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Non-Holomorphic Functional Calculus for
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Abstract. We consider n-tuples of commuting operators a = a1, . . . , an on a
Banach space with real spectra. The holomorphic functional calculus for a is
extended to algebras of ultra-differentiable functions on Rn , depending on the
growth of ‖ exp(ia · t)‖, t ∈ Rn , when |t | → ∞. In the non-quasi-analytic
case we use the usual Fourier transform, whereas for the quasi-analytic case we
introduce a variant of the FBI transform, adapted to ultradifferentiable classes.
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1. – Introduction

Let X be a Banach space and let L(X) denote the space of bounded
linear operators on X . If a1, . . . , an ∈ L(X) are commuting, then f (a) =
f (a1, . . . , an) has a definite meaning for any polynomial f (z) = f (z1, . . . , zn);
in fact for any entire function f (z). Since the polynomials are dense in O(Cn)

there is a continuous algebra homomorphism

(1.1) O(Cn) → (a) ⊂ L(X) ,

where (a) denotes the closed subalgebra of L(X) that is generated by a1, . . . , an .
To go beyond entire functions one has to consider the joint spectrum of the
operators. The appropriate notion of joint spectrum σ(a) = σ(a1, . . . , an)

was introduced by J. Taylor in [17]. Let �p,q
z denote the space of X -valued

(p, q)-forms at z ∈ Cn , and let δz−a(z) denote contraction with the operator-
valued (1, 0)-vector 2π i

∑
(zj − aj )(∂/∂zj |z). Since δz−a: �p+1,0

z → �p,0
z and

δz−a ◦ δz−a = 0 (this is equivalent to the commutativity of the aj ), we have a
complex

(1.2) 0←�0,0
z ← . . . ←�n,0

z ←0 .

Pervenuto alla Redazione il 28 agosto 2001 e in forma definitiva il 29 ottobre 2002.
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Taylor defines the spectrum σ(a) as the set of z for which the complex (1.2) is
not exact. It turns out that σ(a) is a compact subset of Cn which is nonempty
unless X = {0}.

Theorem 1.1. Suppose that a1, . . . , an are commuting operators on a Banach
space. There is a continuous algebra homomorphism

O(σ (a)) → L(X), f 	→ f (a) ,

that extends (1.1). Moreover, if f = ( f1, . . . , fm) is a mapping, fj ∈ O(σ (a)),
and f (a) = ( f1(a), . . . , fm(a)), then

(1.3) σ( f (a)) = f (σ (a)) .

If furthermore h ∈ O(σ ( f (a)), then h ◦ f (a) = h( f (a)).

The basic results about the functional calculus are due to Taylor [18]. The
last statement, the composition rule, was proved by Putinar in [14]

If a is one single operator and f ∈ O(σ (a)), then f (a) is given by the
formula

(1.4) f (a)x =
∫

∂ D
f (z)ωz−a x, x ∈ X ,

where ωz−a is the resolvent form

ωz−a = 1

2π i
(z − a)−1dz ,

which is holomorphic in C\σ(a). In the several dimensional case, the resolvent
ωz−a x , for a fixed element x ∈ X , is a cohomology class in H n−1(Cn\σ(a),OX

n )

where OX
n denotes the sheaf of holomorphic X -valued (n, 0)-forms. In the orig-

inal work of Taylor this cohomology class was defined by a Čech co-chain with
respect to a certain covering of the complement of the spectrum. In principle,
by the Dolbeault isomorphism, one can also represent the resolvent class by
a ∂̄-closed differential form of bidegree (n, n − 1) in the complement of the
spectrum in such a way that the integral representation formula (1.4) still holds.
It is then of interest to find a Dolbeault representative as explicitly as possible.
This was first done by Vasilescu in [19] for the case when X is a Hilbert space,
by an appropriate generalization of the Bochner–Martinelli formula. Vasilescu’s
construction was later generalized by D. Albrecht [1] and [2], and by Kordula
and Muller [12] to operators on a Banach space satisfying some additional
conditions. Finally, the first author gave the construction of the Dolbeault rep-
resentative in the general case, see [3], and showed how this could be used to
develop Taylor’s theory in a simpler and more elementary way.

In this paper we will mainly consider the case when the spectrum σ(a) is
real; then there is always a (a)-valued form ω̃z−a of Cauchy-Fantappie-Leray
type such that ω̃z−a x represents the class ωz−a x for each x ∈ X . In fact, since
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σ(a) is polynomially convex, for a fixed point z /∈ σ(a), by Cartans’s theorem
there are φj ∈ O(σ (a)) such that

∑
φj (w)(zj − wj ) = 1. Hence, by Taylor’s

theorem, δz−as = ∑
sj (zj − aj ) = e, if s = ∑

sj dzj , sj = φj (a), and since the
polynomials are dense in O(σ (a)) it follows that s is in (a). It is now easy to
obtain a smooth form in Cn \ σ(a) such that δz−as(z) = e, and one can then
take ω̃z−a = s ∧ (∂̄s)n−1, see [3].

If F is a function with compact support that coincides with f ∈ O(σ (a))

is some neighborhood of σ(a), then

f (a) = −
∫

∂̄ F(z) ∧ ωz−a .

This formula suggests that, in certain situations, one may have a richer functional
calculus. One should look for functions F defined in Cn , with say compact
support, such that |∂̄ F | vanishes fast enough on σ(a) compared to the growth
of some representing form ω̃z−a as above so that the integral

(1.5) F(a) =
∫

∂̄ F(z) ∧ ω̃z−a

has a meaning. One easily verifies that this definition only depends on the
values of F near σ(a). For one single operator this idea was exploited by
Dynkin, see [9]. In the higher dimensional case similar ideas have been used
by several authors including Waelbrock [20], Nguyen [13], Droste [8], and more
recently Sandberg [16]. One difficulty is to prove the multiplicative property
FG(a) = F(a)G(a). In [13] this is done in a manner parallel to Taylors
method, by considering tensor products. Droste considers the situation when
the spectrum lies on a totally real manifold, and in that case he obtains the
multiplicative property by approximation with holomorphic functions. Finally
Sandberg proves a multidimensional generalization of the so-called resolvent
identity, and obtains the multiplicative property from there, following Dynkin’s
approach. Another difficulty in the several variable case is that there is a variety
of possible representatives ω̃z−a of the class ωz−a . Therefore, the growth of
any single representative of the resolvent class, in particular the growth of any
form s, is not an intrinsic property of the n-tuple of operators when n > 1, and
it would be desirable to have a more easily verified hypothesis on the tuple
which, as closely as possible, determines which class of functions it operates
on.

Another natural approach to extend the functional calculus if the spectrum
is real (or contained in the torus in Cn) is by the suggestive formula

(1.6) f (a) =
∫

eia·t f̂ (t)dt ,

where a · t = ∑
aj tj , for t ∈ Rn , and where f is a function on Rn and f̂ is

the usual Fourier transform

(1.7) f̂ (t) = 1

(2π)n

∫
e−i t ·x f (x)dx .
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Clearly this formula gives a meaning to f (a) if f̂ has enough decay, which
roughly speaking just means that f has enough regularity, compared to the
growth of ‖eia·t‖. In this case the multiplicativity follows directly and the
problem with non-uniqueness of the resolvent representative disappears. It is
not clear to us where this idea appeared first, but it is used quite explicitly (in the
case of one single operator with spectrum on the circle) already in [21], where
the idea is attributed to Beurling. It turns out that a radial growth condition on
‖eia·t‖ precisely corresponds to a radial growth condition on some form ω̃z−a .
In the same way, the regularity of a function on Rn measured by a radial decay
condition on | f̂ (t)| more or less corresponds to a radial decay condition on ∂̄ F
for some extension F(z) of f to Cn . In this case therefore both methods give
rise to essentionally the same functional calculus. The purpose of this paper
is to consider more general growth conditions on ‖eia·t‖, and the optimal class
of functions is then given by a microlocal condition; however in general this
condition cannot be completely catched by the growth of some (single) almost
holomorhic extension because of the so-called edge-of-the-wedge phenomenon.
Therefore, in this paper we focus our attention on the Fourier transform method
rather than the Dynkin method; however see Section 6 and [5] for some further
comments on the relation between the two methods.

One can consider the mapping f 	→ µ( f ) = f (a) ∈ (a) given by Theo-
rem 1.1 as an (a)-valued analytic functional which is carried by σ(a) ⊂ Rn ,
i.e., an (a)-valued hyperfunction on Rn with compact support. The regularity of
such a hyperfunction is reflected by the growth of its (inverse) Fourier transform
µ̌(t) = µ(eix ·t ) and is related to how large class of functions that µ operates
on. Therefore we should look for optimal such classes of functions. Our start-
ing point is certain Banach algebras Ah of functions in Rn , first introduced by
Beurling [6]. Here h is a nonnegative subadditive function and f ∈ Ah if∫

| f̂ (t)| exp h(t)dt

is finite. Clearly a compactly supported hyperfunction µ is defined on Ah if
|ǔ| ≤ C exp h; in case µ is the holomorphic functional calculus, this action of
course is realized by (1.6). However, to find the optimal class of functions on
which such a µ will be acting, one has to consider functions only defined in
some neighborhood of the support of µ. The core of this paper is to show that
the algebras Ah can be extended to spaces Ah,K of functions defined in some
neighborhood of a compact set K , that these spaces essentially are the duals of
compactly supported hyperfunctions with the stated regularity, that these spaces
actually are algebras, and that the holomorphic functional calculus extends to
these spaces, and that the desired spectral mapping property holds, given the
appropriate growth condition on ‖eia·t‖.

