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A Hörmander-Type Spectral Multiplier Theorem
for Operators Without Heat Kernel

SÖNKE BLUNCK

Abstract. Hörmander’s famous Fourier multiplier theorem ensures the L p-bound-
edness of F(−�R D) whenever F ∈ H(s) for some s > D

2 , where we denote
by H(s) the set of functions satisfying the Hörmander condition for s derivatives.
Spectral multiplier theorems are extensions of this result to more general operators
A ≥ 0 and yield the L p-boundedness of F(A) provided F ∈ H(s) for some s
sufficiently large. The harmonic oscillator A = −�R + x2 shows that in general
s > D

2 is not sufficient even if A has a heat kernel satisfying Gaussian estimates.
In this paper, we prove the L p-boundedness of F(A) whenever F ∈ H(s) for some
s > D+1

2 , provided A satisfies generalized Gaussian estimates. This assumption
allows to treat even operators A without heat kernel (e.g. operators of higher order
and operators with complex or unbounded coefficients) which was impossible for
all known spectral multiplier results.

Mathematics Subject Classification (2000): 42B15 (primary), 42B20, 35G99,
35P99 (secondary).

0. – Introducion

In this paper, we present a new spectral multiplier result motivated by
Hörmander’s famous Fourier multiplier theorem. In terms of the functional
calculus F �→ F(−�) of the Laplace operator � on R

D , Hörmander’s theorem
says the following:

F ∈ H(s) for some s >
D

2
�⇒ F(−�) ∈ L(L p(R

D)) for all p ∈ (1, ∞) .

Here we denote by H(s) the set of functions satisfying the Hörmander condition
for s derivatives:

H(s) := {F : R+ → C bounded Borel funcion; sup
t>0

‖ωF(t ·)‖Hs (R+) < ∞} ,

Pervenuto alla Redazione il 5 maggio 2003.
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where ω ∈ C
∞
c (R+) is a fixed ‘partition of unity’ function [i.e.

∑
l∈Z

ω(2l t) = 1
for all t ∈ R+]. Christ [C] and Mauceri and Meda [MM] generalized this
result to homogeneous Laplacians � on Lie groups G of some homogeneous
dimension D, i.e. |B(x, r)| ∼ r D for all x ∈ G, r > 0. Indeed, they obtained
independently

F ∈ H(s) for some s >
D

2
�⇒ F(−�) ∈ L(L p(G)) for all p ∈ (1, ∞) .

In order to treat more general elliptic operators and irregular domains, Duong,
Ouhabaz and Sikora [DOS] extended this result to arbitrary non-negative self-
adjoint operators A on (subsets of) metric measured spaces (�, µ, d) of some
dimension D, i.e. |B(x, λr)| ≤ CλD|B(x, r)| for all x ∈ �, r > 0, λ ≥ 1.
They showed

(H) F ∈ H(s) for some s >
D

2
�⇒ F(A) ∈ L(L p(�)) for all p ∈ (1, ∞) ,

provided A satisfies the so-called Plancherel estimate

(P) ‖F(t A)|B(·, rt )|1/2‖1→2 ≤ C‖F‖L2([0,1]) for all F ∈ L∞([0, 1]), t > 0

and A satisfies Gaussian estimates, i.e. the e−t A have integral kernels kt (x, y)

for which one has a pointwise upper bound of the following type:

(GE) |kt (x, y)| ≤ |B(x, rt )|−1g
(

d(x, y)

rt

)
for all x, y ∈ �, t > 0 .

Here the rt are suitable positive radii and g : R+ → R+ is a suitable decay
function. Note that (GE) without any additional assumption like (P) does not
imply (H) since the harmonic oscillator A = −� + x2 on � = R satisfies (GE)
and has the following property [T]:

F ∈ H(s) for some s ≤ D

2
+1

6
−ε � F(A) ∈ L(L p(R)) for all p∈ (1, ∞) .

