A Hörmander-Type Spectral Multiplier Theorem for Operators Without Heat Kernel

SÖNKE BLUNCK

Abstract

Hörmander's famous Fourier multiplier theorem ensures the L_{p}-boundedness of $F\left(-\Delta_{\mathbb{R}} D\right)$ whenever $F \in \mathcal{H}(s)$ for some $s>\frac{D}{2}$, where we denote by $\mathcal{H}(s)$ the set of functions satisfying the Hörmander condition for s derivatives. Spectral multiplier theorems are extensions of this result to more general operators $A \geq 0$ and yield the L_{p}-boundedness of $F(A)$ provided $F \in \mathcal{H}(s)$ for some s sufficiently large. The harmonic oscillator $A=-\Delta_{\mathbb{R}}+x^{2}$ shows that in general $s>\frac{D}{2}$ is not sufficient even if A has a heat kernel satisfying Gaussian estimates. In this paper, we prove the L_{p}-boundedness of $F(A)$ whenever $F \in \mathcal{H}(s)$ for some $s>\frac{D+1}{2}$, provided A satisfies generalized Gaussian estimates. This assumption allows to treat even operators A without heat kernel (e.g. operators of higher order and operators with complex or unbounded coefficients) which was impossible for all known spectral multiplier results.

Mathematics Subject Classification (2000): 42B15 (primary), 42B20, 35G99, 35P99 (secondary).

0. - Introducion

In this paper, we present a new spectral multiplier result motivated by Hörmander's famous Fourier multiplier theorem. In terms of the functional calculus $F \mapsto F(-\Delta)$ of the Laplace operator Δ on \mathbb{R}^{D}, Hörmander's theorem says the following:
$F \in \mathcal{H}(s)$ for some $\quad s>\frac{D}{2} \Longrightarrow F(-\Delta) \in \mathfrak{L}\left(L_{p}\left(\mathbb{R}^{D}\right)\right) \quad$ for all $\quad p \in(1, \infty)$.
Here we denote by $\mathcal{H}(s)$ the set of functions satisfying the Hörmander condition for s derivatives:

$$
\mathcal{H}(s):=\left\{F: \mathbb{R}_{+} \rightarrow \mathbb{C} \text { bounded Borel funcion; } \sup _{t>0}\|\omega F(t \cdot)\|_{H^{s}\left(\mathbb{R}_{+}\right)}<\infty\right\}
$$

where $\omega \in \mathbb{C}_{c}^{\infty}\left(\mathbb{R}_{+}\right)$is a fixed 'partition of unity' function [i.e. $\sum_{l \in \mathbb{Z}} \omega\left(2^{l} t\right)=1$ for all $t \in \mathbb{R}_{+}$]. Christ [C] and Mauceri and Meda [MM] generalized this result to homogeneous Laplacians Δ on Lie groups G of some homogeneous dimension D, i.e. $|B(x, r)| \sim r^{D}$ for all $x \in G, r>0$. Indeed, they obtained independently

$$
F \in \mathcal{H}(s) \quad \text { for some } \quad s>\frac{D}{2} \Longrightarrow F(-\Delta) \in \mathfrak{L}\left(L_{p}(G)\right) \quad \text { for all } \quad p \in(1, \infty) .
$$

In order to treat more general elliptic operators and irregular domains, Duong, Ouhabaz and Sikora [DOS] extended this result to arbitrary non-negative selfadjoint operators A on (subsets of) metric measured spaces (Ω, μ, d) of some dimension D, i.e. $|B(x, \lambda r)| \leq C \lambda^{D}|B(x, r)|$ for all $x \in \Omega, r>0, \lambda \geq 1$. They showed
(H) $\quad F \in \mathcal{H}(s)$ for some $s>\frac{D}{2} \Longrightarrow F(A) \in \mathfrak{L}\left(L_{p}(\Omega)\right)$ for all $p \in(1, \infty)$,
provided A satisfies the so-called Plancherel estimate
(P) $\left\|F(t A)\left|B\left(\cdot, r_{t}\right)\right|^{1 / 2}\right\|_{1 \rightarrow 2} \leq C\|F\|_{L_{2}([0,1])}$ for all $F \in L_{\infty}([0,1]), t>0$
and A satisfies Gaussian estimates, i.e. the $e^{-t A}$ have integral kernels $k_{t}(x, y)$ for which one has a pointwise upper bound of the following type:
(GE) $\quad\left|k_{t}(x, y)\right| \leq\left|B\left(x, r_{t}\right)\right|^{-1} g\left(\frac{d(x, y)}{r_{t}}\right) \quad$ for all $\quad x, y \in \Omega, t>0$.
Here the r_{t} are suitable positive radii and $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a suitable decay function. Note that (GE) without any additional assumption like (P) does not imply (H) since the harmonic oscillator $A=-\Delta+x^{2}$ on $\Omega=\mathbb{R}$ satisfies (GE) and has the following property [T]:
$F \in \mathcal{H}(s) \quad$ for some $\quad s \leq \frac{D}{2}+\frac{1}{6}-\varepsilon \nRightarrow F(A) \in \mathfrak{L}\left(L_{p}(\mathbb{R})\right) \quad$ for all $\quad p \in(1, \infty)$.
Furthermore, note that an elliptic operator A of order m on \mathbb{R}^{D} with bounded measurable coefficients satisfies (GE) if $m \geq D$ [AT], [D1] or $m=2$ and the coefficients are real [A]. On the other hand, in general A does not satisfy (GE) if $m<D$ [D3], [ACT] or the coefficients are unbounded [LSV]. But in many of these cases A still satisfies so-called generalized Gaussian estimates [D1], [ScV]. By this we mean an estimate of the following type:
(GGE)