In the case when Ah contains cutoff functions, the non-quasianalytic case,
it turns out that the space Ah,K of functions can be described simply as the
restrictions to K of functions in the space of global functions Ah on Rn . This
is done in Section 2, and the extension of the functional calculus to these
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algebras is made in Section 3. The work in these two sections to a large extent
relies on Gelfand theory. To define the general algebras, and the corresponding
functional calculus, we introduce a variant of the so-called FBI transformation
that we have adapted to ultradifferentiable classes. This is done in Sections 4
and 5.

We end up this section with some additional remarks on tuples of operators
with real spectra. From the spectral mapping property ((1.3) in Theorem 1.1) it
follows that σ(a) is real if and only of σ(ak) is real for each k. Furthermore,
if σ(a) is real then ‖eia·t‖ = exp o(|t |) when |t | → ∞, and in fact this growth
condition characterizes commuting n-tuples with real spectra. More precisely,

Lemma 1.2. Suppose that a1, . . . , an are commuting operators. Then σ(a) is
contained in Rn if and only if there is a (increasing and concave) function H(s) on
[0, ∞) such that

(1.8) ‖eia·t‖ ≤ CeH(|t |) and lim
s→∞ H(s)/s = 0 .

Proof. Suppose that σ(a) ⊂ Rn . Let D be a neighborhood of σ(a) in Rn

and let Dη = {x + iy; x ∈ D, |y| < η}. If ω̃z−a is a fixed form as above,
then, by the formula (1.4), we have that

(1.9) eia·t =
∫

∂ Dη

eiz·t ω̃z−a .

Let g(η) be a convex decreasing function on (0, ∞) such that

sup
z∈∂ Dη

‖ω̃z−a‖ ≤ exp g(η)

for small η. If g'(s) = infη>0(g(η) + sη), then g'(s) is concave and increasing
on (0, ∞) and a simple estimation of (1.9) gives that

‖eia·t‖ ≤ C exp g'(|t |) .

For each ε > 0 there is a constant Cε such that g(η) ≤ Cε for η ≥ ε. Therefore
g'(s) ≤ Cε + εs, i.e., g'(s) = o(s).

Conversely, assume that (1.8) holds. If w ∈ σ(a) it follows by the spectral
mapping property (Theorem 1.1) that eiw·t ∈ σ(eia·t), and therefore

|eiw·t | ≤ ‖eia·t‖ ≤ Ceh(t) .

Taking t = −s Im w in this inequality and letting s → ∞ we deduce that
Im w = 0 so that w ∈ Rn . Thus the lemma is proved.

Remark 1. One can prove the lemma with no explicit reference to the
spectral mapping property. In fact, assume that (1.8) holds and let w = α − iβ



930 MATS ANDERSSON – BO BERNDTSSON

with β �= 0. Then ‖eis(a−w)·β‖ � eh(sβ)−|β|2s � e−δs for some positive δ, and
hence

cj =
∫ ∞

s=0
βj e

is(a−w)·βds

makes sense. Furthermore,∑
cj (wj − aj ) =

∫ ∞

0

d

ds
eis(a−w)·βds = e ,

which shows that w /∈ σ(a).

2. – Algebras of ultra-differentiable functions

In view of formula (1.6) and Lemma 1.2 it is natural to consider classes
(algebras) of functions whose Fourier transforms have less than exponential
decay. Let h(t) be a positive, continuous, and subadditive function in Rn with
h(0) = 0. Moreover, assume that h(t) is increasing on rays from the origin and
that

(2.1) lim
|t |→∞

h(t)

|t | = 0 .

A function satisfying these requirements will be referred to as an admissible
weight function. For instance, if H(s) is concave and nondecreasing on each half
axis of R and H(0) = 0, then it is automatically subadditive, and if in addition
H(s) = o(|s|) when s → ±∞, then functions like h(t) = H(|t |) and h(t) =
H(t · α), α ∈ Rn , are admissible weight functions. If h is admissible, then ha

is admissible for 0 < a < 1. It is easily verified that the class of admissible
weight functions is closed under finite sums and suprema. More generally, if
h1, . . . , hm are admissible, then (h p

1 +· · ·+h p
m)1/p is admissible if 1 ≤ p < ∞.

Sometimes we impose the additional assumption that exp(−h(t)) = O(|t |−m)

for all positive m, or equivalently, that

(2.2) lim sup
|t |→∞

log(1 + |t |)
h(t)

= 0 .

Let Ah be the space of tempered distributions f on Rn such that f̂ is a
measure and

(2.3) ‖ f ‖Ah =
∫

t
| f̂ (t)|eh(t)dt < ∞ ,

where the Fourier transform f̂ is defined as in (1.7). Then any f ∈ Ah is at
least continuous, and if (2.2) holds, then Ah is contained in C∞(Rn). Clearly Ah
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is a Banach space of functions that is closed under translations. Moreover, if ĝ
is bounded, in particular if g ∈ L1(Rn), then f 	→ f ∗ g is a bounded operator
on Ah . Since h is subadditive, h(u) = h(t + u − t) ≤ h(t) + h(u − t), and
therefore

eh(u)| f̂ ∗ ĝ(u)| ≤
∫

t
| f̂ (t)|eh(t)|ĝ(u − t)|eh(u−t)dt ,

and integrating this inequality with respect to u and applying Fubini’s theorem
we get that

‖ f g‖Ah ≤ ‖ f ‖Ah ‖g‖Ah .

Thus Ah actually is a Banach algebra under pointwise multiplication. We say
that the class Ah is non-quasianalytic if for each compact set E and open
neighborhood U ⊃ E there is a function χ ∈ Ah with support in U which is
identically 1 in some neighborhood of E . We recall the following version of
the Denjoy–Carleman theorem.

Theorem 2.1. Let h be an admissible weight function. The class Ah is non-
quasianalytic if and only if

(2.4)
∫

|t |≥1

h(t)dt

|t |n+1
< ∞ ,

and this holds if and only if there is a concave increasing function H(s) such that
h(t) ≤ H(|t |) and

(2.5)
∫ ∞

1

H(s)ds

s2
< ∞ .

Remark 2. In [6] this theorem is only stated explicitly for the class
∩c>0Ach but it holds for each fixed Ah as well. What is not obvious from
Beurling’s formulation is that all desired cutoff functions χ can be found in the
same space Ah . Notice that the simplest way to obtain functions with small
support, by dilation like fδ(x) = δ−n f (x/δ), does not work. However, the
statement is anyway true and for the reader’s convenience we supply a direct
proof here.

We thus are to prove that Ah contains all desired kinds of cutoff functions
if h(t) = H(|t |), where H is concave and increasing and (2.5) holds. Let us
first assume that n = 1 and let

(2.6) h̃(t) = H(|t |) + 2 log(1 + |t |) .

In view of (2.5) it follows that the Poisson integral Ph̃ of h̃ is a positive
harmonic function in the upper halfplane. If � is a holomorphic function such
that Re� = Ph̃, then g = exp(−�) is a bounded holomorphic function in
the upper halfplane and |g| = exp(−h̃(t)) on the boundary. Therefore g is the
Fourier transform of a function f (x) supported on the positive halfaxis and since
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| f̂ (t)| = exp(−h̃(t)) it follows that f ∈ Ah . Now φ(x) = f (α + x) f (β − x) is
an nonvanishing function in Ah with support in (−ε, ε) if the real numbers α

and β are appropriately chosen. It follows that f (x) = φ(x1)φ(x2) · · · φ(xn)

is in Ah in Rn and has support in {x; max |xj | < ε}. Since h is a radial
function, Ah is closed under conjugation and if f ∈ Ah has compact support,
then | f |2 is a non-negative compactly supported function in Ah . One obtains
the required function χ by convolution of a function with small support and
the characteristic function for a domain which is slighly larger than E .

Let Ah,0 be the subalgebra of Ah that is generated by the constants and
the functions f ∈ Ah such that f̂ is absolutely continuous, i.e., in L1(eh). Each
function f (x) in Ah,0 is thus continuous and has a limit when |x | → ∞. For
this slightly smaller Banach algebra there is a simple description of its maximal
ideal space as the one point compactification of Rn .

Lemma 2.2. The complex homomorphisms m:Ah,0 → C are precisely the
point evaluations x 	→ f (x) for x ∈ Rn ∪ {∞}.