Furthermore, note that an elliptic operator A of order m on R
D with bounded

measurable coefficients satisfies (GE) if m ≥ D [AT], [D1] or m = 2 and the
coefficients are real [A]. On the other hand, in general A does not satisfy (GE)
if m < D [D3], [ACT] or the coefficients are unbounded [LSV]. But in many
of these cases A still satisfies so-called generalized Gaussian estimates [D1],
[ScV]. By this we mean an estimate of the following type:

(GGE)
‖χB(x,rt )e

−t AχB(y,rt )‖po→p′
o

≤ |B(x, rt )|
1
p′

o
− 1

po g
(

d(x, y)

rt

)
for all x, y ∈ �, t > 0
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and for some po ∈ [1, 2). Notice that (GGE) for po = 1 is equivalent
to (GE) [BK1]. The main result of the present paper is that (GGE) without
any additional assumption implies the following adaptation of (H):

(H̃) F ∈ H(s) for some s >
D+1

2
�⇒ F(A) ∈ L(L p(�)) for all p∈(po, p′

o).

We want to mention that, for the class of operators A satisfying (GGE), the
interval [po, p′

o] is optimal for the existence of the semigroup (e−t A)t∈R+ on
L p [D3]; this shows the optimality of our spectral multiplier theorem (H̃).

Our main tool for the proof of (H̃) is the singular integral theory devel-
opped in [BK2] which generalizes the classical singular integral theory based
on Hörmander’s well-known weak type (1, 1) condition for integral operators
(in a weakened version due to Duong and McIntosh [DM]). This new singular
integral theory based on (GGE) allows to extend other L2-properties of A (than
the boundedness of F(A) for F ∈ H(s) is considered in this paper) to L p for
p ∈ (po, p′

o). We mention the properties of having maximal regularity [BK1],
an H∞ functional calculus [BK2] or Riesz transforms [BK3], [HM].

Acknowledgements. I would like to thank El Maati Ouhabaz for several
conversations on the subject of this paper.

1. – Main result

We begin with some basic notation and assumptions. For the rest of this
paper, (�, µ, d) is a metric measure space of dimension D, i.e.

|B(x, λr)| ≤ CλD|B(x, r)| for all x ∈ �, r > 0, λ ≥ 1 .

Here we denote by B(x, r) the ball of center x and radius r , and by |B(x, r)|
or vr (x) its volume; by Lω

p (�) we denote the weak L p(�)-spaces. Further-
more, we fix once and for all real numbers po ∈ [1, 2), m ∈ [2, ∞) and the
following notation:

rt := t1/m and g(t) := Ce−bt m
m−1 for all t ∈ R+ .

Here C and b are positive constants whose values are of no interest and might
change from one appearance of the function g to the next without mentioning it.
We denote by H(s) the set of functions satisfying the Hörmander condition for s
derivatives:

H(s) := {F : R+ → C bounded Borel function; sup
t>0

‖ωF(t ·)‖Hs (R+) < ∞} ,

where ω ∈ C∞
c (R+) is a fixed ‘partition of unity’ function [i.e.

∑
l∈Z

ω(2l t) = 1
for all t ∈ R+]. Now we can present the main result of this paper.
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Theorem 1.1. Let (�, µ, d) be a space of dimension D and A a non-negative
self-adjoint operator on L2(�) such that (GGE) holds. Then, for all s > D+1

2 , there
exists C > 0 such that

‖F(A)‖L(L po (�),Lω
po (�)) ≤ C(‖F‖L∞(R+) + sup

t>0
‖ωF(t ·)‖Hs (R+))

for all F ∈ H(s). In particular, the following implication holds:

F ∈ H(s) for some s >
D + 1

2
�⇒ F(A) ∈ L(L p(�)) for all p∈ (po, p′

o) .

Remark.
(a) An important example are the Riesz means Rα(A), where Rα(x) := (1−x)α+.

Observe that Rα ∈ H(s) if and only if s < α + 1
2 . Hence, in the situation

of Theorem 1.1 one has

‖Rα(t A)‖p→p ≤ Cp,α for all t > 0 , p ∈ (po, p′
o), α >

D

2
.

(b) Another important example are the imaginary powers Aiτ , τ ∈ R. If we
denote Pτ (x) := xiτ then ‖ωPτ (t ·)‖Hs (R+) ≤ Cs(1 + |τ |)s for all τ ∈ R,
s, t > 0. Hence, in the situation of Theorem 1.1 one has

‖Aiτ‖p→p ≤ Cp,s(1 + |τ |)s for all τ ∈ R, p ∈ (po, p′
o), s >

D + 1

2
.

