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Global Calibrations for the Non-homogeneous
Mumford-Shah Functional

MASSIMILIANO MORINI

Abstract. Using a calibration method we prove that, if � ⊂ � is a closed regular
hypersurface and if the function g is discontinuous along � and regular outside,
then the function uβ which solves{

�uβ = β(uβ − g) in � \ �

∂νuβ = 0 on ∂� ∪ �

is in turn discontinuous along � and it is the unique absolute minimizer of the
non-homogeneous Mumford-Shah functional∫

�\Su

|∇u|2 dx + Hn−1(Su) + β

∫
�\Su

(u − g)2 dx,

over SBV (�), for β large enough. Applications of the result to the study of the
gradient flow by the method of minimizing movements are shown.

Mathematics Subject Classification (2000): 49K10 (primary), 49Q20 (secondary).

1. – Introduction

The Mumford-Shah functional was introduced in [19] within the context
of a variational approach in Image Segmentation. In the SBV setting proposed
by De Giorgi (see [9] ) it can be written as

F(u) =
∫

�\Su

|∇u|2 dx + αHn−1(Su) + β

∫
�\Su

(u − g)2 dx,

where g : � → R is the given input function, α and β are positive parameters,
Hn−1 is the (n − 1)-dimensional Hausdorff measure, u is the unknown function
in the space SBV (�) of special functions of bounded variation in �, Su is
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the set of essential discontinuity points of u, while ∇u denotes its approximate
gradient (see [5]).

In dimension two, the function u which minimizes F over SBV (�) (whose
existence is stated in [4]) can be thought to represent a piecewise approximation
of the input grey level function g, while Su represents the set of relevant contours
in the image. One of the mathematical features of the Mumford-Shah functional
is a very strong lack of convexity, which produces, for example, non-uniqueness
of the solution and makes the exhibition of explicit minimizers a very difficult
task. Concerning this last point, the calibration method recently developed by
Alberti, Bouchitté, and Dal Maso in [1] seems to be a powerful tool. For
some applications of this method see [1], [8], [18], or [16]. Coming back to
F , throughout the paper we keep the parameter α fixed (and, without loss of
generality, equal to 1) and we are interested in minimizers of the functional

(1.1) Fβ,g(u) =
∫

�\Su

|∇u|2 dx + Hn−1(Su) + β

∫
�\Su

(u − g)2 dx,

with g piecewise smooth function. It is intuitive that taking β large means
penalizing a lot the L2-distance between g and the solution, which is therefore
forced to be close to the input function. More precisely it is easy to see that,
if for simplicity we take g belonging to SBV (�) such that

(1.2) Fβ,g(g) =
∫

�\Sg

|∇g|2 dx + Hn−1(Sg) = C < +∞,

then, denoting by uβ a minimum point of Fβ,g, we have∫
�

(uβ − g)2 dx ≤ Fβ,g(uβ)

β
≤ Fβ,g(g)

β
= C

β
,

that is uβ → g in L2(�) as β → +∞. This suggests that, in agreement with
our expectations, if β is large, then uβ should be an accurate reconstruction
of the original image g. Actually, T.J.Richardson in [21] has proved also the
convergence of the discontinuity sets in dimension two: more precisely, he has
shown that if g is a function of class C0,1 outside any neighbourhood of the
singular set Sg satisfying (1.2), and if Sg has no isolated points (i.e. for every
x ∈ Sg and for every ρ > 0, H1(Bρ(x) ∩ Sg) > 0), then, as β → +∞,

Suβ
→ Sg in the Hausdorff metric and H1(Suβ

) → H1(Sg).

In the main theorem of the paper (see Theorem 3.1), using the calibration
method mentioned above, we are able to prove that, under suitable assumptions
on the regularity of �, g, and Sg, a much stronger result holds true:
Suppose that � is a closed hypersurface of class C2,α contained in the n-dimensional
domain � (satisfying in turn some regularity assumptions), and let g a function
belonging to W 1,∞(�\�), with Sg = � and infx∈�(g+(x)− g−(x)) > 0 (where g+
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and g− denote the upper and the lower traces of g on �). Then there exists β0 > 0
depending on �, on the W 1,∞-norm of g, and on the size of the jump of g along �,
such that, for β ≥ β0, Fβ,g has a unique minimizer uβ which satisfies

Suβ
= �.

Let us take a look into some technical aspects of the proof; we start
by recalling the theorem on which the calibration method is based. We shall
consider the collection F(� × R) of all bounded vector fields φ = (φx , φz) :
�×R → Rn×R with the following property: there exists a finite family (Ui )i∈I

of pairwise disjoint and Lipschitz open subsets of � × R whose closures cover
� × R, and a family (φi )i∈I of vector fields in Lip(Ui , Rn×R) such that φ

agrees at any point with one of the φi .
An absolute calibration for u ∈ SBV (�) in � × R is a vector field φ ∈

F(� × R) which satisfies the following properties:

(a) divφ = 0 in Ui , for every i ∈ I ;

(b) ν∂Ui ·φ+ = ν∂Ui ·φ− = ν∂Ui ·φ Hn-a.e in ∂Ui for every i ∈ I , where ν∂Ui (x)

denotes the (unit) normal vector at x to ∂Ui , while φ+ and φ− denote the
two traces of φ on the two sides of ∂Ui ;

(c)
(φx(x, z))2

4
≤ φz(x, z) + β(z − g(x))2 for almost every x ∈ � and every

z ∈ R;

(d) φx(x, u(x)) = 2∇u(x, y) and φz(x, u(x)) = |∇u(x)|2 −β(g(x)−u(x))2 for
almost every x ∈ � \ Su ;

(e)
∫ u+(x)

u−(x)

φx(x, z) dz = νu(x) for Hn−1-a.e. x ∈ Su , where νu(x) denotes the

unit normal vector at x to Su , which points toward u+;

(f)
∣∣∣∣∫ t

s
φx(x, z) dz

∣∣∣∣ ≤ 1 for Hn−1-a.e. x ∈ � and for every s, t ∈ R;

(g) φx(x, z) · ν(x) = 0 for Hn-a.e. (x, z) ∈ ∂(� × R), where ν(x) denotes the
unit normal vector at x to ∂�.

Note that conditions (a) and (b) imply that φ is divergence free in the
sense of distributions in � × R.

The following theorem is proved in [2].

Theorem 1.1. If there exists an absolute calibration φ for u in �×R, then u is
an absolute minimizer of the Mumford-Shah functional (1.1) over SBV (�).

Remark 1.2. If for a.e. x ∈ � the inequality in (b) is strict for z �= u(x),
then u is the unique absolute minimizer of (1.1). The proof can be obtained
arguing as in the last part of Paragraph 5.8 in [2].
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The main difficulty in constructing the calibration comes from the fact that
the candidate uβ , which is the solution of the Euler equation

(1.3)
{

�uβ = β(uβ − g) in � \ �

∂νuβ = 0 on ∂(� \ �),

presents, in general, a non vanishing gradient and a nonempty discontinuity set.
We remark that the case of g equal to characteristic function of a regular set
(i.e. with vanishing gradient) and the case of g regular in the whole � (i.e. with
empty discontinuity set) have been already treated in [1] and require a simpler
construction. From the point of view of calibrations, the interaction (actually the
clash) between the (non vanishing) gradient and the (nonempty) discontinuity
set is reflected in the fact that we have to guarantee simultaneously conditions
(d) and (e), which push in opposite directions. Indeed condition (d) says that
ϕx on the graph of u is tangential to � while (e) implies that ϕx must be on
the average orthogonal to � for x ∈ � and t between u−(x) and u+(x); so we
have to “rotate” suitably ϕx , preserving at the same time condition (f). Another
difficulty comes from the fact the we have to estimate how quickly the gradient
of uβ changes direction; indeed if near � it becomes suddenly orthogonal to
� and (e) holds true, it could happen that condition (f) is violated: this risk
is overcome by carefully estimating the L∞-norm of the Hessian matrix ∇2uβ

with respect to β. In order to perform such an estimate we need to assume that
� is of class C2,α , for some α > 0. We underline that, at least in dimension
two, the regularity assumption is close to optimal, since, by Bonnet Regularity
Theorem (see [6]) (proved for n = 2) in a neighbourhood of any regular point
the discontinuity set is of class C1,1, for every g ∈ L∞(�). As an application
of our theorem, we give a proof of the following fact: if u0 is regular enough
outside a smooth singular set Su0 , then the gradient flow u(x, t) of u0 for the
homogeneous functional

(1.4) F0(u) =
∫

�

|∇u|2 dx + Hn−1(Su),

keeps, at least for small times, the singular set of u(·, t) equal to Su0 , while
u evolves in � \ Su0 according to the heat equation with Neumann boundary
conditions on ∂(� \ Su0). This result was proved in dimension one by Gobbino
(see [12]), with a slightly different definition of gradient flow.

