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Families of Differential Forms on Complex Spaces

VINCENZO ANCONA – BERNARD GAVEAU

Abstract. On every reduced complex space X we construct a family of complexes
of soft sheaves �X ; each of them is a resolution of the constant sheaf CX and
induces the ordinary De Rham complex of differential forms on a dense open
analytic subset of X . The construction is functorial (in a suitable sense). Moreover
each of the above complexes can fully describe the mixed Hodge structure of
Deligne on a compact algebraic variety.

Mathematics Subject Classification (2000): 32C15 (primary), 32S35 (secondary).

Introduction

By a complex space we mean a reduced, not necessarily irreducible, com-
plex analytic space.

Let X be a complex space. We denote by CX the constant sheaf on X .
When X is smooth we denote by E .

X the De Rham complex of differential
forms on X .

The complex D
.

X of differential forms in sense of Grauert and Grothendieck
(see [BH] for precise definitions) shares with the classical De Rham complex E .

X
on a manifold many important properties, namely:
– D

.

X is a complex of fine sheaves, provided with an augmentation CX → D
.

X ;
– for p > 2 dim X , D

p
X = 0;

– the restriction D
.

X | U to the open subset U of smooth points of X is the
ordinary De Rham complex E .

U .
– if f : X → Y is a morphism of complex spaces, the pullback f ∗ : D

.

Y → D
.

X
is defined; it commutes to differentials, and is functorial.

On the other hand, the complex D
.

X is not, in general, a resolution of CX ,
so it cannot play in the singular case the same role as E .

X in the most important
applications: De Rham theory and Hodge theory.

Both authors were supported by HCM contract ERB CHRXCT 930096; the first author was also
supported by the italian MIUR and CNR.

Pervenuto alla Redazione il 19 ottobre 2001 ed in forma definitiva il 14 ottobre 2002.
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In a series of papers ([AG1]-[AG6]) we proposed a different definition
of differential forms on a complex space, in order to obtain a resolution
of CX by means of forms, and De Rham and Hodge type results. The defi-
nition was based on a construction called “tower of desingularizations”. This
construction has essentially one disadvantage: it is not functorial; in particular
the pullback of forms cannot be defined. We came to the conclusion that in
order to obtain all the properties of the classical forms, including the existence
of the pullback and the functoriality, it is necessary to define for any space X a
family of complexes, instead of a single one. This is the subject of the present
paper.

The forms we introduce here can fully describe also the mixed Hodge
structure of Deligne [D] on a compact algebraic variety X . In order to deal
with the Hodge-Deligne theory we use our notion of hypercovering (Xl) of a
complex space X , instead of the simplicial resolutions of Deligne; our definition
has the property that the dimensions of the manifolds Xl are less or equal to
dim X (which is not the case for simplicial resolutions); moreover our approach
avoids the use of the cohomological descent theory. Note also that the family
of hypercoverings of X is filtered, i.e. two of them are dominated by a third
one (this is not true for the cubic hyperresolutions of [GNPP1], [GNPP2]).

As the referee has pointed out, in [C] already appears the idea of itera-
tively solving singularities using a cone construction to produce an object which
computes the cohomology.

To be more precise, for every X we define a family of complexes R(X) =
{�.

X } and for every morphism f : X → Y a family R(Y, X) of morphisms
of complexes between the �

.

Y ∈ R(Y ) and some of the �
.

X ∈ R(X), more
precisely morphisms �

.

Y → f∗�
.

X which we simply denote �
.

Y → �
.

X and call
(admissible) pullback with the following properties.
(I) �

.

X is a fine resolution of CX .
(II) For p > 2 dim X , �

p
X = 0.

(III) If X is smooth, the ordinary De Rham complex E .

X belongs to R(X), and
for every morphism f : X → Y between smooth complex manifolds the
ordinary De Rham pullback f ∗ : E .

Y → f∗E
.

X is an admissible pullback.
(IV) There exists a smooth, open, dense analytic subset U ⊂ X such that the

restriction �
.

X | U is the ordinary De Rham complex E .

U . Here analytic
means that the complement of U in X is an analytic subspace of X .

The family of pullback will satisfy the following properties.

(C) (Composition). Let g : Z → X , f : X → Y be two morphisms, α : �
.

Y →
�

.

X , β : �
.

X → �
.

Z two pullback; then the composition β ◦ α : �
.

Y → �
.

Z
is again a pullback.
For future induction procedure we denote by (C)k,m,n the property (C) when
dim Z ≤ k, dim X ≤ m, dim Y ≤ n.

(EP) (Existence of pullback). Let f : X → Y be a morphism, and fix �
.

Y ∈
R(Y ); then there exists a �

.

X ∈ R(X) and a pullback �
.

Y → �
.

X .



FAMILIES OF DIFFERENTIAL FORMS ON COMPLEX SPACES 121

As above we denote by (EP)m,n the property (EP) when dim X ≤ m,
dim Y ≤ n.

(U) (Uniqueness of pullback). Let f : X → Y be a morphism, and α : �
.

Y →
�

.

X , β : �
.

Y → �
.

X two pullback corresponding to f ; then α = β.
We denote by (U)m,n the property (U) when dim X ≤ m, dim Y ≤ n.

(F) (Filtering). If �
.,1
X , �

.,2
X ∈ R(X), there exists a third �

.

X ∈ R(X) and two

pullback �
.,1
X → �

.

X , �
.,2
X → �

.

X corresponding to the identity.
We denote by (F)m the property (F) when dim X ≤ m.

In this article we construct the complexes �
.

X together with the pullback.
Because the definition of the complexes �

.

X uses the definition and the existence
of the pullback, we shall be forced to construct both at the same time. This
will be done by a recursion on the dimensions of the complex spaces involved.

In order to explain the definition of �
.

X , we consider a resolution of sin-
gularities of X , i.e. a commutative diagram:

(1)
Ẽ

i→ X̃
q ↓ π ↓

E
j→ X

where E ⊂ X is a nowhere dense closed subspace, containing the singularities
of X , j : E → X is the natural inclusion, X̃ is a smooth manifold and π is a
proper modification inducing an isomorphism X̃ \ Ẽ � X \ E . Let us consider
the particular case where E and Ẽ are smooth. The above diagram is formally
like the Mayer-Vietoris diagram of a space X = U1 ∪ U2, where E = U1,
X̃ = U2, and Ẽ = U1 ∩ U2. Indeed, consider the mapping cone C obtained
by adjoining Ẽ × [0, 1] to E and X using q and i respectively. Then C is
homotopy equivalent to X . Given a diagram of spaces of this kind one can
construct a corresponding mapping cone of complexes

�
.

X = π∗E
.

X̃
⊕ j∗�

.

E ⊕ ( j ◦ q)∗�
.

Ẽ
(−1)

as we do in Definition 2. In this simple example, the spaces in question are
smooth, and so we may take the complexes �

.
to be the usual De Rham

complexes. This complex lives on X and computes the cohomology of X .
In the general case an iterative construction is required to define �

.

X . Since
there are many ways of building up mapping cones of the required kinds using
resolutions of singularities, there is no unique complex �

.

X , though the complex
restricted to an open dense subset of the smooth locus agrees with the usual
De Rham complex there.

In Section 1 we define the family R(X) and the family R(Y, X). One
basic notion is the hypercovering of a complex space. We also give the main
statements of the paper.
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In Section 2 we explain the logic of the proof, in particular the recursion
scheme.

In Section 3 we give the proofs.
In Section 4 we show how our complexes of forms can describe the mixed

Hodge structure of Deligne [D] in the case of a compact algebraic variety X
(see [AG7] for detailed proofs).

The Section 5 is devoted to the extension of the previous results to the
case of logarithmic complexes in the sense of Griffiths and Schmid [GS].

In the Section 6 we see that the complex D
.

X of differential forms of
Grauert and Grothendieck is in a natural way a subcomplex of any �

.

X , so that
in some sense �

.

X appears as the smallest complex of forms containing D
.

X
and satisfying functorially both De Rham and Hodge-Deligne theory. Further
applications are given (details will appear elsewhere).

1. – Definitions and statements

Let X be a complex space, E ⊂ X a nowhere dense closed subspace. Let
us consider a diagram (1) where j : E → X is the natural inclusion, X̃ is
a smooth manifold and π is a proper modification inducing an isomorphism
X̃ \ Ẽ � X \ E . By a theorem of �Lojasiewicz, there exist a fundamental
system of neighborhoods W of Ẽ in X̃ and retractions r : W → Ẽ ; it follows
that the restriction morphisms H k(W, C) → H k(Ẽ, C) are isomorphisms. As a
consequence we obtain:

Proposition 1. Let U ⊂ X be an open neighborhood of a point x ∈ E.

i) Let η1, η2 ∈ H k(π−1(U ), C) two cohomology classes whose restrictions to
H k(π−1(U ) ∩ Ẽ, C) coincide. There exists an open neighborhood V ⊂ U of
x such that the restrictions coincide in H k(π−1(V ), C).

ii) Let θ ∈ H k(π−1(U ) ∩ Ẽ, C). There exists an open neighborhood V ⊂ U of x
and η ∈ H k(π−1(V ), C) inducing θ .

Remark. We could use the Mayer-Vietoris sequence instead of the theorem
of �Lojasiewicz.

Definition of the family R(X). We denote by �
.

X (−1) the complex

obtained by shifting the degree in �
.

X : more precisely �
P
X (−1) = �

p−1
X .

We define the family R(X) by induction on n = dim(X). If dim(X) = 0,
R(X) contains only the complex C

.

X with C
0
X = CX and C

p
X = 0 for p > 0.

We suppose R(Y ) to be known for complex spaces Y of dimension < n; then:

Definition 2 (D)n. Let X be a complex space of dimension n. An element
�

.

X ∈ R(X) is the assignement of the following data:
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i) a nowhere dense closed subspace E ⊂ X , Sing(X) ⊂ E and a proper
modification

Ẽ
i→ X̃

q ↓ π ↓
E

j→ X

where j : E → X is the natural inclusion, X̃ is a smooth manifold,
Ẽ = π−1(E) and π induces an isomorphism X̃ \ Ẽ � X \ E ;

ii) there exist �
.

E ∈ R(E), �
.

