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Vortex Filament Dynamics for
Gross-Pitaevsky Type Equations

ROBERT L. JERRARD

Abstract. We study solutions of the Gross-Pitaevsky equation and similar equa-
tions in m ≥ 3 space dimensions in a certain scaling limit, with initial data uε

0
for which the Jacobian Juε

0 concentrates around an (oriented) rectifiable m − 2
dimensional set, say �0, of finite measure. It is widely conjectured that under
these conditions, the Jacobian at later times t > 0 continues to concentrate around
some codimension 2 submanifold, say �t , and that the family {�t } of submanifolds
evolves by binormal mean curvature flow. We prove this conjecture when �0 is a
round m − 2-dimensional sphere with multiplicity 1. We also prove a number of
partial results for more general inital data.

Mathematics Subject Classification (2000): 35B25 (primary), 35Q55 (secon-
dary).

1. – Introduction

In this paper we prove some results about the singular limits of solutions
uε : Rm ×[0, ∞) → C ∼= R2, m ≥ 3 of the Gross-Pitaevsky equation, a nonlinear
Schrödinger equation used in the physics literature as a model for the evoluion
of the wave function associated with a Bose condensate. The equation can be
written

(1.1) (kε)
−1iuε

t − �uε + 1

ε2
W ′(|uε |2)uε = 0, uε(·, 0) = uε

0

where kε := | ln ε|−1 is a scaling factor. The model example for the nonlinearity
is W (s) = 1

2 (s − 1)2 in 2 or 3 space dimensions. More generally, we consider
qualitatively similar nonlinearities satisfying appropriate growth conditions that
depend on the dimension m.
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We study solutions with initial data uε
0 for which the Jacobian Juε

0 concen-
trates as ε → 0 around an (oriented) rectifiable m − 2 dimensional set, say �0,
of finite Hm−2 measure. On the basis of physical arguments and formal asymp-
totics (see for example [8], [19], [7], [18]) it is conjectured that the Jacobian
at later times t > 0 continues to concentrate around some codimension 2 sub-
manifold, say �t , and that the family {�t } of submanifolds evolves by binormal
mean curvature flow, a geometric evolution problem that we will describe below.

In physical terms, this conjecture states that in R3 for example, quantized
vortex filaments in a Bose condensate in the incompressible limit evolve by ex-
actly the law of motion that governs vortex filaments in an ideal incompressible
fluid in the self-induction approximation.

In this paper we prove this conjecture when the initial vortex filament is
a m − 2-dimensional round sphere with multiplicity 1. We also prove that for
quite general initial data there exist limiting measures { J̄t }t∈R which are carried
by m − 2 dimensional rectifiable sets {�t }, and around which the Jacobian con-
centrates. We show that, for the time scaling chosen in (1.1), these measures
evolve continuously in certain weak topologies, and that their evolution is non-
trivial. Finally, we introduce a notion of a weak solution of the problem of
binormal mean curvature flow, and we identify some conditions that would im-
ply that { J̄t }t∈R is a weak solution. These conditions hinge on a careful analysis
of the relationship between weak limits of the Jacobian Juε and weak limits
of quadratic terms kεuε

xi
· uε

xj
for i, j = 1, . . . , m as ε → 0 under appropriate

bounds on the total energy.
We briefly sketch the contents of this paper.
Section 2 contains some background material. In Section 3 we define

binormal mean curvature flow, and we show that a family of �2Rm-measures
{Jt }t∈R can be thought of corresponding to a weak binormal mean curvature
flow in a very natural sense if

(1.2)
d

dt

∫
φ · Jt (dx) =

∫
(φi j − φ j i )xi xk P⊥

jk |Jt |(dx)

for all smooth, compactly supported φ = ∑
i< j φi j ei ∧ ej ∈ C2

c (Rm; �2Rm)

and a.e. t . Here P⊥(x) is the m × m matrix representing projection onto the
two-dimensional approximate normal space of Jt , and |Jt | is the total varia-
tion measure associated with Jt . We require that each Jt have a certain nice
geometric structure, so that it can be thought of as representing a weak m − 2-
dimensional oriented surface (more precisely an integer multiplicity rectifiable
set). This in particular implies that P⊥(x) exists almost everywhere.

There is a striking formal similarity between (1.2) and the identity

(1.3)
d

dt

∫
φ · Juε dx =

∫
(φi j − φ j i )xi xk kεuε

xj
(t) · uε

xk
(t) dx

which is satisfied by solutions uε of (1.1). The main point of this paper is to
identify conditions when one can pass to limits from (1.3) to deduce (1.2).
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To do this two things are necessary. The first is to show that one can find
a subsequence εn such that Juεn (t) → J̄t for all t , where J̄t is some measure
having the nice geometric structure mentioned above. We carry this out in
Section 4. In this we rely heavily on results of the author and H.M. Soner [11],
see also [1], which show that if {vε} is a family of functions for which an
appropriately scaled Ginzburg-Landau energy I ε(vε) is uniformly bounded, then
the Jacobians Jvε converge (after passing to a subsequence) to some measure
J̄ having precisely the desired structure. These energy bounds in particular are
satisfied by functions {uε(t)} obtained by solving (1.1) for appropriate initial
data. Thus the main point is to establish the uniform continuity of the maps
{t 	→ Juε(t)}ε∈(0,1] in appropriate weak topologies. This in fact follows easily
from (1.3).

Having found J̄t , we then prove that

(1.4) kεn uεn
xj

(t) · uεn
xk

(t) dx ⇀ P⊥
jk | J̄t | weak-* , ∀ i, j

whenever, roughly speaking, energy concentration around J̄t is as small as
possible. In fact we prove a more precise result that gives quantitative control
over the extent to which (1.4) can fail when the small energy concentration
condition fails to hold. This is done in Sections 6 (in two space dimensions)
and 7 (for dimensions m ≥ 3). The results of these sections are valid for any
sequence {uε} of functions, not merely solutions of (1.1).

In Section 5 we apply these estimates to solutions uε of (1.1). The small
energy concentration condition is implied by the condition that J̄t be as large as
possible, given the available energy. The total mass of J̄t roughly corresponds
to the m −2-dimensional Hausdorff measure (counting multiplicity) of the weak
surface represented by J̄t . This quantity is hard to control directly, but from
conservation laws for (1.1) one can quite easily control the m − 1-dimensional
measure of the area enclosed by a projection of J̄t onto any hyperplane. By
the isoperimetric inequality this gives lower bounds for the mass of J̄t , and
we show that these bounds are sharp precisely when the initial singular set is
optimal for the isoperimetric inequality, that is, a round sphere of multiplicity
one. This allows us to give a complete analysis in this case.

We conclude this introduction by mentioning some related work. The only
prior rigorous work that we know of on this problem is a recent paper by T.C.
Lin, [17] that derives the law of motion for vortex filaments in solutions of (1.1)
in three space dimensions by linearizing about an approximate solution and
using earlier estimates (see for example [16]) on the spectrum of the linearized
operator. This result assumes the existence of a smooth solution of the limiting
binormal curvature flow, and the analysis does not provide any uniform bounds
on the time interval on which it is valid, so that it does not exclude the
possibility that its conclusions hold only on a time interval [0, tε) where tε → 0
as ε → 0.

In two space dimensions, the corresponding problem is to study the dynam-
ics of point vortices in solutions of (1.1) in the singular limit (with a different
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time scaling). The first rigorous analysis of this problem was given in [5], [6].
Some refinements were subsequently established in [15]. These results show
that, in a variety of situations, vortex motion in the singular limit is governed
by exactly the ODE that describes the motion of classical point vortices in an
ideal fluid.

Another related question is the limiting behavior of vortex filaments in
solutions of the Ginzburg-Landau heat equation in m ≥ 3 space dimensions. F.H.
Lin [14] and the author and H.M. Soner [13] independently proved that under
appropriate assumptions, the limiting singular set evolves via codimension 2
mean curvature flow, at least as long as the limiting flow remains smooth.
More recently Ambrosio and Soner [3] prove that energy measures associated
with solutions of the Ginzburg Landau heat equation converge globally in time
to a measure that evolves by mean curvature flow in a certain weak sense, if
one is allowed to assume that the limiting energy measure satisfies a certain
lower density estimate.

Finally, recent work by the author and H.M. Soner [12], [10] investigates
the class of functions whose distributional Jacobian exists and is a Radon mea-
sure. We show, among other things, that if a function u ∈ W 1,1(Rm; S1) satisfies
this condition, then its distributional Jacobian — that is, the collection of all
distributional determinants of 2 × 2 submatrices of Du — is an integer multi-
plicity measure carried by an oriented rectifiable set of dimension m −2. These
are related to the compactness results of [10], [1], that characterize limits of
Jacobians Juε for sequences of functions uε that are asymptotically S1-valued
in a certain precise sense.

2. – Background

2.1. – Notation

We first introduce some notation that we will use throughout this paper.
We use the convention that repeated indices are summed, though we also

sometimes explicitly write out summations.
For w, v ∈ C ∼= R2 we write v · w to denote the real inner product:

v · w = 1
2 (vw̄ + wv̄) ∼= viwi . We write det(v, w) to denote the determinant

of the real 2 × 2 matrix whose columns are v and w respectively. Note that
det(v, w) = iv · w.

We write Sk×k to denote the collection of real symmetric k × k matrices.
If M ∈ Sk×k we write M ≥ 0 to mean that M is nonnegative definite. If
M = (Mi j ) and N = (Ni j ) are real m × m matrices, we write M : N to denote
the inner product M : N = Mi j Ni j .

For a, b ∈ Rk we write a ⊗ b to denote the k × k matrix whose (i, j) entry
is ai bj . For u ∈ H 1(Rm; R2) we write Du ⊗ Du for the m × m matrix whose
(i, j) entry is uxi · uxj .
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Except in Section 6, we always work in m space dimensions, m ≥ 3. When
we write Rm+1 we always mean Rm

x × Rt .
The nonlinearity W in (1.1) is assumed to be a smooth nonnegative function

such that W (1) = 0, W (s) > 0 for all s �= 1, W ′′(1) > 0, and W (s) ≤ C(1+sα)

for some α < m/m − 2. The last condition brings (1.1) within the scope of
standard well-posedness theory. The assumptions imply that

(2.1) C−1(1 − s)2 ≤ W (s) ≤ C(1 − s)2 when 0 ≤ s ≤ 2 .

We write Hk to denote k-dimensional Hausdorff measure.
We write {ei }m

i=1 to denote a standard orthonormal basis for the space �1Rm

of vectors on Rm . When considering vectors on Rm+1 we will write the standard
basis vector in the Rt direction as either em+1 or et .

Similarly, {eα}α∈Ik,m is an orthonormal basis for �kRm , the space of k-
vectors on Rm . Here Ik,m is the set of all multiindices of the form α =
(α1, . . . , αk) such that 1 ≤ α1 < . . . < αk ≤ m. For such a multiindex,
eα := eα1 ∧ . . .∧eαk . If 1 ≤ α1, . . . , αk ≤ m are distinct integers not necessarily
arranged in increasing order, and π is a permutation on k elements, then

eα1 ∧ . . . ∧ eαk = sgn(π)eπ(α1) ∧ . . . ∧ eπ(αk ) ,

Here sgn(π) is the sign of the permutation π .
The space �kRm is a real vector space of dimension

(m
k

)
and as such is

endowed with the Euclidean inner product, which we will write as v · w. For
v ∈ �kRm , we write |v| to mean the standard Euclidean norm (v ·v)1/2. A unit
multivector is a multivector with norm |v| = 1.