The plan of the paper is the following. In Section 2 we recall some defini-
tions, fix some notations, and collect some results which will be useful for the
proof of our theorems. In Section 3 we give the proof of the main result and, in
dimension two, we extend it to the case of � with piecewise smooth boundary
and of � touching the boundary (orthogonally). Section 4 is devoted to the study
of minimizing movements while in the final Appendix we collect the proofs of
the announced technical estimates for the solutions of the Euler equation.

Acknowledgements. I am grateful to Gianni Dal Maso for drawing my
attention on this problem and for interesting discussions.
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2. – Preliminary Results

In this section we collect some technical results that we will need in the
sequel.

2.1. – Signed Distance Function

For fixed R > 0, we introduce the following class of sets:

(2.1)
UR = { E ⊂ Rn, E open : ∀p ∈ ∂ E ∃ p′, p′′ :

p ∈ ∂ B(p′, R) ∩ ∂ B(p′′, R), B(p′, R) ⊂ E, B(p′′, R) ⊂ CE
}

,

and

(2.2) UR(�) = {E ∈ UR : E ⊂ �, dist(E, ∂�) ≥ R} .

If E belongs to UR and p ∈ ∂ E , we denote the centers of the interior and exterior
balls associated with p by p′ and p′′ respectively; moreover, we call S p

E the
class of all coordinate systems centred at p such that the vector 1

2R (p′′ − p′)
coincides with the n-th vector of the coordinate basis. The following proposition
is proved in [17]

Proposition 2.1. There exists a constant ρ > 0 (depending only on R), such
that for every E ∈ UR(�) and for every p0 ∈ ∂ E, if we call C the cylinder {x ∈
Rn−1 : |x | < ρ}×]−R, R[ expressed with respect to a coordinate system belonging
to S p0

E , then ∂ E ∩C is the subgraph of a function f belonging to W 2,∞({x ∈ Rn−1 :
|x | < ρ}). Moreover, the W 2,∞-norm of f is bounded by a constant depending only
on R (independent of p0, of E and of the choice of the coordinate system in S p0

E ).

Remark 2.2. Note that if � is bounded and of class C2 then there exists
R > 0 such that � ∈ UR .

For E ⊂ Rn , we define the signed distance function

dE(x) = dist(x, E) − dist(x, CE).

Now we are going to state some basic properties of that function; for a proof
see, for example, [10].

Lemma 2.3.
i) Let x be a point of Rn. Then dE(x) is differentiable at x if and only if there

exists a unique y ∈ ∂ E such that |dE (x)| = |x − y|. In this case, we have

∇dE(x) = x − y

dE(x)

and we can define the projection on ∂ E πE(x) := y.
ii) Let ∂ E be a hypersurface of class Ck, k ≥ 2. Then, for every x ∈ ∂ E, there

exists a neighbourhood V of x such that dE ∈ Ck(V ) and πE ∈ Ck−1(V ).
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Lemma 2.4. Let E ⊂ Rn be an open set whose boundary is a hypersurface of
class W 2,∞. Then for every x ∈ ∂�, there exists a neighbourhood V of x where πE is
well defined and such that dE ∈ W 2,∞(V (x)). Moreover, denoting by λ1 ≤ · · · ≤ λn

the eigenvalues of ∇2dE and by k1(y) ≤ · · · ≤ kn−1(y) the principal curvatures of
∂ E at π(y), we have

λi :=
{ 0 if i = 1

ki−1(y)

1+dE (y)ki−1(y)
if i > 1.

Lemma 2.5. Let E be an open set belonging to UR, for some R > 0. Then the
projection πE is well defined and of class W 1,∞ in the (R/2)-neighbourhood of ∂ E
while dE is of class W 2,∞ in the same neighbourhood. Moreover we have:

‖dE‖W 2,∞ ≤ C and ‖πE‖W 1,∞ ≤ C,

where C is a positive constant depending only on R.

Proof. The fact that πE is well defined in the (R/2)-neighbourhood of ∂ E
(denoted by (∂ E)R/2 ) is an easy consequence of the definition of UR: indeed
let x be a point of (∂ E)R/2 ∩ CE and let p ∈ ∂ E such that dE (x) = |x − p|.
We claim that such a p is unique. Indeed let B(p′′, R) ⊂ CE be the exterior
ball associated with p (see the definition (2.1)); since the vector p′′ − p is
parallel to x − p (indeed both vectors are normal to ∂ E at p), it is clear that
B(x, dE (x)) \ {p} ⊂ B(p′′, R) ⊂ CE and so p is the unique minimum point.

Concerning the smoothness, it is enough to prove that dE is of class W 2,∞,
then we conclude by the equality

πE (x) = x − dE(x)∇dE (x).

Exploiting the definition of UR in a way similar to the one we did above, we
can easily see that, for every ε ∈ (0, R/2),

(2.3) (E)ε ∈ UR−ε and d(E)ε = dE − ε,

implying that ∂((E)ε) is in turn of class W 2,∞. So if x ∈ (∂ E)R/2, then
x ∈ ∂((E)ε) for ε = dE(x). By Lemma 2.4 there exists a neighbourhood V of
x where d(E)ε is of class W 2,∞ and ‖d(E)ε‖W 2,∞ ≤ C , with C depending only
on R. Recalling (2.3), we are done.

2.2. – Global estimates for solutions of the Euler equation

Given a hypersurface � of class C2,α we can define

(2.4) �α(�) := sup
x,y∈�

|∇τ ν(x) − ∇τ ν(y)|
|x − y|α ,

where ν is a smooth unit normal vector field to � and ∇τ denotes the tangential
gradient along �. The following theorem provides the preannounced estimate
on the Hessian ∇2u of the function u which solves (1.3); we recall that (∂�′)R

denotes the R-neighbourhood of ∂�′.
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Theorem 2.6. Let � ⊂ Rn be a bounded domain of class C1,1.

i) For every R > 0, we can find two positive constants β0 = β0(R) and K = K (R)

with the property that if �′ is a domain belonging to UR(�), then for every
β ≥ β0 and for every g ∈ W 1,∞ (

� \ �′) the solution u of

(2.5)
{

�u = β(u − g) in � \ �′,
∂νu = 0 on ∂

(
� \ �′),

satisfies

(2.6)
‖∇u‖∞ + β− 1

2 ‖�u‖∞ + β
n

2p −1
sup

x0∈�\�′
‖∇2u‖

L p
(

B(x0, 1√
β

)∩�\�′
)

≤ K‖g‖W 1,∞ .

A similar conclusion holds for the solution of

(2.7)
{

�u = β(u − g) in �′,
∂νu = 0 on ∂�′.

ii) For every R > 0, for every � > 0, and for every γ ∈ (0, α) (with α ∈ (0, 1)),
there exist two positive constants β0 = β0(R, �, γ ) and K = K (R, �, γ )

with the property that if �′ is a domain of class C2,α belonging to UR(�), and
�α(∂�′) ≤ �, then, for every β ≥ β0 and for every g ∈ W 1,∞ (

� \ �′), the
solution u of (2.5) satisfies

‖∇2u‖L∞(
(∂�′)R∩(�\�′)

) ≤ Kβ
1
2 +γ ‖g‖W 1,∞ .