(c) Theorem 1.1 is optimal with respect to p since, for the class of operators A
satisfying (GGE), the interval [po, p′

o] is optimal for the existence for the
semigroup (e−t A)t∈R+ on L p [D3].

(d) Concerning optimality with respect to s (the number of derivatives), we
mention that our condition s > D+1

2 cannot be replaced by s > D
2 + α

with α < 1
6 . Indeed, the Riesz means Rα(A) of the harmonic oscillator

A = −� + x2 on R do not satisfy Rα(A) ∈ L(L p(R)) for all p ∈ (1, ∞)

unless α ≥ 1
6 [T, Theorem 2.1]. On the other hand, A satisfies (GGE) for

po = 1, and Rα ∈ H(s) for all s < α + 1
2 .

Under the additional assumptions (P) from above and po = 1, our condition
s > D+1

2 can be replaced by s > D
2 [DOS, Theorem 3.1].

(e) By standard methods [DM], [BK2], Theorem 1.1 can be extended to the
case where � is only a subset of a space of dimension D. This allows
to treat elliptic operators A on irregular domains � ⊂ R

D; see Section 2.1
below.
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2. – Examples

In this section, we give some examples of elliptic operators A for which
Theorem 1.1 applies, i.e. for which (GGE) holds.

2.1. – Higher order operators with bounded coefficients and Dirichlet
boundary conditions on irregular domains

These operators A are given by forms a : V × V → C of the type

a(u, v) =
∫

�

∑
|α|=|β|=k

aαβ∂αu ∂βv dx ,

where V := ◦
H k(�) for some arbitrary (irregular) domain � ⊂ R

D . We assume
aαβ = aβα ∈ L∞(RD) for all α, β and Garding’s inequality

a(u, u) ≥ δ‖∇ku‖2
2 for all u ∈ V ,

for some δ > 0 and ‖∇ku‖2
2 := ∑

|α|=k ‖∂αu‖2
2. Then a is a closed symmetric

form, and the associated operator A on L2(�) is given by u ∈ D(A) and
Au = g if and only if u ∈ V and 〈g, v〉 = a(u, v) for all v ∈ V .

In this situation, we have for po := 2D
m+D ∨ 1 and m := 2k [D1], [AT,

Section 1.7]:

‖χB(x,rt )e
−t AχB(y,rt )‖po→p′

o
≤ r

D
(

1
p′

o
− 1

po

)
t g

(
d(x, y)

rt

)
for all x, y ∈ �, t > 0 .

Hence, by Remark (e) above, the conclusion of Theorem 1.1 holds:

F ∈ H(s) for some s >
D + 1

2
�⇒ F(A) ∈ L(L p(�)) for all p ∈ (po, p′

o) .

2.2. – Schrödinger operators with singular potentials on R
D

Now we study Schrödinger operators A = −� + V on R
D , D ≥ 3, where

V = V+ − V−, V± ≥ 0 are locally integrable, and V+ is bounded for simplicity
(for the general case, see e.g. [ScV]). We assume the following form bound:

〈V−u, u〉 ≤ γ (‖∇u‖2
2 + 〈V+u, u〉) + c(γ )‖u‖2

2 for all u ∈ H 1(RD)

and some γ ∈ (0, 1). Then the form sum A := −� + V = (−� + V+) −
V− is defined and the associated form is closed and symmetric with form
domain H 1(RD). By standard arguments using ellipticity and Sobolev inequality,
(GGE) holds for po = 2D

D+2 and m = 2 [after replacing A by A + c(γ )].
Due to [LSV], (e−t A)t∈R+ is bounded on Lq(R

D) for all q ∈ (pγ , p′
γ ) and
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pγ := 2D
D(1+√

1−γ )+2(1−√
1−γ )

< 2D
D+2 . Hence, by interpolation, one obtains (GGE)

even for all po ∈ (pγ , 2). Thus, Theorem 1.1 yelds

F ∈ H(s) for some s >
D + 1

2
�⇒ F(A) ∈ L(L p(R

D)) for all p∈ (pγ , p′
γ ) .