We disregard conventions of geometric measure theory and do not distin-
guish between vectors and covectors; rather we identify �kRm with its dual
via the inner product. This occasionally leads to unorthodox language but it
simplifies our exposition in many ways.

We always write 2-vectorfields in the form φ = ∑
i< j φi j ei ∧ ej , and we

set φ j i = 0 whenever j ≥ i .
We say that v = ∑

α∈Ik,m
vαeα is simple if there are k vectors v1, . . . , vk ∈

�1Rm such that v = v1 ∧ . . . ∧ vk . If P is a k-dimensional subspace of Rm

spanned by {v1, . . . , vk} and v ∈ �kRm is a unit multivector of the form
v1 ∧ . . . ∧ vk , then we says that v orients P .

The Hodge star operator 	 : �kRm → �m−kRm is defined by

	eα = sgn(αβ) eβ

for the unique β ∈ Im−k,m such that (α1, . . . , αk, β1, . . . , βm−k) is a permutation
of (1, . . . , m). Here sgn(αβ) is the sign of the permutation. It is easy to check
that

eα ∧ 	eα = e1 ∧ . . . ∧ em, 	 	 eα = (−1)k(m−k)eα .

Note that if M is a smooth, oriented codimension k manifold of Rm and
ν ∈ �kRm orients (Tx M)⊥ at some point x ∈ M , then 	ν := ξ orients Tx M .
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We write d to denote the exterior derivative in Rm . Thus for φ of the
form φ = ∑

α∈Ik,m
φαeα , we define dφ = ∑

i,α φα
xi

ei ∧ eα . We similarly write d

to denote the exterior derivative in Rm+1 ∼= Rm
x × Rt .

It is convenient to use the duals of Hölder spaces to quantify weak con-
vergence and continuity properties of measures. For this we need to fix some
notation. We write

‖φ‖Ĉk,α = [Dkφ]α ‖φ‖Ck,α =
k∑

j=0

‖D jφ‖∞ + [Dkφ]α .

Here |D jφ|2 = ∑
|γ |= j |Dγ φ|2 and [Dkφ]α = supx �=y

|Dkφ(x)−Dkφ(y)|
|x−y|α . Thus a

“hat”, as in Ĉk,α , indicates that we use only the highest-order part of the norm.
We use the convention that C0 = Ĉ0.

We write ‖ · ‖Ck,α∗ and ‖ · ‖Ĉk,α∗ to indicate the respective dual norms. So
for example, if µ is a measure and U ⊂ Rm then

‖µ‖
Ĉk,α∗

c (U )
=sup

{∫
φ dµ : ‖φ‖Ĉk,α ≤ 1, φ has compact support in U

}
.

We will often write, for example, ‖J‖
Ck,α∗

c
rather than ‖J‖

Ck,α∗
c (Rm ;�kRm )

when

no confusion can result. Note that ‖µ‖
Ck,α∗

(c)
≤ ‖µ‖

Ĉk,α∗
(c)

for all µ, k, α.

Finally, we say that µn → µ in ‖µ‖
Ĉk,α∗

loc
if ‖µn − µ‖Ck,α∗(U ) → 0 for

every U � Rm .

2.2. – Conserved quantities

Equation (1.1) has a number of conserved quantities. We define the energy

(2.2) Eε(uε) = 1

2
|Duε |2 + 1

2ε2
W (|uε |2)

and the linear momentum

(2.3) j (uε) = j k(uε)ek, j k(uε) = iuε · uε
xk

= det(uε, uε
xk

) .

We further define the Jacobian

(2.4) Juε = 1

2
d j (uε) =

∑
k<l

J kluε ek ∧ el ,

where J kluε = 1
2 ( j l(uε)xk − j k(uε)xl ) = det(uε

xk
, uε

xl
).

Note that our Jacobian does not quite agree with the standard Jacobian of
geometric measure theory, that is, the factor appearing in the coarea formula.
We will refer to the latter as “Federer’s Jacobian”. For functions uε as above,
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Federer’s Jacobian in our notation is given by |Juε |, that is, the Euclidean norm
of Juε .

We always assume that the initial data uε
0 satisfies (uε

0 − 1) ∈ H 1(Rm) and
has finite energy, ie

∫
Rm

Eε(uε
0) < ∞. Under these hypotheses (1.1) is known

to have a unique global solution satisfying

uε(t) − 1 ∈ H 1(Rm),

∫
Eε(uε(t))dx =

∫
Eε(uε

0) dx for all t .

This can be deduced quite easily from standard facts about NLS; for a discussion
see Bethuel and Saut [4] Appendix A.

Smooth solutions of (1.1) satisfy

(2.5)
d

dt
j (uε) = kε

(
2(uε

xj
· uε

xk
)xj − [

2Eε(uε) − iuε · uε
t

]
xk

)
ek .

By taking the exterior derivative of (2.5), we obtain an equation for the evolution
of the vorticity.

(2.6)

d

dt
Juε = kε

∑
j,k,l

(uε
xj

· uε
xl
)xj xk ek ∧ el

= kε

∑
j

∑
k<l

(
(uε

xj
· uε

xl
)xj xk − (uε

xj
· uε

xk
)xj xl

)
ek ∧ el .

These identities remain valid in the sense of distributions if the initial data
merely satisfies uε −1 ∈ H 1(Rm). This can be shown by regularizing the initial
data to obtain smooth solutions, then passing to limits using standard NLS
estimates.

2.3. – Geometric background

2.3.1. – Rectifiability

A set � ⊂ Rm is said to be k-dimensional rectifiable for integer k < m,
if it can be written in the form � = ∪∞

j=0�j where Hk(�0) = 0, and for each
j ≥ 1, �j is a subset of the image of an injective Lipschitz map f j : Uj → Rm ,
where Uj is an open subset of Rk .

A set � is k-dimensional rectifiable if and only if it has an approximate
k-dimensional tangent space at Hk almost every point of its support. For a proof
of this fact, as well as the definition of approximate tangent space and related
material, consult Simon [21] Section 11 or Giaquinta et al. [9] Section 2.1.4.
We write apTx� to denote this approximate tangent space, which is unique.

Whenever a set � ⊂ Rm is k-dimensional rectifiable, we can thus define
for Hk a.e. x ∈ � an m × m matrix P(x) corresponding to projection onto
the k-dimensional approximate tangent space apTx�. We will also write P⊥(x)

to denote projection onto the approximate orthogonal space (apTx�)⊥, so that
P⊥(x) = id − P(x).
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2.3.2. – First variation and mean curvature

Suppose that � is a k-dimensional rectifiable subset of Rm , and for φ ∈
C1

c (Rm, Rm) define
div�φ(x) = P(x) : Dφ(x)

at every x ∈ � where apTx� exists. Then div�φ is a bounded function which
is Hk |�-measurable, and so

∫
� div�φ(x)Hk(dx) makes sense.

If there exists a Hk-measurable function H : � → Rm such that

(2.7)
∫

�

div�φ(x)Hk(dx) = −
∫

�

φ(x) · H(x)Hk(dx) ∀ φ ∈ C1
c (Rm; Rm) ,

then we say that H is the mean curvature of �. If such a vector field exists,
it is uniquely determined up to sets of Hk-measure zero, and it coincides with
the classical mean curvature (up to null sets) if � is smooth. (See Simon [21],
Section 16).

The quantities appearing in (2.7) have a natural interpretation. Suppose
that, for t ∈ (−ε, ε), t 	→ �t is an evolving k-dimensional rectifiable subset of
Rm , and that the velocity of �t at t = 0 is given by the restriction to �0 of
some smooth vector field φ. Then

(2.8)
d

dt
Hk(�t )|t=0 =

∫
�0

div�0φ(x)Hk(dx)

See Simon [21] Section 9 for a precise statement and a proof.

2.3.3. – Oriented i.m. rectifiable sets

An oriented integer multiplicity k-dimensional rectifiable set is a triple
(�, θ, ξ), where � ⊂ Rm is a k-dimensional rectifiable set, θ : � → N and
ξ : � → �kRm are Hk-measurable functions, and ξ(x) orients Tx� for Hk a.e.
x ∈ �. We will write i.m. for integer multiplicity, and we will not explicitly
mention the dimension k where there is no possibility of confusion.

A k-dimensional i.m. rectifiable current on Rm is a bounded linear func-
tional on C∞

c (Rm; �kRm) that has the form

(2.9) T (φ) =
∫

�

φ(x) · ξ(x)θ(x)Hk(dx) ∀ φ ∈ C∞
c (Rm; �kRm)

for some oriented i.m. rectifiable (�, θ, ξ). For such a current, we define the
mass M(T ) := ∫

� θHk(dx). When (2.9) holds we will write T = τττ(�, θ, ξ) We
will need one deep fact about integer multiplicity currents, Almgren’s optimal
isoperimetric inequality, which we will invoke in the proof of Theorem 4.

In our context we will often encounter �2Rm-valued measures J of the
form ∫

φ · J = π

∫
�

φ(x) · ν(x) θ(x) Hk(dx) ∀ φ ∈ C0
c (Rm; �2Rm) .
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where (�, θ, 	ν) is an oriented i.m. (m − 2)-dimensional rectifiable set, so
that ν(x) orients (apTx�)⊥ almost everywhere. These arise naturally due to
Theorem 1 below. We will write J = πθνHk |� to indicate measures of this
form, and when we write expressions like πθνHk |� , it is always with the
understanding that (�, θ, 	ν) is an oriented i.m. rectifiable set. Given such
a measure J , we write |J | to indicate the nonnegative scalar measure |J | =
πθHk |� .

2.4. – Compactness properties

We define the scaled Ginzburg-Landau functional

(2.10) I ε(u; U ) := kε

∫
U

Eε(u)dx, for u ∈ H 1(U ; R2), U ⊂ Rm .

We write I ε(u) as shorthand for I ε(u; Rm). As remarked earlier, t 	→ I ε(uε(t))
is constant for a solution uε of (1.1) with initial data uε

0 such that uε
0 − 1 ∈

H 1(Rm).
The following theorem describes some connections between the Jacobian

and the Ginzburg-Landau energy. It is established by the author and H.M. Soner
in [11], Theorem 5.2, see also [1]

Theorem 1. Suppose that {uε}ε∈(0,1] is a family of functions in H 1(Rm; R2)

such that lim supε→0 I ε(uε) ≤ K . Then {Juε}ε∈(0,1] is strongly precompact in C0,γ ∗
loc

for all γ > 0. Moreover, if J̄ = ∑
i< j J̄ i j ei ∧ ej is any weak limit of a subsequence

Juεn , then

(i) J̄ has the form πθνHm−2|� where (�, θ, 	ν) is some oriented i.m. rectifiable
set.

(ii) | J̄ |(Rm) ≤ lim infn→∞ I εn (uεn )

(iii) d J̄ = 0 in the sense of distributions.

We also show in [11] that, roughly speaking, components of J̄ can naturally
be sliced in certain directions, and moreover that slices of Juε converge to slices
of J̄ along appropriate subsequences. We will need this result in Section 7, but
the statement is rather technical so we defer it until there.