A similar conclusion holds for the solution of problem (2.7).

For a proof of the theorem see the Appendix at the end of the paper.
In the two dimensional case it is possible to extend the estimates also to

the case of domains with angles. Let � ⊂ R2 be a curvilinear polygon such
that ∂� is given by the union of a finite number of simple connected curves
τ1, . . . , τk of class C3 (up to their endpoints) meeting at corners with different
angles αj ∈ (0, π) ( j = 1, . . . , k). We denote by S the set of the vertices, i.e.
the set of the singular points of ∂�.

Proposition 2.7. Let � be a simple connected curve in � joining two points
x1 and x2 belonging to ∂� \ S. Suppose in addition that � is of class C3 up to x1
and x2 (actually it would be enough to take � of class C3 in two neighbourhoods U1
and U2 of x1 and x2 respectively, and of class C2,α , for some α > 0, outside those
neighbourhood). Let us call �1 and �2 the two connected components of � \ �.

Finally set d := dist(x1,S) ∧ dist(x2,S). Then for every δ < d and γ ∈
(

0, 1
2

)
,
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there exist two positive constants β0 and K depending on δ, γ , and �, such that, for
every β ≥ β0 and for every g ∈ W 1,∞(�i ) (i = 1, 2), the solution ui of

(2.8)
{

�ui = β(ui − g) in �i

∂νui = 0 on ∂�i ,

satisfies

(2.9) ‖∇ui‖L∞((�)δ∩�i ) + β
−
(

1
2 +γ

)
‖∇2ui‖L∞((�)δ∩�i ) ≤ K‖g‖W 1,∞ .

A proof the result is given in the Appendix at the end of the paper.

3. – The calibration

3.1. – The regular case

Let � ⊂ Rn be a bounded open subset of class C1,1 and let �1 ⊂ � be
an open set belonging to UR(�) (see (2.2)). We set �2 := � \ �1, � := ∂�1,
and, for every x ∈ �, we denote the unit outer normal to ∂�1 at x by ν(x).

Theorem 3.1. Let � ⊂ Rn be a bounded open set of class C1,1 and let �1 ⊂ �

be an open set of class C2,α for some α ∈ (0, 1) and compactly contained in �.
Let R > 0 such that �1 ∈ UR(�) (see (2.2) and Remark 2.2) and set � := ∂�1.
Then for every function g belonging W 1,∞(� \ �), discontinuous along � (i.e.,
Sg = �) and such that g+(x) − g−(x) > S > 0 for every x ∈ �, there exists
β0 > 0 depending on R, S, �α(�) (see (2.4)), and ‖g‖W 1,∞ , such that for β ≥ β0
the solution uβ of

(3.1)
{

�uβ = β(uβ − g) in � \ �,

∂νuβ = 0 on ∂� ∪ �,

is discontinuous along � (Suβ
= �) and it is the unique absolute minimizer of Fβ,g

over SBV (�).

As announced in the Introduction the proof will be performed by construct-
ing a calibration φ; adopting the notation introduced there, the vector field φ

will be written as
φ(x, z) = (φx(x, z), φz(x, z)),

where φx(x, z) is a n-dimensional “horizontal” component, while φz is the (one
dimensional) “vertical” component.
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• Idea of the construction

We start by remarking that is not possible to define φx(x, z) = 2∇uβ(x)

in a neighbourhood of the graph of uβ . Indeed for x ∈ Suβ
and for ε > 0

sufficiently smooth we would have

∫ u+
β

+ε

u−
β

φx(x, z) dz =
∫ u+

β

u−
β

φx(x, z) dz +
∫ u+

β
+ε

u+
β

φx(x, z) dz

= νuβ
(x) + 2ε∇uβ(x),

and (f) would be violated since νuβ
and ∇uβ are orthogonal on Suβ

. Therefore
we have to inject a normal component as soon as we part from the graph of
the candidate function. If x ∈ Su , the “horizontal” component φx must satisfy:

φx(x, z) · νuβ
(x) > 0 if u−

β < z < u−
β + ε or u+

β − ε < z < u+
β

φx(x, z) · νuβ
(x) < 0 if u+

β < z < u+
β + ε or u−

β − ε < z < u−
β ,

for a suitable ε > 0. The starting point is the principle of foliations. Suppose
that a neighbourhood of the graph of uβ is fibrated by the graphs of a family
of functions (vt )t∈R all satisfying

(3.2) �vt = β(vt − g)

for every t . In this situation we can define

(3.3) φ(x, z) := (2∇vt (x,z)(x, z), |∇vt (x,z)(x, z)|2 − β(vt (x,z)(x, z) − g(x, z))2)

where t (x, z) is the unique t such that (x, z) belongs to the graph of vt and
the vector field φ turns out to be divergence-free. We must choose the family
(vt )t in such a way that v0 coincides with uβ and ∂νvt �= 0 on � for t �= 0.
The family vt := uβ + tvβ , where vβ solves

�vβ = βvβ in �2

vβ = 1 on �

∂νvβ = 0 on ∂�,

meets all the requirements in �2 and with this choice (3.3) becomes(
2∇uβ + 2

z − uβ

vβ

∇vβ,

∣∣∣∣∇uβ + z − uβ

vβ

∇vβ

∣∣∣∣2 − β(z − g)2

)

in a neighbourhood of the graph of uβ intersected with the cylinder �2 × R.
A similar construction of course can be performed in a neighbourhood of uβ

intersected with �1 × R.
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The above construction has the drawback that all the functions involved
depend on β. As a matter of fact it is convenient that the normal contribution
is given by the gradient of a fixed function. This can be accomplished by
replacing vβ by vβ0 , with β0 > 0 sufficiently large (so that the normal gradient
at the discontinuity set is big enough) but fixed. Of course in order to keep
the field divergence-free we have to perturb suitably the vertical component and
we end up with the following definition:

(3.4)

2∇uβ +2
z−uβ

vβ0

∇vβ0,

∣∣∣∣∣∇uβ + z − uβ

vβ0

∇vβ0

∣∣∣∣∣
2

− β(z−g)2+(β−β0)(uβ −z)2

.

Unfortunately this construction presents still a drawback: it is defined only
in a neighbourhood of uβ and it is not easily extendible, more precisely the
function vβ0 cannot be extended to a function defined in the whole domain and
satisfying still the same equation. We will overcome the problem by considering
subsolutions of the equation

�v = βv

instead of exact solutions; we remark that the freedom of working with sub-
solutions will enable us to construct such functions with a “nice” symmetry
property, as shown in the following lemma.

Lemma 3.2. There exist two positive constants c and β0, depending only on
R, such that, for every β ≥ β0, we can find two functions z1,β : �1 → R and
z2,β : �2 → R of class W 2,∞ with the following properties:

i) 1
2 ≤ zi,β ≤ 1 in �i , for i = 1, 2 and z2,β ≡ 1

2 in a neighbourhood of ∂�;
ii) �zi,β ≤ cβzi,β in �i , for = 1, 2;

iii) z1,β(x) = z2,β(x) = 1 and ∂νz1,β(x) = −∂νz2,β(x) ≥ √
β for every x ∈ �;

iv) ‖∇zi,β‖∞ ≤ c
√

β and ‖∇2zi,β‖∞ ≤ cβ.

Proof. Let us denote the signed distance function from �1 by d and let
π the projection on � which, by Lemma 2.5, is well defined in (�) R

2
; we

begin by constructing z2,β . Let wβ : [0, +∞) → (0, +∞) be the solution of
the following problem 

w′′
β = 16βwβ,

wβ(0) = 1/2,

w′
β(R/2) = 0,

which can be explicitly computed and it is given by

(3.5) wβ(t) = 1

2

e−4
√

β R
2

e4
√

β R
2 + e−4

√
β R

2

e4
√

βt + 1

2

e4
√

β R
2

e4
√

β R
2 + e−4

√
β R

2

e−4
√

βt ,

and let θ : [0, +∞) → [0, 1] be a C∞ function such that

(3.6) θ ≡ 1 in [0, R/4] θ ≡ 0 in [R/2, +∞) and ‖θ‖C2 ≤ c0,
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with c0 depending only on R. We are now ready to define z2,β : �2 → R as

z2,β(x) :=
{

θ(d(x))((wβ(d(x))+1/2)+(1 − θ(d(x)))1/2 if 0 < d(x) ≤ R/2,

1/2 otherwise in �2.

