calculated with the formula (7) with h(x) = |x |2, and

g′(t) = −4
∫

�

	(u(t)∇u(t) )xdx .

Therefore the inequality (∗) in the case θ(x) = |x |2 implies that

|g′(t)| ≤ 4
√

2E(u)g(t).

The concentration result (9) of the former subsection gives

g(T ) = 0,

and one can now write

√
g(t) = −

∫ T

t

g′(τ )

2
√

g(τ )
dτ ≤

∫ T

t
2
√

2E(u) = 2
√

2E(u)(T − t),

and obtain

g(t) ≤ 8E(u)(T − t)2.

Then the uncertainty principle

(∫
R2

|u|2
)2

≤
(∫

R2
|u|2|x |2

) (∫
R2

|∇u|2
)

gives us a lower bound of the blow-up rate

‖Q‖2
2

2
√

2E(u)(T − t)
≤ ‖∇u(t)‖2,

so the first assertion of Theorem 1.3 is proved.
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3.3. – Equivalence between the virial and the blow-up rate

By using (5),

∫
�

|u(t)|2|x − x(t)|2dx = 1

λ̃2(t)

∫
λ̃(t)(�−x(t))

(Q + R̃(t))2|x |2dx .

Since x(t) tends to 0 and Q is exponentially decreasing,

1

λ̃2

∫
λ̃(t)(�−x(t))

Q2|x |2dx = O
(

1

λ̃2(t)

)
,

so ∫
�

|u(t)|2|x − x(t)|2dx �
1

λ̃2(t)

∫
λ̃(t)(�−x(t))

R̃2(t)|x |2dx + 1

λ̃2(t)
.

The domain � is considered bounded, so one can write

∫
�

|u(t)|2|x − x(t)|2dx �
∫

R̃2(t)dx + 1

λ̃2(t)
,

and by using the decay (6) of R̃, we obtain

∫
�

|u(t)|2|x − x(t)|2dx �
1

λ2(t)
.

As we did in the previous subsection, by the uncertainy principle for u(t, x +
x(t)),

‖u‖4
2 � λ2(t)

∫
|u(t)|2|x − x(t)|2dx,

and so the first assertion of Proposition 1.4 follows,

∫
�

|u(t)|2|x − x(t)|2dx ≈ 1

λ2(t)
.

3.4. – A differentiable choice for x(t)

Let us set

y(t) =
∫ |u(t)|2xdx

‖Q‖2
.

By using the conservation of the mass, which is critical,

x(t) − y(t) = 1

‖Q‖2
2

∫
|u(t)|2(x − x(t))dx .
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Then by (5) one has

x(t) − y(t) = 1

λ̃(t)‖Q‖2
2

∫
λ̃(t)(�−x(t))

(Q + R(t))2xdx .

Therefore, by the same arguments as in the previous subsection, and the by
using the fact that since Q is radially symmetric,

∫
Q2(x)xdx = 0,

then

|x(t) − y(t)| ≤ C

λ̃2(t)
.

If we define S by

|u(t, x)| = λ̃(Q + R̃(t))(λ̃(x − x(t))) = λ̃(Q + S(t))(λ̃(x − y(t))),

one has

‖S(t)‖
H1 ≤ 2‖R̃(t)‖

H1 + ‖Q(· + λ(x(t) − y(t)) − Q(·)‖
H1 .

The decay of the difference between x(t) and y(t), together with (6), implies

‖S(t)‖
H1 ≤ C

λ̃(t)
.

So, by changing x(t) into ∫ |u(t)|2xdx

‖Q‖2
,

we have the convergence corresponding to (5)

|u(t, x)| = λ̃(t)(Q + S(t))(λ̃(t)(x − y(t))),

with S decreasing in H
1 as does R, and so the second assertion of Proposition 1.4

follows.
The interest of this choice of the concentration parameter is that y(t) is a

differentiable function, and, moreover, in the radial case we obtain Corollary 1.5.
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4. – The blow-up rate on unbounded plane domains

Consider now the equation (S�) on an unbounded domain of the plane or
on a surface. Let u be a critical mass solution that blows up at an interior
point x0 of �, that is

x(t) −→
t→T

x0.

Modulo a translation, we can suppose that x0 is zero and so,

|u(t, x)|2 −→
t→T

‖Q‖2
2 δ0.