Proof. If x ∈ Rn∪{∞}, then clearly f 	→ f (x) is a complex homomorphism
Ah,0 → C. To see that any homomorphism is of this kind, first notice that any
f ∈ Ah,0 can be written uniquely as f = fc + β, where f̂c is in L1(eh) and β

is a constant. Following [15] Example 11.13 (e) one finds that if m:Ah,0 → C
is a homomorphism, then either m( fc + β) = β for all f ∈ Ah,0 or

m( f ) =
∫

f̂ φehdt

for some bounded function φ. The multiplicativity property then forces that
φ(t)eh(t) = eitα for some complex number α. In view of the assumption (2.1), α

must be real, and thus m( f ) = f (α).

From the lemma and basic Gelfand theory it follows that the ideal generated
by f1, . . . , fm ∈ Ah,0 is the whole algebra if and only if the mapping f =
( f1, . . . , fm) is nonvanishing on Rn ∪{∞}. In particular, 1/ f ∈ Ah,0 if f ∈ Ah,0
and f �= 0 on Rn ∪ {∞}.

Now suppose that Ah is non-quasianalytic, let E be a compact subset of Rn ,
and let

Ih,E = { f ∈ Ah,0; f = 0 on E} .

Since Ih,E is a closed ideal in Ah,0, the quotient space Ah,0/Ih,E is again a
Banach algebra which intuitively consists of all restrictions to E of functions
in Ah,0, with the norm

‖φ‖Ah,0/Ih,E = inf{‖ f ‖Ah,0; f ∈ Ah,0 and f = φ on E} .

Since we assume that Ah is non-quasianalytic the definition is unaffected if we
replace Ah,0 by Ah .
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Clearly each point evaluation f 	→ f (α), α ∈ E , is a homomorphism
Ah,0/Ih,E → C. Conversely, any such homomorphism is pulled back to a ho-
momorphism on Ah,0 that vanishes on Ih,E . In view of the previous proposition
it is therefore given by a point evaluation f 	→ f (α) for some α ∈ E . We
therefore have

Proposition 2.3. The maximal ideal space of Ah,0/Ih,E is precisely E. Hence
if f1, . . . , fm ∈ Ah,0/Ih,E , then there are uj ∈ Ah,0/Ih,E such that

∑
uj fj = 1 if

and only if f = ( f1, . . . , fm) is nonvanishing on E.

Our next objective is to show that one can compose with functions that
are holomorphic in some neighborhood of the image.

Proposition 2.4. Suppose that f = ( f1, . . . , fm), where fj ∈ Ah,0/Ih,E , and
suppose that g ∈ O( f (E)). Then g ◦ f ∈ Ah,0/Ih,E .

Proof. The spectrum of f1, . . . , fm with respect to the Banach algebra
Ah,0/Ih,E is equal to the image of the Gelfand transform, and in view of Propo-
sition 2.3 is is precisely the compact set f (E). Therefore, by the holomorphic
functional calculus for Banach algebras, g( f ) = g( f1, . . . , fm) is an element in
Ah,0/Ih,E . (One can consider f j as commuting operators on the Banach space
X = Ah,0/Ih,E , and hence this claim is an instance of Theorem 1.1.) We must
check that this object coincides with the pointwise defined function g ◦ f .

There is a smooth Ah,0/Ih,E -valued form s(w) = ∑m
1 sj (w)dwj in Cm \

f (E) such that δw− f s(w) = ∑m
1 sj (w)(wj − f j ) = 1. If

ω̃w− f = 1

(2π i)m
s ∧ (∂̄ws)m−1

then, cf., [3],

(2.7) g( f ) =
∫

∂ D
g(w)ω̃w− f .

For fixed α ∈ Cm , let ωw−α denote the cohomology class in Cm \ {α} that
represents the point evaluation g 	→ g(α) for holomorphic g. For fixed x ∈ E ,∑

j sj (w)(x)(wj − f j (x)) = 1, for w ∈ Cm \ f (E), hence ω̃w− f (x) represents
the class ωw− f (x), and therefore

g( f )(x) =
∫

∂ D
g(w)ωw− f (x) =

∫
∂ D

g(w)ωw− f (x) = g( f (x)).

Later on we will need that if Ah is non-quasianalytic then Ah,0/Ih,E contains
all functions which are realanalytic in some neighborhood of E . More precisely
we have
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Lemma 2.5. Let D be an open set in Rn and let Dη = D × {|y| < η} for some
η > 0. If χ ∈ Ah has compact support in D, then χφ ∈ Ah for all φ ∈ O(Dη) and
we have that

(2.8) ‖φχ‖Ah ≤ Cχ,h,η sup
Dη

|φ|, φ ∈ O(Dη) .

The proof is postponed to the end of this section. We are now ready to
define our main algebras.

Definition 1. Let h be an admissible weight function which in addition
satisfies (2.4). For each compact subset K ⊂ Rn we let Ah,K be the inductive
limit of the algebras Ah,0/Ih,U , for neighborhoods U ⊃ K .

This means that each function F ∈ Ah defines an element in Ah,K , and F ,
F ′ ∈ Ah define the same element if and only if F = F ′ in some neighborhood
of K . The topology is defined by the requirement that any mapping � from
Ah,K to a topological space Y is continuous if and only if its pullback to
Ah,0/Ih,U is continuous for each U ⊃ K .

Theorem 2.6. Let h be an admissible weight function which satisfies (2.4) and
let K ⊂ Rn. Then Ah,K is a topological algebra that contains O(K ). Suppose
that f1, . . . , fm ∈ Ah,K and f = ( f1, . . . , fm). Then f1, . . . , fm generate the
whole algebra if and only if the mapping f is non-vanishing on K . Moreover, if
g ∈ O( f (K )), then g ◦ f ∈ Ah,K as well.

Proof. If φ ∈ O(K ), then φ ∈ O(Dη) for some open D ⊃ K and η > 0.
If we choose a cutoff function χ ∈ D(D) which is 1 in a neighborhood of K ,
it follows from Lemma 2.5 that φχ ∈ Ah,K . It is clear that Ah,K is an
algebra and f1, . . . , fm ∈ Ah,K generates the whole algebra if and only if
f = ( f1, . . . , fm) �= 0 on K . In fact, if f �= 0 on K , then f �= 0 on U
for some U ⊃ K , and from Proposition 2.3 it then follows that there are
uj ∈ Ah,0/Ih,U such that

∑
f j u j = 1. Moreover, Proposition 2.4 implies that

g ◦ f ∈ Ah,K if f ∈ Ah,K and g ∈ O( f (K )).

We shall now briefly discuss the relation between the Ah-classes and the
so-called CM -classes or C L -classes, cf., [11] Ch. 8.4. For simplicity we restrict
ourselves to the case of global functions. Let M0, M1, . . . be a sequence of
positive numbers such that

(2.9) M0 = 1 and M2
k ≤ Mk−1 Mk+1 for all k .

The latter condition just means that log Mk is convex. The class CM consists
of all functions on Rn for which there are constants C1, C2 > 0 such that

|Dα f (x)| ≤ C1C |α|
2 M|α|

for all multiindices α. (Some authors instead consider Lk = M1/k
k and call

the corresponding class C L .) It turns out that CM is an algebra that is non-
quasianalytic if and only if

∑
M−1/k

k < ∞.
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Let H(s) be an increasing concave function on [0, ∞) with H(0) = 0, and
assume in addition that s 	→ H(exp s) is a convex function on R. Then its
Legendre transform

m(x) = sup
s

(xs − H(exp s)

is convex and
H(es) = sup

x∈R

(xs − m(x)) ,

see, e.g., [11]. Since m(x) = −∞ for x < 0, m(0) = 0 and m(x) is increasing,
it follows that the sequence Mk = exp m(k) satisfies (2.9), and moreover,

(2.10) sup
k∈N

(ks − log Mk) ≤ H(es) ≤ sup
k∈N

(ks − log Mk) + s .

There is a close relation between CM and Ah if h(t) = H(|t |). In fact we have

Proposition 2.7. Suppose that h(t) = H(|t |) is an admissible weight function
such that s 	→ H(es) is convex and assume that Mk and h(t) = H(|t |) are related
as above. If f ∈ Ah then f ∈ CM ; more precisely |Dα f | ≤ C M|α|. Conversely, if
f ∈ CM , |Dα f | ≤ CC |α|

1 M|α|, and f has compact support, then

(2.11) | f̂ (t)| ≤ C2|t |e−h(t/C1) ,

for some constant C2.

Proof. If f ∈ Ah , then an obvious estimate of the formula

Dα f (x) = i |α|
∫

tαe−h(t)eix ·t f̂ (t)eh(t)dt

gives that

|Dα f | ≤ C sup
t

|t ||α|e−h(t) = Cesups>0(|α|s−H(es )) = C M|α| .

Conversely, if f has compact support and the condition on Dα f holds, a similar
estimate yields that

|tα f̂ (t)| ≤ CC |α|
1 M|α| .

In view of (2.10) we conclude that

log | f̂ (t)| ≤ C ′ + log |t | − H(|t |/C1) .