First of all note that, as it is a convex combination of two functions with range
contained in [1/2, 1], z2,β itself has range in [1/2, 1]. Using the expression in
(3.5) it is easy to see that there exist β0 > 1 and c1 > 1 depending only on R
such that

(3.7) w′
β(0) ≤−√β |w′

β |≤c1

√
β in [0, R/2] and |w′′

β |≤c1β in [0,R/2],

for every β ≥ β0. From the first inequality we obtain immediately iii) for z2,β .
Moreover, by (3.6) and (3.7), we can estimate

|∇z2,β | = |θ(d)w′
β(d)∇d + θ ′∇d wβ(d)|

≤ |w′
β | + |θ ′| ≤ c1

√
β + c0 ≤ c

√
β,

with c depending only on R. Finally, using again (3.6), (3.7), and Lemma 2.5,
we have

|∇2z2,β | ≤ |w′
β ||∇2d| + |w′

β ||θ ′| + |w′′
β | + |θ ′′| + |θ ′||∇2d| + |θ ′||w′

β |
≤ c1c2

√
β + c0c1

√
β + c1β + c0 + c0c2 + c0c1

√
β,

where all the constants depend only on R so that we can state the existence of
c > 0, still depending only on R, such that

|∇2z2,β | ≤ cβ ∀β ≥ β0.

To conclude, we define z1,β : �1 → R as follows:

z1,β(x) :=


θ(−d(x))((wβ(−d(x)) + 1/2) + (1 − θ(−d(x)))1/2

if 0 > d(x) ≥ −R/2,

1/2 otherwise in �1.

Proof of Theorem 3.1. In the sequel we will denote the signed distance
from �1 by d and the projection on � by π : by Lemma2.5, the two functions
are well defined in (�)R/2. Moreover, in that neighbourhood, d and π are at
least of class W 2,∞ and W 1,∞ respectively.

• Preparation

Without loss of generality we can suppose that g+ coincides with the trace
on � of g from �1, while g− is trace from �2. First of all let us choose β ′,
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depending only on R, S, and ‖g‖W 1,∞ and G depending on R, such that, for
β ≥ β ′,

(3.8) ‖uβ − g‖∞ ≤ S

16
and

√
β‖uβ − g‖∞ ≤ G‖g‖W 1,∞ i = 1, 2 :

this is possible by virtue of Theorem 2.6.
As a second step, it is convenient to extend the restriction of uβ to �i

(i = 1, 2) to a C1,1 function ui,β defined in the whole �, in such a way that

(3.9)
ui,β(x) = uβ(x) for x ∈ �i , ‖ui,β‖W 2,∞ ≤ c‖uβ‖W 2,∞,

and u1,β − u2,β ≥ 3

4
S for every x ∈ �,

where c is a positive constant depending only on R: this operation can be
performed in many ways, for example, to construct u2,β we can extend the
resctriction of uβ to �2 in a neighbourhood of � by a standard localization
procedure and then we can make a convex combination through a cut-off func-
tion with uβ − (3/4)S (recall that by definition of S and by (3.8), we have
u+

β − u−
β > (3/4)S on �); it is clear that all can be done in such a way that

the constant c depends only on the “C1,1-norm” of � and therefore only on R.
We require also that

∂νu1,β = 0 on ∂�.

By (2.6) and (3.9), we can state the existence of two positive constants K
and β ′′ depending only on R such that

(3.10) ‖∇ui,β‖∞ ≤ K‖g‖W 1,∞ i = 1, 2,

for every β ≥ β ′′.
Let β ′′′ > 0 satisfying

(3.11)
1

6

√
β ′′′ = max

{
4(K‖g‖W 1,∞)2, 64/S2, β ′, β ′′, β0

}
+ 1,

where β0 is the constant appearing in Lemma 3.2. Let z1,β′′′ and z2,β′′′ be the
two functions constructed in Lemma 3.2 with λ = β ′′′ and define v1, v2 as
follows

v1(x) =
{

z1,β′′′(x) if x ∈ �1

2 − z2,β′′′(x) if x ∈ �2

and

v2(x) =
{

z2,β′′′(x) if x ∈ �2

2 − z1,β′′′(x) if x ∈ �1.

From the properties of zi,β (i = 1, 2), as stated in Lemma 3.2, it follows
immediately that vi ∈ W 2,∞(�) and

(3.12) ‖∇vi‖∞ ≤ K1

√
β ′′′, ‖∇2vi‖∞ ≤ K1β

′′′ i = 1, 2
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where K1 is a positive constant depending only on R. Note that ∇v1(x) =
−∇v2(x) for every x ∈ �. We remark also that, for x ∈ �, by construction,

(3.13)
∇v1(x)

|∇v1(x)| = − ∇v2(x)

|∇v2(x)| = ν(x),

where ν(x) denotes the unit normal vector at x to � (outer with respect to �1).
We set

(3.14) h̃(x) = 1√
2
|∇v1|−

1
2 = 1√

2
|∇v2|−

1
2

for every x ∈ �. Moreover, using (3.12) and iii) of Lemma 3.2, we can find a
positive constant D ≤ R/2, depending only on R, S, and ‖g‖W 1,∞ , such that

(3.15) |∇vi (x)|≥ 1

2
, h̃2(π(x))

|∇vi (x)|
vi (x)

<1− 25

32

1√
3

if |d(x)| ≤ D, i = 1, 2.

Applying iii) of Lemma 3.2, we get

(3.16) |∇vi (x)| 1
2 ≥

√
[4]β ′′′ ≥ max {8/S, 1} i = 1, 2,

where the last inequality follows directly from (3.11).
Moreover, combining Lemma 3.2, (3.10), and (3.11), we deduce

(3.17) 4|∇ui,β(x)|2 − 1

6
|∇vi (x)| ≤ 4(K‖g‖W 1,∞)2 − 1

6

√
β ′′′ ≤ −1

and analogously

(3.18)
1√
2
|∇vi (x)|− 1

2 ‖∇ui,β‖∞ <
1

4
√

3
i = 1, 2,

for every x ∈ � and for every β ≥ β ′′′.
Let ε ∈ (0, 1) be such that

(3.19) 6ε‖∇ui,β‖∞ + 4ε2‖∇vi‖∞ ≤ 1

4
for i = 1, 2 and β ≥ β ′′′;

by (3.10) and (3.12) (and the definition of β ′′′) we see that ε can be chosen
depending only R, S and ‖g‖W 1,∞ . By (3.14), it follows, for every x ∈ �,

4(h̃)2‖∇vi‖∞ ≥ 4(h̃)2(−1)i+1∂νvi = 4 · 1

2
>

1

4
,

therefore, by (3.19),

(3.20) ε < h̃(x) ∀x ∈ �.
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Let γ be a fixed constant belonging to (0, 1
2 ∧ α): by applying ii) of

Theorem 2.6, we can find two positive constants β ıv and K2 depending only
on R and �α(�) (and γ ) such that

(3.21) ‖∇2uβ‖
L∞

(
(�) R

2

) ≤ K2β
1
2 +γ ‖g‖W 1,∞,

for every β ≥ β ıv.
We can define, for β > 0,

hβ(x) =
{ (

h̃(π(x)) − β
1
2 +γ1 |d(x)|

)
∨ ε if |d(x)| ≤ D

ε if |d(x)| > D,

where γ1 is a fixed constant belonging to (γ, 1
2 ). It is easy to see that there

exists βv > 0 depending on D (and therefore only on R, S, and ‖g‖W 1,∞) such
that hβ is continuous (in fact Lipschitz) for β > βv.