Let φ be a C∞
0 function, equal to 1 on B(0, R). Let us introduce the

localized virial of the solution

gφ(t) =
∫

|u(t, x)|2φ2(x)|x |2dx .

Then, using (7) with h(x) = φ2(x)|x |2, one has

g′
φ(t) = −2

∫
	(u(t)∇u(t))∇(φ2|x |2)dx .

The inequality (∗) with θ(x) = φ2(x)|x |2 gives us

|g′
φ(t)|2 ≤ 8E(u)

∫
|u|2|∇(φ2|x |2)|2dx

Since ∇(φ2|x |2) is a C∞
o (R2) function cancelling at 0, and since the square of

|u| behaves like a Dirac distribution, it follows that

g′
φ(T ) = 0.

Then, as in the former section, and using the existence of a positive constant
C such that

|∇(φ2|x |2)|2 ≤ Cψ2|x |2,
one has

gφ(t) � (T − t)2.

The uncertainty principle reads

(∫
|u|2φ2dx

)2

≤
(∫

|u|2φ2|x |2dx
) (∫

|∇(uφ)|2dx
)

.

By integrating by parts the last term and by using the fact that φ is equal to
1 on B(0, R), it follows that

(∫
B(0,R)

|u(t)|2
)2

≤ gφ(t)
(∫

|∇u|2φ2dx −
∫

|u|2φ�φdx
)

.
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Since φ is a C∞
0 function,

(∫
B(0,R)

|u(t)|2
)2

≤ gφ(t)
(

C
∫

|∇u|2dx −
∫

|u|2φ�φdx
)

.

On the one hand the L
2 norm of u is conserved. On the other hand, the

behavior of |u|2 as a Dirac distribution implies that the norm of its restriction
outside a neighborhood of zero tends to 0 in time. So we have


∫

B(0,R)

|u(t)|2 = O(1),∫
|u(t)|2φ�φdx = o(1),

and since gφ is bounded in time,

1 �
√

gφ(t)‖∇u(t)‖2

Then the decay of gφ gives us the lower bound of the blow-up speed

1

T − t
� ‖∇u(t)‖2.

5. – Blow-up on the boundary

5.1. – Necessary condition for blow-up on the boundary

Let us first introduce a notion of limit of sets, as in [7].

Definition 5.1. A sequence of open sets Mm is said to tend to an open
set M of R

2 if the following conditions are satisfied.
i) For all compact K ⊂ M , there exists nK ∈ N, such that for all n ≥ nK ,

K ⊂ Mn .
ii) For all compact K ⊂c M , there exists nK ∈ N, such that for all n ≥ nK ,

K ⊂c Mn .

Let us suppose that there exists an explosive solution u of the equation
(S�) at 0 ∈ ∂�. The convergence (2) implies that

λ(t)(� − x(t)) −→
t→T

R
2.

As in [7], the limit set depends on the position of x(t) with respect to the
boundary of �. If there is a positive number C such that for all t

λ(t)d(x(t), ∂�) ≤ C,
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then λ(t)(� − x(t)) tends to a half-plane and blow-up cannot occur. Also, if

λ(t)d(x(t), ∂�) −→
t→T

∞,

and x(t) is not in �, then, by Definition 5.1, λ(t)(�− x(t)) tends to the empty
set. Therefore the only possibility to have explosion on the boundary is that
x(t) ∈ � and

λ(t)d(x(t), ∂�) −→
t→T

∞.

In particular, since 0 is on the boundary,

(10) |λ(t)x(t)| −→
t→T

∞.

We have

|x(t)|2
∫

B(x(t), C
λ(t) )

|u|2 ≤ 2
∫

B(x(t), C
λ(t) )

|u|2|x − x(t)|2 + 2
∫

B(x(t), C
λ(t) )

|u|2|x |2.

On the one hand, by using the Weinstein relation (2), one has

|x(t)|2
∫

B(x(t), C
λ(t) )

|u|2 ≈ |x(t)|2.

On the other hand, using again (2),

∫
B(x(t), C

λ(t) )

|u|2|x − x(t)|2 �
1

λ(t)2
.

In view of (10), these two facts imply

|x(t)|2 �
∫

B(x(t), C
λ(t) )

|u|2|x |2 � gψ,

where gψ is the localized virial function defined in Section 4. In the same
section it was proved that

gψ � (T − t)2,

so it follows that
|x(t)| � T − t.