2.3. – Elliptic operators on Riemannian manifolds

Let A = −� be the Laplacian on a Riemannian manifold �. Let d be the
geodesic distance and u the Riemannian measure. Assume that � satisfies the
so-called volume doubling property and that the heat kernel kt (x, y) satisfies

kt (x, x) ≤ C |B(x,
√

t)|−1 for all x ∈ �, t > 0 .

Then (et�)t∈R+ satisfies (GE) [G] or, equivalently, (GGE) for po =1 and m =2.
On Riemannian manifolds satisfying a local higher order Sobolev inequality,
(GGE) holds even for suitable higher order elliptic operators A [BC].

3. – Proof of the main result

The main tool for the proof of Theorem 1.1 is the following result [BK2,
Theorem 1.1] which generalizes Hörmander’s well-known weak type (1, 1) con-
dition for integral operators (in a weakened version due Duong and McIn-
tosh [DM]) and provides a weak type (po, po) condition for arbitrary operators.

Theorem 3.1. Let (�, d, µ) be a space of homogeneous type and A a non-
negative selfadjoint operator on L2(�) such that (GGE) holds. Let T ∈ L(L2(�))

satisfy

(1) Np′
o,rt /2((T Dne−t A)∗χB(y,4rt )c f )(y) ≤ C(M2 f )(x)

for all t > 0, f ∈ L p′
o
(�), x ∈ �, y ∈ B(x, rt/2) and some n ∈ N. Then we have

T ∈ L(L po(�), Lω
po

(�)).

Here we used the following notation:

Mp f (x) := sup
r>0

Np,r f (x) [p-maximal operator]

Np,r f (x) := |B(x, r)|−1/p‖ f ‖L p(B(x,r)), Dn f (t) :=
n∑

k=0

(
n

k

)
(−1)k f (kt) .

Hence I − Dne−t A can be seen as an approximation of the identity of order n
since we formally have Dn f (t)

tn → (−1)n f (n)(0) for t → 0.
Another central tool for the prof of Theorem 1.1 is the following result

on the extension of generalized Gaussian estimates for real times t ∈ R+ to
complex times z ∈ C+; its proof is given in [B, Theorem 2.1].



SPECTRAL MULTIPLIER WITHOUT HEAT KERNEL 455

Theorem 3.2. Let (�, µ, d) be a space of dimension D and 1 ≤ p ≤ 2 ≤ q ≤
∞. Let A be a non-negative selfadjoint operator on L2(�) such that

‖χB(x,rt )e
−t AχB(y,rt )‖p→q ≤ |B(x, rt )|

1
q − 1

p g
(

d(x, y)

rt

)
for all t ∈ R+, x, y ∈ �. Then we have

‖χB(x,rz)e
−z AχB(y,rz)‖p→q ≤ |B(x, rz)|

1
q − 1

p g
( |z|

Rez

)D
(

1
p − 1

q

)
g

(
d(x, y)

rz

)

for all z ∈ C+, x, y ∈ � and rz := (Rez)
1
m −1|z|.

Some rather technical features of generalized Gaussian estimates are sum-
marized in the following lemma; see [BK4, Proposition 2.1] and [BK2, Lem-
ma 3.3(a)] for the proofs. We will denote by A(x, r, k) the annular region
A(x, r, k) := B(x, (k + 1)r)\B(x, r).

Lemma 3.3. Let (�, µ, d) be a space of dimension D and 1 ≤ p ≤ q ≤ ∞.
Let R be a linear operator and r > 0.

(i) The following are equivalent:

(a) We have for all x, y ∈ � :

‖χB(x,r) RχB(y,r)‖p→q ≤ vr (x)
1
q − 1

p g
(

d(x, y)

r

)
.

(b) We have for all x, y ∈ � and u ∈ [p, q] :

‖χB(x,r) RχB(y,r)‖u→q ≤ vr (x)
1
q − 1

u g
(

d(x, y)

r

)
.

(c) We have for all x ∈ � and k ∈ N :

‖χB(x,r) RχA(x,r,k)‖p→q ≤ vr (x)
1
q − 1

p g(k) .

(ii) If (a) holds then we have for all s > 0, f ∈ Lq(�), x ∈ �, y ∈ B(x, s) :

Nq,s(R PB(y,5s)c f )(y) ≤ g(r−1s)(1 + s−1r)D/q Mp f (x) .