$$
\begin{gathered}
\left\|\chi_{B\left(x, r_{t}\right)} e^{-t A} \chi_{B\left(y, r_{t}\right)}\right\|_{p_{o} \rightarrow p_{o}^{\prime}} \leq\left|B\left(x, r_{t}\right)\right|^{\frac{1}{p_{o}^{\prime}}-\frac{1}{p_{o}}} g\left(\frac{d(x, y)}{r_{t}}\right) \\
\text { for all } \quad x, y \in \Omega, t>0
\end{gathered}
$$

and for some $p_{o} \in[1,2)$. Notice that (GGE) for $p_{o}=1$ is equivalent to (GE) [BK1]. The main result of the present paper is that (GGE) without any additional assumption implies the following adaptation of (H) :
(î) $\quad F \in \mathcal{H}(s)$ for some $s>\frac{D+1}{2} \Longrightarrow F(A) \in \mathfrak{L}\left(L_{p}(\Omega)\right)$ for all $p \in\left(p_{o}, p_{o}^{\prime}\right)$.
We want to mention that, for the class of operators A satisfying (GGE), the interval $\left[p_{o}, p_{o}^{\prime}\right]$ is optimal for the existence of the semigroup $\left(e^{-t A}\right)_{t \in \mathbb{R}_{+}}$on L_{p} [D3]; this shows the optimality of our spectral multiplier theorem $(\tilde{\mathrm{H}})$.

Our main tool for the proof of $(\tilde{\mathrm{H}})$ is the singular integral theory developped in [BK2] which generalizes the classical singular integral theory based on Hörmander's well-known weak type $(1,1)$ condition for integral operators (in a weakened version due to Duong and McIntosh [DM]). This new singular integral theory based on (GGE) allows to extend other L_{2}-properties of A (than the boundedness of $F(A)$ for $F \in \mathcal{H}(s)$ is considered in this paper) to L_{p} for $p \in\left(p_{o}, p_{o}^{\prime}\right)$. We mention the properties of having maximal regularity [BK1], an H^{∞} functional calculus [BK2] or Riesz transforms [BK3], [HM].

Acknowledgements. I would like to thank El Maati Ouhabaz for several conversations on the subject of this paper.

1. - Main result

We begin with some basic notation and assumptions. For the rest of this paper, (Ω, μ, d) is a metric measure space of dimension D, i.e.

$$
|B(x, \lambda r)| \leq C \lambda^{D}|B(x, r)| \quad \text { for all } \quad x \in \Omega, r>0, \lambda \geq 1
$$

Here we denote by $B(x, r)$ the ball of center x and radius r, and by $|B(x, r)|$ or $v_{r}(x)$ its volume; by $L_{p}^{\omega}(\Omega)$ we denote the weak $L_{p}(\Omega)$-spaces. Furthermore, we fix once and for all real numbers $p_{o} \in[1,2), m \in[2, \infty)$ and the following notation:

$$
r_{t}:=t^{1 / m} \quad \text { and } \quad g(t):=C e^{-b t \frac{m}{m-1}} \quad \text { for all } \quad t \in \mathbb{R}_{+} .
$$

Here C and b are positive constants whose values are of no interest and might change from one appearance of the function g to the next without mentioning it. We denote by $\mathcal{H}(s)$ the set of functions satisfying the Hörmander condition for s derivatives:

$$
\mathcal{H}(s):=\left\{F: \mathbb{R}_{+} \rightarrow \mathbb{C} \text { bounded Borel function; } \sup _{t>0}\|\omega F(t \cdot)\|_{H^{s}\left(\mathbb{R}_{+}\right)}<\infty\right\}
$$

where $\omega \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$is a fixed 'partition of unity' function [i.e. $\sum_{l \in \mathbb{Z}} \omega\left(2^{l} t\right)=1$ for all $t \in \mathbb{R}_{+}$]. Now we can present the main result of this paper.

Theorem 1.1. Let (Ω, μ, d) be a space of dimension D and A a non-negative self-adjoint operator on $L_{2}(\Omega)$ such that (GGE) holds. Then, for all $s>\frac{D+1}{2}$, there exists $C>0$ such that

$$
\|F(A)\|_{\mathfrak{L}\left(L_{p_{o}}(\Omega), L_{p_{o}}^{\omega}(\Omega)\right)} \leq C\left(\|F\|_{L_{\infty}\left(\mathbb{R}_{+}\right)}+\sup _{t>0}\|\omega F(t \cdot)\|_{H^{s}\left(\mathbb{R}_{+}\right)}\right)
$$