By using again (10),
1

T − t
� λ(t),

and the second assertion of Theorem 1.3 is proved.
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5.2. – Results of non-explosion

From now on we assume that � be a half plane whose boundary contains
0 or a plane sector with corner 0. Suppose there exists an explosive solution
u of critical mass such that |u|2 behaves like a Dirac mass at 0 in the sense

|u(t, ·)|2 −→
t→T

‖Q‖2
2 δ0.

For a radial function f ∈ C∞(R2), the result of Lemma 2.5 becomes

(11)

∂t
2
∫

�

|u|2 f = 16E(u) −
∫

�

(2|∇u|2 − |u|4)(4 − � f ) −
∫

�

|u|2�2 f

+
∫

�

4�
∑
i, j

∂i u∂j u∂i j f − 2|∇u|2� f,

since from the choice of �

x .ν = 0 on ∂�.

It follows that for a radial function f ∈ C∞(R2), equal to |x |2 on B(0, R), with
bounded derivatives ∂i, j f and �2 f , the estimate of Corollary 2.6 becomes

(12)
∣∣∣∣∂2

t

∫
�

|u(t)|2 f − 16E(u)

∣∣∣∣ ≤ C
∫

{|x |≥R}∩�

|u(t)|2 + |∇u(t)|2.

Arguing as in [17], we obtain the following lemmas.

Lemma 5.2. The initial condition is of finite variance

∫
�

|u0|2|x |2dx < ∞.

Proof. Let us consider ψ a C∞
0 (R) positive radial function which is equal

to |x |2 on B(0, 1). Notice that

|∇ψ |2 ≤ Cψ.

For all entire n, we introduce the localized virial functions

gn(t) =
∫

�

|u(t)|2ψndx,

where

ψn(x) = n2ψ

(
x

n

)
.
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The Taylor formula in zero for the function gn(t) gives us

|gn(t) − gn(0)| ≤ t |g′
n(0)| + C sup

t
|g′′

n (t)|.

Since ψn are equal to |x |2 on B(0, 1), and the derivatives ∂i jψn and �2ψn are
uniformly bounded, we can estimate by (12)

∣∣g′′
n (t) − 16E(u)

∣∣ ≤ C
∫

|x |>1
(|u(t)|2 + |∇u(t)|2)dx .

Then, in view of Lemma 2.3, the quantity g′′
n (t) is bounded uniformly on n.

So we have
|gn(t) − gn(0)| ≤ T |g′

n(0)| + C.

By using the inequality (∗),

|g′
n(t)| =

∣∣∣∣
∫

�

	(u(t)∇u(t) )∇ψn

∣∣∣∣ ≤
(

2E(u)

∫
�

|u(t)|2|∇ψn|2
) 1

2
.

The choice of ψn gives us
|∇ψn|2 ≤ ψn,

and it follows that

|g′
n(t)| ≤ C

(∫
�

|u(t)|2ψn

) 1
2 = C

√
gn(t).

Therefore
gn(0) − 2C

√
gn(0) − C ≤ gn(t)

for any time t , and

gn(0) − 2C
√

gn(0) − C ≤ lim
t→T

gn(t).

The concentration of the solution as a Dirac distribution implies that for fixed n

lim
t→T

gn(t) = 0,

and therefore
lim

n→∞(gn(0) − 2C
√

gn(0) − C) ≤ 0.

As a consequence, gn(0) is bounded as n tends to infinity. Since the supports
of ψn cover � when n tends to infinity, it follows that the initial condition is
of finite variance ∫

�

|u0|2|x |2dx < ∞.
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Remak 5.3. When � is a bounded domain, and u is a critical mass function
blowing up at a point of � or of its boundary, it is easy to see that the initial
condition is of finite variance∫

�

|u|2|x |2dx ≤ C‖u‖2
2 < ∞.

Lemma 5.4. The limit in time of the virial function is

g(T ) = 0.

Proof. Let us consider a C∞ positive function φ which is null on B(0, 1)

and verifies |x |
2

≤ φ(x) ≤ |x |,

on c B(0, 2). Suppose also that the derivatives ∂i jψ and �2ψ are bounded. We
denote

φn(x) = n φ

(
x

n

)
,

so φn are supported on c B(0, n) and verify

|x |
2

≤ φn(x) ≤ |x |

on c B(0, 2n).
Taylor’s formula together with (7) and the estimate (12) gives us

(13)

∫
|u(t)|2φn ≤

∫
|x |>n

|u0|2|x |2 + T

∣∣∣∣
∫

|x |>n
	(u0∇u0 )∇φ2

n

∣∣∣∣ +
+ C(T − t)2 + C

∫ T

0
(T − τ)

∫
|x |>n

(|∇u(τ )|2 + |u(τ )|2)dτ.