In order to prove the assertion F(A) ∈ L(L po(�), Lω
po

(�)) of Theorem 1.1
by means of our weak type (po, po) criterion Theorem 3.1, we have to check
line (1) for T = F(A). The main step is the following.
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Proposition 3.4. Let (�, d, µ) be a space of dimension D and A a non-negative
selfadjoint operator on L2(�) such that (GGE) holds. Then, for all s > D+1

2 , there
exist ε1, ε2, C > 0 such that we have for all F ∈ L∞(R+) and σ > 0 :

Np′
o,rt /2(F(σ A)∗χB(y,4rt )c f )(y) ≤ C

((
t

σ

)−ε1

∨
(

t

σ

)−ε2
)

‖F ·exp ‖Hs (R+)(M2 f )(x)

for all t > 0, f ∈ L p′
o
(�), x ∈ �, y ∈ B(x, rt/2).

Proof. By Lemma 3.3(i), the L po → L p′
o

estimate (GGE) in the hypothesis
implies the following L2 → L p′

o
estimate:

‖χB(x,rt )e
−t AχB(y,rt )‖2→p′

o
≤ |B(x, rt )|

1
p′

o
− 1

2 g
(

d(x, y)

rt

)
.

By Theorem 3.2, the latter extends to complex times z ∈ C+ as follows, denoting

rz = (Rez)
1
m −1|z| and α = D( 1

2 − 1
p′

o
):

‖χB(x,rz)e
−z AχB(y,rz)‖2→p′

o
≤ |B(x, rz)|

1
p′

o
− 1

2
( |z|

Rez

)α

g
(

d(x, y)

rz

)
.

This implies by Lemma 3.3(ii) for R = ( |z|
Rez )

−αe−z A:

Np′
o,rt /2(e

−z AχB(y,4rt )c f )(y) ≤
( |z|

Rez

)α (
1 + rz

rt

)D/p′
o

g
(

rt

rz

)
(M2 f )(x)

for all t > 0, f ∈ L p′
o
(�), x ∈ �, y ∈ B(x, rt/2). The latter for z = (1 + iτ)σ

allows to estimate Np′
o,rt /2(F(σ A)∗χB(y,4rt )c f )(y) by using the Fourier inversion

formula for G := F · exp (this approach is taken from [DOS, Lemma 4.3]):

F(σ A)∗ =
∫

R

e−(1+iτ)σ A Ĝ(τ )dτ .

Indeed, since r(1+iτ)σ = √
1 + τ 2σ 1/m , we can estimate as follows:

Np′
o,rt /2(F(σ A)∗χB(y,4rt )c f )(y)

≤
∫

R

Np′
o,rt /2(e

−(1+iτ)σ AχB(y,4rt )c f )(y)|Ĝ(τ )|dτ

≤
∫

R

√
1 + τ 2

α

(
1+

√
1 + τ 2

σ 1/m

t1/m

)D/p′
o

g

(√
1 + τ 2

−1 t1/m

σ 1/m

)
|Ĝ(τ )|dτ M2 f (x)

≤
(

1 + σ

t

)D/p′
om ∫

R

√
1 + τ 2

D/2
g

(√
1 + τ 2

−1 t1/m

σ 1/m

)
|Ĝ(τ )|dτ M2 f (x)

≤
(

1 + σ

t

)D/p′
om

∫
R

(1 + τ 2)
D
2 −s g

(√
1 + τ 2

−1 t1/m

σ 1/m

)2

dτ

1/2

‖G‖Hs M2 f (x).
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Hence the assertion is proved once we show for β := s − D
2 > 1

2 :∫ ∞

0
(1 + τ 2)−βg(

√
1 + τ 2

−1
a)dτ ≤ Ca1−2β for all a ≥ 2 .

First, the change of variables u = √
1 + τ 2 −1

yields∫ ∞

0
(1 + τ 2)−βg(

√
1 + τ 2

−1
a)dτ = a2(1−β)

∫ ∞

a−1
g(u−1)u1−2β(a2u2 − 1)−1/2du .

Since (a2u2 − 1)1/2 ≥
√

3
2 au for all u ∈ [2a−1, ∞), we have∫ ∞

2a−1
g(u−1)u1−2β(a2u2 − 1)−1/2du ≤ 2√

3
a−1

∫ ∞

0
g(u−1)u−2βdu = Ca−1 .