Ẽ
∈ R(Ẽ), and two pullback

φ : �
.

E → �
.

Ẽ

ψ : E .

X̃
→ �

.

Ẽ

(corresponding respectively to q and i);
iii) the complex �

.

X is defined by

�
.

X = π∗E
.

X̃
⊕ j∗�

.

E ⊕ ( j ◦ q)∗�
.

Ẽ
(−1)

with differential given by

d : �
p

X = π∗E
p

X̃
⊕ j∗�

p

E ⊕ ( j ◦ q)∗�
p−1

Ẽ
→ �

p+1

X

= π∗E
p+1

X̃
⊕ j∗�

p+1

E ⊕ ( j ◦ q)∗�
p

Ẽ

d(ω, σ, θ) = (dω, dσ, dθ + (−1)p(ψ(ω) − φ(σ))

iv) the augmentation

CX → �
0

X

c → (c, c, 0)

makes �
.

X a resolution of CX ;
v) there is a uniquely determined family (Xl, hl)l∈L of smooth manifolds Xl

and proper maps hl : Xl → X such that

�
p

X = ⊕lhl∗E
p−q(l)

Xl

where q(l) is a nonnegative integer; moreover, there exist mappings hlm :
Xl → Xm , commuting with hl and hm , such that the differential �

p
X →

�
p+1
X is given by

d(ωl) =
(

dωl +
∑

m

ε
(p)
lm h∗

lmωm

)

where ε
(p)
lm can take the values 0, ±1.
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The pullback φ : �
.

E → �
.

Ẽ
and ψ : E .

X̃
→ �

.

Ẽ
in (ii) are called inner

pullback of the complex �
.

X .
The family (Xl, hl)l∈L will be called the hypercovering of X associated
to �

.

X , and q(l) will be the rank of Xl .

To simplify the notations, in the sequel we will write �
p
X = ⊕lE

p−q(l)
Xl

instead of ⊕lhl∗E
p−q(l)
Xl

.

1.1. – Construction-existence theorem

Theorem 3 (E)n. Let X be a complex space of dimension ≤ n. Let E ⊂ X
be a nowhere dense closed subspace with Sing(X) ⊂ E, j : E → X the natural
inclusion, and

Ẽ
i→ X̃

q ↓ π ↓
E

j→ X

be a proper modification. Let �
.

E ∈ R(E). There exists �
.

Ẽ
∈ R(Ẽ), a pullback

φ : �
.

E → �
.

Ẽ
(corresponding to q), a pullback ψ : E .

X̃
→ �

.

Ẽ
(corresponding to

i) with the following property: the complex

�
.

X = π∗E
.

X̃
⊕ j∗�

.

E ⊕ ( j ◦ q)∗�
.

Ẽ
(−1)

whose differential is by definition

d : �
p

X =π∗E
p

X̃
⊕ j∗�

p

E ⊕( j ◦ q)∗�
p−1

Ẽ
→�

p+1

X =π∗E
p+1

X̃
⊕ j∗�

p+1

E ⊕( j ◦ q)∗�
p

Ẽ

d(ω, σ, θ) = (dω, dσ, dθ + (−1)p(ψ(ω) − φ(σ))

is a fine resolution of CX .

Notation. Throughout all the paper we will write for simplicity

E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1)

instead of π∗E
.

X̃
⊕ j∗�

.

E ⊕ ( j ◦ q)∗�
.

Ẽ
(−1).

1.2. – Definition of a primary pullback for irreducible spaces

Let f : X → Y be a morphism of irreducible complex spaces, dim X ≤ m,
dim Y ≤ n, �

p
X = E p

X̃
⊕ �

p
E ⊕ �

p−1

Ẽ
, �

p
Y = E p

Ỹ
⊕ �

p
F ⊕ �

p−1

F̃
, with �

.

X ∈ R(X)

and �
.

Y ∈ R(Y ). Let us consider the corresponding diagrams

Ẽ → X̃
↓ ↓
E

j→ X

F̃ → Ỹ
↓ ↓
F

k→ Y

In order to define a primary pullback φ : �
.

Y → �
.

X we proceed by double
induction on (m, n), i.e. (DP)m,n−1 and (DP)m−1,n �⇒ (DPP)m,n (for (DP)m,n

see the Definition 6 below).
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Definition 4 (DPP)m,n. We say that φ is a primary pullback (corresponding
to f ) if it satisfies the following properties:

P0) φ is a morphism of complexes, i.e. it commutes with differentials.
P1) Let (Xl, hl)l∈L , (Ys, gs)s∈S the hypercoverings associated to �

.

X , �
.

Y , i.e.

�
p

X = ⊕lE
p−q(l)

Xl
, �

p

Y = ⊕sE
p−q(s)

Ys

For every Xl there exist at most one Ys , having the same rank q as Xl ,
and a commutative diagram

Xl
fls→ Ys

hl ↓ gs ↓
X

f→ Y
such that the composition

E p−q

Ys
→ �

p

Y
φ→ �

p

X → E p−q

Xl

is either identically zero for every p, or coincides with the De Rham
pullback f ∗

ls

P2) Let α : E .

Ỹ
→ E .

X̃
be induced by φ. Then α ≡ 0 if and only if f (X) ⊂ F ;

moreover in this case φ is the composition �
.

Y → �
.

F → �
.

X where
�

.

Y → �
.

F is the projection onto the summand �
.

F and �
.

F → �
.

X is
a pullback (inductively defined) corresponding to the induced morphism
X → F .

P3) If α : E .

Ỹ
→ E .

X̃
is not identically zero, then, according to P2, f (X) �⊂ F ;

in that case we assume the following properties:

i) f −1(F) ⊂ E ;
ii) the morphism f extends to a morphism f̃ : X̃ → Ỹ and α = f̃ ∗ is

the ordinary De Rham pullback;
iii) the morphism φ is given by

E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1)

α ↓ ↘ β γ ↓ δ ↙ ε ↓
E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1)

where (β, γ, δ) : �
.

Y → �
.

E is a pullback corresponding to the com-
position f ◦ j : E → Y (inductively defined).

1.3. – Definition of a pullback morphism: the general case

Natural pullback.
Let X be a complex space of dimension m.
Let X = X1 ∪ . . . ∪ Xr be the decomposition of X into its irreducible

components. Let E ⊂ X be a closed subspace such that X\E is smooth
and dense in X , and f : (X̃ , Ẽ) → (X, E) be a proper desingularization.
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Then: X̃ = X̃1 � . . . � X̃r , Ẽ = Ẽ1 � . . . � Ẽr , Ẽi = Ẽ ∩ X̃ (here � denotes
disjoint union); moreover, f|X̃i

: (X̃i , Ẽi ) → (Xi , Ei ) is a desingularization.
Let �

.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1) ∈ R(X); let us denote by φ : �

.

E → �
.

Ẽ
,

ψ : E .

X̃
→ �

.

Ẽ
the inner pullback of �

.

X (see definition (D)m).
Then E .

X̃
= ⊕iE

.

X̃i
, �

.

Ẽ
= ⊕i�

.

Ẽi
.

Let us denote by pi : E .

X̃
→ E .

X̃i
, qi : �

.

Ẽ
→ �

.

Ẽi
the projections.

Definition 5. A morphism of complexes ζ : �
.

X = E .

X̃
⊕�

.

E ⊕�
.

Ẽ
(−1) →

�
.

Xi
corresponding to the inclusion Xi → X is called a natural pullback if

�
.

Xi
= E .

X̃i
⊕ �

.

Ei
⊕ �

.,1

Ẽi
with �

.

Ei
∈ R(Ei ), �

.,1

Ẽi
∈ R(Ẽi ) and there exists a

commutative diagram of pullback

(2)

�
.

E
ηi→ �

.

Ei
φ ↓

E .

X̃

ψ→ �
.

Ẽ
φi ↓

pi ↓ qi ↓
E .

X̃i

ψi→ �
.

Ẽi

µi→ �
.,1

Ẽi

such that

(3) ζ(ω, σ, θ) = (pi (ω), ηi (σ ), µi (qi (θ))

Let f : X → Y be a morphism between (reducible) complex spaces, X =⋃
j X j , Y = ⋃

k Yk be the respective decompositions into irreducible components.
Let �

.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1), �

.

Y = E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1).

For a given j two cases can occur:

(a) f (X j ) ⊂ F
(b) f (X j ) �⊂ F , and there exists a unique Yk with f (X j ) ⊂ Yk (because F

contains, by definition, the singularities of Y ).

Definition 6 (DP)m,n. A morphism of complexes φ : �
.

Y → �
.

X is called
a pullback corresponding to f if

– it satisfies P0 and P1 in definition (DPP)m,n

– (P4) the composition �
.

Y → �
.

X → �
.

E (where the second morphism
is the projection onto the summand) is a pullback corresponding to the
composition f ◦ j : E → Y (inductively defined).

– for every component X j of X there exists:
– in case (a) a commutative diagram

(4)

�
.

Y → �
.

X↓ ↓
�

.

F �
.

X j
↘ ↓

�
.,0
X j
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where �
.

F → �
.,0
X j

is a pullback corresponding to f |X j : X j → F

(inductively defined), �
.

X → �
.

X j
and �

.

X j
→ �

.,0
X j

are natural pull-
back,

– in case (b) a commutative diagram

(5)

�
.

Y → �
.

X↓ ↓
�

.

Yk
�

.

X j
↘ ↓

�
.,0
X j

where �
.

Y → �
.

Yk
, �

.

X → �
.

X j
and �

.

X j
→ �

.,0
X j

are natural pullback,

and �
.

Yk
→ �

.,0
X j

is a primary pullback corresponding to f |X j : X j →
Yk .

Remark 7.
(i) In the above definition we can take �

.

X j
= �

.,0
X j

, because by the Lemma 21

below the composition �
.

X → �
.

X j
→ �

.,0
X j

is a natural pullback;
(ii) when X and Y are irreducible, we obtain a definition of pullback which is

more general that the one in definition (DPP)m,n . Although we conjecture
that every pullback between irreducible spaces is primary, the reader should
keep in mind that a-priori there are pullback between irreducible spaces
which are not primary.

1.4. – Existence of primary pullback (the irreducible case)

Theorem 8. (EPP)m,n. Let f : X → Y be a morphism between irreducible
complex spaces, dim X = m, dim Y = n and fix �

.