The Lemma 5.2 ensures us that the initial data is of finite variance, therefore∫
|x |>n

|u0|2|x |2 −→
n→∞ 0,

Also, by Lemma 2.3, ∣∣∣∣
∫

|x |>n
	(u0∇u0 )∇φ2

n

∣∣∣∣ −→
n→∞ 0.

Then, using again Lemma 2.3 and the conservation of the mass, for all τ and
for all n there exist a positive constant C such that∫

|x |>n
(|∇u(τ )|2 + |u(τ )|2) ≤ C.
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One also has, for every τ ,

∫
|x |>n

(|∇u(τ )|2 + |u(τ )|2) −→
n→∞ 0.

Then by the dominated convergence theorem

∫ T

0
(T − τ)

∫
|x |>n

(|∇u(τ )|2 + |u(τ )|2)dτ −→
n→∞ 0.

Therefore it follows from (13) that for all t ,

∫
|u(t)|2φ2

n ≤ ε(n) + C(T − t)2,

with

ε(n) −→
n→∞ 0.

On the one hand, in view of the choice of φn , this gives us

∫
|x |>2n

|u(t)|2|x |2 ≤ 2ε(n) + C(T − t)2.

On the other hand, for fixed n, the concentration of the solution as a Dirac
distribution implies

lim
t→T

∫
|x |<2n

|u(t)|2|x |2 = 0.

Therefore, for all n

lim
t→T

∫
|u(t)|2|x |2 ≤ ε(n).

By letting n to tend to infinity one has

lim
t→T

∫
|u(t)|2|x |2 = 0,

that is

g(T ) = 0,

and the Lemma 5.4 is proved.
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This lemma and the same arguments as in Section 3.2 give us also

g′(T ) = 0.

By using the formula (11) with f (x) = |x |2, the second derivative of the virial
is exactly

g′′(t) = 16E(u).

Then it follows that
g(t) = 8E(u)(T − t)2,

and by the same calculation as in Section 2.1

E(e
i |x |2

4(T −t) u(t, x)) = E(u) + 1

4(T − t)
g′(t) + 1

16(T − t)2
g(t) = 0.

For fixed t , by the variational characterization of the ground state Q, there
exists real numbers θ and ω such that

u(t, x) = e
−i |x |2

4(T −t) eiθω Q(ω(x − x0))

for some x0 ∈ R
2 [4]. This means that the support of u is the entire R

2 that
is a contradiction, and the proof of Theorem 1.7 is complete.

6. – Appendix

In this Appendix we give a proof for Proposition 2.2. Let us recall the
notations of Section 2.2 We have defined

λ̃(t) = ‖∇|u(t)|‖2

‖∇Q‖2
,

and the solution u was written (5)

|u(t, x)| = λ̃(t)(Q + R̃(t))(λ̃(t)(x − x(t))),

with R̃(t) a real function such that

‖R̃(t)‖
H1(R2) −→

t→T
0.

We shall prove in the following the decay (6) asserted in Proposition 2.2

‖R̃(t)‖
H1 ≤ C̃

λ̃(t)
≤ C

λ(t)
.
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The fact that u is of critical mass gives us

(14)
∫

R̃2 = −2
∫

Q R̃,

and the choice of λ̃ implies∫
|∇ R̃|2 = −2

∫
∇Q∇ R̃.

Let us calculate the energy of |u|,
2E(|u|)

λ̃2
=

∫
|∇Q + ∇ R̃|2 − 1

2

∫
(Q + R̃)4.

The energy of Q is zero, so

2E(|u|)
λ̃2

=
∫

|∇ R̃|2 + 2∇Q∇ R̃ − R̃4

2
− 2Q R̃3 − 3Q2 R̃2 − 2Q3 R̃.

The ground state Q verifies the equation

�Q + Q3 = Q,

and therefore, by using the relation (14) on R̃,∫
2∇Q∇ R̃ − 2Q3 R̃ = −2

∫
Q R̃ =

∫
R̃2.