On the other hand, the remaining part of the integral can be estimated by

∫ 2a−1

a−1
g(u−1)u1−2β(a2u2 − 1)−1/2du ≤ g(a/2)a2β−1

∫ 2a−1

a−1
(au − 1)−1/2du

= g(a/2)a2(β−1)

∫ 1

0
v−1/2dv .

The last preparatory step for the proof of Theorem 1.1 is the following
lemma.

Lemma 3.5. Let n ∈ N, ε > 0 and E(u) := ∑n
k=0

(n
k

)
(−1)ke−ku, u ∈ R+.

Then
‖E(σ ·)‖Cn([ε,ε−1]) ≤ C(1 ∧ σ n) for all σ > 0 .

Proof. Fix m ∈ {0, . . . , n}. First we treat the case of small σ . Since
E(m)(t)
tn−m → n!

(n−m)! for t → 0, we have |E (m)(t)| ≤ C0tn−m for all t ∈ [0, 1]. This

implies for all σ ∈ [0, ε] and u ∈ [0, ε−1]:

|E(σ ·)(m)(u)| = σ m |E (m)(σu)| ≤ σ mC0(σu)n−m ≤ C0ε
n−mσ n .

Now we treat the case of large σ . Since E (m)(t) = ∑n
k=0 ck,m,ne−kt with

c0,m,n = 0 for m > 0, we deduce for all σ , u ∈ [ε, ∞):

|E(σ ·)(m)(u)| = σ m |E (m)(σu)| ≤ σ m
n∑

k=0

|ck,m,n|e−kσε ≤ C1 .

Finally, we come to the proof of Theorem 1.1. We use the symbol � to indicate
domination up to constants independent of the relevant parameters.
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Proof of Theorem 1.1. We want to apply our weak type (po, po) criterion
Theorem 3.1 for T = F(A). Hence we have to show

(2) Np′
o,rt /2((F(A)Dne−t A)∗χB(y,4rt )c f )(y) � sup

h>0
‖ωFh‖Hs (M2 f )(x)

for all t > 0, f ∈ L p′
o
(�), x ∈ �, y ∈ B(x, rt/2) and some n ∈ N. Choose

ε1 ≥ ε2 > 0 as in Proposition 3.4 and n ∈ N such that n > ε1 ∨ s. Denote
δ := (n − ε1) ∧ ε2 > 0 and ϕ(u) := u−ε1 ∨ u−ε2 , E(u) := ∑n

k=o

(n
k

)
(−1)ke−ku

for all u ∈ R+. Furthermore, for σ > 0 we denote the dilations Fσ := F(σ ·),
ωσ := ω(σ ·) and Eσ := E(σ ·). Observe that Eσ (A) = Dne−σ A and by
Lemma 3.5

(3) ϕ(σ)‖Eσ‖Cn(supp ω) � ϕ(σ)(1 ∧ σ n) ≤ σ−δ ∧ σ δ for all σ > 0 .

Now (2) follows from Proposition 3.4, applied for ωF2−l Et2−l instead of F and
σ = 2l , and then summation over l ∈ Z:

Np′
o,rt /2((F(A)Dne−t A)∗χB(y,4rt )c f )(y)

= Np′
o,rt /2

(∑
l∈Z

((w2l F)(A)Dne−t A)∗χB(y,4rt )c f

)
(y)

[∑
ω2l = 1

]
≤

∑
l∈Z

Np′
o,rt /2((wF2−l Et2−l )(2l A)∗χB(y,4rt )c f )(y) [Eσ (A)= Dne−σ A]

�
∑
l∈Z

ϕ(t2−l)‖wF2−l Et2−l · exp ‖Hs M2 f (x) [Proposition 3.4]

� sup
h>0

‖ωFh‖Hs M2 f (x)
∑
l∈Z

ϕ(t2−l)‖Et2−l · exp ‖Cn(supp ω) [n ≥ s]

� sup
h>0

‖ωFh‖Hs M2 f (x)
∑
l∈Z

(t2−l)−δ ∧ (t2−l)δ [line (3)]

� sup
h>0

‖ωFh‖Hs M2 f (x) .
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Université de Cergy-Pontoise
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