Y ∈ R(Y ); there exists a �
.

X ∈
R(X) and a primary pullback �

.

Y → �
.

X .

Remark 9. In the particular case X = Y, f = id, m = n it will follow
from the proof that in order to obtain (EPP)m,n (i.e. (EPP)m,m) we do not need
the assumptions (F)m , (EP)m,n−1, (U)m,n−1 (i.e. (EP)m,m−1, (U)m,m−1).

As a consequence of the proof of the Theorem we will obtain the following
more precise statement

Theorem 10. Let f : X → Y be a morphism between irreducible complex
spaces, dim X = m, dim Y = n and fix �

.

Y = E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1) ∈ R(Y ); let E

be a nowhere dense subspace of X, such that

(i) f −1(F) ⊂ E
(ii) there are two commutative diagrams

F̃ → Ỹ
↓ p ↓
F → Y

Ẽ → X̃
f̃→ Ỹ

↓ h ↓ p ↓
E → X

f→ Y
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Then there exists a �
.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1) ∈ R(X) and a primary pullback

�
.

Y → �
.

X .

Remark 11. In particular, if we already know that there is a pullback

�
.

Y = E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1) → �

.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1)

then for any �
.,1
Y of the form E .

Ỹ
⊕ �

.,1
F ⊕ �

.,1

F̃
(−1) there exist a �

.,1
X = E .

X̃
⊕

�
.,1
E ⊕ �

.,1

Ẽ
(−1) and a pullback �

.,1
Y → �

.,1
X

1.5. – Uniqueness of the primary pullback (the irreducible case)

Theorem 12. (UP)m,n. Let f : X → Y be a morphism between irreducible
complex spaces, dim X = m, dim Y = n and let φj : �

.

Y → �
.

X , j = 1, 2 be two
primary pullback corresponding to f ; then φ1 = φ2.

1.6. – Existence of pullback: the general case

Theorem 13. (EP)m,n. Let f : X → Y be a morphism between complex
spaces, dim X = m, dim Y = n and fix �

.

Y ∈ R(Y ); then there exist a �
.

X ∈ R(X)

and a pullback �
.

Y → �
.

X .

Remark 14. In the particular case X = Y, f = id, m = n it follows from
the proof that in order to obtain (EP)m,n (i.e. (EP)m,m) we do not need the
assumptions (EP)m,n−1, (U)m,n−1, (i.e. (EP)m,m−1, (U)m,m−1); moreover we need
(F)m only for the (irreducible) X j .

1.7. – Uniqueness of the pullback: the general case

Theorem 15. (U)m,n. Let f : X → Y be a morphism between complex
spaces, dim X = m, dim Y = n and let φj : �

.

Y → �
.

X , j = 1, 2 be two pullback
corresponding to f ; then φ1 = φ2.

1.8. – Composition of primary pullback (the irreducible case)

Theorem 16. (CP)k,m,n. Let Z, X, Y , be irreducible complex spaces, g :
Z → X, f : X → Y two morphisms, ψ : �

.

X → �
.

Z , φ : �
.

Y → �
.

X be two
primary pullback corresponding to g and f respectively. Then the composition
ψ ◦ φ : �

.

Y → �
.

Z is a primary pullback corresponding to f ◦ g.

1.9. – Composition of pullback: the general case

Theorem 17. (C)k,m,n. Let Z, X, Y , be complex spaces, g : Z → X,
f : X → Y two morphisms, ψ : �

.

X → �
.

Z , φ : �
.

Y → �
.

X be two pullback
corresponding to g and f respectively. Then the composition ψ ◦ φ : �

.

Y → �
.

Z is
a pullback corresponding to f ◦ g.

1.10. – The filtration property

Theorem 18. (F)m. Let X be a complex space, dim X ≤ m. If �
.,1
X , �

.,2
X ∈

R(X), there exists a third �
.

X ∈ R(X) and two pullback �
.,1
X → �

.

X , �
.,2
X → �

.

X .
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Remark 19. If �
.,1
X = E .

X̃1
⊕�

.,1
E ⊕�

.,1

Ẽ1
(−1), �

.,2
X = E .

X̃2
⊕�

.,2
E ⊕�

.,2

Ẽ2
(−1),

then it is possible to choose �
.,3
X = E .

X̃3
⊕ �

.,3
E ⊕ �

.,3

Ẽ3
(−1)

2. – The induction procedure

Let s, t ∈ N × N, s = (m, n), t = (p, q). We define the following order
on N × N: s > t if sup(m, n) > sup(p, q) or sup(m, n) = sup(p, q) and
(m, n) > (p, q) in the lexicographic order.

We write (EP)s , (U)s . . . instead of (EP)m,n , (U)m,n .
Then we prove the following implications:

(E)p + (F)q + (EP)t + (U)t for p < n, q < n, t < (0, n) �⇒ (E)n

(E)p + (F)q + (EP)t + (U)t for p < n, q < n, t < (n, 0) �⇒ (F)n

(E)p + (F)q + (EP)t + (U)t for (0, p)≤s, (q, 0)≤s, t <s �⇒ (EPP)s and (EP)s

(E)p + (F)q + (EP)t + (U)t for (0, p)≤s, (q, 0)≤s, t <s �⇒ (UP)s and (U)s

Also the definitions (D)t , (DPP)t , (DP)t , are given by induction. Their
order is as follows: (U)r for r < t , (D)t , (DPP)t , (DP)t , (E)t .

Finally, (CP)m,n,k preceeds (C)m,n,k , and (CP)m,n,k (resp. (C)m,n,k) must
be proved after (DPP)(m,n), (DPP)(n,k), (DPP)(m,k) (resp. (DP)(m,n), (DP)(n,k),
(DP)(m,k). The induction scheme is

(C)k−1,m,n + (C)k,m−1,n + (C)k,m,n−1 �⇒ (CP)k,m,n and (C)k,m,n .
In the course of each proof the corresponding induction assumptions will

be made more explicit.

3. – The proofs

Proposition 20. We suppose that (EP)m−1,m−1, (F)m−1, (U)m−1,m−1, (E)m are
already proved. Let X be a complex space of dimension m, Xi an irreducible
component of X.

i) Given �
.

X = E .

X̃
⊕�

.

E ⊕�
.

Ẽ
(−1) there exists a natural pullback ζ : �

.

X → �
.

Xi
.

ii) Let ζ1 : �
.

X → �
.,1
Xi

, ζ2 : �
.

X → �
.,2
Xi

two natural pullback; then there exist

�
.,3
Xi

and pullback β1 : �
.,1
Xi

→ �
.,3
Xi

, β2 : �
.,2
Xi

→ �
.,3
Xi

such that β1◦ζ1 = β2◦ζ2

and the composition �
.

X → �
.,3
Xi

is a natural pullback.

Proof.
i) By (EP)m−1,m−1 there exist pullback ηi : �

.

E → �
.

Ei
, a : �

.

Ei
→ �

.,2
Ei

and b : �
.

Ẽi
→ �

.,3

Ẽi
; by (F)m−1 there are pullback c : �

.,2

Ẽi
→ �

.,1

Ẽi
and
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e : �
.,3

Ẽi
→ �

.,1

Ẽi
; if we apply (U)m−1,m−1 to the pullback from �

.

E to �
.,1

Ẽi
we obtain c ◦ a ◦ ηi = e ◦ b ◦ qi ◦ φ. Putting φi = c ◦ a and θi = e ◦ b we
obtain a commutative diagram like (2) and we define ζ by formula (3).

ii) Let �
., j
Xi

= E ., j

X̃i
⊕�

., j
Ei

⊕�
., j

Ẽi
(−1), j = 1, 2; the two pullback ζ1 and ζ2 differ

only by the morphisms �
.

E → �
., j
Ei

and �
.

Ẽ
(−1) → �

., j

Ẽi
(−1). Arguing as

in i), we find �
.,3
Ei

and �
.,3

Ẽi
and commutative diagrams

�
., j
Ei

→ �
.,3
Ei↓ ↓

�
., j

Ẽi
→ �

.,3

Ẽi

( j = 1, 2) from which we easily construct the morphisms β1 and β2.

Lemma 21. Let �
.

Y → �
.

X be a pullback corresponding to f : X → Y ,
dim X = m, dim Y = n. We suppose that (EP)m−1,n−1, (U)m−1,n−1, (F)q , (E)q

q = sup(m, n) are already proved, as well as (EPP)m,n and (UP)m,n (for morphisms
between irreducible spaces). Then

a) If f (X j ) ⊂ F, for any natural pullback �
.

X → �
.

X j
there exists a commutative

diagram (4).
b) If f (X j ) �⊂ F and f (X j ) ⊂ Yk, for every natural pullback �

.

X → �
.

X j
and

every natural pullback �
.

Y → �
.

Yk
there exists a commutative diagram (5).

Proof. We check b), leaving to the reader the proof of a), which is similar.
By definition there exists a commutative diagram

(6)

�
.

Y → �
.

X↓ ↓
�

.,1
Yk

�
.,1
X j

↘ ↓
�

.,2
X j

where �
.

Y → �
.,1
Yk

, �
.

X → �
.,1
X j

and �
.,1
X j

→ �
.,2
X j

are natural pullback, and

�
.,1
Yk

→ �
.,2
X j

is a pullback corresponding to f |X j : X j → Yk . By Proposition 20,

(ii), we find pullback �
.,1
Yk

→ �
.,3
Yk

and �
.

Yk
→ �

.,3
Yk

such that their compositions

�
.

Y → �
.,3
Yk

are identical, and are natural pullback. It is clear that for our

purposes we can replace �
.

Yk
by �

.,3
Yk

hence we can suppose from the beginning

that �
.

Y → �
.

Yk
decomposes through �

.

Y → �
.,1
Yk

→ �
.

Yk
; the same argument

shows that we can suppose that the morphism �
.

X → �
.

X j
decomposes through

�
.

Y → �
.,1
X j

→ �
.

X j
. We apply (EPP)m,n to f |X j : X j → Yk and we get

a pullback �
.

Yk
→ �

.,4
X j

; moreover by Remark 11 we can suppose �
.,4
X j

=
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E .