The compactness assertion stated in [11] is that, if U is a bounded open
subset of Rm and uε ∈ H 1(U ; R2) satisfy I ε(uε; U ) ≤ C , then {Juε} is pre-
compact in C0,γ

c (U )∗. However this immediately implies the result asserted in
Theorem 1 above.

The above theorem does not make any assertion about compactness of the
functions {uε}. These are in fact weakly precompact in L p for all p < ∞, and
they may fail to be precompact in any stronger sense.
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3. – Weak formulation of binormal mean curvature flow

In this section we define classical binormal mean curvature flow, and then
we give our definition of a weak solution, and we show that any classical
solution is a weak solution.

We first introduce some notation.
In the following, {�t }t∈R always denotes a family of m − 2 dimensional

rectifiable subsets of Rm , m ≥ 3. We write � = ∪t�t × {t}. We assume that
θ : � → N and ξ : � → �m−2Rm are Hm−1-measurable functions such that
(�t , θ(·, t), ξ(·, t)) is an oriented i.m. rectifiable set for every t . We consider
only sets having no boundary in the sense that for every t , (�t , θ, ξ) satisfies

(3.1)
∫

�t

dφ(x) · ξ(x, t)θ(x, t)Hm−2(dx)=0 for all φ∈C∞
c (Rm; �m−2Rm) .

To define a classical solution, suppose that �t is smooth for every t , and
also that � is smooth. Assume also that θ ≡ 1. We write ξξξ : � → �m−1Rm+1

to denote the unit m − 1-vectorfield that orients Tx,t�. In (3.5) below we will
use Stokes’ Theorem, and we fix the relative orientations of ξ and ξξξ such
that the signs in (3.5) are correct. Since Tx�t is a subspace of Tx,t�, we can
necessarily write ξξξ in the form ξm−1∧ξ , where ξm−1 ∈ �1Rm+1, |ξm−1| = 1, and
ξm−1 ⊥ Tx�t in Rm+1. We assume that ξm−1 · et never vanishes; this amounts
to assuming that t 	→ �t is smooth. We then further assume that ξm−1 · et is
always positive; this fixes the orientation of ξξξ . So we can write

(3.2) ξξξ = ξm−1 ∧ ξ = (et + V )

(1 + |V |2)1/2
∧ ξ

for some V : � → �1Rm such that V (x, t) ∈ (apTx�t )
⊥ for all (x, t) ∈ �.

Note that V (x, t) is precisely the nontangential part of the velocity of �t

at a point x in its support.

Definition 1. A smooth family of m − 2-dimensional submanifolds {�t }t

oriented by multivectors ξ ∈ �m−2Rm defines a smooth binormal mean curvature
flow if

(3.3) 	(V ∧ ξ) = H in � ,

where H is the mean curvature vector to �t .

Note that V is orthogonal to both H and Tx�t , that is, binormal; and also
that |V | = |H|. Hence the name binormal mean curvature flow.

We next introduce our notion of a weak solution.

Definition 2. A family of oriented i.m. rectifable sets {(�t , θ(·, t), ξ(·, t))}
defines a weak binormal mean curvature flow if for every φ ∈ C2

c (Rm; �m−2Rm),
the function t 	→ ∫

�t
φ · ξθHm−2 is Lipschitz, and moreover

(3.4)
d

dt

∫
�t

φ · ξ θ Hm−2 =
∫

�t

div�t (	dφ) θ Hm−2
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for a.e. t . When this holds we write that {(�t , θ, ξ)} is a weak binormal mean
curvature flow.

Note that in order to make sense of the right-hand side of (3.4), all that
is needed is that div�t be well-defined, which as remarked earlier is equivalent
to requiring that �t be rectifiable.

The following proposition provides some minimal justification for Defini-
tion 2.

Proposition 1. Every smooth binormal mean curvature flow is a weak binormal
mean curvature flow.

Here we are considering the smooth oriented manifolds �t of Definition 1
as oriented i.m. rectifiable sets with multiplicity θ ≡ 1.

Proof. 1. Recall that we are writing d to denote the exterior derivative
in Rm , and d the exterior derivative in Rm+1, and also that the boldface ξξξ

denotes the space-time tangent multivector to �.
Fix t ∈ R and φ ∈ C∞

c (Rm; �m−2Rm), and let φ̃ ∈ C∞
c (Rm

x × Rt ; �m−2Rm
x )

be such that φ̃(·, s) = φ for all s in an interval containing t . We write �{s<t}
to denote {(x, s) : x ∈ �s, s < t}. Then by Stokes’ theorem

(3.5)
∫

�t

φ · ξHm−2(dx) =
∫

�{s<t}
dφ̃ · ξξξHm−1(dx ds)

For (x, t) ∈ � define π(x, t) = t . Let dπ(x,t) denote the induced linear map
from Tx,t� to TtR, where both tangent spaces inherit the ambient Euclidean
metrics. By definition Federer’s Jacobian |Jπ(x, t)| is just |dπ(x,t)|, and using
this and (3.2) one can easily check that |Jπ(x, t)| = (1 + |V |2)−1/2 for all
(x, t) ∈ �. Thus the coarea formula (see Simon [21], Section 10) implies that∫

�{s<t}
dφ̃ · ξξξHm−1(dxds) =

∫ t

−∞

∫
�s

dφ̃ · ξξξ(1 + |V |2)1/2Hm−2(dx) ds .

Also, from (3.2) we see that dφ̃ ·ξξξ(1+|V |2)1/2 = (dφ̃+dt ∧ φ̃t ) ·((et +V )∧ξ) =
dφ̃ · (V ∧ ξ) + φ̃t · ξ . So

d

dt

∫
�t

φ · ξHm−2(dx) =
∫

�t

dφ · (V ∧ ξ)Hm−2(dx) .

2. Since dφ · (V ∧ξ) = 	dφ ·	(V ∧ξ), the equation (3.3) for a smooth binormal
mean curvature flow implies that

d

dt

∫
�t

φ · ξHm−2(dx) =
∫

�t

H · 	dφHm−2(dx) .

So the conclusion of the proposition follows from (2.7).
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It is convenient to reformulate (3.4) as follows.

Lemma 1. Suppose that {(�t , θ(·, t), ξ(·, t))}t∈R is a family of oriented i.m.
codimension two rectifable sets, and that for each t, Jt is the corresponding �2Rm

valued measure Jt = πθνHm−2|�t , where 	ν = ξ .
For every t andHm−2 almost every x ∈ �t let P denote the matrix corresponding

to projection onto apTx�t , and let P⊥ = id −P.
Then {(�t , θ, ξ)} is a weak binormal mean curvature flow if and only if

(3.6)
d

dt

∫
φ · Jt (dx) =

∫
P⊥

jk (φ
i j − φ j i )xi xk |Jt |(dx)

for all φ ∈ C2
c (Rm; �2Rm) of the form φ = ∑

i< j φi j ei ∧ ei and a.e. t .

Proof. If we use the isomorphism 	 : �2Rm ∼= �m−2Rm and the definition
of div�φ, we find that (3.4) is satisfied by {�t , 	ν} if and only if

d

dt

∫
φ · Jt (dx) =

∫
P : D(	d 	 φ)|Jt |(dx)

for all φ ∈ C2(Rm; �2Rm). One can check that for φ = ∑
i< j φi j ei ∧ ej ,

	d 	 φ =
n∑

i, j=1

(φ j i − φi j )xi ej ,

where we set φi j = 0 if i > j . As a result, P : D(	d 	 φ) = Pjk(φ
j i − φi j )xi xk .

However, since P = id − P⊥ and δjk(φ
j i − φi j )xi xk ≡ 0, we can rewrite∫

Pjk(φ
j i − φi j )xi xk |Jt |(dx) =

∫
P⊥

jk (φ
i j − φ j i )xi xk |Jt |(dx) .

4. – A compactness result

In this section we prove a compactness result for {Juε}ε∈(0,1], where uε

is a solution of (1.1) on Rm × [0, ∞). It follows by combining Theorem 1,
which guarantees compactness of {Juε(t)} for every fixed t , with some simple
estimates on the modulus of continuity of t 	→ Juε(t) in a weak norm. The
latter estimates follow easily from (2.6).

We consider initial data uε
0 such that

(4.1) uε
0 − 1 ∈ H 1(Rm) .
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We assume in addition that there exists an oriented i.m. (m − 2)-dimensional
rectifiable set (�0, θ, ξ) such that

(4.2) Juε
0 → J̄0 := πθνHm−2|�0 in C0,γ ∗

loc for all γ > 0 ,

where 	ν = ξ . We also assume that the energy is asymptotically small in that

(4.3) I ε(uε
0) ≤ | J̄0|(Rm) + oε(1) .

As remarked earlier, the initial value problem is known to be well-posed under
these assumptions. Since the energy is conserved, it immediately follows that

(4.4) I ε(uε(t)) ≤ | J̄0|(Rm) + oε(1)

for all t ∈ R.

Remark 1. Alberti, Baldo and Orlandi [1] show that, whenever J̄0 is a
measure of the above form with finite total mass and with vanishing boundary
in the sense that d J̄0 = 0 in the sense of distributions, then there exists a
sequence {uε} of functions satisfying (4.1), (4.2), and (4.3).

Our main result in this section is

Theorem 2. Suppose that uε is a solution of (1.1) for initial data satisfy-
ing (4.1), (4.2), and (4.3). Then given any subsequence εn, there exists a fur-
ther subsequence (which we still write εn) and measures { J̄t }t∈R of the form J̄t =
πθνHm−2|�t for some oriented i.m. (m − 2) dimensional rectifiable set (�t , θ, 	ν)

such that d J̄t = 0 for all t;

Juεn (t) → J̄t in C0,α∗
loc for all α ∈ (0, 1] and every t > 0 ;(4.5)

| J̄t |(Rm) ≤ | J̄0|(Rm) ;(4.6)

and finally, t 	→ J̄t is weak-* continuous in C0∗, and uniformly Hölder continuous
in weaker topologies:

(4.7) ‖ J̄s − J̄t‖Ĉk,α∗
c

≤ C(k, α)|t − s|(k+α)/2

for k = 0, 1 and α ∈ (0, 1].

Remark 2. If we merely assume that lim supε→0 I ε(uε
0)<∞ instead of (4.3),

then the theorem remains valid if (4.6) is replaced by | J̄t |(Rm) ≤ lim infn→∞
I εn (uεn

0 ).

Proof. 1. We will first use the Arzela-Ascoli theorem to show that the
functions {t 	→ Juε(t)}ε∈(0,1] are precompact in C(0, T ; C1,1∗

loc ) for every T > 0.
To do this we need to verify two points: first, that {Juε(t)}ε∈(0,1] is precompact
in C1,1∗

loc for every t > 0. This is easy, because in view of (4.4), {uε(t)}ε>0
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satisfies the hypotheses of Theorem 1. Thus for fixed t , {Juε(t)}ε∈(0,1] is
precompact in C0,γ ∗

loc for all γ > 0. Precompactness in C1,1∗
loc follows from the

obvious fact that the embedding C0,γ ∗
loc ⊂ C1,1∗

loc is continuous.
The second point we need to check is that {t 	→ Juε(t)}ε∈(0,1] are equicon-

tinuous as functions into C1,1∗
loc . We show that in fact they are uniformly

Lipschitz as functions into C1,1∗
c , and thus into C1,1∗

loc . To see this, let φ =∑
i< j φi j ei ∧ ej : Rm → �2Rm be a smooth, compactly supported 2-vectorfield.