Thus, if the hypotheses above on H are fulfilled, then, roughly speaking, Ah

is the same class as C L . There are natural examples of such H , i.e., H(0) = 0,
H(s) sub-additive and increasing, and s 	→ H(es) convex. For instance, H(s) =
s1/a , a > 1, corresponding to Mk = (k +1)ka , gives rise to the so-called Gevrey
class of order a.

If H(s) is concave, increasing and H(0) = 0 but s 	→ H(es) is not convex,
then there is a slightly larger function H̃ with this extra property.
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Proposition 2.8. Suppose that H(s) is concave and increasing on (0, ∞) and
that H(0) = 0. Furthermore, assume that (2.5) holds. Then there is a concave and
increasing function H̃(s) on (0, ∞) such that H̃(0) = 0, H̃(s) ≥ H(s), s 	→ H̃(es)

is convex, and such that (2.5) holds for H̃ as well.

Proof. First we observe that H(es) is (strictly) convex if and only if t H ′(t)
is (strictly) increasing. Define H̃ by

t H̃ ′(t) =
∫ t

0
(s H ′(s))′+ds, H̃(0) = 0 ,

where the + denote the positive part. Then t H̃ ′(t) is increasing and H̃(0) = 0.
Since

H̃ ′(t) ≥ 1

t

∫ t

0
(s H ′(s))′ds = H ′(t) ,

it follows that H̃(t) ≥ H(t). It remains to check that H̃ is concave and that (2.4)
holds for H̃ . Since H ′′ ≤ 0 we have that

H̃ ′(t) ≤ 1

t

∫ t

0
H ′(s)ds = H(t)

t
.

Therefore ∫ ∞

1

H̃ ′(t)
t

dt ≤
∫ ∞

1

H(t)

t2
dt < ∞ .

However, this is equivalent to (2.4) for H̃ since

lim
t→∞

H̃(t)

t
= lim

t→∞ H̃ ′(t) ≤ lim sup
t→∞

H(t)

t
= 0 .

Finally H̃ is concave, because

(t H̃ ′(t))′ = (t H ′(t))′+ ≤ H ′(t) ≤ H̃ ′(t) ,

which implies that t H̃ ′′(t) ≤ 0.

Proof of Lemma 2.5. First notice that if we can find some cutoff function χ̃

in Ah which is identically 1 on the support of χ for which (2.8) holds, then it
holds for χ as well since ‖χφ‖Ah = ‖χχ̃φ‖Ah ≤ ‖χ‖Ah ‖χ̃φ‖Ah ≤ C‖χ̃φ‖Ah .

Given E ⊂⊂ D it is therefore enough to find some cutoff function χ ∈ Ah

with support in D which is identically 1 on E and such that (2.8) holds. In view
of Theorem 2.1 and Proposition 2.8 we may assume that h(t) = H(|t |) where H
is concave increasing, H(0) = 0, and satisfying (2.5). Let us tentatively choose
a cutoff function χ ∈ Ah which is identically 1 in a neighborhood of E and
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has compact support in D. To simplify notation we assume that n = 1. Then
|χ(k)| ≤ C Mk in view of Proposition 2.7. If φ ∈ O(D2η) then

|φ(k)| ≤ Ck!/ηk

where C is a constant times supD2η
|φ|. We may also assume that H(s) ≤ s. It

is then easily checked that m(x) ≥ x log x −x and hence Mk ≥ (k/e)k ∼ k!. (To
be precise, at least ≥ k!(1−ε)k .) From (2.9) it also follows that Mn−k Mk ≤ Mn .
Therefore,

|(φχ)(n)| ≤ C
n∑
0

n!

(n − k)!k!

1

ηk
k!Mn−k ≤

n∑
0

n!

(n − k)!k!

1

ηk
Mn

≤ C(1 + η−1)n Mn .

Holding in mind that χφ has compact support, it follows from Proposition 2.7
that

|(̂χφ)| ≤ Ce−h(t/C1) ,

where C1 = 1 + 1/η. Therefore if we instead choose χ in Ah̃ where h̃(t) =
h(C1t) + (n + 1) log(1 + |C1t |) (and with respect to η̃ = η/2) we get (2.8)

3. – Non-quasianalytic functional calculus

For given commuting operators a1, . . . , an with real spectrum we shall now
consider possible extensions of the holomorphic functional calculus to the non-
quasianalytic algebras Ah,K which were introduced in the previous section. Since
the Taylor spectrum σ(a) is polynomially convex, we know, see the introduction,
that it is equal to the spectrum with respect to (a). For (a tuple) b ∈ (a) we
let b̂ denote the Gelfand transform with respect to the algebra (a), and we
recall that Im b̂ = σ(a)(b), the spectrum with respect to (a). We begin with
a preliminary result where we consider an (not necessarily non-quasianalytic)
algebra Ah of global functions.

Proposition 3.1. Let h be a non-negative subadditive function, h(0) = 0, and
suppose that

(3.1) ‖eia·t‖ ≤ Ceh(t) .

Then there is a continuous algebra homomorphism�:Ah → (a), such that |�( f )|≤
C‖ f ‖Ah and �( f ) = f (a) for real analytic functions f in Ah satisfying

(3.2) | f̂ (t)| � e−δ|t | .
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If f = ( f1, . . . , fm) ∈ Ah, then

(3.3) f (σ (a)) = σ(�( f )) .

Moreover,

(3.4) �̂( f ) = f ◦ â

and

(3.5) σ(a)( f (a)) = σ( f (a)) .

If there exists a mapping � with the stated properties, then

‖eia·t‖ ≤ C‖eix ·t‖Ah = Ceh(t) ,

and hence the assumption on the growth of ‖eia·t‖ is necessary. It follows that a
admits a non-quasianalytic Ah-functional calculus if and only if (3.1) holds for
some radial h satisfying (2.5). In particular, a satisfies such a condition if and
only if each aj does. Usually we will write f (a) rather than �( f ), but in the
proof it is convenient to keep the notational distinction.

Proof. By the assumptions it follows that the definition

�( f ) =
∫

eia·t f̂ (t)dt

makes sense and that

(3.6) ‖�( f )‖ ≤ C‖ f ‖Ah ;

thus we have a continuous linear mapping �:Ah → L(X). The function

(3.7) fR(z) =
∫

|t |<R
eiz·t f̂ (t)dt

is an entire function for each R, so fR(a) is defined by the holomorphic
functional calculus. Moreover,

(3.8) ‖ fR‖Ah ≤ ‖ f ‖Ah and ‖ f − fR‖Ah → 0 R → ∞ .

We claim that

(3.9) �( fR) = fR(a) .



NON-HOLOMORPHIC FUNCTIONAL CALCULUS 939

In fact, if D is a neighborhood of σ(a) in Rn , Dη = D × {y; |y| < η}, and
ωz−a is the resolvent, then by (1.4),

�( fR) =
∫

|t |<R
eia·t f̂ (t)dt =

∫
|t |<R

(∫
∂ Dη

eiztωz−a

)
f̂ (t)dt

=
∫

∂ Dη

ωz−a

∫
|t |<R

eizt f̂ (t)dt =
∫

∂ Dη

fR(z)ωz−a = fR(a) .

From (3.6), (3.8), and (3.9) it follows that fR(a) = �( fR) → �( f ) and
since fR(a) ∈ (a) therefore �( f ) ∈ (a). Moreover, if f, g ∈ Ah , then
‖ f g − fRgR‖Ah → 0 and since ( fRgR)(a) = fR(a)gR(a) by the holomorphic
functional calculus, we can conclude that �( f g) = �( f )�(g). Moreover, the
spectrum depends continuously on commutative perturbations, cf., [16] Proposi-
tion 2.6, and since σ( fR(a)) = fR(σ (a)) and fR → f pointwise, (3.3) follows.
If f is entire and satisfies (3.2), then fR → f uniformly in a neighborhood of
Rn and therefore fR(a) → f (a) by the holomorphic functional calculus. Hence
�( f ) = f (a) in this case. Since fR is entire we have that f̂ R(a) = fR ◦ â and
then (3.4) follows by continuity. Finally, (3.5) follows from (3.4) and (3.3).

We will now restrict to the non-quasianalytic case and localize to the
spectrum. The first objective is to ensure that f (a) only depends on the values
of f in some neighborhood of σ(a).

Corollary 3.2. Let a and h be as in the previous proposition, and assume in
addition that Ah is non-quasianalytic. If f ∈ Ah and f = 0 in a neighborhood of
σ(a), then f (a) = 0.

Proof. If f is not identically zero, then Ah is non-quasianalytic. Since Ah

is non-quasianalytic we can find a function φ ∈ Ah which is nonvanishing on
σ(a) such that φ f ≡ 0. From the spectral mapping property (3.3) it follows
that φ(a) is invertible, and since moreover 0 = φ(a) f (a), we can conclude that
f (a) = 0.

We are now ready for the main result of this section.