So finally

〈L R̃, R̃〉 = 2E(|u|)
λ̃2

+ 1

2

∫
R̃4 +

∫
2Q R̃3,

where L is the operator

L = −� + (1 − 3Q2).

Since R̃ tends to 0 in H
1, by using the Sobolev embeddings, the cubic and

quadratic terms in R̃ are negligible with respect to the H
1 norm of R̃. Also,

the energy of |u| is bounded by the constant energy of u, so for having (6) it
is sufficient to prove the existence of a positive constant δ such that for t close
enough to T

δ‖R̃(t)‖2
H1 ≤ 〈L R̃(t), R̃(t)〉.

Remark 6.1. The initial complex function R can be analyzed in the same
manner, and one has

〈L−	R, 	R〉 + 〈L�R, �R〉 ≤ 2E(u)

λ2
+ 1

2

∫
|R|4 +

∫
2Q|R|3,

where L− is the operator

L− = −� + (1 − Q).

This operator is non-negative and its kernel is spanned by Q. So once the
decay (6) is obtained, by decomposing 	R with respect to Q, we also have

‖R(t)‖
H1 ≤ C

λ(t)
.

Following the ideas of Weinstein in [29], we shall look for the nature of
the negative eigenvalues of L .
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Lemma 6.2. The second eigenvalue of L is 0.

Proof. Let us consider the functional

J ( f ) = ‖u‖2
2‖∇u‖2

2

‖u‖4
4

,

which is minimized by Q (see the introduction). Then, for a test function f ,

∂2
ε J (Q + ε f )|ε=0 ≥ 0.

By explicitly calculating this second derivative and using (1) in the calculus,
one has

2‖Q‖2
2〈L f, f 〉 ≥ −8〈Q, f 〉〈∇Q, ∇ f 〉.

If we take f to be orthogonal to Q, then

〈L f, f 〉 ≥ 0,

and by the Min-Max Principle [24], the second eigenvalue of L is non-negative.
By noticing that the two partial derivatives of Q verify

L∂i Q = 0,

we obtain that 0 is an eigenvalue of L of order grater than one, so the first
eigenvalue is negative. Therefore the second eigenvalue of L is 0.

We shall use the following theorem.

Theorem 6.3 (Maris [16]). Let g ∈ C1([0, ∞)), with g(0) = 0, g′(0) > 0
and |g′(s) − g′(0)| ≤ C |s|α , for small s and some C, α > 0. Let a0 = sup{a >

0|g(s) > 0, ∀s ∈ (0, a)}, and let u0 be a ground state of the operator

−�u + g(u).

We define
I (u, λ) = λug′(u) − (λ + 2)g(u),

and we will make the following assumptions : a0 < u0(0) and there exists a con-
tinuous function λ : (a0, u0(0)]→(0, ∞) such that for any U ∈ (a0, u0(0)] we
have {

I (u, λ(U )) ≤ 0, ∀u ∈ [0, U ],

I (u, λ(U )) ≥ 0, ∀u ∈ [U, u0(0)].

Then
K er(−� + g′(u0)) = {∂1u0, ∂2u0}.

Next we show that the operator L satisfies the hypothesis of the theorem.
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Lemma 6.4. The kernel of L has dimension 2.

Proof. In we take function g to be

g(s) = s − s3,

then a0 = 1, the ground state u0 is Q,

−� + g′(u0) = L ,

and
I (u, λ) = 2u((1 − λ)u2 − 1).

Let us consider the integral of g,

G(s) = s2

2
− s4

4
.

By using the relation (1) between the L
2 and the L

4 norms of Q

∫
G(Q(x))dx = 0.

The positivity of G(s) on [0,
√

2[ implies the existence of points x such that
Q(x) >

√
2, and in particular Q(x) > 1. Let us recall that Q is a radial positive

decreasing function. It follows that Q(0) > 1, and the first assumption of the
Theorem 6.3 is satisfied. The second assumption is satisfied for the function

λ(U ) = 1 − 1

U 2
,

and we can conclude that

K er L = {∂1 Q, ∂2 Q}.