Then (2.6) and the uniform energy bound (4.4) imply that

(4.8)

∫
φ · (Juε(t2) − Juε(t1)) ≤ Ckε

∫ t2

t1

∫
|D2φ||Duε |2 dx dt

≤ C |t1 − t2|‖φ‖
Ĉ1,1

c
.

In other words,

(4.9) ‖Juε(t1) − Juε(t2)‖C1,1∗
c

≤ ‖Juε(t1) − Juε(t2)‖Ĉ1,1∗
c

≤ C |t1 − t2|

for all t1, t2.

2. Thus given a subsequence {εn}, we can pass to a further sequence (still
labelled εn) such that Juεn (t) converges to some limit J̄t in C1,1∗

loc , locally
uniformly for t > 0. Then again appealing to (4.4) and Theorem 1, we deduce
that for every t , J̄t is a measure of the form the form πθνHm−2|�t . The same
theorem implies that d J̄t = 0 for all t and that (4.5) and (4.6) hold.

By passing to limits in (4.9) we find that (4.7) holds for k = α = 1. The
remaining continuity estimates in (4.7) follows by interpolating between the case
α = k = 1 and the case α = k = 0, where we have the easy estimate

‖ J̄t1 − J̄t2‖Ĉ0∗
c

≤ ‖ J̄t1‖C0∗
c

+ ‖ J̄t2‖C0∗
c

≤ 2| J̄0|(Rm) ∀ t1, t2 .

The relevant interpolation inequality is given in Lemma 2 below.
Finally, the weak-* continuity of t 	→ J̄t follows directly from the fact that

{ J̄t }t≥0. is uniformly bounded in C0∗
c and hence weak-* precompact, together

with the continuity estimate (4.7) in weaker topologies.

Lemma 2. If µ is a measure such that ‖µ‖
Ĉ1,1∗

c
< ∞, then for k = 0, 1 and

α ∈ (0, 1]

(4.10) ‖µ‖
Ĉk,α∗

c
≤ C‖µ‖(k+α)/2

Ĉ1,1∗
c

‖µ‖(2−k−α)/2

Ĉ0∗
c

.

Proof. Suppose µ ∈ Ĉ1,1∗
c ∩ C0∗

c , and fix k ∈ {0, 1} and α ∈ (0, 1]. Fix φ

such that ‖φ‖
Ĉk,α

c
≤ 1.
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Let ηε(x) = 1
εm η( x

ε
), where η ∈ C∞

c (Rn) is a nonnegative function such
that

∫
ηdx = 1. Define φε = ηε ∗ φ. One easily verifies that

‖φε − φ‖C0 ≤ Cεk+α‖φ‖Ĉk,α ≤ Cεk+α ,

‖φ‖Ĉ1,1 = ‖D2φε‖C0 ≤ Cε−2+k+α‖φ‖Ĉk,α = Cε−2+k+α .

Then ∣∣∣∣∫ φdµ

∣∣∣∣ ≤
∣∣∣∣∫ φεdµ

∣∣∣∣ + ∣∣∣∣∫ (φ − φε)dµ

∣∣∣∣
≤ ‖φε‖Ĉ1,1‖µ‖

Ĉ1,1∗
c

+ ‖φ − φε‖Ĉ0‖µ‖Ĉ0∗
c

≤ Cε−2+k+α‖µ‖
Ĉ1,1∗

c
+ Cεk+α‖µ‖Ĉ0∗

c
.

We now select ε =
( ‖µ‖

Ĉ1,1∗
‖µ‖

Ĉ0∗

)1/2

to obtain (4.10).

5. – Convergence to binormal mean curvature flow

In this section we give some conditions which imply that the weak limit
of the Jacobians is a weak binormal mean curvature flow. These are based on
Theorem 6, which is established in Section 7. As a corollary we show that
in general the limiting measures { J̄t } evolve nontrivially. We also prove that
{ J̄t } evolves by the conjectured dynamics in the case where the initial singular
submanifold is a multiplicity one sphere.

One criterion for { J̄t } to evolve by weak binormal mean curvature flow is
given in the following theorem, and others are discussed after its proof.

Theorem 3. Suppose that uε is a solution of (1.1) for initial data satisfy-
ing (4.1), (4.2), and (4.3). Fix a subsequence εn and measures J̄t satisfying the
conclusions of Theorem 2.

Then { J̄t }t∈R is a weak binormal mean curvature flow if | J̄t |(Rm) = | J̄0|(Rm)

for all t . In view of (4.6), to prove this it suffices to show that

(5.1) | J̄t |(Rm) ≥ | J̄0|(Rm) for all t .

Remark 3. The condition that t 	→ | J̄t |(Rm) be constant is satisfied if { J̄t }
corresponds to a smooth binormal mean curvature flow. This follows from (2.7),
(2.8), and the fact that V · H ≡ 0.

Corollary 1. Assume the hypotheses of Theorem 2, and assume in addition
that the distributional mean curvature of (�0, θ, 	ν) does not identically vanish, so
that ∫

(φi j − φ j i )xi xk P⊥
jk | J̄0|(dx) �= 0

for some φ ∈ C2
c (Rm; �2Rm). Then t 	→ J̄t is not constant.
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Proof. If J̄t ≡ J̄0 in any time interval containing the origin, clearly (5.1)
would be satisfied in that interval, and so t 	→ J̄t would correspond to a weak
binormal mean curvature flow in that interval. Then (3.6) implies that

0 = d

dt

∫
φ · J̄t

∣∣∣∣
t=0

=
∫

(φi j − φ j i )xi xk P⊥
jk | J̄0|(dx)

for all φ ∈ C2
c (Rm; �2Rm), a contradiction.

Proof of Theorem 3. 1. Fix a sequence εn and measures J̄t as in the
statement of the theorem, and assume that | J̄t |(Rm) = | J̄0|(Rm) for all t . Fix a
test function φ = ∑

i< j φi j ei ∧ej ∈ C2
c (Rm; �2Rm). Using (2.6) and reindexing,

we find that

(5.2)
d

dt

∫
Rm

φ · Juεn (t) dx = kεn

∫
Rm

(
φi j − φ j i

)
xk xi

uεn
xk

· uεn
xj

(t)dx .

We are using the convention that φ j i = 0 if j ≥ i .
We know from Theorem 2 that t 	→ ∫

φ · J̄t is Lipschitz, and also that∫
Rm

φ · Juεn (t)dx →
∫

Rm
φ · J̄t(dx)

as n → ∞. Thus to pass to limits in (5.2) and deduce that (3.6) holds, it
suffices to show that

(5.3) lim
n→∞ kεn

∫
Rm

(
φi j − φ j i

)
xk xi

uεn
xk

· uεn
xj

dx =
∫

P⊥
jk

(
φi j − φ j i

)
xk xi

| J̄t |(dx)

for a.e. t . Note also that, because t 	→ ∫
φ · J̄t is Lipschitz, (5.2) implies that

the above limit exists a.e. t , and we can pass to subsequences freely on the
left-hand side of (5.3).

2. Fix some t and pass to a subsequence (still labelled εn) for which there exists
a matrix-valued measure Qt such that kεn Duεn (t) ⊗ Duεn (t) ⇀ Qt weak-* in
C0∗

c . Then using conservation of energy,

Tr Qt (R
m) ≤ lim sup

n→∞
kεn

∫
Rm

|Duεn (t)|2 dx

≤ lim sup
n→∞

kεn

∫
Rm

2Eεn (uεn (t)) dx

≤ lim sup
n→∞

kεn

∫
Rm

2Eεn (uεn (0)) dx

= 2| J̄0|(Rm) = 2| J̄t |(Rm) .

Then using Theorem 6 we conclude that Qt = P⊥| J̄t |, which gives (5.3).
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Theorem 6 gives conditions that ensure that Qt = P⊥| J̄t |, and thus it can
be used to formulate other criteria that guarantee convergence to weak binormal
mean curvature flow. For example, assume the hypotheses of Theorem 2, and
fix some arbitrary t . Assume also that after passing to a further subsequence
and relabelling as necessary, kε Duεn (t) ⊗ Duεn (t) converges weak-* to some
matrix-valued measure Qt . Passing to limits in (5.2), we then can write

d

dt

∫
φ · J̄t (dx) =

∫
supp| J̄t |

(φi j − φ j i )xi xk Q jk
t (dx)

+
∫

Rm\supp| J̄t |
(φi j − φ j i )xi xk Q jk

t (dx) .

If η : Rm → [0, ∞) is any smooth function such that η ≡ 1 on supp| J̄t |, then one
can replace φ by ηφ without changing the term of the left-hand side, or the first
term on the right. Using this fact one can show that the last term on the right-
hand side must vanish. Thus to show that { J̄t } defines a weak binormal mean
curvature flow, we only need to check that Qt = P⊥| J̄t | on the support of | J̄t |.
This follows from Theorem 6 if we know that Tr Qt(supp| J̄t |) = 2| J̄t |(Rm).
One can formulate local conditions, for example in terms of d Tr Qt

d| J̄t | , that would
imply this estimate. This would have to be done rather carefully, because of
the possibility that supp| J̄t | is much larger than �t , or that Qt can concentrate
on smaller-dimensional subsets of �t . We do not do this here, because it is not
clear exactly what conditions, if any, one might hope to be able to verify for
sequences of solutions uε of the Gross-Pitaevsky equation (1.1).

We now consider initial data such that the initial singular set is a round
sphere of multiplicity one. We introduce some notation: For x ∈ Rm, p ∈ Sm−1

and r > 0 let

Br (x, p) = {y ∈ Rm : |x − y| ≤ r, (x − y) · p = 0} .

We equip Br (x, p) with an orienting tangent m − 1 vectorfield ξB ≡ 	p. We
will also write

Sr (x, p) = {y ∈ Rm : |x − y| = r, (x − y) · p = 0} ,

We endow Sr (x, p) with the tangent vectorfield ξS that makes it the boundary of
Br (x, p) in the sense of Stokes’ theorem, and we define a normal 2-vectorfield
by requiring that 	ν = ξS .

Theorem 4. Assume the hypotheses of Theorem 2, and assume moreover that

J̄0 = πνHm−2|Sr (x0,p)

for some r > 0, x ∈ Rm and p ∈ Sm−1. Then

Juε(t) → J̄t = πνHm−2|Sr (x(t),p)

as ε → 0 where x(t) = x0 + t (m−2)p
r .
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Proof. 1. By a change of coordinates and a translation we may assume
that x0 is the origin and p = em .

Fix a sequence εn and measures J̄t as guaranteed by Theorem 2.
Let φ := xm−1em−1 ∧ em . Also, let ζ : [0, ∞) → [0, 1] be a smooth

nonincreasing function such that ζ(s) = 1 if s ≤ 1 and ζ(s) = 0 for s ≥ 2, and
define

χR(x) := ζ

( |x |
R

)
.