Using (3.16), (3.14), (3.12), and Lemma 2.5, we have

(3.22) ‖∇hβ‖∞ ≤C ′
(

1√
2

(
S

8
+1

)4

‖∇2vi‖∞‖∇π‖∞+β
1
2 +γ1‖∇d‖∞

)
≤ K3β

1
2 +γ1,

where K3 is a positive constant depending on R, S, and ‖g‖W 1,∞ .
Finally we set

(3.23) β1 = max{β ′′, β ′′′, β ıv, βv, 1}
and

(3.24) µi (x) = �vi (x)

vi (x)
;

notice that by (3.12) we get

(3.25) µi (x) ≤ K1β
′′′

vi (x)
≤ 2K1β1 for every x ∈ � .

• Definition of the calibration

From now on we will assume β ≥ β1. Let us consider the following sets

(3.26) Ai :={(x, z)∈� × R : ui,β(x) − hβ(x)≤ z ≤ ui,β(x) + hβ(x)}, i =1, 2.

Since, by (3.9),u1,β(x) − u2,β(x) ≥ 3
4 S everywhere, noting that hβ ≤ S/8 ev-

erywhere (by (3.16) and (3.14)), we see that

dist(A1, A2) ≥ S

2
for β ≥ β1.
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As we already explained, the crucial point is the definition of φ in a neigh-
bourhood of the graph of uβ and then it is matter of finding a good extension
which preserves all the properties of calibrations. We start by giving the global
definition of the horizontal component φx :

(3.27) φx(x, z) :=


2∇ui,β −2

ui,β−z
vi

∇vi − 16
hβ

(
(−1)i (z − ui,β)− hβ

2

)+∇ui,β

if (x, z) ∈ Ai , i = 1, 2,

0 otherwise in � × R.

Note that the definition is like in (3.4) with vi in place of vβ0 and with an
additional term which is aimed at annihilating the tangential part given by the
other terms in order to fulfil condition (e). Concerning φz , we begin by defining
it in Ai ∩ (

�i × R
)
:

(3.28)
φz

i (x,z) :=
∣∣∣∣∇uβ − uβ −z

vi
∇vi

∣∣∣∣2−β(z−g)2+(β−µi )(uβ − z)2+�i (x, z)

∀(x, z) ∈ Ai ∩ (
�i × R

)
,

where µi is the function defined in (3.24) and

�i (x, z) :=
∫ z

ui,β

divx

[
16

hβ

(
(−1)i (t − ui,β) − hβ

2

)+
∇ui,β

]
dt.

Let us make clear that in the formulas above (·)+ stands for (·) ∨ 0. Again
the definition is like in (3.4) except for the additional term �i which must be
added to keep the field divergence-free.

For x ∈ �i and −hβ < (−1)i (z − uβ) <
hβ

2 , the field φ reduces to

(3.29)

(
2∇uβ −2

uβ −z

vi
∇vi ,

∣∣∣∣∇uβ − uβ −z

vi
∇vi

∣∣∣∣2−β(z−g)2+(β−µi )(uβ −z)2

)

and so, by some easy computation and using the definition of uβ and µi , we
have

divφ(x, z) = 2
(

�uβ − uβ − z

vi
�vi

)
− 2β(z − g) − 2(β − µi )(uβ − z)

= 2β(uβ − g) − 2µi (uβ − z) − 2β(z − g) − 2(β − µi )(uβ − z)=0.

For x ∈ �i and
hβ

2 < (−1)i (z − uβ) < hβ , φ is the sum of the field in (3.29)
and (

−16

hβ

(
(−1)i (z − uβ) − hβ

2

)+
∇uβ, �i (x, z)

)
,
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which is clearly divergence free by the definition of �i . Eventually we have

(3.30) divφ = 0 in (�i × R) ∩ Ai .

It is time now to extend the definition of φz . Before writing the explicit
expression, we remark that conditions (a) and (b) of Section 1 imply that such
extension is essentially unique. More precisely, if (Uj )j=1,...,10 is the family of
all connected components of (� × R) \ (∂ A1 ∪ ∂ A2 ∪ (γ × R)), it easy to see
that φz is uniquely determined on (� \ �) × R = ∪10

j=1Uj by (3.27), (3.28), and
the two following necessary conditions:

• ∂zφ
z = − divxφ

x in Uj for j = 1, . . . , 10 (which ensures condition (a) of
Section 1),

• φ+ · ν∂Uj = φ− · ν∂Uj on ∂Uj for every j = 1, . . . , 10, where φ+ and φ−
denote the traces of φ on the two sides of ∂Uj .

The only freedom is in the choice of φz on ∂Uj according to the condition

φ · ν∂Uj = φ+ · ν∂Uj = φ− · ν∂Uj .

We are now ready to give the complete definition of φz; for (x, z) ∈ (�1×R)\A1
we define φz(x, z) as follows:

(3.31)



φx(x,uβ +hβ)

·(−∇uβ −∇hβ)+φz(x,uβ +hβ) if z >uβ +hβ ,

φx(x,uβ −hβ)

·(−∇uβ +∇hβ)+φz(x,uβ −hβ) if uβ −hβ > z ≥u2,β +hβ ,

χ1(x,z)+φz(x,u2,β +hβ)+φx(x,u2,β +hβ)·
·(∇u2,β +∇hβ) if u2,β +hβ > z ≥u2,β −hβ ,

φx(x,u2,β −hβ)

·(−∇u2,β +∇hβ)+φz(x,u2,β −hβ) if u2,β −hβ > z,

where

χ1(x, z) =
∫ u2,β+hβ

z
divxφ

x(x, t) dt.

We remark that in the first and in the second line we used the definition of φz

already given in (3.28), in the third line we used the definition of φz(x, u2,β+hβ)

given in the second one, and finally in the last line we exploited the definition
φz(x, u2,β − hβ) given in the previous one.
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Analogously, for (x, z) ∈ (�2 × R) \ A2 we define φz(x, z) as follows:

(3.32)



φx(x, uβ − hβ)

·(−∇uβ + ∇hβ) + φz(x, uβ − hβ) if z < uβ − hβ ,

φx(x, uβ + hβ)

·(−∇uβ − ∇hβ) + φz(x, uβ + hβ) if uβ +hβ < z ≤u1,β −hβ ,

χ2(x,z) +φz(x,u1,β −hβ)+φx(x,u1,β −hβ)

·(∇u1,β − ∇hβ) if u1,β −hβ < z ≤u1,β +hβ ,

φx(x, u1,β + hβ)

·(−∇u1,β − ∇hβ) + φz(x, u1,β + hβ) if u1,β + hβ < z,

where

χ2(x, z) =
∫ u1,β−hβ

z
divxφ

x(x, t) dt.

Finally we set

φz(x, z) = 0 on (� ∩ R) \ (A1 ∪ A2);

this concludes the definition of φ which, by construction (and recalling (3.30)),
satisfies conditions (a) and (b) of Section 1.

• φz + β(z − g)2 > |φx |2/4 for almost every (x, z) ∈ � × R with z �= u(x).

We first prove the condition above in Ai ∩ (�i × R), and then in the

remaining. For x ∈ �i and −hβ ≤ (−1)i (z −uβ) ≤ hβ

2 , by (3.29), we have that

φz + β(z − g)2 = |φx |
4

2

+ (β − µi )(uβ − z)2 >
|φx |

4

2

,

so condition (c) of Secton 1 is trivially satisfied, with strict inequality.