for all $F \in \mathcal{H}(s)$. In particular, the following implication holds:
$F \in \mathcal{H}(s)$ for some $\quad s>\frac{D+1}{2} \Longrightarrow F(A) \in \mathfrak{L}\left(L_{p}(\Omega)\right) \quad$ for all $\quad p \in\left(p_{o}, p_{o}^{\prime}\right)$.
Remark.
(a) An important example are the Riesz means $R_{\alpha}(A)$, where $R_{\alpha}(x):=(1-x)_{+}^{\alpha}$. Observe that $R_{\alpha} \in \mathcal{H}(s)$ if and only if $s<\alpha+\frac{1}{2}$. Hence, in the situation of Theorem 1.1 one has

$$
\left\|R_{\alpha}(t A)\right\|_{p \rightarrow p} \leq C_{p, \alpha} \quad \text { for all } \quad t>0, p \in\left(p_{o}, p_{o}^{\prime}\right), \alpha>\frac{D}{2}
$$

(b) Another important example are the imaginary powers $A^{i \tau}, \tau \in \mathbb{R}$. If we denote $P_{\tau}(x):=x^{i \tau}$ then $\left\|\omega P_{\tau}(t \cdot)\right\|_{H^{s}\left(\mathbb{R}_{+}\right)} \leq C_{s}(1+|\tau|)^{s}$ for all $\tau \in \mathbb{R}$, $s, t>0$. Hence, in the situation of Theorem 1.1 one has

$$
\left\|A^{i \tau}\right\|_{p \rightarrow p} \leq C_{p, s}(1+|\tau|)^{s} \quad \text { for all } \quad \tau \in \mathbb{R}, p \in\left(p_{o}, p_{o}^{\prime}\right), s>\frac{D+1}{2}
$$

(c) Theorem 1.1 is optimal with respect to p since, for the class of operators A satisfying (GGE), the interval $\left[p_{o}, p_{o}^{\prime}\right]$ is optimal for the existence for the semigroup $\left(e^{-t A}\right)_{t \in \mathbb{R}_{+}}$on L_{p} [D3].
(d) Concerning optimality with respect to s (the number of derivatives), we mention that our condition $s>\frac{D+1}{2}$ cannot be replaced by $s>\frac{D}{2}+\alpha$ with $\alpha<\frac{1}{6}$. Indeed, the Riesz means $R_{\alpha}(A)$ of the harmonic oscillator $A=-\Delta+x^{2}$ on \mathbb{R} do not satisfy $R_{\alpha}(A) \in \mathfrak{L}\left(L_{p}(\mathbb{R})\right)$ for all $p \in(1, \infty)$ unless $\alpha \geq \frac{1}{6}$ [T, Theorem 2.1]. On the other hand, A satisfies (GGE) for $p_{o}=1$, and $R_{\alpha} \in \mathcal{H}(s)$ for all $s<\alpha+\frac{1}{2}$.
Under the additional assumptions (P) from above and $p_{o}=1$, our condition $s>\frac{D+1}{2}$ can be replaced by $s>\frac{D}{2}$ [DOS, Theorem 3.1].
(e) By standard methods [DM], [BK2], Theorem 1.1 can be extended to the case where Ω is only a subset of a space of dimension D. This allows to treat elliptic operators A on irregular domains $\Omega \subset \mathbb{R}^{D}$; see Section 2.1 below.

2. - Examples

In this section, we give some examples of elliptic operators A for which Theorem 1.1 applies, i.e. for which (GGE) holds.

2.1. - Higher order operators with bounded coefficients and Dirichlet boundary conditions on irregular domains

These operators A are given by forms $\mathfrak{a}: V \times V \rightarrow \mathbb{C}$ of the type

$$
\mathfrak{a}(u, v)=\int_{\Omega} \sum_{|\alpha|=|\beta|=k} a_{\alpha \beta} \partial^{\alpha} u \overline{\partial^{\beta} v} d x
$$

where $V:=\stackrel{\circ}{H}^{k}(\Omega)$ for some arbitrary (irregular) domain $\Omega \subset \mathbb{R}^{D}$. We assume $a_{\alpha \beta}=\overline{a_{\beta \alpha}} \in L_{\infty}\left(\mathbb{R}^{D}\right)$ for all α, β and Garding's inequality

$$
\mathfrak{a}(u, u) \geq \delta\left\|\nabla^{k} u\right\|_{2}^{2} \quad \text { for all } \quad u \in V
$$

for some $\delta>0$ and $\left\|\nabla^{k} u\right\|_{2}^{2}:=\sum_{|\alpha|=k}\left\|\partial^{\alpha} u\right\|_{2}^{2}$. Then \mathfrak{a} is a closed symmetric form, and the associated operator A on $L_{2}(\Omega)$ is given by $u \in D(A)$ and $A u=g$ if and only if $u \in V$ and $\langle g, v\rangle=\mathfrak{a}(u, v)$ for all $v \in V$.