We return now to the study of R̃. We impose a choice of x(t) which will
yield an orthogonality property of R̃. Since

1

λ̃(t)
|u|

(
t,

x

λ̃(t)
+ x(t)

)
−→
t→T

Q(x),

we can choose x(t) such that the functional

I (z) =
∥∥∥∥ 1

λ̃(t)
|u|

(
t,

· + z

λ̃(t)
+ x(t)

)
− Q(·)

∥∥∥∥
2

H1
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reaches its minimum for z = 0. By using (5), this implies that the derivative
in z of

∂z‖(Q + R̃(t))(·) − Q(· − z)‖2
H1,

must be zero at z = 0. It follows that∫
R̃ ∂i Q +

∫
∇ R̃ ∂i∇Q = 0.

One can then integrate by parts and obtain

∫
R̃ ∂i Q −

∫
R̃ ∂i�Q = 0.

By recalling that the ground state Q verifies

�Q + Q3 = Q,

it follows that R̃ has the orthogonality property

(15) 〈∂i Q3, R̃〉 = 0.

Let us recall that for having the decay property (6) of R̃, it is sufficient
to prove that the operator L controls its H

1 norm.

Lemma 6.5. There exist a positive constant δ such that for t close enough to T ,

δ‖R̃(t)‖2
H1 ≤ 〈L R̃(t), R̃(t)〉.

Proof. We denote by R� the projection of R̃ on the space spanned by
Q, and by R⊥ the remainder term, orthogonal to Q. Since the operator L is
self-adjoint,

〈L R̃, R̃〉 = 〈L R�, R�〉 + 2〈L R�, R⊥〉 + 〈L R⊥, R⊥〉.

The first term reads

〈L R�, R�〉 = 〈L Q, Q〉 〈Q, R̃〉2

‖Q‖4
2

,

and by using (14)
〈L R�, R�〉 = C‖R̃‖4

2.

The second term is

〈L R�, R⊥〉 = 〈Q, R̃〉
‖Q‖2

2

< 〈L Q, R⊥〉,
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and since L Q = −2Q3, by using the Cauchy-Schwarz inequality,

〈L R⊥, R�〉 = −2
〈Q, R̃〉
‖Q‖2

2

〈Q3, R⊥〉 ≤ C‖R̃‖3
2.

Now we have to estimate the third term. Let us notice that the orthogonality
relation (15) yields

〈∂i Q3, R⊥〉 = 0.

We will show that

inf
f ∈⊥{Q,∂i Q3}

〈L f, f 〉
‖ f ‖2

2

= I > 0.

From the proof of Lemma 6.2 we have I ≥ 0. Consider now a sequence of
functions f j , normalized in L

2, which minimize I

〈L fj , f j 〉 −→
j→∞

I.

The gradients of f j are also bounded in L
2, so we can extract a subsequence

converging weakly in H
1 to a function f

f jn ⇀ f.

In particular,
〈 f 2

jn , Q2〉 −→
n→∞< f 2, Q2 >,

and it follows that f is a minimizer for I ,

L f = I f.

If I = 0, then f must be in the kernel of L . Lemma 6.4 ensures us that
the kernel contains only the derivatives of Q, and since f is orthogonal to
the derivatives of Q3, it follows that f = 0. This is in contradiction with the
positive L

2 norm of f , so I > 0.
Therefore, since R⊥ is orthogonal to Q and to the two derivatives of Q3,

〈L R⊥, R⊥〉 ≥ I‖R⊥‖2
2 = I (‖R̃‖2

2 − ‖R�‖2
2).

Arguing as for the first term,

‖R�‖2
2 ≤ C‖R̃‖4

2,

and we finally have

〈L R̃, R̃〉 ≥ I‖R̃‖2
2 − C‖R̃‖4

2 − C‖R̃‖3
2.
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Since R̃ tends to 0 in L
2 norm, there exist a positive constant C such that for

t close enough to T ,
〈L R̃, R̃〉 ≥ C‖R̃‖2

2.

For a positive number ε,

〈L R̃, R̃〉 = ε

(∫
|∇ R̃|2 +

∫
(1 − 3Q2)R̃2

)
+ (1 − ε)〈L R̃, R̃〉,

so, using the control of the L
2 norm by L and the boundeness of Q,

〈L R̃, R̃〉 ≥ ε

(∫
|∇ R̃|2 − CQ

∫
R̃2

)
+ (1 − ε)C‖R̃‖2

2.

By choosing ε small enough to have

(1 − ε)C − ε CQ > 0,

we get the existence of a positive constant δ such that

〈L R̃, R̃〉 ≥ δ‖R̃‖2
H1 .

Therefore the proof of Proposition 2.2 is complete.
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