For x ∈ �i and
hβ

2 < (−1)i (z − uβ) ≤ hβ , using the definition of φ we
see that (c) is equivalent to

(3.33)

(1) := (β − µi )(uβ − z)2 + �i (x, z)

>
(16)2

4(hβ)2
|∇uβ |2([· · · ])2 − 16

hβ

[· · · ]
(
∇uβ − uβ −z

vi
∇vi

)
∇uβ := (2),
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ε

ε

uβ
,

u
1 β

,β
u

�1×R �2×R

A2

A1

2

βu

g

d

g

Fig. 1. A cross section of the sets A1 and A2: the vector field φ is purely vertical out of the shaded
regions.

where we wrote [· · · ] instead of
[
((−1)i (z − uβ) − hβ

2 )+
]
; by (3.20), (3.8),

(3.10), and (3.22), we have

�i (x, z) ≥
∫ z

uβ

(
−16

hβ

[· · · ]|�uβ | − |∇uβ | ·
∣∣∣∣∇ (

16

hβ

[· · · ]
)∣∣∣∣) dt

≥ −16

ε
S2|β(uβ − g)| − S|∇uβ |

(
16

ε
(|∇uβ | + |∇hβ |) + 16S

ε2
|∇hβ |

)
≥ −16

ε
S2
√

βG‖g‖W 1,∞

− SK‖g‖W 1,∞
(

16

ε
(K‖g‖W 1,∞ + K3β

1
2 +γ1) + 16S

ε2
K3β

1
2 +γ1

)
,

therefore, recalling that the all the constants appearing in the last expression
depend only on R, S, and ‖g‖W 1,∞ , there exists a positive constant C depending
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on the same quantities such that

(3.34) �i (x, z) ≥ −Cβ
1
2 +γ1;

recalling that |uβ − z| ≥ hβ

2 ≥ ε
2 we finally obtain

(3.35) (1) ≥ (β − µi )
ε2

4
− Cβ

1
2 +γ1 for β large enough .

Analogously exploiting (3.19), (3.20), (3.10), and (3.12), we discover that

(3.36) (2) ≤ C1,

where C1 depends on R, S, and ‖g‖W 1,∞ ; combining (3.35), (3.36), and recalling
(3.25), we finally obtain that there exists b0 > β1 depending only on R, S, and
‖g‖W 1,∞ such that (3.33) holds true for β ≥ b0.

Before proceeding let us observe that arguing as for estimate (3.36), we
easily obtain

(3.37) |φx
i (x, z)| ≤ C2(‖∇ui,β‖∞ + ‖∇vi‖∞) ≤ C3 for every (x, z) ∈ Ai ,

where C3 depends only on R, S, and ‖g‖W 1,∞ . For (x, z) ∈ (�i × R) ∩ Aj

(i �= j), by the definition of φx and, by (3.20), we have

(3.38)
| divxφ

x |
≤C4

(
‖∇2uj,β‖∞+‖∇2vj‖∞+‖∇uj,β‖2

∞+‖∇vj‖2
∞+‖∇uj,β‖∞‖∇hβ‖∞

)
,

where C4 depend only on R, and S; by using (3.9), (3.10), (3.12), (3.22), and
recalling that γ1 > γ , we deduce, from (3.38), that

(3.39)

|χj | ≤ SC4

(
C5‖g‖W 1,∞β

1
2 +γ + C5 + K1β1 + (K‖g‖W 1,∞)2

+K 2
1β1 + K‖g‖W 1,∞ K3β

1
2 +γ1

)
≤ C6β

1
2 +γ1,

where C6 depends only on R, S, �α(�), and ‖g‖W 1,∞ .
Using the definition (3.31) for (x, z) ∈ (�1 × R) ∩ A2, we have

(3.40) φz(x, z) ≥ χ1 − 2‖φx‖(‖∇u2,β‖∞ + ‖∇hβ‖∞) + φz(x, uβ − hβ),

where, by (3.28),

(3.41) φz(x, uβ − hβ) ≥ −β(uβ − hβ − g)2 + �1(x, uβ − hβ).
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Therefore, for (x, z) ∈ (�1 × R) ∩ A2, combining (3.40) and (3.41), and
using (3.10), (3.22), (3.34), (3.37), and (3.39), we obtain

φz(x, z) + β(z − g)2 − |φx |2
4

≥ β
[
(z − g)2 − (uβ − hβ − g)2

]
− |χi |

− 2‖φx‖∞(‖∇hβ‖∞

+ ‖∇u2,β‖∞) + �1(x, uβ − hβ) − ‖φx‖2
∞

4

≥ β[(7/16)2S2 − (3/16)2S2] − C5β
1
2 +γ1

−C3(K3β
1
2 +γ1 +K‖g‖W 1,∞)−Cβ

1
2 +γ1 − (C3)

2

4
,

where we used also the fact that that |z−g| ≥ |z−uβ |−|uβ −g| ≥ S/2−S/16 =
(7/16)S and, analogously, that |uβ −hβ −g| ≤ S/16+S/8 = (3/16)S (see (3.8));
as 1

2 +γ1 < 1, there exists b1 > 0 depending only on R, S, �α(�), and ‖g‖W 1,∞
such that

(3.42) φz(x, z) + β(z − g)2 − |φx |2
4

> 0,

for β ≥ b1 and for (x, z) ∈ (�1 × R) ∩ A2. Analogously we can prove the
existence of a constant b2 > 0 depending on the same quantities such that (3.42)
holds for β ≥ b2 and for (x, z) ∈ (�2 × R) ∩ A1. Arguing exactly in the same
way (in fact exploiting the same estimates), one can finally check that there
exists b3 > 0 depending on R, S, �α(�), and ‖g‖W 1,∞ , such that (3.42) is true
for (x, z) ∈ (�×R)\ (A1 ∪ A2) and β ≥ b3. If we call β2 := max{b0, b1, b2, b3}
we have that for β ≥ β2 condition (c) of Section 1 is satisfied for almost every
(x, z) in � × R with strict inequality if z �= u(x).

• φ(x, uβ) = (2∇uβ, |∇uβ |2 − β(uβ − g)2) everywhere in � \ �.

Condition (d) of Section 1 is trivially satisfied, as one can see directly from
the definition of φ.

•
∫ u1,β (x)

u2,β (x)

φx(x, t) dt = νuβ
= −ν Hn−1-a.e. on �.

By direct computation, for x ∈ �, we have

(3.43)
∫ u1,β

u2,β

φx(x, z) dz = (hβ)2 ∇v2

v2
− (hβ)2 ∇v1

v1
.

Using (3.13), (3.14), and the fact that vi ≡ 1 on �, we obtain∫ u1,β

u2,β

φx(x, z) dz = +1

2

∇v2

|∇v2| − 1

2

∇v1

|∇v1| = −ν,
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so that condition (e) of Section 1 is satisfied.

•
∣∣∣∣∣
∫ t2

t1

φx(x, z) dz

∣∣∣∣∣ ≤ 1 for every t1, t2 ∈ R and for every x ∈ �.

It is convenient to introduce the following notation: for every x ∈ � and
for every s, t ∈ R, we set

I (x, [s, t]) :=
∫ t

s
φx(x, z) dz,

where, with a slight abuse of notation, [s, t] stands for the interval [s ∧ t, s ∨ t]
positively oriented if s ≤ t , negatively oriented otherwise. We define

dβ(π(x)) := h̃(π(x)) − ε

β
1
2 +γ1

.

If |d(x)| > dβ(π(x)), recalling that, by definition, hβ(x) = ε we have

(3.44)

|I (x, t1, t2)| ≤
∫ u1,β+ε

u1,β−ε

(
2‖∇u1,β‖∞ + 16

ε
‖∇u1,β‖∞

(
u1,β − ε

2
− z

)+

+4|u1,β − z|‖∇v1‖∞
)

dz

+
∫ u2,β+ε

u2,β−ε

(
2‖∇u2,β‖∞+ 16

ε
‖∇u2,β‖∞

(
−u2,β − ε

2
+ z

)+

+4|u2,β − z|‖∇v2‖∞
)

dz

≤ 6ε‖∇u1,β‖∞ + 4ε2‖∇v1‖∞ + 6ε‖∇u2,β‖∞ + 4ε2‖∇v2‖∞

≤ 1

2
,

where the last inequality is due to (3.19), therefore condition (f) is satisfied.
Let us consider now the case of a point x where |d(x)| ≤ dβ(π(x)). For

x ∈ �i ∪ � we set

n(x) := − ∇v1

|∇v1| = ∇v2

|∇v2| ;

note that n(x) = νuβ
(x) for every x ∈ �. Given any vector valued function

ξ : � → Rn , we call ξ⊥ and ξ ‖ the vector valued functions such that ξ⊥(x)

and ξ ‖(x) are equal to the projections of ξ(x) on the orthogonal space and on
the space generated by n(x), respectively. We denote the open unit sphere of
Rn centred at the origin by B and the open ball of Rn centred at the point
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−rn(x) with radius r , by A(x, r). Finally, for x ∈ � and t ∈ R we introduce
the following vector

bi (x, t) := (−1)i (2(t − ui,β) − ji (x, t))
(∇ui,β

)‖
,

where ji is defined by

ji (x, t) := 16

hβ

∫ t

ui,β

(
(−1)i (ui,β − z) − hβ

2

)+
dz.