In this situation, we have for $p_{o}:=\frac{2 D}{m+D} \vee 1$ and $m:=2 k$ [D1], [AT, Section 1.7]:
$\left\|\chi_{B\left(x, r_{t}\right)} e^{-t A} \chi_{B\left(y, r_{t}\right)}\right\|_{p_{o} \rightarrow p_{o}^{\prime}} \leq r_{t}{ }^{D\left(\frac{1}{p_{o}^{\prime}}-\frac{1}{p_{o}}\right)} g\left(\frac{d(x, y)}{r_{t}}\right) \quad$ for all $x, y \in \Omega, t>0$.
Hence, by Remark (e) above, the conclusion of Theorem 1.1 holds:

$$
F \in \mathcal{H}(s) \text { for some } s>\frac{D+1}{2} \Longrightarrow F(A) \in \mathfrak{L}\left(L_{p}(\Omega)\right) \text { for all } p \in\left(p_{o}, p_{o}^{\prime}\right)
$$

2.2. - Schrödinger operators with singular potentials on \mathbb{R}^{D}

Now we study Schrödinger operators $A=-\Delta+V$ on $\mathbb{R}^{D}, D \geq 3$, where $V=V_{+}-V_{-}, V_{ \pm} \geq 0$ are locally integrable, and V_{+}is bounded for simplicity (for the general case, see e.g. [ScV]). We assume the following form bound:

$$
\left\langle V_{-} u, u\right\rangle \leq \gamma\left(\|\nabla u\|_{2}^{2}+\left\langle V_{+} u, u\right\rangle\right)+c(\gamma)\|u\|_{2}^{2} \quad \text { for all } \quad u \in H^{1}\left(\mathbb{R}^{D}\right)
$$

and some $\gamma \in(0,1)$. Then the form sum $A:=-\Delta+V=\left(-\Delta+V_{+}\right)-$ V_{-}is defined and the associated form is closed and symmetric with form domain $H^{1}\left(\mathbb{R}^{D}\right)$. By standard arguments using ellipticity and Sobolev inequality, (GGE) holds for $p_{o}=\frac{2 D}{D+2}$ and $m=2$ [after replacing A by $A+c(\gamma)$]. Due to [LSV], $\left(e^{-t A}\right)_{t \in \mathbb{R}_{+}}$is bounded on $L_{q}\left(\mathbb{R}^{D}\right)$ for all $q \in\left(p_{\gamma}, p_{\gamma}^{\prime}\right)$ and
$p_{\gamma}:=\frac{2 D}{D(1+\sqrt{1-\gamma})+2(1-\sqrt{1-\gamma})}<\frac{2 D}{D+2}$. Hence, by interpolation, one obtains (GGE) even for all $p_{o} \in\left(p_{\gamma}, 2\right)$. Thus, Theorem 1.1 yelds
$F \in \mathcal{H}(s)$ for some $s>\frac{D+1}{2} \Longrightarrow F(A) \in \mathfrak{L}\left(L_{p}\left(\mathbb{R}^{D}\right)\right)$ for all $p \in\left(p_{\gamma}, p_{\gamma}^{\prime}\right)$.

2.3. - Elliptic operators on Riemannian manifolds

Let $A=-\Delta$ be the Laplacian on a Riemannian manifold Ω. Let d be the geodesic distance and u the Riemannian measure. Assume that Ω satisfies the so-called volume doubling property and that the heat kernel $k_{t}(x, y)$ satisfies

$$
k_{t}(x, x) \leq C|B(x, \sqrt{t})|^{-1} \quad \text { for all } \quad x \in \Omega, t>0
$$

Then $\left(e^{t \Delta}\right)_{t \in \mathbb{R}_{+}}$satisfies (GE) [G] or, equivalently, (GGE) for $p_{o}=1$ and $m=2$. On Riemannian manifolds satisfying a local higher order Sobolev inequality, (GGE) holds even for suitable higher order elliptic operators A [BC].

3. - Proof of the main result

The main tool for the proof of Theorem 1.1 is the following result [BK2, Theorem 1.1] which generalizes Hörmander's well-known weak type (1,1) condition for integral operators (in a weakened version due Duong and McIntosh [DM]) and provides a weak type (p_{o}, p_{o}) condition for arbitrary operators.

Theorem 3.1. Let (Ω, d, μ) be a space of homogeneous type and A a nonnegative selfadjoint operator on $L_{2}(\Omega)$ such that (GGE) holds. Let $T \in \mathfrak{L}\left(L_{2}(\Omega)\right)$ satisfy

$$
\begin{equation*}
N_{p_{o}^{\prime}, r_{t} / 2}\left(\left(T D^{n} e^{-t A}\right)^{*} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y) \leq C\left(M_{2} f\right)(x) \tag{1}
\end{equation*}
$$

for all $t>0, f \in L_{p_{0}^{\prime}}(\Omega), x \in \Omega, y \in B\left(x, r_{t} / 2\right)$ and some $n \in \mathbb{N}$. Then we have $T \in \mathfrak{L}\left(L_{p_{o}}(\Omega), L_{p_{o}}^{\omega}(\Omega)\right)$.

Here we used the following notation:

$$
\begin{gathered}
M_{p} f(x):=\sup _{r>0} N_{p, r} f(x) \quad \text { [p-maximal operator] } \\
N_{p, r} f(x):=|B(x, r)|^{-1 / p}\|f\|_{L_{p}(B(x, r))}, D^{n} f(t):=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k t) .
\end{gathered}
$$

Hence $I-D^{n} e^{-t A}$ can be seen as an approximation of the identity of order n since we formally have $\frac{D^{n} f(t)}{t^{n}} \rightarrow(-1)^{n} f^{(n)}(0)$ for $t \rightarrow 0$.