Theorem 3.3. (Main theorem in the non-quasianalytic case). Let h be
an admissible weight function that satisfies (2.4) and assume that a1, . . . , an are
commuting operators in L(X) such that ‖eia·t‖ ≤ Ceh(t). Then there is a continuous
algebra homomorphism

(3.10) �:Ah,σ (a) → (a)

such that �( f ) = f (a) for all f ∈ O(σ (a)). If f1, . . . , fm ∈ Ah,σ (a) and f =
( f1, . . . , fm), then

(3.11) f (σ (a)) = σ(�( f )) ,
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and if g ∈ O( f (σ (a)), then

(3.12) �(g ◦ f ) = g(�( f )) .

Moreover, for each mapping f ∈ Ah,σ (a) we have that

(3.13) �̂( f ) = f ◦ â and σ(a)( f (a)) = σ( f (a)) .

Proof. In view of Corollary 3.2 the algebra homomorphism � from Propo-
sition 3.1 is well-defined on Ah,σ (a), and (3.11) as well as (3.13) immediately
follows from Proposition 3.1.

If s(w) is as in the proof of Proposition 2.4, then δw−�( f )�(s(w)) = e.
Moreover, by the continuity of �,

∂̄w�(s(w)) = �(∂̄ws(w))

and therefore
�(ω̃w− f ) = ω̃w−�( f ) .

If g ∈ O( f (σ (a))) we get from (2.7) that �(g( f )) = g(�( f )). But we already
know that g( f ) = g ◦ f and hence (3.12) is proved.

It remains to verify that �( f ) coincides with f (a) in case that f is
realanalytic in a neighborhood of σ(a). First notice that �(eix ·t) = ei�(x)·t by
the previous part of the proof. However, �(eix ·t) = eia·t for all t ∈ Rn , and
therefore �(xj ) = aj . It follows that �(p) = p(a) for all polynomials p(x).
Now, let Dη be a set as in Lemma 2.5 such that f is holomorphic in some
neighborhood of its closure. Let χ ∈ Ah such that χ = 1 in a neighborhood of
σ(a) and has compact support in D. If pk are polynomials such that pk → f
uniformly on Dη, then by the lemma �(pk) → �( f ). On the other hand
�(pk) = pk(a) → f (a) by the holomorphic functional calculus, and thus the
proof is complete.

Example 1. Let a be a commuting tuple with σ(a) = {0}. By the spectral
mapping theorem this is equivalent to that σ(ak) = {0} ⊂ C for all k. If
f (z) = ∑

α,β ∂α∂̄β f (0)zα z̄β/α!β! is the germ of a realanalytic function at the
origin, with the usual multiindex notation, then

(3.14) f (a) =
∑
α,β

∂α∂̄β f (0)

α!β!
aα+β .

If all ak are nilpotent, then the sum is finite and hence f 	→ f (a) is a distribution
and (3.14) provides the extension to smooth functions. For instance if X is
finite dimensional, say dim X = N , and σ(a) = {0}, then the spectrum of the
operator w · a is {0} for any w ∈ Cn by the spectral mapping theorem, and
hence w ·a is nilpotent. Therefore (w ·a)N+1 = 0 for all w ∈ Cn which implies
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that aα = 0 if |α| ≥ N +1. It follows that (3.14) only involves derivatives of f
up to order at most N , so f 	→ f (a) is a distribution of order N .

Example 2. Let h be an admissible weight function such that (2.4)
holds, let K be any compact subset of Rn , and consider the Banach algebra
X = Ah,0/Ih,K . In view of Lemma 2.5 φ 	→ xjφ defines a tuple of bounded
commuting operators aj , and from Proposition 2.4 we conclude that σ(a) = K .
If g ∈ O(K ) then g(a) = g, see the proof of Proposition 2.4, and therefore the
holomorphic functional calculus for a has a natural extension to the algebra X .
It is clear that it cannot be extended further in any reasonable way. Recall that
‖φ‖X = inf{‖�‖Ah,0; � = φ on K }. Since X is a Banach algebra, the operator
norm ‖eia·t‖ is less than or equal to ‖eix ·t‖X , and ‖eix ·t‖X ≤ ‖eix ·t‖Ah,0 = eh(t).
Hence ‖eia·t‖ ≤ eh(t), and thus Theorem 3.3 gives us an extension of the holo-
morphic functional calculus to the algebra Ah,K → L(X), which is just slightly
smaller than the optimal one. This means that in general Theorem 3.3 is close
to the best possible.

Example 3. Assume that a admits a Ah functional calculus, where Ah is
non-quasianalytic. Then Ah admits partitions of unity, and therefore, cf., [10],
Theorem 6.1.13, a has a spectral capacity. This in particular means that X has
a rich structure of a-invariant subspaces (if σ(a) is not too small).

Example 4. If µ is the ultradifferentable operator-valued functional f 	→
µ( f ) = f (a), it is natural to write

(3.15) f (a) =
∫

σ(a)

f (z)dµ(z), f ∈ O(σ (a)) .

and think of µ as a generalized spectral measure. In case µ is a measure, (3.15)
provides an extension of the functional calculus to any bounded Borel function φ.
This, for instance, is the case if X is a Hilbert space and a is an n-tuple of
commuting self-adjoint operators.

Example 5. Without introducing the technical machinery in Section 4 to
define the Ah-norms locally for arbitrary admissible weight functions h, we can
make an elementary extension of the results in this section that allows us to
include all polynomials in the functional calculus. Let Em(z) = exp(−mz2),
z2 = ∑

z2
j , and let Ah,m = { f ; Em f ∈ Ah} with the norm ‖ f ‖m = ‖Em f ‖Ah .

For m ′ < m we have continuous inclusions Ah,m′ → Ah,m , and we let Ah,∞ be
the inductive limit. Clearly Ah,∞ is an algebra that contains all polynomials.
Assume that ‖eia·t‖ � eh(t) for some admissible h(t). We can extend the
mapping �:Ah → (a) from Proposition 3.1 to a mapping

(3.16) �:Ah,∞ → (a)

by letting �( f ) = �(Em f ))E−m(a) if f ∈ Ah,m . It is readily checked that this
definition is non-ambiguous, and that Ah,∞ → (a) so defined is a continuous
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algebra homomorphism. One just use the multiplicativity of Ah → (a) and the
fact that the functions xj Em(x) satisfy (3.2). Moreover, the spectral mapping
property holds for f ∈ Ah,∞ as well, since E−m(a)�((Em f )R) → �( f ) in
operator norm when R → ∞.

4. – Algebras of locally defined ultradifferentiable functions

We shall now consider algebras of locally defined ultra-differentiable func-
tions which are not necessarily non-quasianalytic. Again our starting point is
the algebras Ah , but since we no longer have access to cutoff functions the
localization to neighborhoods U of a compact subset K of Rn is a more del-
icate matter. One convenient way to characterize local real-analyticity in Rn

is to use the so-called FBI transform, see, e.g., [11] Ch. 9.6. We will now
use essentially the same method to describe the regularity of ultradifferentiable
functions, and first we recall one definition of the FBI-transform. We will then
need to introduce a slightly non-standard inversion formula for the transform.
This formula also makes it possible to define u. f if u is a hyperfunction with
compact support in U whose inverse Fourier transform is bounded by eh(t).
More precisely we will determine the dual of the space of compactly supported
hyperfunctions whose Fourier transforms satisfy a growth condition like eh(t).
Of course, primarily we have compactly supported operator-valued hyperfunc-
tions like exp(ia · t) in mind. As before we assume that h is an admissible
weight function which means in particular that the condition (2.1) is satisfied,
so that for any ε > 0 there is a constant Cε such that

(4.1) h(t) ≤ ε|t | + Cε .

We will furthermore require that (2.2) holds, that h is C1 outside the origin,
and that

(4.2) |∇h(t)| ≤ Cεeεh(t)

for each ε > 0. For each admissible weight function h of this kind and compact
set E in Rn we shall define an algebra Ãh,E which intuitively consists of all
functions f which locally (in some neighborhood of E) belong to Ach for some
c > 1.

Let f be a compactly supported function on Rn . We define the FBI-
transform of f as

(4.3) T ( f )λ,ξ (t) = 1

(2π)n

∫
e−i t ·x−λ(ξ−x)2 f (x)dx

when λ > 0 and ξ ∈ Rn . The idea behind the transform is that the quadratic
term in the exponent localizes the study to a neighborhood of the point ξ ∈ Rn ,
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but note that T ( f ) also extends to an entire function of ξ . To begin with we
will give an inversion formula for the FBI-transform. This formula depends
on a choice of a function λ(t) which later will be chosen as a scaling of h.
The inversion formula in [11] Section 9.6 is based on similar calculations with
λ(t) = |t |. We start with a smooth function f on Rn with compact support;
then

(4.4)
f (ξ) = 1

(2π)n

∫
τ

eiτ ·ξ
∫

x
e−iτ ·x f (x)dxdτ

= lim
R→∞

1

(2π)n

∫
|τ |<R

∫
x

eiτ ·(ξ−x) f (x)dxdτ .

In the last expression all the integrals are absolutely convergent. Let us now
formally change the path of integration with respect to τ in the last integral to
the cycle γ : t 	→ t + iλ(t)(ξ − x). Since then

dτ = (
1 + ∇λ(t) · (ξ − x)

)
dt

we get the formula

(4.5) f (ξ) =
∫

t
ei t ·ξ f̂λ(t),ξ (t)dt ,

where

(4.6) f̂λ(t),ξ (t) = 1

(2π)n

∫
x

e−i t ·x−λ(t)(ξ−x)2(1 + ∇λ(t) · (ξ − x)
)

f (x)dx .