Claim 1. There exists a positive constant c0 > 0, depending on R, S,
�α(�), and ‖g‖W 1,∞ , with the property that for every x ∈ � such that |d(x)| ≤
dβ(π(x)), for every t ∈ R such that |t − ui,β(x)| ≤ hβ(x), and for β ≥ c0, we
have

(3.45) (−1)i+1 I (x, [ui,β , t]) + bi (x, t) ∈ A(x, 1/3).

A straightforward computation gives

(−1)i+1 I (x,[ui,β(x),t])+bi (x,t)= 2(−1)i+1∇ui,β(t − ui,β)+(−1)i ji (x, t)∇ui,β

+ (−1)i+1 ∇vi

vi
(t − ui,β)2

+ 2(−1)i (t − ui,β)
(∇ui,β

)‖

+ (−1)i+1 ji (x, t)
(∇ui,β

)‖

= (−1)i+1(2(t − ui,β) − ji (x, t))(∇ui,β)⊥

− |∇vi |
vi

(t − ui,β)2n(x)

and so the claim is equivalent to prove that

(2 − ji (x, t)(t − ui,β)−1)2[(∇ui,β)⊥]2(t − ui,β)2 + |∇vi |2
v2

i

(t − ui,β)4

− 2

3

|∇vi |
vi

(t − ui,β)2 < 0;

as 0 ≤ 2 − ji (x, t)(t − ui,β)−1 ≤ 2 everywhere, it is sufficient to prove that

(3.46) (∗) := 4
∣∣∣(∇ui,β)⊥

∣∣∣2 + h2
β

|∇vi |2
v2

i

− 2

3

|∇vi |
vi

< 0.

Since, by (3.14), h2
β

|∇vi |
vi

= 1
2 for x ∈ �, we can estimate

(3.47) (∗) = 4[(∇ui,β)⊥]2 − 1

6

|∇vi |
vi

< 0 on �,
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where the last inequality follows from (3.17). In the following we denote by
∂|d| the differential operator

∂|d| f (x) = ∇ f (x) · ∇|d(x)|,
defined for x ∈ (�) R

2
\ �; noting that, by the estimates (3.12), we have∣∣∣∣∣∂|d|

|∇vi |2
v2

i

∣∣∣∣∣ ≤ C

∣∣∣∣∂|d|
|∇vi |

vi

∣∣∣∣ ≤ C,

where C depends only on R, S, and ‖g‖W 1,∞ , and using (3.15), (3.19), (3.21),
(3.9), and (3.22), one sees that

∂|d|((∗)) = 8(∇ui,β)⊥ · ∂|d|(∇ui,β)⊥

+ 2
|∇vi |2

v2
i

hβ∂|d|hβ + h2
β∂|d|

|∇vi |2
v2

i

− 2

3
∂|d|

|∇vi |
vi

≤ 8cK K2β
1
2 +γ ‖g‖2

W 1,∞ + C1 − ε

2
K3β

1
2 +γ1 + S2C + C;

as γ1 > γ and since all the constants appearing in the last inequality depend
only on R, S, �α(�), and ‖g‖W 1,∞ , it is clear that there exists c0 > 0 depending
on the same quantities such that ∂|d|((∗)) < 0, for x �∈ � such that |d(x)| ≤
dβ(π(x)) and for β ≥ c0. Therefore, taking into account (3.47), (3.46) follows
immediately: Claim 1 is proved.

Claim 2. There exists a positive constant c1, depending only on R, S,
�α(�), and ‖g‖W 1,∞ , such that for every x ∈ �, t1, t2 ∈ R, with |d(x)| ≤
dβ(π(x)), |t1 − u1,β | ≤ hβ , |t2 − u2,β | ≤ hβ , and for every β ≥ c1, we have

(3.48) I (x, [u2,β, u1,β]) − b1(x, t1) − b2(x, t2) = b(x, t1, t2)n(x),

with b(x, t1, t2) < 1.
First of all observe that for every x ∈ � I (x, u2,β, u1,β) is a vector parallel

to n(x), by (3.43); it is also clear that

|I (x, [u2,β, u1,β]) − b1(x, t) − b2(x, t)|

≤ |I (x, [u2,β , u1,β])| +
∣∣∣(∇u1,β

)‖∣∣∣ |(2hβ + j1(x, hβ))

+
∣∣∣(∇u2,β

)‖∣∣∣ (2hβ + j2(x, hβ))

≤ |I (x, [u2,β , u1,β])| + 4hβ

(∣∣∣(∇u1,β

)‖∣∣∣ + ∣∣∣(∇u2,β

)‖∣∣∣)
=: mβ(x);
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therefore it is sufficient to prove that mβ(x) < 1 for |d(x)| ≤ dβ(π(x)), if β

is large enough. Since mβ(x) = |I (x, u2,β , u1,β)| = 1 for every x ∈ �, it will
be enough to show that ∂|d|mβ(x) < 0 for x such that |d(x)| ≤ dβ(π(x)). We
don’t enter all the details, indeed arguing as above, that is using (3.10), (3.21),
(3.12), and (3.22), one easily sees that the derivative of hβ which is negative

and of the same order as β
1
2 +γ1 , dominates the other terms and so there exists

a positive constant c1 > 0 depending on R, S, �α(�), and ‖g‖W 1,∞ , such that
∂|d|mβ(x) < 0 for β ≥ c1: Claim 2 is proved.

We set β3 = max{c0, c1} and we are going to prove that condition (f) of
Section 1 is satisfied for β ≥ β3. We will check the condition only in �1 × R:
for �2 × R the argument would be analogous. Let x ∈ �1 and t2 < t1 two real
numbers such that |t2 − u2,β(x)| ≤ hβ(x) and |t1 − uβ(x)| ≤ hβ(x); first of all
it is easy to see, by explicit computation, that

(3.49) I (x, [t2, t1]) · n(x) ≥ 0;

recalling that, by Claim 1,

I (x, [uβ, t1])+b1(x, t1) ∈ A(x, 1/3) and I (x, [t2, u2,β])+b2(x, t) ∈ A(x, 1/3),

we have

I (x, [t2, t1]) = I (x, [u2,β, uβ]) − b1(x, t1) − b2(x, t2) + I (x, [t2, u2,β])

+ b2(x, t2) + I (x, [uβ, t1]) + b1(x, t1)

∈ I (x, [u2,β , uβ]) − b1(x, t1) − b2(x, t2) + 2A(x, 1/3),

therefore, taking into account (3.49),

(3.50) I (x, [t2, t1]) ∈ (I (x, [u2,β, uβ])−b1(x, t1)−b2(x, t2)+ A(x, 2/3))∩ H+,

where H+ is the half-space {ξ ∈ Rn : ξ · n(x) ≥ 0}. By elementary geometry it
is easy to see that (bn(x) + A(x, r)) ∩ H+ ⊂ B for b < 1 and for r ∈ (0, 1),
and hence, invoking Claim 2, we get

(3.51)
I (x, [t1, t2]) ∈ (

I (x, [u2,β , uβ]) − b1(x, t1) − b2(x, t2) + A(x, 2/3)
) ∩ H+

= (b(x, t1, t2)n(x) + A(x, 2/3)) ∩ H+ ⊂ B.