X̃i
⊕�

.,4
Ei

⊕�
.,4

Ẽi
(−1); by (F)m and Remark 19 (for X j ) there are natural pullback

�
.,2
X j

→ �
.,0
X j

and �
.,4
X j

→ �
.,0
X j

; finally we apply (UP)m,n to f |X j : X j → Yk :

the two compositions �
.,1
Yk

→ �
.,2
X j

→ �
.,0
X j

and �
.,1
Yk

→ �
.

Yk
→ �

.,4
X j

→ �
.,0
X j

agree. This completes the proof.

Corollary 22.
i) If �

.

Y → �
.

X is a pullback, and �
.

X → �
.

X j
is a natural pullback, the compo-

sition �
.

Y → �
.

X j
is a pullback.

(ii) Conversely let �
.

Y → �
.

X be a morphism of complexes satisfying (P0), (P1),
(P4) in Definition 6, and suppose that for every irreducible component X j

of X there exists a natural pullback �
.

X → �
.

X j
such that the composition

�
.

Y → �
.

X j
is a pullback; then �

.

Y → �
.

X is a pullback.

3.1. – Proof of Theorem 16: composition of primary pullback (the irre-
ducible case)

The proof is by triple induction on (k, m, n) where dim Z ≤ k, dim X ≤
m, dim Y ≤ n. More precisely we prove

(C)k−1,m,n and (C)k,m−1,n and (C)k,m,n−1 �⇒ (CP)k,m,n for primary pullback.
It is obvious that ψ ◦φ commutes to differentials and satisfies the property

(P1) in the Definition 4. Let �
.

Z = E .

Z̃
⊕�

.

G⊕�
.

G̃
(−1), �

.

X = E .

X̃
⊕�

.

E⊕�
.

Ẽ
(−1),

�
.

Y = E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1), α : E .

Ỹ
→ E .

X̃
, α′ : E .

X̃
→ E .

Z̃
, be induced by φ and

ψ respectively.

1) Case α �= 0, α′ �= 0. Then we find a commutative diagram

E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1)

α ↓ ↘ β γ ↓ δ ↙ ε ↓
E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1)

α′ ↓ ↘ β ′ γ ′ ↓ δ′ ↙ ε′ ↓
E .

Z̃
⊕ �

.

G ⊕ �
.

G̃
(−1)

Since α �= 0, α′ �= 0, f and g extend respectively to f̃ : X̃ → Ỹ and
g̃ : Z̃ → X̃ so that f ◦ g extends to f̃ ◦ g̃ : Z̃ → Ỹ , and α′ ◦ α is the ordinary
De Rham pullback ( f̃ ◦ g̃)∗. Hence it remains to check that ψ ◦φ satisfies (P3)
(i) (iii) in Definition 4.

We check (P3) (i). Since α �= 0, α′ �= 0, we see that φ and ψ satisfy (P3)
(i); hence f −1(F) ⊂ E , g−1(E) ⊂ G and finally ( f ◦ g)−1(E) ⊂ G

The morphism �
.

Y → �
.

G is the composition �
.

Y → �
.

X → �
.

G ; by (P3)
(iii) applied to ψ , �

.

X → �
.

G is a pullback; since dim G ≤ k − 1, it follows by
(C)k−1,m,n that �

.

Y → �
.

G is a pullback, which is (P3) (iii).

2) Case α = 0. In this case α′◦α = 0 so we must check P2 for ψ◦φ. α = 0
implies f (X) ⊂ F , hence ( f ◦g)(Z) ⊂ F ; the morphism �

.

Y → �
.

X decomposes
through �

.

Y → �
.

F → �
.

X . The composition �
.

F → �
.

X → �
.

Z is a pullback
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by (C)k,m,n−1, so that �
.

Y → �
.

Z decomposes through �
.

Y → �
.

F → �
.

Z , which
is exactly (P2).

3) Case α′ = 0, α �= 0. In this case g(Z) ⊂ E and �
.

X → �
.

Z decomposes
through �

.

X → �
.

E → �
.

Z , where �
.

E → �
.

Z is a pullback. The composite
mapping �

.

Y → �
.

X → �
.

E is a pullback by (P2) ; finally the composition
�

.

Y → �
.

E → �
.

Z is a pullback by (C)k,m−1,n .

3.2. – Proof of Theorem 17: composition of pullback (the general case)

The proof is by triple induction on (k, m, n) where dim Z ≤ k, dim X ≤
m, dim Y ≤ n. More precisely we prove

(C)k−1,m,n and (C)k,m−1,n and (C)k,m,n−1 �⇒ (C)k,m,n .

We already know (CP)k,m,n true for primary pullback between irreducible spaces.
It is obvious that ψ ◦φ commutes to differentials and satisfies the property (P1)
in the Definition 6. Let �

.

Z = E .

Z̃
⊕ �

.

G ⊕ �
.

G̃
(−1), �

.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1),

�
.

Y = E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1); the composition �

.

X → �
.

Z → �
.

G is a pullback,
hence the composite mapping �

.

Y → �
.

G is a pullback by (C)k−1,m,n .
– Let Zl be an irreducible component of Z ; if g(Zl) ⊂ E there exists a

commutative diagram
�

.

X → �
.

Z↓ ↓
�

.

E �
.

Zl↘ ↓
�

.,0
Zl

The composition �
.

Y → �
.

X → �
.

E is a pullback because �
.

Y → �
.

X is, hence

the composition �
.

Y → �
.

E → �
.,0
Zl

is a pullback by (C)k,m−1,n . If g( f (Zl) �⊂ F ,
by the Lemma 21, b) (applied to the spaces Zl and Y ) there exists a commutative
diagram

�
.

Y → �
.,0
Zl↓ ↓

�
.

Yk
�

.,1
Zl↘ ↓

�
.,2
Zl

where �
.

Yk
→ �

.,2
Zl

is a primary pullback. So we obtain a commutative diagram

�
.

Y → �
.

Z↓ ↓
�

.

Yk
→ �

.,2
Zl

– if g( f (Zl) ⊂ F arguing in the same way we find a commutative diagram

�
.

Y → �
.

Z↓ ↓
�

.

F → �
.,3
Zl
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These last two diagrams imply that �
.

Y → �
.

Z is a pullback.
– if g(Zl) �⊂ E there exists a unique irreducible component X j of X

with g(Zl) ⊂ X j ; for simplicity we suppose that there is a unique irreducible
component Yk of Y with f (X j ) ⊂ Yk (we leave to the reader the case f (X j ) ⊂
F). According to the Definition 6 there is a commutative diagram

�
.

Y → �
.

X↓ ↓
�

.

Yk
�

.

X j
↘ ↓

�
.,0
X j

and according to the Lemma 21 another commutative diagram

�
.

X → �
.

Z↓ ↓
�

.,0
X j

�
.

Zl
↘ ↓

�
.,0
Zl

The composite morphism �
.

Yk
→ �

.,0
X j

→ �
.,0
Zl

is the composition of two
primary pullback between irreducible spaces, hence it is a pullback by (CP)m,n .
If f (g(Zl) �⊂ F the proof is finished. If f (g(Zl) ⊂ F , then by Definition 4
(primary pullback for irreducible spaces) the morphism �

.

Yk
→ �

.

Zl
decomposes

as �
.

Yk
→ �

.

Fk
→ �

.,0
Zl

(Fk = F ∩ Yk). Taking into account the commutative
diagram

�
.

Y → �
.

Yk↓ ↓
�

.

F → �
.

Fk
we finally get by composition the diagram

�
.

Y → �
.

Z↓ ↓
�

.

F → �
.,0
Zl

which concludes the proof.

3.3. – Proof of Theorem 3: construction-existence theorem

We suppose that (EP)n−1,n−1, (U)n−1,n−1, (F)n−1, (E)n−1 are already proved.
Let us establish first the following

Lemma. Let f : X → Y be a morphism of complex spaces, with Y smooth,
dim(X) = r ≤ n − 1, dim(Y ) ≤ n. We suppose that (C)k,m,l , (EP)m,l , (F)m, (U)m,l ,
(E)m are already proved for k < n, m < n, l < n. Then

(i) There exists a �
.

X ∈ R(X) and a pullback ψ : E .

Y → �
.

X (corresponding to
f ).

(ii) Moreover if ψ1 : E .

Y → �
.

X is another pullback corresponding to f then
ψ = ψ1.
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The proof of the lemma is by induction on r , the case r = 0 being trivial.
First we check (i). Let E = Sing(X). Since dim(E) < r there is a �

.

E ∈ R(E)

and a pullback ρ : E .

Y → �
.

E . Let us take a desigularisation π : X̃ → X with
exceptional space Ẽ = π−1(E).

By (E)n−1 we construct �
.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1). Let us consider the

commutative diagram of pullback

E .

Y
ρ→ �

.

E
α ↓ φ ↓
E .

X̃

θ→ �
.

Ẽ

where α = ( f ◦ π)∗ is the ordinary De Rham pullback, and φ, θ are the inner
pullback of �

.

X ; using (ii) in smaller dimension (replace X by E) we see that
φ ◦ ρ = θ ◦ α.

Then we define ψ : E .

Y → �
.

X by ψ(ω) = (( f ◦ π)∗(ω), ρ(ω), 0), which is
a pullback (left to the reader).

We check the uniqueness (ii); we remark that in our situation any pullback
ψ1 : E .

Y → �
.

X is given by

E .

Y
(α1,β1,0)−→ E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1)

where α1 = ( f ◦ π)∗ and β1 : �
.

Y → �
.

E is a pullback corresponding to the
composition f ◦ j : E → Y (inductively defined). Hence we immediately get
α1 = α, and β1 = ρ follows from (U)n−1,n−1.

Let us go back to the construction-existence theorem. By the above lemma
there is a pullback ρ : E .

X̃
→ �

.,1

Ẽ
; by (EP)n−1,n−1 there is a pullback �

.

E → �
.,2

Ẽ
;

by (F)n−1 and (EP)n−1,n−1 there exists �
.

Ẽ
and morphisms �

.,1

Ẽ
→ �

.

Ẽ
and

�
.,2

Ẽ
→ �

.

Ẽ
; by composition we obtain φ : �

.

E → �
.

Ẽ
(corresponding to q),

and ψ : E .