Clearly f̂λ(t),ξ (t) can be expressed in terms of the FBI-transform, so 4.5 is
really an inversion formula for the FBI-transform. The reason that we have to
consider the FBI-transform with λ = λ(t) instead of λ = |t | is that the latter
choice would give us too rapid growth of f̂λ(t),ξ for complex values of ξ .

We claim that (4.5) actually is true (at least as a principal value) if 0 ≤
λ(t) ≤ C |t | and say λ is C1. To see this we estimate the difference IR

of the integrals in (4.4) and (4.5), where the integration in t is restricted to
{|t | < R}. With no loss of generality we may assume that ξ = 0. Since
e−iτ ·x dτ1 ∧ . . . ∧ dτn is a closed form, Stokes’ theorem implies that IR is equal
to the corresponding integral over the cycle τ = t − iux , |t | = R, 0 ≤ u ≤ λ(t).
Since dτ1 ∧ . . . ∧ dτn = i

∑
(−1)k xk d̂tk ∧ du on this cycle we have that

IR =
∫

x

∫
|t |=R

∫ λ(t)

u=0
e−i t ·x−ux2

f (x)
∑

(−1)k+1xkd̂tk ∧ du ∧ dx

=
∫

x

∫
|t |=R

e−i t ·x√λ f (x)
∑

gk(
√

λx)d̂tk ∧ dx ,
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where gk(x) = (−1)k+1xk(1−e−x2
)/x2. Since gk as well as all their derivatives

are bounded and f has compact support we get that

|�m
x (

√
λ f (x)gk(

√
λx))| ≤ Cmλm+1/2 ,

and hence

R2m |IR| ≤ C
∫

|t |=R
λm+1/2dσ(t) .

Since λ ≤ C R if |t | = R, we get that |IR| ≤ Cm R−2m+2n−1+m+1/2, and choos-
ing m large enough we see that IR → 0.

The integral in (4.6) defines in fact an entire function of ξ . Now, assume
that h is an admissible weight function that is C1 outside the origin, and
satisfy (2.2) and (4.2). For α > 0 we let f̂ (t)αh(t),ξ be the FBI transform of
f ∈ C∞

0 (Rn) at ξ with respect to the weight h and with parameter α. It is
important that the FBI transform is defined even for complex ξ . Let

‖ f ‖α,h,ξ = sup
t

eh(t)| f̂αh(t),ξ (t)|

for ξ ∈ Cn .

Definition 2. Let K be a compact subset of Rn . A function f ∈ C∞
0 (Rn)

is in Ãh,K if there are c > 1 and α > 0 such that

(4.7) ‖φ‖α,ch,ξ ≤ C

uniformly for ξ in some open neighborhood of K in Cn .

Proposition 4.1. If f ∈ C∞
0 (Rn) vanishes identically in a neighborhood of K

then f ∈ Ãh,K .

Thus it is meaningful to say that a function defined only in some neigh-
borhood of K is in Ãh,K .

Proof. Suppose that f = 0 in a 2δ-neighborhood of K in Rn , let ξ = a+ib,
and suppose that a is in a δ-neighborhood of K and |b| < δ/

√
2. By (4.2) we

then have that

| f̂αh(t),ξ (t)| ≤
∫

|x−a|>δ

e−αh(t)((x−a)2−b2)| f (x)|(1 + eεh(t))dx

� e−(αδ2/2−ε)h(t) ,

so it is enough to choose α such that αδ2/2 − ε > 1.

Remark 3. As discussed before, we are only interested here in weight
functions h that satisfy (4.1). However, the definition of the spaces Ãh,K

of locally defined functions works for any h that is subadditive (and then
automatically satisfies the estimate h(t) ≤ C |t |) provided that one weaken the
definition of Ãh,K by replacing c > 1 by c > 0 in the definition. Thus one can
have classes of functions which are microlocally realanalytic.
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Let es(z) = eis·z for s ∈ Rn .

Proposition 4.2. Suppose that φ ∈ O(V ), V open and V ⊃ K . Then esφ is in
Ãh,K . More precisely, there is an α0 (only depending on V ) such that if 1 < c′ < c′′
and α ≥ α0, then

(4.8) ‖esφ‖α,c′h,ξ ≤ Cαec′′h(s) sup
V

|φ| ,

where Cα is uniform in s ∈ Rn and ξ in some neighborhood (depending on α) of K
in Cn.

Proof. Let

(4.9) T fλ,ξ (t) = 1

(2π)n

∫
e−i t ·x−λ(x−ξ)2 f (x)dx .

We first prove that if f (x) = φ(x)es(x), then

(4.10) e(1−ε)h(t)|T fαh(t),ξ (t)| ≤ Cα,εeh(s) sup
V

|φ| .

We then replace h by (c′/(1 − ε))h and choose ε so that c′/(1 − ε) + εc′ ≤ c′′.
We obtain the desired estimate for f̂αh(t),ξ (t) by applying (4.10) to f (x) =
xφ(x)es(x) as well, and using (4.2) To prove (4.10) we assume that f = esφ

and that |φ| ≤ 1 in V . To begin with, we furthermore assume that ξ = 0,
and that the ball {|x | ≤ δ} is contained in V ∩ Rn . The number α0 will
depend on this δ. The integral in (4.9) over the set |x | > δ is estimated
as in the proof of Proposition 4.1. The integrand in (4.9) is a holomorphic
(n, 0)-form, hence a closed form, and therefore we can change the integration
to the cycle x 	→ z = x + iη, where η · (t − s) = |η||t − s| over the ball
|x | < δ. Let us call this integral A. We then also obtain an integral over
{z = x + irη; |x | = δ, 0 ≤ r ≤ 1} as well. In this case dz = ∑

ηk d̂xk ∧ dr .
Let us call this integral B. Since h(t) − h(s) ≤ h(t − s) we have that

eh(t)−h(s)|A| ≤
∫

|x |<δ

eh(t−s)−|η||t−s|+αh(t)|η|2 .

Now fix an ε > 0. Take η so that |η|2 ≤ ε/α. Then by (4.1) we get that

eh(t)−h(s)|A| ≤ Cαeεh(t) .

If ξ = ib for small real b we see that instead of λ|η| we get λ(|η|+|b|)2 which
can be absorbed as well, with a slightly smaller choice of |η|.

Now we consider the term B. In this case the integrand admits the estimate

e−rη·(t−s)e−αh(t)(δ2−|b|2) .

Thus, if α0 is slightly larger than 1/δ2, then we get the estimate � e−h(t). Thus
the proof is complete.
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Lemma 4.3. Assume that f ∈ Ãh,K , that (4.7) holds uniformly in a neighbor-
hood V of K in Cn, and that φ ∈ O(V ). There is α0 > 0 such that if c′ < c′′ < c
and α′ ≥ α0, then

(4.11) ‖φ f es‖α′,c′h,ξ � sup
V

|φ|ec′′h(s) sup
z∈V

‖ f ‖α,ch,z

uniformly for ξ in a neighborhood of K in Cn.

Proof. By the inversion formula (4.5) we have that

(4.12) f (x) =
∫

t
ei t ·x f̂αh(t),x(t)dt

and thus

(4.13) φ(x) f (x)es(x) =
∫

φ(x)ei(s+t)·x f̂αh(t),x(t)dt .

By Proposition 4.2, for large α′ and c′ < c′′, we have that

‖φ(x)ei(s+t)·x f̂αh(t),x(t)‖α′,c′h,ξ ≤ sup
V

|φ|ec′′h(s+t) sup
z∈V

| f̂αh(t),z(t)|

� sup
V

|φ| sup
z∈V

‖ f ‖α,ch,ze−ch(t)+c′′h(s+t) .

Now (4.11) follows by applying Minkowski’s inequality to (4.13), keeping in
mind that h is subadditive and that c′′ < c.

Letting φes = 1 we get

Corollary 4.4. If f ∈ Ãh,K then there is α0 > 0 and c > 1 such that for any
α ≥ α0, (4.7) holds for ξ in in some neighborhood of K in Cn.

By compactness it follows that f ∈ Ãh,K if and only if f ∈ Ãh,ξ0 for
each ξ0 ∈ K . Moreover, given two functions in Ãh,K we may always assume
that (4.7) holds for both of them with the same c and α.

Clearly Ãh,K is a vector space, and f j → 0 in Ãh,K if and only if there
are c > 1 and α > 0 such that ‖ f j‖α,ch,ξ → 0 uniformly for ξ in some
neighborhood in Cn of K .

Proposition 4.5. O(K ) is a dense subspace of Ãh,K .

Proof. Assume f is as in Lemma 4.3 and let

fR(z) =
∫

|t |<R
eiz·t f̂αh(t),x(t)dt .