Finally, define φR = χRφ. One easily checks that ‖φR‖Ĉ1,1 ≤ C
R . Thus (4.7)

with k = α = 1 implies that

(5.4)
∣∣∣∣∫ φR · J̄t −

∫
φR · J̄0

∣∣∣∣ ≤ C
t

R
.

2. For every t , let Tt denote the (m − 2) dimensional integer multiplicity
rectifiable current defined by

Tt (	φ) = 1

π

∫
φ · J̄t φ ∈ C∞

c (Rm; �2Rm) .

The fact that d J̄t = 0 in the sense of distributions implies that ∂Tt = 0.
Thus Almgren’s optimal isoperimetric inequality for integral currents ([2], The-
orem 10) implies that there exists some (m − 1) dimensional i. m. rectifiable
current Qt such that ∂ Qt = Tt and

(5.5)
M(Qt )=min {M(Rt ) : Rt (m − 1) dim. i.m. rectifiable current, ∂ Rt =Tt }

≤
(
(m − 1)m−1ωm−1

)−1/m−2
M(Tt)

m−1/m−2

and moreover the inequality is an equality if and only if Tt = τττ(Sr (x, p), 1, ξS))

for some r > 0, x ∈ Rm , and p ∈ Sn−1. Here ωk denotes the volume of the
unit ball in Rk .

Our choice of J̄0 implies that equality holds in (5.5) when t = 0, and also
that Q0 = τττ(Br (0, em), 1, 	em).

The definition of Tt and the identity ∂ Qt = Tt imply that

(5.6)
1

π

∫
η · J̄t = Qt (d 	 η) ∀ η ∈ C∞

c (Rm; �2Rm) .

3. By explicitly differentiating one can verify that d 	 φR converges pointwise
and boundedly to d 	 φ = e1 ∧ . . . ∧ em−1 = 	em as R → ∞. Since Qt has
finite mass, this implies that

(5.7) M(Qt ) ≥ Qt (d 	 φ) = lim
R→∞

Qt (d 	 φR) = lim
R→∞

1

π

∫
φR · J̄t ,
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using (5.6). Now (5.4) implies that

lim
R→∞

1

π

∫
φR · J̄t = lim

R→∞
1

π

∫
φR · J̄0 .

Applying (5.7) at time t = 0 we find that

lim
R→∞

1

π

∫
φR · J̄0 = Q0(d 	 φ)

=
∫

Br (0,em )

dHm−1

= rm−1ωm−1

since d 	 φ = e1 ∧ . . . ∧ em−1 is just the oriented tangent ξB to Br (0, em).
Assembling these calculations we find that M(Qt ) ≥ rm−1ωm−1 for all t . Thus
the isoperimetric inequality (5.5) implies that

(5.8)
1

π
| J̄t |(Rm) = M(Tt ) ≥ (m − 1)ωm−1rm−2 = 1

π
| J̄0|(Rm)

where the last identity follows immediately from our assumption about the
explicit form of J̄0.

4. The estimate (5.8) implies by Theorem 3 that { J̄t } is a weak binormal mean
curvature flow.

In this case we can easily verify that in fact { J̄t } is a classical binor-
mal mean curvature flow. First note that (4.6) implies that equality holds
in (5.8), and so according to the isoperimetric inequality, Tt must have the
form Tt = τττ(Sr (x(t), p(t)), θ, ξ) for some x(t), p(t), and moreover Qt =
τττ(Br (x(t), p(t)), θ, ξB) where ξB ≡ 	p(t).

It follows also that equality holds in (5.7), and hence that 	dφ = 	em

identically equals the orienting tangent 	p(t) to Qt , which implies that p(t) =
em for all t .

So we only need to find x(t) = (x1(t), . . . , xm(t)). To do this, for l =
1, . . . , m let φl = (−1)m xl xm−1em−1 ∧ em , and note that

1

π

∫
φl · J̄t = Tt (	φl) = Qt (d 	 φl) .

Also, one easily checks that

d 	 φl =
{

xl 	 em if l �= m − 1

2xm−1 	 em if l = m − 1 .

Thus

(5.9)
∫

φl · J̄t = κlπ

∫
Br (x(t),em )

xlHm−1(dx) = κlπxl(t)ωm−1rm−1
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where κl = 2 if l = m − 1 and 1 otherwise. Also, one can verify that for every
y ∈ Rm ,

(5.10) π

∫
Sr (y,em )

(φ
i j
l − φ

j i
l )xi xk P⊥

jkHm−2(dx)=
{

0 if l �=m

π(m − 2)ωm−1rm−2 if l =m .

This can be done by a straightforward calculation, or else simply by using (5.9)
and Proposition 1, which guarantees that every smooth binormal mean curvature
flow is a weak binormal mean curvature flow; and the explicit classical solution
when the initial surface is a round m − 2-sphere.

Putting (5.9) and (5.10) in the definition of a weak solution yields ẋi ≡ 0
for all i < m, ẋm ≡ (m − 2)/r , which completes the proof.

6. – Limits of kε Duε ⊗ Duε

In this section we will prove a result analyzing the relationship between
limits of Juε and limits of kε Duε ⊗ Duε in two space dimensions. The main
result of this section is

Theorem 5. Suppose that uε ∈ H 1(�; R2) for ε ∈ (0, 1], where � is an open
subset of R2. Assume that

(6.1) lim sup
ε→0

kε

∫
�

Eε(uε)dx < ∞

and let εn → 0 be a sequence such that

(6.2) Juεn → J̄ = π
∑

diδai in C0,γ ∗
loc ∀ γ > 0 ;

and

(6.3) kεn Duεn ⊗ Duεn ⇀ Q ∈ C0∗(�; S2×2) weakly in C0∗(�) .

If we define

(6.4) Qd = Q − id | J̄ |

then Tr Qd ≥ 0, and there exist constants c1, c2 such that

(6.5) |Qd(A)| ≤ c1
(
Tr Qd(A) | J̄ |(A)

)1/2 + c2 Tr Qd(A) .

for every measurable A ⊂ �. In particular, if Tr Q(A) = 2| J̄ |(A) for some A ⊂ �,
then in fact Q = id | J̄ | in A.
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Remark 4. Given a sequence of functions satisfying (6.1), then Theorem 3.1
in [11] shows that one can find a subsequence satisfying (6.2). It is clear that
one can find a subsequence satisfying (6.3).

Remark 5. The estimate (6.5) is sharp in a certain sense, which we
illustrate by describing an example. Define

uε(x) =
{

ei(θ+α cos2(θ) if r ≥ ε

|r |
ε

ei(θ+α cos2(θ) if r ≤ ε

where (r, θ) are polar coordinates, d ∈ Z and α ∈ R. One can then check
by an explicit computation that Juε → J̄ := πδ0 and kε Duε ⊗ Duε → Qδ0,

where Q = π

(
1 + α2

2 −α

−α 1 + α2

2

)
, and so Qd({0}) = π

( α2

2 −α

−α α2

2

)
. Further

defining
vε(x) = �d

i=1uε(x − xε
i ), xε

i := | ln ε|−1e2π i/d ,

one can check that Jvε → J̄ := dπδ0 and kε Dvε ⊗ Dvε → Qδ0, with

Qd({0}) = dπ


α2

2
−α

−α
α2

2

 .

So |Qd({0})| ∼ dπ(|α| + α2) and Tr Qd({0}) = dπα2. In particular the term
(Tr Qd({0})| J̄ |({0}))1/2 = dπ |α| is required to bound |Qd({0})|.

The following simple lemma helps further explain the content of (6.5),
which in a sense asserts that the measure Qd = Q − id | J̄ | is not too far from
being nonnegative.

Lemma 3. If M ∈ Sn×n is nonnegative definite, then 1√
n

Tr M ≤ |M | ≤ Tr M.

Proof. To see this, note that |M |2 = Tr(M2), so we need to check that
1
n (Tr M)2 ≤ T r(M2) ≤ (Tr M)2 when M ≥ 0. Diagonalizing M and M2 reduces
these to elementary inequalities.

We briefly describe our strategy for proving Theorem 5. We define a
nonnegative function α on the collection of nonnegative definite 2 × 2 matrices,
and for A ⊂ � we define

Fε(A) = α

(∫
A

Duε ⊗ Duε

)
.

The function α is defined in such a way that (6.5) becomes equivalent to the
statement that

Fε(A) ≥ ln
(

1

ε

)
| J̄ |(A) + o(| ln ε|) ,
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so that Theorem 5 reduces to proving a lower bound relating a kind of “energy”
to the Jacobian.

We do this by showing, first, that if ∂ Br is a circle on which |uε | ∼ 1, then
one can prove a lower bound for α(

∫
∂ Br

Duε ⊗ Duε) in terms of deg(uε; ∂ Br ).
This is done in Lemma 5 and uses only the Cauchy-Schwartz inequality. This
simple estimate is ultimately responsible for the rather peculiar form of (6.5).

We then show that, if x0 is a point around which Juε concentrates as
ε → 0, then one can find many circles on which |uε | ∼ 1 and deg uε is
nonzero. We finally assemble these estimates to show that Fε(U ) is large for
a suitable neighborhood U of x0. In doing this we rely on some properties of
the function α(·), for example a kind of superadditivity property, see Lemma 4.

We start by defining and investigating α(·) and a related function. For a
nonnegative matrix S ∈ S2×2 and for σ ≥ 0 we define

(6.6) g(S, σ ) := |S − σ id | − c1 (σ Tr(S − σ id))1/2 − c2 Tr(S − σ id) .

We will impose conditions on the constants ci , i = 1, 2 as we go along. For
the moment we only insist that c2 ≥ 1.

We also define, for nonnegative definite S,

(6.7) α(S) := sup{α̃ ≤ Tr S : g(S, α̃) ≤ 0} .

It is clear that α ≥ 0, and that the supremum in the definition of α is attained.
It is not hard to check that g and α have certain monotonicity properties.

Using the fact that c2 ≥ 1 one can easily verify that

(6.8) S 	→ g(S, σ ) is decreasing for all σ ≥ 0 .

This implies that

(6.9) S 	→ α(S) is increasing .

Also, one can check by direct differentiation that σ 	→ g(S, σ ) is convex for
0 ≤ σ ≤ Tr S. If g(S, 0) < 0 (in particular this holds if S > 0) this implies
that

(6.10) g(S, α̃) < 0 for all 0 ≤ α̃ < α(S) .

Using (6.8) and (6.10) one deduces that

(6.11)
α(S) ≥ α̃ iff ∃ M such that S ≥ α̃ id +M and |M |

≤ c1(α̃ Tr M)1/2 + c2 Tr M .

Note also that (6.10) and the (obvious) continuity of g imply that α can be
defined implicitly by the equation g(S, α(S)) = 0. The convexity of σ 	→
g(S, σ ) and the fact that g(S, 0) < 0 whenever S is positive definite imply that
∂g
∂σ

(S, α(S)) > 0 whenever S > 0. Thus the implicit function theorem implies
that α(·) is continuous on the cone of nonnegative matrices.

We need one more fact about α(·), which we state as
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Lemma 4. If X is a space endowed with a measure µ, and X � x 	→ S(x) ∈
S2×2 is a µ-measurable function such that S ≥ 0 a.e., then

(6.12) α

(∫
X

S(x)µ(dx)

)
≥
∫

X
α(S(x))µ(dx) .

In particular,

(6.13) α
(∑

Si

)
≥
∑

α(Si ) .