Another central tool for the prof of Theorem 1.1 is the following result on the extension of generalized Gaussian estimates for real times $t \in \mathbb{R}_{+}$to complex times $z \in \mathbb{C}_{+}$; its proof is given in [B, Theorem 2.1].

Theorem 3.2. Let (Ω, μ, d) be a space of dimension D and $1 \leq p \leq 2 \leq q \leq$ ∞. Let A be a non-negative selfadjoint operator on $L_{2}(\Omega)$ such that

$$
\left\|\chi_{B\left(x, r_{t}\right)} e^{-t A} \chi_{B\left(y, r_{t}\right)}\right\|_{p \rightarrow q} \leq\left|B\left(x, r_{t}\right)\right|^{\frac{1}{q}-\frac{1}{p}} g\left(\frac{d(x, y)}{r_{t}}\right)
$$

for all $t \in \mathbb{R}_{+}, x, y \in \Omega$. Then we have

$$
\left\|\chi_{B\left(x, r_{z}\right)} e^{-z A} \chi_{B\left(y, r_{z}\right)}\right\|_{p \rightarrow q} \leq\left|B\left(x, r_{z}\right)\right|^{\frac{1}{q}-\frac{1}{p}} g\left(\frac{|z|}{\operatorname{Rez}}\right)^{D\left(\frac{1}{p}-\frac{1}{q}\right)} g\left(\frac{d(x, y)}{r_{z}}\right)
$$

for all $z \in \mathbb{C}_{+}, x, y \in \Omega$ and $r_{z}:=(\text { Rez })^{\frac{1}{m}-1}|z|$.
Some rather technical features of generalized Gaussian estimates are summarized in the following lemma; see [BK4, Proposition 2.1] and [BK2, Lemma 3.3(a)] for the proofs. We will denote by $A(x, r, k)$ the annular region $A(x, r, k):=B(x,(k+1) r) \backslash B(x, r)$.

Lemma 3.3. Let (Ω, μ, d) be a space of dimension D and $1 \leq p \leq q \leq \infty$. Let R be a linear operator and $r>0$.
(i) The following are equivalent:
(a) We have for all $x, y \in \Omega$:

$$
\left\|\chi_{B(x, r)} R \chi_{B(y, r)}\right\|_{p \rightarrow q} \leq v_{r}(x)^{\frac{1}{q}-\frac{1}{p}} g\left(\frac{d(x, y)}{r}\right)
$$

(b) We have for all $x, y \in \Omega$ and $u \in[p, q]$:

$$
\left\|\chi_{B(x, r)} R \chi_{B(y, r)}\right\|_{u \rightarrow q} \leq v_{r}(x)^{\frac{1}{q}-\frac{1}{u}} g\left(\frac{d(x, y)}{r}\right)
$$

(c) We have for all $x \in \Omega$ and $k \in \mathbb{N}$:

$$
\left\|\chi_{B(x, r)} R \chi_{A(x, r, k)}\right\|_{p \rightarrow q} \leq v_{r}(x)^{\frac{1}{q}-\frac{1}{p}} g(k) .
$$

(ii) If (a) holds then we have for all $s>0, f \in L_{q}(\Omega), x \in \Omega, y \in B(x, s)$:

$$
N_{q, s}\left(R P_{B(y, 5 s)^{c}} f\right)(y) \leq g\left(r^{-1} s\right)\left(1+s^{-1} r\right)^{D / q} M_{p} f(x)
$$

In order to prove the assertion $F(A) \in \mathfrak{L}\left(L_{p_{o}}(\Omega), L_{p_{o}}^{\omega}(\Omega)\right)$ of Theorem 1.1 by means of our weak type $\left(p_{o}, p_{o}\right)$ criterion Theorem 3.1 , we have to check line (1) for $T=F(A)$. The main step is the following.

Proposition 3.4. Let (Ω, d, μ) be a space of dimension D and A a non-negative selfadjoint operator on $L_{2}(\Omega)$ such that (GGE) holds. Then, for all $s>\frac{D+1}{2}$, there exist $\varepsilon_{1}, \varepsilon_{2}, C>0$ such that we have for all $F \in L_{\infty}\left(\mathbb{R}_{+}\right)$and $\sigma>0$:
$N_{p_{o}^{\prime}, r_{t} / 2}\left(F(\sigma A)^{*} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y) \leq C\left(\left(\frac{t}{\sigma}\right)^{-\varepsilon_{1}} \vee\left(\frac{t}{\sigma}\right)^{-\varepsilon_{2}}\right)\|F \cdot \exp \|_{H^{s}\left(\mathbb{R}_{+}\right)}\left(M_{2} f\right)(x)$ for all $t>0, f \in L_{p_{o}^{\prime}}(\Omega), x \in \Omega, y \in B\left(x, r_{t} / 2\right)$.