Then fR(z) is entire and fR → f pointwise in Rn . On the other hand, cf., the
proof of Lemma 4.3,

‖ f − fR‖α′,c′h,ξ �
∫

|t |≥R
e(c′′−c)h(t)dt,

which tends to 0 when R → ∞.
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Theorem 4.6. The space Ãh,K is an algebra. More precisely, for some c > 1
and large enough α′ we have that

(4.14) ‖ f φes‖α′,ch,ξ ≤ Ceh(s) sup
z∈V

‖ f ‖α,ch,z sup
z∈V

‖φ‖α,ch,z

uniformly for ξ in some neighborhood of K .

Proof. Assume that f, φ ∈ Ãh,K . If we apply Minkowski’s inequality to
the representation (4.13) and use Lemma 4.3, we get the estimate

(4.15) ‖ f φes‖α′,c′h,ξ �
∫

t
sup
z∈V

‖φ‖α,ch,zec′′h(s+t) sup
z∈V

| f̂αh(t),z(t)|dt

and the right hand side is readily estimated by the right hand side of (4.14) as
before.

Corollary 4.7. If f is in Ach,∞ for some c > 1, then f ∈ Ãh,K .

Proof. First assume that f ∈ Ah . Then

f (x) =
∫

t
ei x ·t f̂ (t)dt ,

and in the same way as above we get that ‖ f ‖α,c′h,ξ is bounded in a neigh-
borhood of Rn if c′ < c. The general case, i.e. when Em f ∈ Ah , now follows
since Ãh,K is an algebra.

We also have some partial converses.

Proposition 4.8. If f ∈ Ãh,Rn in the sense that ‖ f ‖α,ch,ξ is uniformly bounded
in some neighborhood {z; |y| < 2δ}, then E f ∈ Ah; in particular f ∈ Ah,∞.

Proof. If φ(z) is bounded and holomorhic i a 2δ-neighborhood V of Rn ,
then |Êφ(t)| ≤ C supV |φ| exp(−δ|t |). Thus ‖Eφ‖Ah ≤ C supV |φ|. We will
now use the representation

(4.16) e−x2
f (x) =

∫
f̂αh(t),x(t)e

−x2
eix ·t dt .

Since
‖ f̂αh(t),x(t)e

−x2
eix ·t‖Ah ≤ ‖ f̂αh(t),x(t)e

−x2‖Ah ‖eix ·t‖Ah

� sup
z∈V

| f̂αh(t),z(t)|eh(x) � e−(c−1)h(t) ,

an estimate of (4.16) gives that Eφ ∈ Ah .

In the non-quasianalytic case we have

Proposition 4.9. Suppose that f is a smooth function with compact support in
Rn, and suppose that (2.4) holds. Then f ∈ Ãh,K if and only if f ∈ Ach,K for some
c > 1.
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Proof. If f ∈ Ach,K then by definition it is realized by a compactly sup-
ported function f in Ach , and therefore it is in Ãh,K according to Corollary 4.7.

If f ∈ Ãh,K , then actually f ∈ Ãh,U for some neighborhood U ⊃ K in
Rn . Take a cutoff function χ ∈ Ach , for some fixed c > 1, which is supported
in U and identically 1 on a neighborhood of K . Then, by Theorem 4.6, χ E f
is in Ãh,U and has compact support in U . It now follows that, for some
c′ > 1 and α′ > 0, ‖χ E−1 f ‖α′,c′h,ξ is uniformly bounded in a δ-neighborhood
neighborhood of Rn . In fact, since χ H−1 f ∈ Ãh,U such an estimate holds
in some complex neighborhood of K , and since the function vanishes in a
neighborhood of Rn \ U , the same estimate holds in a complex neighborhood
of this set, cf., the proof of Proposition 4.1. From Proposition 4.8 we deduce
that f = χ f = Eχ E−1 f is in Ac′h .

Remark 4. If h and h′ are admissible functions such that h′(t)/h(t) = o(1)

when |t | → ∞, then Ãh′,K ⊂�= Ãh,K since clearly Ah \ Ah′ is nonempty. It
follows that the inequality ‖es‖Ah,K ≤ exp h(s) essentially is an equality, because
an estimate like ≤ exp h′ combined with the inversion formula roughly speaking
implies that Ah,K is contained in Ah′,K .

It is natural to say that f ∈ Ãh,V , for an open V ⊂ Rn , if f ∈ Ãh,K for all
compacts K ⊂ V . Suppose that u is a hyperfunction with support in V which
has a continuous extension to Ãh,V (recall that the entire functions are dense
in Ãh,V ). For each c > 1 we then must have that

|u.es | � ‖es‖α,ch,ξ � ec′′h(s) ,

for c′′ > c, according to Proposition 4.2. Thus we have proved one half of

Proposition 4.10. The dual space of Ãh,V consists of all hyperfunctions u with
support in V such that

|ǔ(t)| ≤ Ccech(t)

for each c > 1.

Of course ǔ(t) = u.et here. We begin with a lemma.

Lemma 4.11. Suppose that the hyperfunction u has support in K and that

|ǔ(t)| ≤ Aeh(t) .

For each U ⊃ K , U open in Cn, we have

|u.esφ| ≤ Aeh(s)CU sup
U

|φ|, φ ∈ O(U ) .

Proof. Since h(t) ≤ H(|t |) for some H(s) that is o(s), we can find a
representing form ω for u in Cn \ K such that the size of |ω| only depends
on A. We then get that

|u.φ| ≤ ACU sup
U

|φ|, φ ∈ O(U ) ,
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where CU is independent of A. Now, u.esφ = esu.φ and since esu is supported
on K as well, the general statement follows from the estimate

|(esu)̌(t)| = |ǔ(t + s)| ≤ Aeh(s+t) ≤ Aeh(s)eh(t) .

Proof of Proposition 4.10 Suppose that f ∈ Ãh,V and that (4.7) holds
uniformly for ξ ∈ U , where U is a complex neighborhood of the support K
of u. Since fR → f in Ãh,K , cf., the proof of Proposition 4.5, we have that

u. f =
∫

t
u.
(

f̂αh(t),x(t)e
ix ·t)dt,

and hence by the lemma above and the assumption on u

|u. f | �
∫

t
ec′h(t)e−ch(t)dt

which is finite if c′ < c.

5. – Ultradifferentiable functional calculus

We are now in position to extend Theorem 3.3 to the algebras Ãh,σ (a).

Theorem 5.1. (Main Theorem). Let h be an admissible weight function that
is C1 outside the origin that satisfies (4.2) and (2.2). Assume that ak are commuting
operators such that ‖eia·t‖ ≤ eh(t). Then there exists a continuous homomorphism

(5.1) Ãh,σ (a) → (a), f 	→ f (a) ,

which coincides with the holomorphic functional calculus in case that f is realan-
alytic. Moreover, σ( f (a)) = f (σ (a)) if f = ( f1, . . . , fm).

Proof. Suppose that f ∈ Ãh,K and that

(5.2) | f̂αh(t),ξ | ≤ Ce−ch(t) ,

holds uniformly in the complex neighborhood V of K = σ(a). Since ξ 	→
f̂λ,ξ (t) is holomorphic in V we can define f̂αh(t),a(t) by the holomorphic func-
tional calculus and (5.2) implies that

‖ f̂αh(t),a(t)‖ ≤ Ce−ch(t) .

Thus

(5.3) f α(a) =
∫

eia·t f̂αh(t),a(t)dt
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has meaning and defines an element in (a). We may expect that this definition
is independent of α ≥ α0 if α0 and c are as in Corollary 4.4. Let

f α
R (ξ) =

∫
|t |<R

eiξ ·t f̂αh(t),ξ (t)dt .

Then f α
R (ξ) are entire functions, and we want to prove that f

α1
R (a)− f

α2
R (a) → 0

if α0 ≤ α1 < α2. To this end, consider the entire function gR(ξ) = f
α1
R (ξ) −

f
α2
R (ξ). By Stokes’ theorem,

gR(ξ) = f
α1
R (ξ) − f

α2
R (ξ)

=
∫

s

∫
|t |=R

∫ α2

u=α1

e−i t (ξ−s)−uh(t)(s−ξ)2 f (s)h(t)
∑

d̂tk(sk − ξk)dsdu

=
∫

|t |=R

∫ α2

u=α1

e−iξ ·t ∑
k

Sk(t) fuh(t),ξ h(t)d̂tkdu ,

where

Sk fλ,ξ (t) =
∫

s
eit ·s−λ(s−ξ)2 f (s)(sk − ξk)ds .

As before we know that

|Sk fuh(t),ξ (t)| ≤ Ce−ch(t)

uniformly in some neighborhood of K in Cn if α1 ≤ u ≤ α2. (A dissection
of the proof of Proposition 4.2, on which Corollary 4.7 is based, reveals that
the neighborhood can be chosen uniformly for α running over a compact set.)
Hence we get the estimate

|gR(a)| �
∫

|t |=R
e−ch(t)‖e−ia·t‖h(t)d S(t)

and the right hand side tends to 0 since h(t) → ∞ when |t | → ∞, cf., (2.2),
and exp(εh) ≥ h2 when h is large.