X̃
→ �

.,1

Ẽ
(corresponding to i). Let us prove that the complex

�
.

X = E .

X̃
⊕�

.

E ⊕�
.

Ẽ
(−1) is a resolution of CX . Let x ∈ X , U a neighbhorhood

of x in X , and (ω, σ, θ) ∈ �
p
X (U ), i.e. ω ∈ �

p
X (π−1(U ), σ ∈ �

p
E (U ∩ E),

θ ∈ �
p−1

Ẽ
(q−1(U ∩ E)), with (dω, dσ, dθ + (−1)p(ψ(ω) − φ(σ)) = (0, 0, 0).

Then dσ = 0 implies by induction on the dimension of X that σ = dσ ′ (after
possibly shrinking U ). Then on q−1(U ∩ E) we have

dω = 0, d(θ − (−1)pφ(σ ′)) = −(−1)pψ(ω)

which implies that ω gives a cohomology class in H p(p−1(U ), C) whose re-
striction to H p(p−1(U ∩ E), C) is zero; by Proposition 1 we can write ω = dω′

where ω′ ∈ E p−1

X̃
(π−1(U )) (again after possibly shrinking U ); it follows

d[θ + (−1)pψ(ω′) − (−1)pφ(σ ′)] = 0
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thus θ + (−1)pψ(ω′)− (−1)pφ(σ ′) gives a cohomology class in H p−1(q−1(U ∩
E), C). Again by Proposition 1 we can write

θ + (−1)pψ(ω′) − (−1)pφ(σ ′) = (−1)p−1ψ(ω′′) + dθ ′

where ω′′ ∈ E p−1

X̃
(π−1(U )), dω′′ = 0, and θ ′ ∈ �

p−2

Ẽ
(q−1(U ∩ E)) (here we

suppose of course p ≥ 2: the case p ≤ 1 needs minor modifications). As a
consequence

(ω, σ, θ) = d(ω′ + ω′′, σ ′, θ ′)

Finally, for every p, �
p
X = E p

X̃
⊕ �

p
E ⊕ �

p−1

Ẽ
is a fine sheaf; in fact it is a

direct sum of direct images of fine sheaves (we use again induction on the
dimension).

3.4. – Proof of Theorem 8: existence of primary pullback (the irreducible
case)

We suppose that (EP)m−1,n , (EP)m,n−1, (EP)m−1,m , (U)m−1,n , (F)m (E)q ,
q = sup(m, n) are already proved.

Let �
p
Y = E p

Ỹ
⊕ �

p
F ⊕ �

p−1

F̃
be defined by a proper modification

F̃ → Ỹ
↓ p ↓
F → Y

with inner pullback given by u1 : E .

Ỹ
→ �

.

F̃
and p1 : �

.

F → �
.

F̃
. If f (X) ⊂ F ,

by (EP)m,n−1 there exists a pullback �
.

F → �
.

X ; hence we obtain the required
pullback as composition �

.

Y → �
.

F → �
.

X , where �
.

Y → �
.

F is the projection
onto the summand.

From now on we suppose f (X) �⊂ F . Since X is irreducible, the subspace
E := f −1(F) ∪ Sing(X) is nowhere dense in X .

Lemma. We can construct two commutative diagrams

Ẽ → X̃
f̃→ Ỹ

↓ h ↓ p ↓
E → X

f→ Y

where h is a proper desingularization of X.

Proof of the Lemma. The modification f : Ỹ → Y is dominated by a
blowing-up Y1 → Y centered at an ideal I of OY supported on F ; we obtain
a commutative diagram

X1
f1→ Ỹ

u ↓ p ↓
X

f→ Y
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where u is the blowing-up of X centered at the ideal IOX ⊂ OX . We consider
the proper transform Q of Sing(X) in X1 and we take as X̃ a desingularization
of the blow-up of X1 centered at Q. This proves the lemma.

Now, dim F̃ < n, dim f̃ −1(F̃) < m, so that by (EP)m−1,m and (EP)m−1,n−1
there exist two pullback

u2 : E .

X̃
→ �

.

f̃ −1(F̃)
and

p2 : �
.

F̃
→ �

.

f̃ −1(F̃)

(here we need also (F)m−1 in order to insure the same target �
.

f̃ −1(F̃)
).

By (U)m−1,n

p2 ◦ u1 = u2 ◦ f̃ ∗

From the trivial proper modification id : (X̃ , f̃ −1(F̃)) → (X̃ , f̃ −1(F̃)) we build
the complex �

.

F̃
∈ R(X̃):

�
p

X̃
= E p

X̃
⊕ �

p

f̃ −1(F̃)
⊕ �

p−1

f̃ −1(F̃)

with inner pullback given by u2 : E p

X̃
→ �

p

f̃ −1(F̃)
and id : �

p

f̃ −1(F̃)
→ �

p

f̃ −1(F̃)
.

Let us define the morphism

ψ : �
p

Y = E p

Ỹ
⊕ �

p

F ⊕ �
p−1

F̃
→ �

p

X̃
= E p

X̃
⊕ �

p

f̃ −1(F̃)
⊕ �

p−1

f̃ −1(F̃)

ψ(ω, σ, θ) = ( f̃ ∗ω, (p2 ◦ p1)(σ ), p2(θ))

We check that ψ is a primary pullback corresponding to the morphism f ◦ h :
X̃ → Y ; in fact it commutes with the differential because of p2 ◦ u1 = u2 ◦ f̃ ∗;
the condition P1 on the hypercoverings of X̃ and Y is clearly satisfied; the
condition ( f ◦ h)−1(F) ⊂ f̃ −1(F̃) is true because of f ◦ h = p ◦ f̃ ; f ◦ h
extends trivially to f̃ : X̃ → Y ; finally the composition �

p
Y → �

p

X̃
→ �

p

f̃ −1(F̃)

coincides with p2 ◦ p1, therefore is a pullback.
Next we define

t : E p

X̃
→ �

p

X̃
= E p

X̃
⊕ �

p

f̃ −1(F̃)
⊕ �

p−1

f̃ −1(F̃)

t (ρ) = (ρ, u2(ρ), 0)

which is also a pullback corresponding to the identity id : X̃ → X̃ (left to the
reader). Now we use induction: by (EP)m−1,n there is a pullback w : �

.

Y → �
.

E
corresponding to the composite morphism E → X → Y : again by (EP)m−1,m

there is a pullback z : �
.

X̃
→ �

.

Ẽ
corresponding to the embedding Ẽ → X̃ ;

by (EP)m−1,m−1 there is a a pullback q1 : �
.

E → �
.,1

Ẽ
corresponding to the

morphism Ẽ → E . Using (F)m−1 we can suppose �
.,1

Ẽ
= �

.

Ẽ
.



FAMILIES OF DIFFERENTIAL FORMS ON COMPLEX SPACES 137

Because of (U)m−1,n the two pullback z ◦ ψ, q1 ◦ w : �
.

Y → �
.

Ẽ
coincide:

z ◦ ψ = q1 ◦ w

We define
�

p

X = E p

X̃
⊕ �

p

E ⊕ �
p−1

Ẽ

where the inner pullback are defined by z ◦ t : E .

X̃
→ �

.

Ẽ
and q1 : �

.

E → �
.

Ẽ
.

Finally we define

φ : �
p

Y = E p

Ỹ
⊕ �

p

F ⊕ �
p−1

F̃
→ �

p

X = E p

X̃
⊕ �

p

E ⊕ �
p−1

Ẽ

φ(ω, σ, θ) = ( f̃ ∗ω, w(ω, σ, θ), z(0, p2(θ), 0))

Here we notice that p2(θ)∈�
p−1

f̃ −1(F̃)
, (0, p2(θ), 0)∈ �

p−1
X so that z(0, p2(θ), 0) ∈

�
p−1

Ẽ
. In order to prove that φ is a primary pullback, the only non trivial

property is that it commutes with differentials. Let us check it.

d(ω, σ, θ) = (dω, dσ, dθ + (−1)p(u1(ω) − p1(σ ))

φ(d(ω, σ, θ)) = ( f̃ ∗dω, w(d(ω, σ, θ)), z(0, p2(dθ + (−1)p(u1(ω) − p1(σ )), 0)

On the other hand

d(φ(ω, σ, θ)) = d( f̃ ∗ω, w(ω, σ, θ), z(0, p2(θ), 0))

= (d f̃ ∗ω, d(w(ω, σ, θ)), d(z(0, p2(dθ), 0))

+ (−1)p[(z ◦ t)( f̃ ∗ω) − q1(w(ω, σ, θ))])

Since f̃ ∗dω = d f̃ ∗ω, w(d(ω, σ, θ)) = d(w(ω, σ, θ), it remains to check the e-
quality of the third components. We must be careful about signs: d(z(0,p2(dθ),0)

in the above formula(s) is a differential of a (p − 1)-form.
Recalling that

ψ(ω, σ, θ) = ( f̃ ∗ω, (p2 ◦ p1)(σ ), p2(θ))

and
t ( f̃ ∗ω) = ( f̃ ∗ω, u2( f̃ ∗ω), 0) = ( f̃ ∗ω, (p2 ◦ u1)(ω), 0)

we obtain

d(z(0, p2(dθ), 0)) + (−1)p[(z ◦ t)( f̃ ∗ω) − q1(w(ω, σ, θ))]

= z(0, dp2(θ), (−1)p p2(θ)) + (−1)p[(z ◦ t)( f̃ ∗ω) − (z ◦ ψ)(ω, σ, θ))]

= z{(0, dp2(θ), (−1)p p2(θ)) + (−1)p[ f̃ ∗ω − ψ(ω, σ, θ)]}
= z(0, dp2(θ) + (−1)p[(p2 ◦ u1)(ω) − (p2 ◦ p1)(σ )], 0)
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which gives the result.
It is clear that the above proof implies the more precise statement Theo-

rem 10 and Remark 9 and 11.

3.5. – Proof of Theorem 12: uniqueness of the primary pullback (the
irreducible case)

We suppose that (EP)m−1,n , (EP)m,n−1, (EP)n−1,n−1, (U)m−1,n , (U)m,n−1,
(U)n−1,n−1, (F)m , (E)q , q = sup(m, n) are already proved.

Let �
.

Y = E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1), �

.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1).