Proof. By Lemma 3.3(i), the $L_{p_{o}} \rightarrow L_{p_{o}^{\prime}}$ estimate (GGE) in the hypothesis implies the following $L_{2} \rightarrow L_{p_{o}^{\prime}}$ estimate:

$$
\left\|\chi_{B\left(x, r_{t}\right)} e^{-t A} \chi_{B\left(y, r_{t}\right)}\right\|_{2 \rightarrow p_{o}^{\prime}} \leq\left|B\left(x, r_{t}\right)\right|^{\frac{1}{p_{o}^{\prime}}-\frac{1}{2}} g\left(\frac{d(x, y)}{r_{t}}\right) .
$$

By Theorem 3.2, the latter extends to complex times $z \in \mathbb{C}_{+}$as follows, denoting $r_{z}=(R e z)^{\frac{1}{m}-1}|z|$ and $\alpha=D\left(\frac{1}{2}-\frac{1}{p_{o}^{\prime}}\right)$:

$$
\left\|\chi_{B\left(x, r_{z}\right)} e^{-z A} \chi_{B\left(y, r_{z}\right)}\right\|_{2 \rightarrow p_{o}^{\prime}} \leq\left|B\left(x, r_{z}\right)\right|^{\frac{1}{p_{o}^{\prime}}-\frac{1}{2}}\left(\frac{|z|}{R e z}\right)^{\alpha} g\left(\frac{d(x, y)}{r_{z}}\right) .
$$

This implies by Lemma 3.3(ii) for $R=\left(\frac{|z|}{R e z}\right)^{-\alpha} e^{-z A}$:

$$
N_{p_{o}^{\prime}, r_{t} / 2}\left(e^{-z A} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y) \leq\left(\frac{|z|}{R e z}\right)^{\alpha}\left(1+\frac{r_{z}}{r_{t}}\right)^{D / p_{o}^{\prime}} g\left(\frac{r_{t}}{r_{z}}\right)\left(M_{2} f\right)(x)
$$

for all $t>0, f \in L_{p_{o}^{\prime}}(\Omega), x \in \Omega, y \in B\left(x, r_{t} / 2\right)$. The latter for $z=(1+i \tau) \sigma$ allows to estimate $N_{p_{o}^{\prime}, r_{t} / 2}\left(F(\sigma A)^{*} \chi_{\left.B\left(y, 4 r_{t}\right)^{c} f\right)(y) \text { by using the Fourier inversion }}\right.$ formula for $G:=F \cdot \exp$ (this approach is taken from [DOS, Lemma 4.3]):

$$
F(\sigma A)^{*}=\int_{\mathbb{R}} e^{-(1+i \tau) \sigma A} \overline{\widehat{G}(\tau)} d \tau
$$

Indeed, since $r_{(1+i \tau) \sigma}=\sqrt{1+\tau^{2}} \sigma^{1 / m}$, we can estimate as follows:

$$
\begin{aligned}
& N_{p_{o}^{\prime}, r_{t} / 2}\left(F(\sigma A)^{*} \chi_{\left.B\left(y, 4 r_{t}\right)^{c} f\right)(y)}\right. \\
& \quad \leq \int_{\mathbb{R}} N_{p_{o}^{\prime}, r_{t} / 2}\left(e^{-(1+i \tau) \sigma A} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y)|\widehat{G}(\tau)| d \tau \\
& \quad \leq \int_{\mathbb{R}}{\sqrt{1+\tau^{2}}}^{\alpha}\left(1+\sqrt{1+\tau^{2}} \frac{\sigma^{1 / m}}{t^{1 / m}}\right)^{D / p_{o}^{\prime}} g\left(\sqrt{1+\tau^{2}}-\frac{1}{\sigma^{1 / m}}\right)|\widehat{G}(\tau)| d \tau M_{2} f(x) \\
& \quad \leq\left(1+\frac{\sigma}{t}\right)^{D / p_{o}^{\prime m}} \int_{\mathbb{R}}{\sqrt{1+\tau^{2}}}^{D / 2} g\left({\sqrt{1+\tau^{2}}-1}_{\left.-\frac{t^{1 / m}}{\sigma^{1 / m}}\right)|\widehat{G}(\tau)| d \tau M_{2} f(x)} \quad \leq\left(1+\frac{\sigma}{t}\right)^{D / p_{o}^{\prime} m}\left(\int_{\mathbb{R}}\left(1+\tau^{2}\right)^{\frac{D}{2}-s} g\left({\sqrt{1+\tau^{2}}}^{-1} \frac{t^{1 / m}}{\sigma^{1 / m}}\right)^{2} d \tau\right)^{1 / 2}\|G\|_{H^{s}} M_{2} f(x) .\right.
\end{aligned}
$$

Hence the assertion is proved once we show for $\beta:=s-\frac{D}{2}>\frac{1}{2}$:

$$
\int_{0}^{\infty}\left(1+\tau^{2}\right)^{-\beta} g\left({\sqrt{1+\tau^{2}}}^{-1} a\right) d \tau \leq C a^{1-2 \beta} \quad \text { for all } \quad a \geq 2
$$

First, the change of variables $u={\sqrt{1+\tau^{2}}}^{-1}$ yields

$$
\int_{0}^{\infty}\left(1+\tau^{2}\right)^{-\beta} g\left({\sqrt{1+\tau^{2}}}^{-1} a\right) d \tau=a^{2(1-\beta)} \int_{a^{-1}}^{\infty} g\left(u^{-1}\right) u^{1-2 \beta}\left(a^{2} u^{2}-1\right)^{-1 / 2} d u
$$