Proof. For x ∈ X we write α(x) as shorthand for α(S(x)), and we define
M(x) = S(x) − α(x) id. Note that |M(x)| = c1(α(x) Tr M(x))1/2 + c2 Tr M(x)

for all x , by the definition of α(·). Writing 〈M〉 for
∫

X M(x)µ(dx), we thus
have

|〈M〉| ≤
∫

X
|M(x)|µ(dx)

=
∫

X
c1(α(x) Tr M(x))1/2 + c2 Tr M(x) µ(dx)

≤ c1

(∫
X

α(x)µ(dx)

)1/2

(Tr〈M〉)1/2 + c2 Tr〈M〉 .

In addition, ∫
X

S(x)µ(dx) = id
∫

X
α(x)µ(dx) + 〈M〉 ,

so (6.12) follows from (6.11). Finally, (6.13) is an immediate consequence
of (6.12).

Theorem 5 will follow easily from the following proposition. Because we
will encounter many balls in our later arguments, we use the notation U rather
than B to denote a ball, to avoid overusing the symbol B.

Proposition 2. Suppose that U ⊂ R2 is an open ball U = BR(x0) and that
uε ∈ H 1 ∩ C∞(U ; R2) for ε ∈ (0, 1]. Assume also that

(6.14) lim sup
ε→0

kε

∫
U

Eε(uε)dx < ∞

and let εn → 0 be a sequence such that

(6.15) Juεn → J̄ = πdδx0 in C0,γ ∗
c (U ) ∀ γ > 0 .

Let

Sn = kεn

∫
U

Duεn ⊗ Duεn dx .

Then

(6.16) α(Sn) ≥ (1 − o(1))πd = (1 − o(1))| J̄ |(U ) as n → ∞ .
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We now assume Proposition 2 and show that it implies Theorem 5 quite
easily. we then give the proof of Proposition 2.

Proof of Theorem 5. We may assume by an approximation argument
that uε is smooth for every ε.

We need to show that g(Q(A), | J̄ |(A)) ≤ 0, for every measurable A; this
is (6.5). By (6.10), this will follow if we can show that α(Q(A)) ≥ | J̄ |(A).
Since Q and J̄ are Radon measures, it suffices to prove this for all open sets
V ⊂ �.

Fix any such open set, and let {Ui }k
i=1 be a collection of pairwise disjoint

open balls contained in V such that each Ui is centered at a point of supp| J̄ |∩V ,
and every such point is contained in a ball Ui . We further assume that Q(∂Ui)=0
for every i ; this is clearly possible, since for any fixed a ∈ �, Q(∂ Bs(a)) is
nonzero for at most countably many values of s. Let V0 = V \ (∪iUi ), and let
S0 = Q(V0), and Si = Q(Ui ) for i = 1, . . . , k. Note that Q(V ) = ∑k

i=0 Si ≥∑k
i=1 Si .

The weak convergence kε Duεn ⊗ Duεn ⇀ Q and the fact that Q(∂Ui ) = 0
imply that

(6.17)
∫

Ui

kε Duεn ⊗ Duεn dx = Sn
i → Si = Q(Ui ), i = 1, . . . , k .

So Lemma 4 implies that

α(Q(V )) ≥ α

(
k∑

i=1

Si

)
≥

k∑
i=1

α(Si ) .

And (6.16), (6.17), and the continuity of α(·) together yield

k∑
i=1

α(Si ) =
k∑

i=1

lim
n

α(Sn
i ) ≥

k∑
i=1

| J̄ |(Ui ) = | J̄ |(V ) .

Remark 6. If we assume (6.1) and (6.2) but do not assume that kεn Duεn ⊗
Duεn converges to a limit, then Theorem 5 implies that

(6.18) lim inf
n

α

(
kεn

∫
V

Duεn ⊗ Duεn

)
≥ | J̄ |(V )

for every open set V ⊂ �.

Lemma 5. Assume the hypotheses of Proposition 2. Suppose that B ⊂ U is a
ball of radius r such that |deg(uε; ∂ B)| = d > 0. Let m = min∂ B |uε |. Then

α

(∫
∂ B

Duε ⊗ Duε

)
≥ m2πd2/r ≥ m2πd/r .
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Proof. Assume that m > 0 as otherwise there is nothing to prove. We can
then write uε locally in a neighborhood of ∂ B in the form uε = ρeiφ , for a
positive function ρ. Although φ is in general multivalued, Dφ is a well-defined
function near ∂ B taking values in R2, and Duε = Dρeiφ + ρDφieiφ . Then

(6.19) Duε ⊗ Duε = Dρ ⊗ Dρ + ρ2 Dφ ⊗ Dφ ≥ m2 Dφ ⊗ Dφ on ∂ B .

Let τ be a unit tangent vector field to ∂ B and ν the unit normal. Note that

(6.20)
∫

∂ B
τ ⊗ τ = 1

2

∫
∂ B

τ ⊗ τ + ν ⊗ ν = 1

2

∫
∂ B

id = πr id .

Note also that the condition |deg(uε, ∂ B)| = d means precisely that

(6.21)
∫

∂ B
Dφ · τ = 2πd ,

if τ is oriented appropriately. Define w = Dφ − dτ/r , so that from (6.19),
(6.20),

(6.22)
∫

∂ B
Duε ⊗ Duε ≥ m2

∫
∂ B

Dφ ⊗ Dφ = m2π
d2

r
id +M

where M = m2 d
r

∫
∂ B(τ ⊗w+w⊗τ)+m2

∫
∂ B w⊗w. Note that because of (6.21),

Tr M = 2m2 d

r

∫
∂ B

w · τ + m2
∫

∂ B
|w|2 = m2

∫
∂ B

|w|2 .

Since |w ⊗ τ + τ ⊗ w| ≤ 2|τ ||w| ≤ 2|w|, Cauchy-Schwartz thus yields

(6.23)

|M | ≤ 2dm2

r

∫
∂ B

|w| + m2
∫

∂ B
|w|2

≤ 2dm2

r

(
2πr

∫
∂ B

|w|2
)1/2

+ m2
∫

∂ B
|w|2

≤ c1

(
πm2 d2

r
Tr M

)1/2

+ c2 Tr M ,

where for example we can take c1 = 2
√

2, c2 = 1. In view of (6.11), the
conclusion of the Lemma follows from (6.22) and (6.23).

For t ∈ [0, 1] and ε ∈ (0, 1] we define

U ε(t) := {x ∈ U : |uε(x)| ≤ t} .

We will write γ ε
t := ∂U ε(t) ∩ U and for any set A ⊂ R2 we use the notation

H1
∞(A) = inf

{
2
∑

ri : A ⊂ ∪i Bri (xi )
}

.

It is not hard to check that whenever A is a subset of U ,

(6.24) H1(∂ A ∩ U ) ≥ H1
∞(A) .

This uses the fact that U is a ball. We now prove
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Lemma 6. Assume the hypotheses of Proposition 2. Then for every t ∈ [0, 1),

(1 − t)2H1
∞(U ε(t)) ≤ Cε

∫
U

Eε(uε)dx .

The proof is very similar to one given in Sandier [20].
Proof. We write |uε | = ρ, and note that |Dρ| ≤ |Duε |. Thus Cauchy’s

inequality implies that Eε(uε) ≥ 1
2 |Dρ|2 + 1

2ε2 W (ρ) ≥ 1
ε
|Dρ|√W (ρ). So by the

coarea formula and (2.1),

∫
U

Eε(uε)dx ≥ 1

Cε

∫ ∞

0

∫
γ ε

t

W (t)1/2dH1 dt ≥ 1

Cε

∫ 1

0
H1(γ ε

t )|1 − t | dt .

From (6.24) we immediately see that H1(γ ε
t ) ≥ H1

∞(U ε(t)), and it is clear that
t 	→ H1

∞(U ε(t)) is nondecreasing. So for any t ∈ (0, 1),

∫
U

Eε(uε)dx ≥ 1

Cε
H1

∞(U ε(t))
∫ 1

t
(1 − s) ds .

Remark 7. If we define Ũ ε(t) = {x ∈ U : |uε(x)| ≥ t} for t > 1, then
the same argument shows that (1 − t)2H1

∞(Ũ ε(t)) ≤ Cε
∫

U Eε(uε)dx for all
t ∈ (1, 2].

We use the notation

Fε(A) := α

(∫
A

Duε ⊗ Duε

)
.

Lemma 4 implies that

(6.25) Fε(∪Ai ) ≥
∑

Fε(Ai ), and Fε(A) ≤ Fε(B) whenever A ⊂ B .

Recall that we are writing kε := | ln ε|−1. Let Bρ2(a) \ Bρ1(a) be an annulus
that is contained in U \ U ε(1 − kε). Since by definition |uε | > 1 − kε in the
complement of U ε(1 − kε), the degree deg(uε; ∂ Bρ(a)) is well-defined and in
fact constant for all ρ ∈ (ρ1, ρ2). So if |deg(uε; ∂ Bρ1(a))| = d, then Lemma 4
and Lemma 5 imply that

(6.26) Fε(Bρ2 \ Bρ1(a)) ≥
∫ ρ2

ρ1

α

(∫
∂ Bρ

Duε ⊗ Duε

)
dρ ≥ (1 − kε)

2πd ln
ρ2

ρ1
.

We will use this fact in the proof of
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Lemma 7. Assume the hypotheses of Proposition 2. Then given ε ∈ (0, 1], for
every σ ≥ 1 there exists a collection of pairwise disjoint closed balls B(σ ) = {Bσ

i }
such that

U ε(1 − kε) ⊂ ∪i Bσ
i ;(6.27)

Fε(Bσ
i ) ≥ (1 − kε)

2dσ
i ln σ if Bσ

i ⊂ U ;(6.28)

∑
rσ

i ≤ Cσε

(
ln

1

ε
+ 1

)3

.(6.29)

Here rσ
i denotes the radius of Bσ

i and dσ
i := |deg(uε; ∂ Bσ

i )|.
The proof is also very similar to one given in Sandier [20].
We will say the “τ -expansion of the ball Bρ(x)” to denote the ball Bτρ(x)

ball with the same center and radius expanded by a factor τ .
Proof. 1. Fix ε ∈ (0, 1]. We first consider the case σ = 1. From Lemma 6

and (6.14) we see that H1
∞(U ε(1−kε)) ≤ Cε(ln 1

ε
+1)3. By the definition of H1

∞,
we can then find a collection of closed balls whose interiors cover U ε(1 − kε),
with the sum of their radii bounded by Cε(ln 1

ε
+ 1)3. We have assumed that

uε is continuous, which implies that U ε(1 − kε) is compact, and so we can
take this collection of balls to be finite. Suppose two balls Bi and Bj intersect.
We then replace them by a single larger ball B ′ ⊃ Bi ∪ Bj whose radius is no
greater than the sum of the radii of Bi and Bj . This can be repeated until we
obtain a collection that is pairwise disjoint, with the same bound on

∑
ri . This

collection has the desired properties for σ = 1.

2. Let � denote the set of all numbers σ ≥ 1 for which the conclusions of the
lemma hold. We have shown that 1 ∈ �. We now claim that, if σ0 ∈ �, then
there exists some δ > 0 such that [σ0, σ0 + δ) ⊂ �.