We suppose first that f (X) ⊂ F , so that both φ1 and φ2 decompose through
the projection �

.

Y → �
.

F ; the result follows if we apply (U)m,n−1 to the induced
morphism X → F .

So we assume f (X) �⊂ F .
According to (P3) in Definition 4

(i) f −1(F) ⊂ E ;
(ii) the morphism f extends to a morphism f̃ : X̃ → Ỹ ;

(iii) the morphism φj is given by

(7)
E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1)

αj ↓ ↘ βj γj ↓ δj ↙ εj ↓
E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1)

where µj = (βj , γj , δj ) : �
.

Y → �
.

E is a pullback corresponding to the
composition E → X → Y , and αj = f̃ ∗ is the ordinary De Rham pullback.
It follows α1 = f̃ ∗ = α2; by (U)m−1,n µ1 = µ2;
The conclusion will follow from the next lemma.

Lemma 23. Let φj : �
.

Y → �
.

X , j = 1, 2, two primary pullback given by (7),
and suppose α1 = α2, β1 = β2, γ1 = γ2, δ1 = δ2. Then also ε1 = ε2.

In order to prove the lemma we need the following two propositions

Proposition 24. Let φ : E .

X → �
.

Z be a pullback corresponding to a morphism
f : Z → X, X being smooth, and let (Zs, gs)s∈S the hypercovering associated to
�

.

Z . For every Zs of rank 0 in Z the pullback φ induces the De Rham pullback
f ∗
s : E .

X → E .

Zs
.

The proof of Proposition 24 is by induction on the dimension of Z . Let
�

.,

Z = E .

Z̃
⊕�

.,

G ⊕�
.,

G̃
(−1) If Zs appears in the hypercovering of G, we conclude

by induction applied to the pullback E .

X → �
.

G . Otherwise, because of its
rank, Zs cannot appear in the hypercovering of G̃ so it must be a connected
component of the desingularisation Z̃ , so the result is an immediate consequence
of the definition of pullback.

Proposition 25. Let �
.

X ∈ R(X) and (Xl, hl)l∈L the associated hypercovering.
For every Xl of positive rank r > 0 in X there exists Xm of rank r − 1 and an inner
differential inducing a De Rham pullback f ∗

lm : E p
Xm

→ E p
Xl

.
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Proof of Proposition 25. Here, an inner differential is one of the pullback
appearing in the construction of the differential d : �

.

X → �
.

X ; more precisely
it is one of the following:

– the pullback E .

X̃
→ �

.

Ẽ
– the pullback �

.

E → �
.

Ẽ
– an inner differential in �

.

E (inductively defined)
– an inner differential in �

.

Ẽ
(inductively defined)

The proof is by induction on m = dim X . If Xl appears in the hypercovering
of E , we conclude by induction. If Xl appears in the hypercovering of Ẽ , then
the rank s of Xl in Ẽ is r − 1; if r > 1, then s > 0 and we conclude by
induction (Ẽ in the place of X ); if r = 1, then s = 0, and we apply the
Proposition 24 to the inner pullback E .

X̃
→ �

.

Ẽ
.

Proof of the Lemma 23. By the hypothesis we define α = α1 = α2,
β = β1 = β2, γ = γ1 = γ2, δ = δ1 = δ2.

Let (u, p) be the inner pullback in �
.

X , and (v, q) those in �
.

Y .
Then φ ◦ d = d ◦ φ implies for ε = ε1 or ε = ε2:

ε(v(ω)) = u( f ∗(ω)) − (p ◦ φ)(ω, 0, 0)(8)

(ε ◦ d − d ◦ ε)(γ ) = (−1)p(p ◦ φ)(0, 0, γ )(9)

Let (Xl) and (Ys) the hypercoverings corresponding to �
.

X and �
.

Y ; for every Xl

appearing in Ẽ there is at most a Ys appearing in F̃ such that the morphism
ε1,ls : E p

Ys
→ E p

Xl
induced a by ε1 is a De Rham pullback; otherwise ε1,ls = 0;

the same for ε2,ls . Since ε1,ls and ε2,ls completely determine ε1 and ε2, it will
be enough to prove that ε1,ls = 0 if and only if ε2,ls = 0; more precisely we
check that (8) and (9) completely determine whether εls is zero or nonzero.

Let s ≥ 0 be the rank of Xl in Ẽ , so that the rank of Xl in X is
r = s + 1 > 0. We proceed by induction on s.

Let first s be 0. We apply Proposition 24 to the inner pullback v : E .

Ỹ
→

�
.

F̃
; hence for every s such that Ys appears in F̃ with rank 0 there is ω ∈ E0

Ỹ

such that v(ω) �= 0 ∈ E0
Ys

. it follows that εls = 0 or �= 0 according to the
second member of (8), which is the same for ε1 and ε2.

We consider now the case s > 0. Let us fix l and s; by Proposition 25
there exists Yk of rank s − 1 ≥ 0 in F̃ and an inner pullback inducing a real
De Rham pullback ask : E .

Yk
→ E .

Ys
.

Let θ ∈ �
.

F̃
be defined as θ = (0, . . . , θk, . . . , 0); then (dθ)l = ±ask(θk).

Moreover ε(θ) = (εtk(θk))t where εtk : E p
Yk

→ E p
Xt

involves only components Yk

and Xt of rank < s. hence by induction ε1,tk = ε2,tk and dε1(θ) = dε2(θ).
from (9) it follows that εsl(ask(θk) is the same for ε1 and ε2. Taking any
θk �= 0 ∈ E0

Yk
we obtain ask(θk) �= 0 ∈ E0

Ys
so that ε1,ls = 0 if and only if

ε2,ls = 0.
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3.6. – Proof of Theorem 13: existence of pullback (the general case)

We suppose that (EP)m−1,n ,(EP)m−1,m−1, (U)m−1,n , (F)m ,(E)q , q =sup(m, n)

are already proved. Moreover we suppose (EPP)m,n true for morphisms between
irreducible spaces.

First we deal with the case X irreducible. There exists an irreducible
component Yk of Y such that f (X) ⊂ Yk ; let �

.

Y → �
.

Yk
be a natural pullback;

by (EPP)m,n there exists a pullback �
.

Yk
→ �

.

X . By composition we get the
required pullback.

Let us consider the case where X is reducible; let X = X1 ∪ . . . ∪ Xr be
the decomposition of X into its irreducible components. By the above case for
every j there exists a pullback φj : �

.

Y → �
.

X j
. Let �

.

X j
= E .

X̃ j
⊕�

.

Ej
⊕�

.

Ẽ j
(−1)

and denote by ρj : �
.

Ej
→ �

.

Ẽ j
and ηj : E .

X̃ j
→ �

.

Ẽ j
the inner pullback.

Then Sing(X j ) ⊂ Ej ; using (F)m and (E)m we can enlarge Ej in order to
obtain Sing(X) ∩ X j ⊂ Ej , so that if we define E = E1 ∪ . . . ∪ Er we obtain
Sing(X) ⊂ E . Let moreover X̃ = X̃1 � . . . � X̃r , Ẽ = Ẽ1 � . . . � Ẽr .

By (EP)m−1,n and (EP)m−1,m−1 there are pullback β : �
.

Y → �
.

E and

µj : �
.

E → �
.,1
Ej

; if we apply (F)m−1 to Ej we find two pullback �
.

Ej
→

�
.,0
Ej

, �
.,1
Ej

→ �
.,0
Ej

; by (E)m there exists �
.,0
X j

= E .

X̃ j
⊕ �

.,0
Ej

⊕ �
.,0

Ẽ j
(−1) and

a pullback θj : �
.

X j
→ �

.,0
X j

. Finally, after replacing �
.

Ej
by �

.,0
Ej

, �
.

X j
by

�
.,0
X j

and φj by θj ◦φj we can assume that µj : �
.

E → �
.

Ej
. Let φj be given by

�
p

Y → �
p

X j
= E p

X̃ j
⊕ �

p

Ej
⊕ �

p−1

Ẽ j

ω → (αj (ω), βj (ω), θj (ω))

Recall that by the definition of pullback, βj : �
.

Y → �
.

Ej
is a pullback. By

(U)m−1,n

βj = µj ◦ β

We can now define

�
.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1)

with inner pullback given by

ξ : �
.

E → �
.

Ẽ
= ⊕j�

.

Ẽ j

σ → ⊕jρj (µj (σ ))

and
λ : E .

X̃
= ⊕jE

.

X̃ j
→ �

.

Ẽ
= ⊕j�

.

Ẽ j

(τj ) → ⊕jηj (τj )
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Finally we define the morphism

φ : �
p

Y → �
p

X = ⊕jE
p

X̃ j
⊕ �

p

E ⊕ ⊕j�
p−1

Ẽ j

ω → (⊕jαj (ω), β(ω), ⊕jθj (ω))

We check that φ commutes with differentials. Since φj commutes with differ-
entials, we get for ω ∈ �

p
Y :

dαj (ω) = αj (dω)

dβj (ω) = βj (dω)

dθj (ω) = θj (dω) − (−1)p[ηj (αj (ω)) − ρj (βj (ω))]

Using the equality ρj ◦ βj = ρj ◦ µj ◦ β a simple computation shows that φ

commutes to d. It is clear that by construction φ satisfies all the properties in
the Definition 6 so it is the required pullback.

As to Remark 14, it is clear from the proof that if X = Y, f = id, m = n
we do not need the assumptions (EP)m,m−1, (U)m,m−1, because for every j
f (X j ) �⊂ E ; moreover we need (F)m only for the (irreducible) X j .

3.7. – Proof of Theorem 15: uniqueness of the pullback (the general case)

We suppose that (U)m−1,n , (F)m , (E)q , q = sup(m, n) are already proved.
Moreover we suppose (UP)m,n true for morphisms between irreducible spaces.

Let f : X → Y be a morphism between (reducible) complex spaces, X =⋃
j X j , Y = ⋃

k Yk be the respective decompositions into irreducible components.
Let �

.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1), �

.

Y = E .

Ỹ
⊕ �

.

F ⊕ �
.

F̃
(−1). Let φi : �

.

Y → �
.

X ,
i = 1, 2 two pullback. Let (u, p) be the inner pullback in �

.

X , and (v, q) those
in �

.