Since $\left(a^{2} u^{2}-1\right)^{1 / 2} \geq \frac{\sqrt{3}}{2} a u$ for all $u \in\left[2 a^{-1}, \infty\right)$, we have

$$
\int_{2 a^{-1}}^{\infty} g\left(u^{-1}\right) u^{1-2 \beta}\left(a^{2} u^{2}-1\right)^{-1 / 2} d u \leq \frac{2}{\sqrt{3}} a^{-1} \int_{0}^{\infty} g\left(u^{-1}\right) u^{-2 \beta} d u=C a^{-1}
$$

On the other hand, the remaining part of the integral can be estimated by

$$
\begin{aligned}
\int_{a^{-1}}^{2 a^{-1}} g\left(u^{-1}\right) u^{1-2 \beta}\left(a^{2} u^{2}-1\right)^{-1 / 2} d u & \leq g(a / 2) a^{2 \beta-1} \int_{a^{-1}}^{2 a^{-1}}(a u-1)^{-1 / 2} d u \\
& =g(a / 2) a^{2(\beta-1)} \int_{0}^{1} v^{-1 / 2} d v
\end{aligned}
$$

The last preparatory step for the proof of Theorem 1.1 is the following lemma.

Lemma 3.5. Let $n \in \mathbb{N}, \varepsilon>0$ and $E(u):=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} e^{-k u}, u \in \mathbb{R}_{+}$. Then

$$
\|E(\sigma \cdot)\|_{C^{n}\left(\left[\varepsilon, \varepsilon^{-1}\right]\right)} \leq C\left(1 \wedge \sigma^{n}\right) \quad \text { for all } \quad \sigma>0
$$

Proof. Fix $m \in\{0, \ldots, n\}$. First we treat the case of small σ. Since $\frac{E^{(m)}(t)}{t^{n-m}} \rightarrow \frac{n!}{(n-m)!}$ for $t \rightarrow 0$, we have $\left|E^{(m)}(t)\right| \leq C_{0} t^{n-m}$ for all $t \in[0,1]$. This implies for all $\sigma \in[0, \varepsilon]$ and $u \in\left[0, \varepsilon^{-1}\right]$:

$$
\left|E(\sigma \cdot)^{(m)}(u)\right|=\sigma^{m}\left|E^{(m)}(\sigma u)\right| \leq \sigma^{m} C_{0}(\sigma u)^{n-m} \leq C_{0} \varepsilon^{n-m} \sigma^{n}
$$

Now we treat the case of large σ. Since $E^{(m)}(t)=\sum_{k=0}^{n} c_{k, m, n} e^{-k t}$ with $c_{0, m, n}=0$ for $m>0$, we deduce for all $\sigma, u \in[\varepsilon, \infty)$:

$$
\left|E(\sigma \cdot)^{(m)}(u)\right|=\sigma^{m}\left|E^{(m)}(\sigma u)\right| \leq \sigma^{m} \sum_{k=0}^{n}\left|c_{k, m, n}\right| e^{-k \sigma \varepsilon} \leq C_{1}
$$

Finally, we come to the proof of Theorem 1.1. We use the symbol \preceq to indicate domination up to constants independent of the relevant parameters.

Proof of Theorem 1.1. We want to apply our weak type (p_{o}, p_{o}) criterion Theorem 3.1 for $T=F(A)$. Hence we have to show

$$
\begin{equation*}
N_{p_{o}^{\prime}, r_{t} / 2}\left(\left(F(A) D^{n} e^{-t A}\right)^{*} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y) \preceq \sup _{h>0}\left\|\omega F_{h}\right\|_{H^{s}}\left(M_{2} f\right)(x) \tag{2}
\end{equation*}
$$

for all $t>0, f \in L_{p_{o}^{\prime}}(\Omega), x \in \Omega, y \in B\left(x, r_{t} / 2\right)$ and some $n \in \mathbb{N}$. Choose $\varepsilon_{1} \geq \varepsilon_{2}>0$ as in Proposition 3.4 and $n \in \mathbb{N}$ such that $n>\varepsilon_{1} \vee s$. Denote $\delta:=\left(n-\varepsilon_{1}\right) \wedge \varepsilon_{2}>0$ and $\varphi(u):=u^{-\varepsilon_{1}} \vee u^{-\varepsilon_{2}}, E(u):=\sum_{k=o}^{n}\binom{n}{k}(-1)^{k} e^{-k u}$ for all $u \in \mathbb{R}_{+}$. Furthermore, for $\sigma>0$ we denote the dilations $F_{\sigma}:=F(\sigma \cdot)$, $\omega_{\sigma}:=\omega(\sigma \cdot)$ and $E_{\sigma}:=E(\sigma \cdot)$. Observe that $E_{\sigma}(A)=D^{n} e^{-\sigma A}$ and by Lemma 3.5

$$
\begin{equation*}
\varphi(\sigma)\left\|E_{\sigma}\right\|_{C^{n}(\operatorname{supp} \omega)} \preceq \varphi(\sigma)\left(1 \wedge \sigma^{n}\right) \leq \sigma^{-\delta} \wedge \sigma^{\delta} \quad \text { for all } \quad \sigma>0 \tag{3}
\end{equation*}
$$