To see this, fix some such σ0. There exists some δ > 0 such that the σ/σ0
expansions of the balls B

σ0
i are pairwise disjoint for all σ < σ0 + δ. Taking

δ smaller if necessary, we can also assume that if B
σ0
i ⊂ U , then the σ/σ0

expansion of B
σ0
i does not intersect ∂U for all σ < σ0 + δ.

For all σ ∈(σ0, σ0+δ) define Bσ
i to be the σ/σ0 expansion of B

σ0
i if B

σ0
i ⊂U ,

and if B
σ0
i intersects ∂U leave B

σ0
i unchanged, that is, define Bσ

i = B
σ0
i . It

is clear that for every σ ∈ (σ0, σ0 + δ) the collection of balls thus obtained
satisfies (6.27). To verify that (6.28) holds, fix some i such that Bσ

i ⊂ U , and
note that the annulus Bσ

i \ B
σ0
i does not intersect U ε(1−kε) ⊂ ∪j B

σ0
j . So (6.26)

implies that

Fε(Bσ
i \ B

σ0
i ) ≥ dσ

i (1 − kε)
2 ln

σ

σ0
.

Since B
σ0
i satisfies (6.28), the above estimate and (6.25) imply that Bσ

i satis-
fies (6.28). Finally, (6.29) holds because rσ

i /σ is nonincreasing for every i ; it
is either constant or decreasing, depending on whether Bi is expanded or left
unchanged.
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3. Suppose now that [σ0, σ1) ⊂ �. We will show that σ1 ∈ �, thereby
completing the proof of the lemma.

To do this, define B̃
σ1
i as in Step 2, to be the σ1/σ0 expansion of B

σ0
i if

B
σ0
i ⊂ U , and if B

σ0
i intersects ∂U define B̃

σ1
i = B

σ0
i . These balls have all the

required properties, except that in general they need not be pairwise disjoint. So
we combine balls to form a new collection that is pairwise disjoint, as in Step 1,
without increasing the sum of the radii. Call these balls B

σ1
i . Again (6.27)

and (6.29) are easily checked, and (6.28) is a consequence of (6.25) and the fact
that d

σ1
i is bounded by the sum of the degrees of the balls from the collection

{B̃
σ1
j }j that were combined to form B

σ1
i .

Lemma 8. Assume the hypotheses of Proposition 2. Define

(6.30) Gεn := {s ∈ (0, R) : deg(uεn ; ∂ Bs(x0)) = d} .

Then

(6.31) L1(Gεn ) → R as εn → 0 .

Remark 8. A very similar result appears in [6].

Proof. First define

Iεn
1 := {s ∈ (0, R) : 1 − kεn < |uεn | < 1 + kεn on ∂ Bs(x0)}

:= {s ∈ (0, R) : ∂ Bs(x0) ∩ U εn (1 − kεn ) = ∂ Bs(x0) ∩ Ũ εn (1 + kεn ) = ∅} .

Lemma 6 and (6.14) imply that H1
∞(U εn (1 − kεn )) → 0 as εn → 0. Simi-

larly Remark 7 and (6.14) imply that H1
∞(Ũ εn (1 + kεn )) → 0. It follows that

L1(Iεn
1 ) → R as εn → 0.
If (6.31) is false, we can find a subsequence, still denoted εn , and subsets

Iεn
2 ⊂Iεn

1 such that L1(Iεn
2 ) is bounded away from 0 and either deg(uεn ; ∂ Bs(x0))

≥ d + 1 or deg(uεn ; ∂ Bs(x0)) ≤ d − 1 for all s ∈ Iεn
2 . Assume that the former

holds; the other case is similar. We can then define a sequence of test functions
of the form ηn(x) = f n(|x − x0|) ∈ C0,1

c (U ) such that

( f n)′(s) =
{ −1 a.e s ∈ Iεn

2

0 a.e s �∈ Iεn
2

In fact f n(s) := L1
(
(s, R) ∩ Iεn

2

)
, and so ηn(x0) = L1(Iεn

2 ).
Write uεn = ρeiφ . Then using the fact that Juεn = 1

2∇ × j (uεn ) =
1
2∇ × (ρ2 Dφ) and the coarea formula, one computes that∫

ηn Juεn dx = 1

2

∫
Iεn

2

∫
∂ Bs (x0)

ρ2 Dφ · τdH1 ds

≥ 1

2

∫
Iεn

2

(
πdeg(uεn ; ∂ Bs(x0)) −

∫
∂ Bs (x0)

∣∣∣(ρ2 − 1)Dφ
∣∣∣ dH1

)
ds .
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Since deg(uεn ; ∂ Bs(x0)) ≥ d + 1 for s ∈ Iεn
2 , it is clear that

1

2

∫
Iεn

2

πdeg(uεn ; ∂ Bs(x0)) ds ≥ π(d + 1)L1(Iεn
2 ) .

Suppose that s ∈ Iεn
2 . Because Iεn

2 ⊂ Iεn
1 , we have 1 − kεn ≤ ρ ≤ 1 + kεn on

∂ Bs(x0). Thus (2.1) implies that (ρ2 − 1)2 ≤ CW (ρ2) on ∂ Bs(x0), and so∣∣∣(ρ2 − 1)Dφ
∣∣∣ ≤ εn

2
|Dφ|2 + 1

2εn
(ρ2 − 1)2

≤ Cεn

(
1

2
ρ2|Dφ|2 + 1

2ε2
n

W (ρ2))

)
≤ Cεn Eεn (uεn )

on ∂ Bs(x0). Hence (using the coarea formula again)

1

2

∫
Iεn

2

∫
∂ Bs (x0)

∣∣∣(ρ2 − 1)Dφ
∣∣∣ dH1 ds ≤ Cεn

∫
U

Eεn (uεn ) ≤ K εn

(
ln

1

εn
+ 1

)
.

So we conclude that
∫

ηn Juεn dx ≥ π(d+1)L1(Iεn
2 )−o(1) as εn → 0. However,

this is impossible, since the weak convergence Juεn → J̄ implies that∣∣∣∣∫ ηn Juεn dx − πdηn(x0)

∣∣∣∣ =
∣∣∣∣∫ ηn Juεn dx − πdL1(Iεn

2 )

∣∣∣∣ → 0

as n → ∞.

We now give the

Proof of Proposition 2. Recalling the definition of Fεn , it will suffice to
demonstrate that Fεn (U ) ≥ d| ln εn|(1 − o(1)) as n → ∞.

Fix n0 so large that L1(Gεn ) ≥ R/2 for all n ≥ n0. This is possible by
Lemma 8.

Fix some n ≥ n0 and let σ̄ = R/(6Cεn(| ln εn| + 1)3), where C is the
constant in (6.29). Consider the collection of balls B(σ̄ ) given by Lemma 7.
The choice of σ̄ with (6.29) guarantees that

∑
r σ̄

i ≤ R/6. It follows that there
must be some s ∈ Gεn such that ∂ Bs(x0)∩ B σ̄

i = ∅ for all i . Then the additivity
of degree implies that

d = deg(uε; ∂ Bs(x0)) =
∑

{i :Bσ̄
i ⊂Bs (x0)}

deg(uε; ∂ B σ̄
i ) ≤

∑
d σ̄

i .

Then (6.25), (6.27), and our choice of σ̄ imply that

Fεn (U ) ≥
∑

Fεn (B σ̄
i ) ≥ d(1 − kεn )2 ln σ̄ ≥ d| ln εn| (1 − o(1))

as n → ∞.
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7. – Limits of kε Duε ⊗ Duε , continued

In this final section we analyze the relationship between limits of Juε and
kε Duε ⊗ Duε in m ≥ 3 space dimensions. The main result of this section is

Theorem 6. Suppose that uε ∈ H 1(�; R2) for ε ∈ (0, 1], where � is an open
subset of Rm, m ≥ 3. Assume that

(7.1) lim sup
ε→0

kε

∫
�

Eε(uε)dx < ∞

and let εn → 0 be a sequence such that

(7.2) Juεn → J̄ in C0,γ ∗
loc (�) ∀ γ > 0

where J̄ has the form πθνHm−2|� for some oriented i.m. rectifiable (�, θ, 	ν); and

(7.3) kεn Duεn ⊗ Duεn ⇀ Q ∈ C0∗(�; Sm×m) weakly in C0∗(�) .

Let Qd := Q − P⊥|J |, where for Hm−2 a.e. x ∈ �, P⊥(x) is the projection onto
(apTx�)⊥. Then Tr Qd ≥ 0, and there exist constants c1, c2 ≥ 1 (depending on the
dimension m) such that

(7.4) |Qd(A)| ≤ c1
(
Tr Qd(A) | J̄ |(A)

)1/2 + c2 Tr Qd(A) .

for every measurable A ⊂ �. In particular, if Tr Q(A) = 2| J̄ |(A) for some A ⊂ �,
then in fact Q = P⊥| J̄ | in A.

The proof of this result relies on a refinement of Theorem 1 that asserts that,
roughly speaking, two-dimensional slices of Juε converge to two-dimensional
slices of J̄ . This will allow us essentialy to reduce Theorem 6 to Theorem 5.
Before stating this refined compactness theorem we introduce some notation.

We continue to write x to denote typical points in Rm . It will frequently
be convenient to decompose x ∈ Rm in the form x ∼= (y, z) ∈ Rm−2

y ×R2
z , where

yi = xi for i = 1, . . . , m − 2 and zi = xm−2+i for i = 1, 2.
Suppose that O ⊂ U is an open subset of the form O = Oy × Oz , where

Oy ⊂ Rm−2
y and Oz ⊂ Rm−2

z . We say that a measure µ on O is represented
by slices µy(dz) if for Lebesgue almost every y ∈ Oy there exists a measure
µy(d ·) on Oz such that y → µy(dz) is weakly measurable and

(7.5)
∫

O
φ(x)dµ(x) =

∫
Oy

∫
Oz

φ(y, z)µy(dz) dy .

We say that µ is locally represented by slices µy(dz) if it is represented by
slices on every open set of the above form.
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Theorem 7. Suppose that {uε}ε∈(0,1] is a family of functions in H 1(U ; Rm) for
U ⊂ R2 such that lim supε→0 I ε(uε) ≤ K . Then {Juε}ε∈(0,1] is strongly precompact
in (C0,γ )∗ for all γ > 0. Moreover, if J̄ = J̄ i j ei ∧ ej is any weak limit of a
subsequence Juεn that converges in the above sense, then

(i) J̄ has the form πθνHm−2|� where (�, θ, 	ν) is some oriented i.m. rectifiable
set.

(ii) For any choice of orthonormal basis for Rm (determining a decomposition of
Rm into Rm−2

y × R2
z ), J̄ z := dz · J̄ is locally represented by slices J̄y(dz), and

these slices have the form J̄y(dz) = π
∑

i diδai (dz) for integers di and points
ai ∈ R2

z .
(iii) Suppose that O ⊂ U is an open subset of the form O = Oy × Oz, where

Oy ⊂ Rm−2
y and Oz ⊂ Rm−2

z . Then for a.e. y ∈ Oy,

dz · Juεnk (y, ·) = det(u
εnk
z1 , u

εnk
z2 )(y, ·) → J̄y(d ·)

in C0,γ (Oz)
∗ for all γ > 0, whenever εnk is a subsequence such that

lim sup kεnk

∫
Oz

Eεnk (uεnk )(y, z)dz < ∞ .