Y .
For (ω, σ, θ) ∈ �

p
Y , we have

φi (ω, 0, 0) = (αi (ω), βi (ω), 0)

φi (0, σ, 0) = (ρi (σ ), γi (σ ), ηi (σ ))

φi (0, 0, θ) = (0, δi (θ), εi (θ))

In fact the morphism E p

Ỹ
→ �

p−1

Ẽ
induced by φi is identically zero be-

cause the components of Ỹ have rank 0 in Y , while the components of the
hypercovering of �

.

X belonging to �
.

Ẽ
have strictly positive rank in X ; for an

analogous reason the morphism �
p−1

F̃
→ E p

X̃
is zero.

By (P4) in the Definition 6, and (U)m−1,n we obtain β1 = β2 = β, γ1 =
γ2 = γ, δ1 = δ2 = δ.

Moreover it is clear that αi = 0 on X̃ j in case f (X j ) ⊂ F , while αi is an
ordinary De Rham pullback on X̃ j if f (X j ) �⊂ F ; it follows α1 = α2 = α.
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For any irreducible component X j of X we consider a commutative diagram
like (5) (or (4): left to the reader) for φ1. Becuase of Lemma 21 we have
for φ2 an analogous diagram, with the same �

.,0
X j

and �
.

Yk
, and same natural

pullback �
.

X → �
.,0
X j

and �
.

Y → �
.

Yk
.

By (UP)m,n applied to the morphism of irreducible spaces X j → Yk we
can suppose that the diagrams (5) for φ1 and φ2 coincide, so that the same is
true for the composite morphisms πi : �

.

Y → �
.

Yk
→ �

.,0
X j

, i.e. π1 = π2. Since

by construction πi and φi induce the same morphisms �
p

F̃
→ E p

X̃ j
for every j ,

we conclude that also ρ1 = ρ2.
Since φi commutes to the differentials we can deduce

εi (v(ω)) = u(α(ω)) − p(β(ω))(10)

(εi ◦ d − d ◦ εi )(θ) = (−1)p(p(δ(θ))(11)

(ηi ◦ d − d ◦ ηi )(σ ) = (−1)pεi (q(σ )) + (−1)p[u(dρ(σ)) − q(dγ (σ )](12)

Arguing as in the proof of Lemma 23, by (10) and (11) we obtain ε1 = ε2;
then using (12) (instead of (9)) again an argument similar to that in the proof
of the Lemma 23 shows that η1 = η2 (the reader should note that η1 and η2
do not involve Ỹ ).

3.8. – Proof of Theorem 18: filtering

We suppose that (EP)m−1,m−1, (U)m−1,m−1, (F)m−1, (E)m , are already proved.

Let �
.,1
X = E .

X̃1
⊕ �

.,1
E ⊕ �

.,1

Ẽ
(−1), �

.,2
X = E .

X̃2
⊕ �

.,2
F ⊕ �

.,2

F̃
(−1).

1) First we consider the case X̃1 = X̃2 = X̃ , E = F, Ẽ = F̃ . By (F)m−1

there are pullback �
.,1
E → �

.

E �
.,2
E → �

.

E , �
.,1

Ẽ
→ �

.

Ẽ
, �

.,2

Ẽ
→ �

.

Ẽ
. Using

(EP)m−1,m−1, (U)m−1,m−1 and again (F)m−1 we find a pullback �
.

E → �
.

Ẽ
such

that the two following diagrams for j = 1, 2 are commutative

�
., j
E → �

.

E↓ ↓
�

., j

Ẽ
→ �

.

Ẽ

where the left vertical arrows come from the inner differentials in �
., j
X . Finally

by (E)m we find �
.

X = E .

X̃
⊕ �

.

E ⊕ �
.

Ẽ
(−1) and obvious pullback �

., j
X → �

.

X .

Lemma. Under the assumptions of the theorem, let �
.

X = E .

X̃
⊕�

.

E ⊕�
.

Ẽ
(−1),

and let G be a nowhere dense closed subspace of X with E ⊂ G. Then there exists
�

.,0
X = E .

X̃
⊕ �

.

G ⊕ �
.

G̃
(−1) ∈ R(X) and a pullback �

.

X → �
.,0
X corresponding to

the identity.
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It is now clear how to prove (F)m : we take G = E ∪ F . By the lemma
we find �

.,0
X = E .

X̃
⊕ �

.

G ⊕ �
.

G̃
(−1) and two pullback �

., j
X → �

.,0
X , j = 1, 2.

Sketch of the proof of the lemma. In the case where X is irreducible,
the lemma is a consequence of the Remark 9. In the general case it follows
from the Remark 14, because meanwhile (F)m has been already proved for each
irreducible component of X .

4. – The Hodge-Deligne mixed structure

The complexes of differential forms defined above give a natural approach
to the Deligne theory of mixed Hodge structures. We refer to [D], [A], [E],
for different approaches to this theory. In [AG7] there is a self contained, quite
elementary treatment, which avoids the use of cohomological descent theory.

For the construction of the Deligne mixed Hodge structure it is necessary
to put two filtrations on the cohomology of X . On the level of the forms on X
we introduce them in the following way.

For a fixed �
.

X ∈ R(X) we define:

i) The (increasing) weight filtration

Wm(�
p

X ) := Wm(E p

X̃
) ⊕ Wm(�

p

E) ⊕ Wm+1(�
p−1

Ẽ
)

by induction on dim(X): Wm(�
p
E) and Wm(�

p−1

Ẽ
) are already defined

because dim E < dim X , dim Ẽ < dim X , while Wm(E p

X̃
) is equal to E p

X̃
for

m ≥ 0 and zero otherwise.
More constructively, if (Xl, hl)l∈L is the hypercovering associated to �

p
X ,

Wm(�
p

X ) = ⊕l:−q(l)≤mE
p−q(l)

Xl

ii) The (decreasing) Hodge filtration

Fr (�
p

X ) := Fr (E p

X̃
) ⊕ Fr (�

p

E) ⊕ Fr (�
p−1

Ẽ
)

again by induction (here Fr (E p

X̃
) is the usual Hodge filtration in the smooth

case). Alternatively

Fr (�
p

X ) = ⊕l FrE p−q(l)

Xl
.

It is not hard to see that d(Wm(�
p
X )) ⊂ Wm(�

p+1
X ), d(Fr (�

p
X )) ⊂ Fr (�

p
X );

moreover an admissible pullback preserves both the filtrations. As a consequence
we get filtrations on the spaces H 0(X, �

p
X ), Z p(X) = {ω ∈ H 0(X, �

p
X ) : dω =

0}, B p(X) = d H 0(X, �
p−1
X ) ⊂ H 0(X, �

p
X ), and finally on Z p(X)/B p(X) =

H p(X, C).
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Theorem 26. If X is a compact projective variety, for any �
.

X ∈ R(X) the
weight and the Hodge filtrations induce the Hodge-Deligne mixed structure on the
cohomology of X.

Sketch of the proof. By induction on the dimension of X we already
know that the conclusion is true for the cohomology of E and Ẽ ; moreover it
is true for the cohomology of X̃ , which is smooth. Then �

.

X coincides (up to
shift) with the cone of the morphism of bifiltered complexes

( j ◦ q)∗�
p

Ẽ

(−1)p(ψ−φ)−→ π∗E
p

X̃
⊕ j∗�

p

E

It follows by [D] that the weight and Hodge filtrations induce a mixed Hodge
structure on the cohomology groups H p(X, C). In other words, once we know
that the above filtrations induce the classical pure Hodge structure on the coho-
mology of smooth projective varieties, and mixed structures on the cohomology
of projective varieties of dimension less than dim X , we use the Mayer-Vietoris
sequence

· · · H p−1(Ẽ, C) → H p(X, C) → H p(X̃ , C) ⊕ H p(Ẽ, C) → H p(Ẽ, C) · · ·

to prove that the cohomology of X inherits a mixed structure. By the prop-
erty (F) (filtering) the mixed structure does not depend on the choice of the
particular complex �

.

X and by the property (EP) (existence of pullback) it is
functorial with respect to X . This is enough to get the conclusion.

In fact some more work, according to the methods of [D] (see also [A])
will show

Theorem 27. If X is a compact projective variety, the spectral sequence of the
complex �(X, �

.

X ) corresponding to the weight filtration degenerates at E2.

As another example we describe the mixed structure on the relative coho-
mology of a morphism f : X → Y between projective varieties. Let �

.

Y ∈ R(Y ).
By (EP) (existence of pullback) there exists a �

.

X ∈ R(X) and a pullback

α : �
.

Y → f∗�
.

X . We consider on Y the complex �
.

f where �
p
f = �

p
Y ⊕ f∗�

p−1
X

and the differential is

d(ω, η) = (dω, dη + (−1)pα(ω)) .

Then the relative cohomology H p( f ) turns out to be the cohomology of the
complex of the global sections of �

.

f . The filtrations on �
.

Y and �
.

X induce
filtrations on �

.

f and finally on H p( f ). By means of the natural exact sequence

· · · H p−1(X, C) → H p( f ) → H p(Y, C) → H p(X, C) · · ·

it is possible to define the mixed structure on H p( f ). Again by the properties (F)
and (EP) the result does not depend on the choices of �

.

X and the pullback α.
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5. – Logarithmic complexes

In this section we show how to modify the previous constructions in order
to define complexes of forms with logarithmic poles at infinity, in the sense of
Griffiths and Schmid [GS].

By a pair (of complex spaces) (X, Q) we mean the data of a complex
space X and of a closed, nowhere dense complex subspace Q. We denote the
complement X \ Q by X◦. More generally, if U is an open subset of X we
define U ◦ = U \ Q. A morphism of pairs f : (X, Q) → (Y, R) is a morphism
f : X → Y such that f (Q) ⊂ R and f (X◦) ⊂ Y ◦.

Let (X, Q) be a pair such that X is smooth and Q is a divisor with normal
crossing. Let �

.