Now (2) follows from Proposition 3.4, applied for $\omega F_{2^{-l}} E_{t 2^{-l}}$ instead of F and $\sigma=2^{l}$, and then summation over $l \in \mathbb{Z}$:

$$
\begin{array}{rlr}
N_{p_{o}^{\prime}, r_{t} / 2}\left(\left(F(A) D^{n} e^{-t A}\right)^{*} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y) & \\
& =N_{p_{o}^{\prime}, r_{t} / 2}\left(\sum_{l \in \mathbb{Z}}\left(\left(w_{2^{l}} F\right)(A) D^{n} e^{-t A}\right)^{*} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y) & {\left[\sum \omega_{2^{l}}=1\right]} \\
& \leq \sum_{l \in \mathbb{Z}} N_{p_{o}^{\prime}, r_{t} / 2}\left(\left(w F_{2^{-l}} E_{\left.\left.t 2^{-l}\right)\left(2^{l} A\right)^{*} \chi_{B\left(y, 4 r_{t}\right)^{c}} f\right)(y)}\right.\right. & {\left[E_{\sigma}(A)=D^{n} e^{-\sigma A}\right]} \\
& \leq \sum_{l \in \mathbb{Z}} \varphi\left(t 2^{-l}\right)\left\|w F_{2^{-l}} E_{t 2^{-l}} \cdot \exp \right\|_{H^{s}} M_{2} f(x) & \\
& \leq \sup _{h>0}\left\|\omega F_{h}\right\|_{H^{s}} M_{2} f(x) \sum_{l \in \mathbb{Z}} \varphi\left(t 2^{-l}\right)\left\|E_{t 2^{-l}} \cdot \exp \right\|_{C^{n}(\operatorname{supp} \omega)} & {[n \geq s]} \\
& \leq \sup _{h>0}\left\|\omega F_{h}\right\|_{H^{s}} M_{2} f(x) \sum_{l \in \mathbb{Z}}\left(t 2^{-l}\right)^{-\delta} \wedge\left(t 2^{-l}\right)^{\delta} & \\
\leq \sup _{h>0}\left\|\omega F_{h}\right\|_{H^{s}} M_{2} f(x) & &
\end{array}
$$

REFERENCES

[A] D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. AMS 73 (1967), 890-896.
[ACT] P. Auscher - T. Coulhon - P. Tchamitchian, Absence de principe du maximum pour certaines équations paraboliques complexes, Colloq. Math. 71 (1996), 87-95.
[AT] P. Auscher - P. Tchamitchian, Square root problem for divergence operators and related topics, Soc. Math. de France, Astérisque 249 (1998).
[B] S. Blunck, Generalized Gaussian estimates and Riesz means of Schrödinger groups, submitted.
[BK1] S. Blunck - P. C. Kunstmann, Weighted norm estimates and maximal regularity, Adv. in Differential Eq. 7 (2002), 1513-1532.
[BK2] S. Blunck - P. C. Kunstmann, Calderon-Zygmund theory for non-integral operators and the H^{∞} functional calculus, to appear in Rev. Mat. Iberoam.
[BK3] S. Blunck - P. C. Kunstmann, Weak type (p, p) estimates for Riesz transforms, to appear in Math. Z.
[BK4] S. Blunck - P. C. Kunstmann, Generalized Gaussian estimates and the Legendre transform, submitted.
[BC] S. Blunck - T. Coulhon, A note on local higher order Sobolev inequalities on Riemannian manifolds, in preparation.
[C] M. Christ, L^{p} bounds for spectral multipliers on nilpotent groups, Trans. AMS 328 (1991), 73-81.
[D1] E. B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), 141-169.
[D3] E. B. Davies, Limits on L^{p}-regularity of self-adjoint elliptic operators, J. Differential Eq. 135 (1997), 83-102.
[DM] X. T. Duong - A. McIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoam (2) 15 (1999), 233-265.
[DOS] X. T. Duong - A. Sikora - E. M. Ouhabaz, Plancherel type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), 443-485.
[G] A. Grigor'yan, Gaussian upper bounds for the heat kernel on an arbitrary manifolds, J. Differential Geom. 45 (1997), 33-52.
[HM] S. Hofmann - J. M. Martell, L^{p} bounds for Riesz transforms and square roots associated to second order elliptic operators, preprint, 2002.
[LSV] V. Liskevich - Z. Sobol - H. Vogt, On L_{p}-theory of C_{0}-semigroups associated with second order elliptic operators II, J. Funct. Anal. 193 (2002), 55-76.
[MM] G. Mauceri - S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoam 6 (1990), 141-164.
[ScV] G. Schreieck - J. Voigt, Stability of the L_{p}-spectrum of generalized Schrödinger operators with form small negative part of the potential, In: "Functional Analysis", Biersted - Pietsch - Ruess - Vogt (eds.), Proc. Essen 1991, Marcel-Dekker, New York, 1994.
[T] S. Thangavelu, Summability of Hermite expansions I, II, Trans. AMS (1989), 119-170.
Université de Cergy-Pontoise Département de Mathématiques 2, avenue Adolphe Chauvin 95302 Cergy-Pontoise, France soenke.blunck@math.u-cergy.fr