(iv) | J̄ |(Rm) ≤ lim infn→∞ I εn (uεn ).

This is Theorem 5.2 in [11]. Assertion (iii) is not included in the statement
of the theorem in [11] but is established in Steps 3 and 4 of the proof.

We will also need the following easy

Lemma 9.If Q is a matrix-valued measure and ν is a nonnegative measure,
then

(7.6)
∣∣∣∣d Q

dν

∣∣∣∣ = d|Q|
dν

ν almost everywhere .

Proof. By examining the definitions one can then check that d Q
dν

= d Q
d|Q|

d|Q|
dν

,

ν a e. Since | d Q
d|Q| (x)| = 1 for |Q| a.e. x , and thus for ν a.e x ∈ supp d Q

dν
ν =

supp d|Q|
dν

ν, this implies (7.6).

In the remainder of this section we give the

Proof of Theorem 6. 1. We first claim that it suffices to show that
Tr d Qd

d| J̄ | ≥ 0 and

(7.7)
d|Qd |
d| J̄ | ≤ c1

(
Tr

d Qd

d| J̄ |
)1/2

+ c2 Tr
d Qd

d| J̄ |

| J̄ | almost everywhere.
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Indeed, suppose that this estimate holds, and let

M :=
∫

A

d Qd

d| J̄ | d| J̄ | ≤ Qd(A) .

Then by (7.6) and (7.7),

|M | ≤
∫

A

d|Qd |
d| J̄ | d| J̄ |

≤
∫

A

[
c1

(
Tr

d Qd

d| J̄ |
)1/2

+ c2 Tr
d Qd

d| J̄ |

]
d| J̄ |

≤ c1

(∫
A

Tr
d Qd

d| J̄ | d| J̄ |
)1/2 (∫

A
d| J̄ |

)1/2

+ c2

∫
A

Tr
d Qd

d| J̄ | d| J̄ |

= c1
(| J̄ |(A) Tr M

)1/2 + c2 Tr M .

We have assumed that c2 ≥ 1, and this implies that S 	→ |S| − c2 Tr S is
nonincreasing. So recalling that Qd(A) ≥ M , we deduce (7.4) from the above
estimate.

2. We write J̄ in the form ν| J̄ |, where | J̄ | = πθHm−2|� . Recall that ν is
a | J̄ |-measurable function taking values in �2Rm , such that |ν(x)| = 1 for
| J̄ |- a.e. x ∈ Rm . In addition, ν has the form ν = ν1 ∧ ν2 for orthonormal
unit vectors νi ∈ �1Rm at | J̄ | a.e. x . General theorems on differentiation of
measures imply that

(7.8) lim
r→0

1

| J̄ |(Br (x))

∫
Br (x)

|ν(x ′) − ν(x)| | J̄ |(dx ′) = 0

and

(7.9) lim
r→0

Q(Br (x))

| J̄ |(Br (x))
:= d Q

d| J̄ | (x) exists

for | J̄ |-a.e. x ∈ Rm . It thus suffices to prove (7.4) at every point x where (7.8)
and (7.9) hold and ν(x) has the form ν1 ∧ν2, with {ν1, ν2} spanning (apTx�)⊥.

Fix a point x0 satisfying these conditions. After a change of basis we
can assume that ν(x0) = ν1(x0) ∧ ν2(x0) = em−1 ∧ em . We decompose Rm

as Rm−2
y × R2

z , and we write x0 = (y0, z0). We write J̄ = ∑
i< j J̄ i j ei ∧ ej

in the new coordinate system. We will focus on the scalar signed measure
J̄ m−1,m = em−1 ∧ em · J̄ , which we will write J̄ z for short.
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If r is sufficiently small — which we henceforth assume to be the case
— then Bm−2

r (y0)× B2
r (z0) ⊂ �, and so according to Theorem 7, for Lebesgue

almost every y ∈ Bm−2
r (y0) there exists a measure J̄y(dz) on B2

r (z0) such that∫
Bm

r (x0)

φ(x) J̄ z(dx) =
∫

Bm−2
r (y0)

∫
B2

r (z0)

φ(y, z) J̄y(dz) dy

for all φ ∈ Cc(Bm
r (x0)). Also, Theorem 7 asserts that a.e. y ∈ Bm−2

r has the
property that, if εnk is any subsequence such that

(7.10) lim sup kεnk

∫
B2

r (z0)

Eεnk (uεnk )(y, z)dz < ∞ .

then

(7.11) det(u
εnk
z1 , u

εnk
z2 )(y, z) → J̄y(dz) in C0,γ (B2

r (z0))
∗ ∀ γ > 0 .

Note in addition that by (7.8),

(7.12) J̄ z(Br (x0)) = ν(x0) ·
∫

Br (x0)

ν(x)| J̄ |(dx) = (1 − or (1))| J̄ |(Br (x0)) .

A further consequence of (7.8) is that x0 is d P⊥| J̄ |
d| J̄ | exists at x0 and equals Pz ,

the m × m matrix corresponding to projection onto R2
z .

3. We will write Q̄ as shorthand for d Q
d| J̄ | (x0). and similarly Q̄d for d Qd

d| J̄ | . Note

that Q̄d = d Q
d| J̄ | (x0) − d P⊥| J̄ |

d| J̄ | (x0) = Q̄ − Pz , and also that Q̄ is nonnegative
definite.

We define submatrices R ∈ S(m−2)×(m−2) and S ∈ S2×2 by

(7.13) Ri j = Q̄i j , i, j ∈ 1, . . . , m − 2; Si j = Q̄(m−2+i)(m−2+ j), i, j ∈ 1, 2 .

Both of these are nonnegative definite. We also define Rd and Sd to be the
corresponding (m − 2) × (m − 2) and 2 × 2 submatrices of Q̄d , so that in fact
R = Rd and Sd = S − id.

We now claim that it suffices to prove that

(7.14) α(S) ≥ 1

where α is the function defined in (6.7).
Indeed, suppose that this holds. Since Q̄ is nonnegative definite,

(7.15) |Q̄i j | ≤ (
Q̄ii Q̄ j j

)1/2

for all i, j .
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If α(S) ≥ 1, then the definition and the monotonicity properties of α(·)
imply that |Sd | ≤ c1(Tr Sd)

1/2+c2 Tr Sd . This immediately implies that |Q̄d,i j | ≤
c1(Tr Q̄d)

1/2 + c2 Tr Q̄d if i, j ∈ {m − 1, m}.
If i, j ∈ {1, . . . , m − 2} then (7.15) implies that

|Q̄d,i j | = |Q̄i j | ≤ Q̄ii + Q̄ j j ≤ Tr R ≤ Tr Q̄d .

And if i ∈ {1, . . . , m − 2}, j ∈ {m − 1, m} then (7.15) yields

|Q̄d,i j | = |Q̄i j | ≤ (Tr R Tr S)1/2

= ((Tr R) (2 + Tr Sd))
1/2

≤
√

2(Tr R)1/2 + (Tr R Tr Sd)
1/2

≤
√

2(Tr R)1/2 + 1

2
(Tr R + Tr Sd)

≤
√

2(Tr Q̄d)
1/2 + 1

2
Tr Q̄d .

Thus (7.14) implies (7.7) for certain constants c1, c2 that depend on the dimen-
sion.

4. Let Dzuε = (uε
z1

, uε
z2

), and define

Sεn
r = kεn

∫
Bm

r

Dzuεn ⊗ Dzuεn dx .

Note that

S = lim
r→0

lim
n→∞

1

| J̄ |(Br )(x0)
Sεn

r .

This limit exists, since we have chosen x0 to satisfy (7.9). We rewrite

Sεn
r =

∫
Bm−2

r (y0)

Sεn
r (y)dy

where

Sεn
r (y) =

∫
{y}×B2

r(y)
(z0)

kεn Dzuεn ⊗ DzuεnH2(dz) r(y) = (r2 − |y − y0|2)1/2 .

It is not hard to verify from the definition that that α(λM) = λα(M) for all
M ≥ 0 and λ ≥ 0, so in view of the continuity of α, to prove (7.14) we need to
show that lim infn→∞ α(Sεn

r ) ≥ (1 − or (1))| J̄ |(Br (x0)). Now Lemma 4 implies
that

lim inf
n→∞ α(Sεn

r ) ≥ lim inf
n→∞

∫
Bm−2

r (y0)

α(Sεn
r (y))dy .
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So it will finish the proof when we show that

(7.16) lim inf
n→∞

∫
Bm−2

r (y0)

α(Sεn
r (y))dy ≥ (1 − or (1))| J̄ |(Br (x0)) .

5. For y ∈ Bm−2
r (y0) we will write j (y) := | J̄ z

y |(Br(y)(z0)). Note that

(7.17)
∫

Bm−2
r (y0)

j (y)dy = | J̄ z|(Bm
r (x0)) = (1 − or (1))| J̄ |(Bm

r (x0))

using (7.12).
For y ∈ Bm−2

r (y0), we define α̃εn (y) := min{α(Sεn
r (y)), j (y)}. We claim

that

(7.18) α̃εn (·) converges to j (·) in measure on Bm−2
r (y0) as n → ∞ .

To prove this, we show that given any δ > 0, we can construct a new sequence
{α̃εn

δ }n≥1 such that

(7.19) lim sup
n→∞

Lm−2
(
{y ∈ Bm−2

r (y0) : α̃εn (y) �= α̃
εn
δ (y)}

)
≤ δ

and such that α̃
εn
δ (y) → j (y) a.e. y. Indeed, by Chebychev’s inequality and

the upper bound on the energies (7.1), given any δ we can find some number
K such that lim supn→∞ Lm−2(Zn

K ) ≤ δ, for

Zn
K :=

{
y ∈ Bm−2

r (y0) : kεn

∫
B2

r(y)
(z0)

Eεn (uεn )(y, z)dz ≥ K

}
.

We define

α̃
εn
δ (y) :=

{
α̃εn (y)d if y ∈ Bm−2

r (y0) \ Zn
K ;

j (y) if y ∈ Zn
K ;

It is clear from the definitions that (7.19) holds.
Fix y ∈ Bm−2

r (y0) and consider any subsequence nk . Passing to a further
subsequence (which we still label nk) we may assume that either y ∈ Znk

K or
y �∈ Znk

K for all k. If the former holds then trivially α̃
εnk
δ (y) → j (y). If y �∈ Znk

K
for all k, then (7.10) is satisfied, and as a result (7.11) holds, unless y belongs
to some exceptional set of measure zero. According to Remark 6, however,
(7.10) and (7.11) together imply that

lim inf
k

α(S
εnk
r (y)) ≥ | J̄y|(Br(y)(z0)) = j (y) .

Since α̃
εnk
δ (y) = α̃εnk (y) = min{α(S

εnk
r ), j (y)} we conclude that α̃

εnk
δ converges

a.e. to j , thus establishing (7.18).

6. From (7.18) and Fatou’s lemma we deduce that

lim inf
n

∫
Bm−2

r (y0)

α(Sεn
r (y))dy ≥ lim inf

n

∫
Bm−2

r (y0)

α̃εn (y)dy ≥
∫

Bm−2
r (y0)

j (y) dy .

Thus (7.16) follows from (7.17), so we have finished the proof.
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