X 〈log Q〉 be the complex of holomorphic forms with logarithmic
poles along Q. We define the (smooth) logarithmic De Rham complex of the
pair (X, Q) by

E p

X 〈log Q〉 =
∑

k+q=p

�
k

X 〈log Q〉 ⊗ E0,q

X

equipped with the usual differential (the above tensor product is taken over OX ).
The sheaves E p

X 〈log Q〉 are obviously fine.
A classical result (see [L] for a smooth divisor, and [GS] for the general

divisor with normal crossing) states the following

Proposition 28. Let (X, Q) be a pair such that X is smooth and Q is a divisor
with normal crossing; Let k : X \ Q → X be the embedding. The natural morphism
of complexes on X

E .

X 〈log Q〉 → k∗E
.

X◦

induces isomorphisms of the cohomology sheaves:

(20) Hp(E .

X 〈log Q〉) → Rp j∗CX◦

in particular for every open subset U of X the natural morphisms

H p(U, E .

X 〈log Q〉) → H p(U ◦, C)

are isomorphisms.

For a pair (X, Q) we define a family of complexes of fine sheaves
R(X〈log Q〉) = {�.

X 〈log Q〉} and for every morphism f : (X, Q) → (Y, R) a
family of morphisms of complexes between the �

.

Y 〈log R〉 ∈ R(Y 〈log R〉) and
some of the �

.

X 〈log Q〉∈R(X〈log Q〉), more precisely morphisms �
.

Y 〈log R〉 →
f∗�

.

X 〈log Q〉 which we simply denote �
.

Y 〈log R〉 → �
.

X 〈log Q〉 and call (ad-
missible) pullback with the following properties.

(I) The restriction �
.

X◦ of �
.

X 〈log Q〉 to X◦ belongs to R(X◦) (as defined in
the previous paragraphs), and the natural morphism of complexes on X

�
.

X 〈log Q〉 → k∗�
.

X◦



146 VINCENZO ANCONA – BERNARD GAVEAU

induces isomorphisms in cohomology:

(14) Hp(�
.

X 〈log Q〉) → Rpk∗CX◦

(II) For p > 2 dim X , �
p
X 〈log Q〉 = 0.

(III) If X is smooth and Q is a divisor with normal crossing the logarithmic De
Rham complex E .

X 〈log Q〉 belongs to R(X〈log Q〉); for every morphism f :
(X, Q) → (Y, R) with Y smooth and R a divisor with normal crossing the
ordinary De Rham pullback f ∗ : E .

Y 〈log R〉 → f∗E
.

X 〈log Q〉 is an admissible
pullback.

(IV) Composition, existence, uniqueness and filtering of the admissible pullback
are true. We leave to the reader the precise statements.

It is useful to put by definition �
p
X 〈log Q〉 = 0 at points x ∈ X where

Q = X (in a neighborhood of x).
We sketch now the construction of the family R(X〈log Q〉) for any pair

(X, Q).

Step 1. Let X be smooth, and Q any subspace. Let

(15)
Q̃

i→ X̃
q ↓ π ↓

Q
j→ X

be a proper modification,where X̃ is smooth, Q̃ is a divisor with normal crossing
and π is an isomorphism outside Q̃; we define

E .

X 〈log Q〉 = π∗(E
.

X̃
〈log Q̃〉)

which satisfies (13); the above complex, which depends on the choice of the
diagram (15), will be called a logarithmic De Rham complex of the pair (X, Q);
the reader should keep in mind that this gives new complexes even when Q is
a divisor with normal crossing.

Step 2. Let (X, Q) be any pair, E ⊂ X a nowhere dense closed subspace,
with Sing(X) ⊂ E , and consider as usual a diagram

Ẽ
i→ X̃

q ↓ π ↓
E

j→ X

Let Q̃ = π−1(Q), M = E ∩ Q, M̃ = Ẽ ∩ Q̃. Let �
.

E 〈log M〉 ∈ R(E〈log M〉)
(which exists by induction on dim(X)). Then we can find �

.

Ẽ
〈log M̃〉 ∈

R(Ẽ〈log M̃〉), a logarithmic De Rham complex E .

X̃
〈log Q̃〉 as in step 1), a

pullback φ : �
.

E 〈log M〉 → �
.

Ẽ
〈log M̃〉 (corresponding to q), a pullback ψ :
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E .

X̃
〈log Q̃〉 → �

.

Ẽ
〈log M̃〉 (corresponding to i) with the following property: the

complex

�
.

X〈log Q〉=π∗E
.

X̃
〈log Q̃〉⊕ j∗�

.

E〈log M〉⊕ ( j ◦ q)∗�
.

Ẽ
〈log M̃〉(−1)

whose differential is by definition

d(ω, σ, θ) = (dω, dσ, dθ + (−1)p(ψ(ω) − φ(σ))

induces the isomorphism of cohomology sheaves (14).

Proof of the surjectivity in (14). Let x ∈ Q and ρ = (ω, σ, θ) ∈ �
p
X (U \

Q) be a d-closed section of k∗�
p
X◦ in an open neighborhood U of x . Since

dσ = 0, by induction on dimensions there are σ ′ ∈ �
p
E 〈log M〉(U ∩E) and σ ′′ ∈

�
p−1
E ((U∩E)\Q) with σ−dσ ′′ = σ ′ (after possibly shrinking U ); replacing ρ by

ρ−d(0, σ ′′, 0) we can suppose that σ ∈ �
p
E 〈log M〉(U ∩E). A similar argument

(using Proposition 1) shows that we can also suppose ω ∈ E p

X̃
〈log Q̃〉(U ). Since

(−1)p(ψ(ω)−φ(σ)) = −dθ , by induction (we use the injectivity on Ẽ) there is
θ ′ ∈ �

p−1

Ẽ
〈log M̃〉(q−1(U ∩ E)) such that (−1)p(ψ(ω) − φ(σ)) = −dθ ′. Again

by induction, d(θ − θ ′) = 0 implies that we can write θ − θ ′ = d θ̃ + θ ′′, where
θ ′′ ∈ �

p−1

Ẽ
〈log M̃〉(q−1(U ∩ E)) and θ̃ ∈ �

p−2

Ẽ
(q−1(U ∩ E) \ Q̃)). Finally

(ω, σ, θ) − d(0, 0, θ̃ ) = (ω, σ, θ ′ + θ ′′)

which ends the proof of the surjectivity in (14). The proof of the injectivity
uses similar arguments and it is left to the reader.

From the construction it follows that for a given complex �
.

X 〈log Q〉 there
is a uniquely determined family ((Xl, Ql)), hl)l∈L of pairs (Xl, Ql) (Xl smooth
and Ql a divisor with normal crossing in Xl) and proper maps of pairs hl :
(Xl, Ql) → (X, Q) such that

�
p

X 〈log Q〉 = ⊕lE
p−q(l)

Xl
〈log Ql〉

where q(l) is a nonnegative integer; moreover, there exist mappings hlm :
(Xl, Ql) → (Xm, Qm), commuting with hl and hm , such that the differential
�

p
X 〈log Q〉 → �

p+1
X 〈log Q〉 is given by

d(ωl) =
(

dωl +
∑

m

ε
(p)
lm h∗

lmωm

)

where ε
(p)
lm can take the values 0, ±1.

The family ((Xl, Ql), hl)l∈L will be called the hypercovering of (X, Q)

associated to �
.

X 〈log Q〉, and q(l) will be the rank of (Xl, Ql).



148 VINCENZO ANCONA – BERNARD GAVEAU

6. – Further applications and comments

It is easy to see that the complex D
.

X of differential forms in sense of
Grauert and Grothendieck (see the introduction and [BH]) is in a natural way
a subcomplex of �

.

X . More precisely for any �
.

X ∈ R(X) there is an injective
morphism of complexes

ηX : D
.

X → �
.

X

such that for every pullback α : �
.

Y → �
.

X corresponding to a morphism
f : X → Y the following diagram

(16)
D

.

Y
ηY→ �

.

Y
f ∗ ↓ α ↓

D
.

X
ηX→ �

.

X

commutes.
With the notations of Definition 2: �

.

X = π∗E
.

X̃
⊕ j∗�

.

E ⊕ ( j ◦ q)∗�
.

Ẽ
(−1)

we define
ηX (ω) = π∗(ω), ηE( j∗(ω)), 0)

where ηE has been defined by induction, and π∗(ω) ∈ D
.

X̃
= E .

X̃
. In other

words, looking at the hypercovering (Xl, hl)l∈L , we have ηX (ω)l = hl
∗(ω) if

q(l) = 0 and ηX (ω)l = 0 otherwise. Hence ηX (ω) lives on the 0-skeleton of the
hypercovering, i.e. on the spaces Xl with q(l) = 0. Again by induction we prove
ψ(π∗(ω)) = φ(ηE( j∗(ω))) which implies that ηX commutes to differentials in
D

.

X and �
.

X . Since π∗ is injective, ηX is injective too.
Another interesting natural subcomplex of �

.

X is the complex

�̃
.

X = {� = (ω, σ, 0) ∈ �
.

X : ψ(ω) = φ(σ)}

It is easy to prove that the forms in �̃
.

X live on the 0-skeleton of the hypercov-
ering (Xl, hl)l∈L . There is a canonical embedding of D

.

X into �̃
.

X . In [AG7]
we prove the following:

– �̃
.

X is a fine resolution of CX ;
– every pullback α : �

.

Y → �
.

X sends �̃
.

Y to �̃
.

X ;
– a wedge product can be defined in �̃

.

X by the (recursive) formula

(ω1, σ1, 0) ∧ (ω2, σ2, 0) = (ω1 ∧ ω2, σ1 ∧ σ2, 0)

which induces the cup product in cohomology;
– in particular the direct sum

⊕
p H 0(X, �̃

p
X ) becomes a differential graded

algebra, which allows homotopy computations via Sullivan theory [S].
Finally, we remark that it is possible to define a complex (S

.

X , ∂) of sub-
analytic chains, dual to �

.

X , whose coomology is the (Borel-Moore) homology

of X . It is defined recursively, by S
p
X = π∗S

p

X̃
⊕ j∗S

.

E ⊕ ( j ◦ q)∗S
p−1

Ẽ
; a form



FAMILIES OF DIFFERENTIAL FORMS ON COMPLEX SPACES 149

� = (ω, σ, θ) can been integrated on a chain � = (α, β, γ ) by the formula∫
� � = ∫

α ω + ∫
β σ + ∫

γ θ . The Stokes formula
∫
� d� = ∫

∂� � holds, giving
the duality between cohomology and homology.
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