Thus we can define f (a) as f α(a) for appropriate α, and clearly

| f (a)| ≤ C sup
ξ∈V

‖ f ‖α,ch,ξ

so the mapping (5.1) is indeed continuous. Since ‖ f α
R ‖α′,ch,ξ is bounded uni-

formly in R, it follows from Theorem 4.6 that f α
R gα

R → f g in Ãh,K . Hence
( f α

R gα
R)(a) → ( f g)(a). On the other hand, by the multiplicativity for the holo-

morphic functional calculus and the continuity we have that

( f α
R gα

R)(a) = f α
R (a)gα

R(a) → f (a)g(a) ,

and thus the mapping (5.1) is a continuous algebra homomorphism. The spectral
mapping property follows as before.

Remark 5. We do not know if some composition rule holds in this case.
Actually we do not even know if 1/ f belongs to Ãh,K when f ∈ Ãh,K and
f �= 0.
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6. – Almost holomorphic extensions

As mentioned in the introduction, if a function f on Rn has an almost
holomorphic extension F , then one can define f (a) by (1.5) if the resolvent has
a representative with a growth that matches the decay of ∂̄ F . In this section
we briefly discuss how a class of functions f that admit almost holomorphic
extensions with a certain decay of ∂̄ f is related to our spaces Ãh . Some
spaces Ãh (including all cases with radial h) can be completely described in
terms of almost holomorphic extensions, and in this case we obtain the com-
position rule, cf., Remark 5 above. Roughly speaking one can in this case also
find a representative of the resolvent so that (1.5) makes sense and coincides
with our previous definition of f (a), but we omit that discussion since we think
it leads to far; however, in the case with a radial h one can define the desired
representative by means of the Bochner-Martinelli formula.

For a nonnegative function k on R \ {0} we let

k*(y) = sup
{t; yt>0}

(k(t) − t y) .

and
k'(t) = inf

{y; yt>0}
(k(y) + t y) .

If h is admissible, then h*(η) tends to ∞ when η → ±0. Notice also
that h* is always convex on each semi-axis, and g' is always concave on each
semi-axis. If k is any function in Rn \ {0} and a ∈ Sn−1, i.e., a ∈ Rn and
|a| = 1, then we let

ka(η) = k(ηa), η > 0 ,

be the restriction of k to the ray from 0 determined by a. We let ka* and ka'

denote the functions (ka)* and (ka)', respectively, and we extend the definition
to all η ∈ R by letting ha*(η) = ∞ for η < 0 and ga'(s) = −∞ for s < 0.

Definition 3. If h is a nonnegative function in Rn , then

h*(y) = sup
a∈Sn−1

ga'(a · t) .

If g is a nonnegative function defined in Rn \ {0}, then

g'(t) = inf
a∈Sn−1

ha*(a · y) .

We say that a function k in Rn \ {0} is convex (concave) on rays if ka is
convex (concave) for all a ∈ Sn−1. If h is radial, say h(t) = H(|t |), then h*(y)

is radial, more precisely h*(y) = g(y) = G(|y|), where G(−ξ) is just minus
the Legendre transform of H(s). Similarily for g'. The following propostion
was proved in [5].
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Proposition 6.1. If h (g) is concave (convex) on rays, then h* (g') has convex
level sets, and if h (g) has convex level sets, then h* (g') is convex (concave) on
rays.

If g is convex on rays, then g'* ≥ g, and we have equality if and only if all the
level sets {g ≥ A} are convex. Similarily, if h is concave on rays, then h*' ≤ h with
equality if and only if all the level sets {h ≤ A} are convex.

For c > 0, let gc(y) = cg(y/c), and notice that g'
c = cg'. For an open

set U in Rn , let Uδ = U × {|y| < δ}. We say that a smooth function f in U
belongs to the space Mg,U if there is a smooth extension F(x + iy) to some Uδ

and c > 1 such that

(6.1) sup
Uδ

|F | + sup
z∈Uδ

|∂̄ F(z)|egc(−y) < ∞ .

For a compact set E in Rn , let Mg,E consist of all functions on E that belong
to some Mg,U , where U ⊃ E .

Theorem 6.2. For an open or compact set E we have the inclusions

(6.2) Mg,E ⊂ Ãg',E ,

and if h is concave on rays, also

(6.3) Ãh,E ⊂ Mh*,E .

Proof. We may assume that E = V is open. To prove (6.2) we first
assume that (6.1) holds, and let a = (1, 0, . . . ) ∈ Sn−1; we may also assume
that B(0, 2δ) ⊂ V , and that F has its support in |y| < η << δ; it is enough to
prove that | f |α′,(1−ε)h,ξ is bounded for ξ in some complex neighborhood of 0.
In the expression (4.9) for T fαh(t), we first consider the integral for |x | < δ.
By Stokes’ theorem this integral is (z1 = x1 + iy1)

I =
∫

|x |<1,−η<y1<0

∂ F

∂ z̄1
(z1, x ′)e−t1z1−λ(z−ξ)2dxdy1 ,

and by the standard estimates, for λ = αh(t), h = ga', and |ξ | ≤ η, we get

|I | �
∫

|x |<δ,−η<y1<0
e−g(−y1,0)+t1 y1e3αηh(t)dxdy1 � e−ga'(t)e3αηh(t)

if |b| is small enough. Taking infimum over all a we get the estimate

|I | � e−(1−2αη)h(t) .

The integral over |x | ≥ δ is estimated as before, and finally, as in previous
proofs, we get the estimate

| f̂αh(t),ξ (t)| ≤ Ce−(1−3αη)h(t) .
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If we start with gc rather than g and η is small enough we get (6.2).
For the converse, first assume that

ech(t)| f̂αh(t),ξ (h(t))| � C

uniformly locally in complex neighborhoods of E for some c > 1, and write

f (x) =
∫

|a|=1
fa,x(a · x)dσ(a) ,

where

fa,x(s) =
∫ ∞

0
f̂αh(ra),x(ra)eirsrn−1dr

is a one variable function of s that depends holomorphically on x . It is now
enough to extend each fa,z(s) to (ζ = s + iη) Fa,z(ζ ) with control of ∂ Fa,z/∂ζ̄ ,
and let

F(z) =
∫

|a|=1
Fa,z(a · z)dσ(a) .

Take c′ > 1 and a cutoff function χ(s) on R that is 0 for s > 1 and 0 for
s < 1/c′, let φa(r) = (ha)′(r) = a · ∇h(a · r), and let

Fa,z(ζ ) =
∫ ∞

0
f̂αh(ra),z(ra)eirζ χ(η/φa(r))rn−1dr .

We now have that (η > 0)

|∂ Fa,z(s − iη)/∂ζ̄ | ≤
∫

r
e−ha(r)+ηrχ ′(η/φa(r))e−εrrn−1dr/φa(r) .

However, ha(r) − φa(r)r ≥ ha*(φa(r)) and the integration only takes place
where η ≤ φa(r) ≤ cη, so we get the estimate

�
1

η
e−ha*(cη) � e−ha*(c′η),

where the last inequality uses that fact that ha*(η)/ log(1/η) → ∞ when η →
0; this is a consequence of (2.2). (A similar estimate combined with the
dominated convergence theorem shows that Fa,z(ζ ) really is an extension of
fa,z(s)). Summing up we have that

|∂̄ F(z̄)| �
∫

|a|=1
e−ha*(c′η)dσ(a) ≤ e−h*(c′y) .

If we instead start with ch, c′ > 1, instead of h we get exp(−ch*(c′y/c)) ≤
exp(−c′′g(y/c′′)) = exp(−gc′′(y)) if 1 < c′ < c and c′′ = c/c′, and thus
f ∈ Mg,E .
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The function h(t) = √
t1 + √

t2 is admissible, but no admissible h̃ with
convex level sets is equivalent to h, in the sense that it give rise to the same
algebra.

Corollary 6.3. If h is admissible, concave on rays and has convex level sets
(and is C1 and satisfies the extra condition (4.2)), then

(6.4) Ãh,E = Mg,E .

In particular, this holds if h is admissible and radial. It is clear that Mg,E

is an algebra and that ψ ◦ f belongs to Mg,E if f ∈ Mg,E and ψ ∈ O( f (E)).
Assume now that h is such that Ãh,σ (a) = Mh,σ (a). Then

|ψ ◦ f |Ãh ,σ (a)
� sup

W
|ψ || f |Ãh ,σ (a)

,

where the norm signs stand for appropriate seminorms, and W is some complex
neigborhood of σ(a). Therefore, if fR → f as before, and we write ψ(z) −
ψ(w) = ∑

(zj − wj )ψj (z, w), which is possible since σ(a) is real and hence a
Stein compact, we get that

ψ ◦ fR − ψ ◦ f = (( f j )R − f j )ψj ( f, fR) → 0

in Ãh, σ (a). Hence,

�(ψ ◦ f )←ψ ◦ fR(a) = ψ( fR(a)) → ψ(�( f )),

or more simply stated, ψ ◦ f (a) = ψ( f (a)).
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