If (x, t1) and (x, t2) belong to Ai it is easy to see, by explicitly computing the
integral, that

(3.52) |I (x, [t1, t2])| ≤ h2
β(x)

|∇vi |
vi

+ 25

8
hβ |∇ui,β | < 1 − 25

32

1√
3

+ 25

32

1√
3

= 1,
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where the last inequality follows from (3.15), (3.18), and (3.14) (we recall that
for β large enough dβ(π(x)) ≤ D, for every x , being D the constant introduced
in (3.15)).

We now consider the general case. Let x ∈ �1, t1, t2 ∈ R with t1 < t2;
since φx vanishes out of the regions A1 and A2, we have

I (x, [t1,t2])= I (x, [t1, t2]∩[u2,β−hβ, u2,β+hβ])+I (x, [t1,t2]∩[uβ−hβ, uβ+hβ]);

by (3.52), each integral in the expression above has modulus less than 1, so that
if one of the two is vanishing condition (f) is verified. If both are non-vanishing,
then

[t1, t2] ∩ [u2,β − hβ, uβ + hβ] = [s1, s2],

with |s1 − u2,β | ≤ hβ and |s2 − uβ | ≤ hβ , so that, again taking into account the
fact that φx vanishes out of the regions A1 and A2,

|I (x, [t1, t2])| = |I (x, [t1, t2] ∩ [u2,β − hβ, uβ + hβ])| = |I (x, [s1, s2])| < 1,

where the last inequality follows from (3.51): condition (f) of Section 1 is
proved.

Since, by construction, φ has vanishing normal component on ∂� × R,
if we set β := max{β1, β2, β3} we have that conditions of Section 1 are all
satisfied for β ≥ β: the theorem is proved.

A similar result holds true also if � is made up of several connected
components, as the following theorem states: we omit the proof, since it is
essentially the same as the previous one.

Theorem 3.3. Let � as above and let �1, . . . , �k a family of open disjoint
subsets belonging of class C2,α and let R > 0 such that �i ∈ UR(�) for i = 1, . . . , k
and dist(�i , �j ) ≥ R for every i �= j . Set � := ∂�1 ∪ · · · ∪ ∂�k . Then for every
function g belonging W 1,∞(� \ �), discontinuous along � (i.e. Sg = �) and such
that g+(x) − g−(x) > S > 0 for every x ∈ �, there exists β0 > 0 depending on R,
S, �α(�) (see (2.4)), and ‖g‖W 1,∞ , such that for β ≥ β0 the solution uβ of (3.1)

is discontinuous along � (Suβ
= �) and it is the unique absolute minimizer of Fβ,g

over SBV (�).

Remark 3.4. We remark that refining a little the construction, it is possible
to improve the result of Theorem 3.1 as follows:
there exist δ∗ > 0 and β0 > 0 such that, for every β ≥ β0 and for every g ∈
W 1,∞(� \ �), with ‖g‖W 1,∞ ≤ βδ∗ and such that inf�(g+ − g−) > S, the solution
uβ of (3.1) is the unique absolute minimizer of Fβ,g over SBV (�).

The main difficulty comes from the fact that instead of (3.10) we have the
weaker estimate

‖∇uβ‖∞ ≤ Kβδ∗ .
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Such a difficulty can be overcome replacing, in the construction above, v1 and
v2 by v1,β and v2,β defined as

v1,β(x) =
{ z1,cβ4δ∗ (x) if x ∈ �1

2 − z2,cβ4δ∗ (x) if x ∈ �2

and

v2,β(x) =
{ z2,cβ4δ∗ (x) if x ∈ �2

2 − z1,cβ4δ∗ (x) if x ∈ �1,

where z1,cβ4δ∗ and z2,cβ4δ∗ are the two functions constructed in Lemma 3.2 with

λ = cβ4δ∗ . One can check that if δ∗ is sufficiently small and c sufficiently
large, all the conditions of Section 1 are still satisfied for β large enough.

3.2. – The two-dimensional case

As stated in the Introduction, in dimension two we are able to treat the case
of � with piecewise smooth boundary (curvilinear polygon) and of � touching
(orthogonally) ∂�.

Lemma 3.5. Let �, S, and � be as in Proposition 2.7 and denote by �1, �2 the
two connected components of � \ �. Then for every δ > 0 there exist two positive
constants c and β0 depending on � and δ (and � of course) such that, for β ≥ β0,
we can find two functions z1,β : �1 → R and z2,β : �2 → R of class W 2,∞ with
the following properties:

i) 1
2 ≤ zi,β ≤ 1 in �i , for i = 1, 2 and zi,β ≡ 1

2 in � \ (�)δ;

ii) �zi,β ≤ cβzi,β in �i , for = 1, 2;

iii) z1,β(x) = z2,β(x) = 1 and ∂νz1,β(x) = −∂νz2,β(x) ≥ √
β for every x ∈ �;

iv) ‖∇zi,β‖∞ ≤ c
√

β and ‖∇2zi,β‖∞ ≤ cβ.

Proof. Let us denote by x1 and x2 the two intersection points of � with
∂�. If we are able to find a function d̃ belonging to W 2,∞((�)δ′ ∩ �) (for a
suitable δ′ < dist(S, �)) such that d̃ is vanishing on �, positive in �2 ∩ (�)δ′ ,
negative in �1∩(�)δ′ , satisfying ∂ν d̃ = 0 on ∂�∩�δ′ and ∂ν d̃ �= 0 on �, we are
done: indeed we can proceed exactly as in Lemma 3.2 using d̃ in place of d.
We briefly describe a possible construction: as in Proposition 2.7 we can find a
neighbourhood Ui of xi (i = 1, 2) and a C1,1 function ψi vanishing on � ∩ Ui ,
positive in �2 ∩Ui , negative in �1 ∩Ui and such that ∂νψi = 0 on ∂�∩Ui and
∂νψi �= 0 in � ∩ Ui . Now we can define d̃ := θ1ψ1 + θd + θ2ψ2, where θ1, θ2,
and θ3 are suitable positive cut-off functions such that θ1 + θ2 + θ3 ≡ 1, while
d is the usual signed distance function from �, positive in �2 and negative in
�1 (it is well defined in �δ′ if δ′ is small enough).
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Theorem 3.6. Let �, �1, �2, and � as in the previous Lemma and let g be
a function in W 1,∞(� \ �), discontinuous along � (i.e. Sg = �) and such that
g+(x) − g−(x) > S > 0 for every x ∈ �. Then there exists β0 > 0 depending on
�, S, and ‖g‖W 1,∞ , such that for β ≥ β0 the solution uβ of (3.1) is discontinuous
along � (Suβ

= �) and it is the unique absolute minimizer of Fβ,g over SBV (�).

Proof. As above, let us denote by S the set of the singular points of ∂�.
If � is regular (i.e. S = ∅) we can recycle exactly the same construction of
Theorem 3.1. If S �= ∅, an additional difficulty is due to the fact that we are
not able to prove that ‖∇uβ‖L∞(�) ≤ C with C independent of β. Since we
can perform such an estimate only in a neighbourhood of � which does not
intersect S, the idea will be to keep the construction of Theorem 3.1 in that
neighbourhood and to suitably modify it near the singular points in order to
exploit estimate (5.29).

Denote by γ1 and γ2 the two curvilinear edges of � containing the inter-
section points of � with ∂� and choose δ > 0 so small that (�)δ ∩ S = ∅,
(�)δ∩∂� = (�)δ∩(γ1∪γ2), and d and π are well defined and smooth (according
to Lemma 2.3) in that neighbourhood.

Let us choose β ′ > 0 and G > 0 such that, for β ≥ β ′,

(3.53) ‖uβ −g‖L∞(�) ≤ S

16
and

√
β‖uβ −g‖L∞(�) ≤ G‖g‖W 1,∞(�) i = 1, 2, :

this is possible by virtue of Proposition 5.7.
Again it is convenient to extend the restriction of uβ to �i (i = 1, 2) to a

C1,1 function ui,β defined in the whole �, in such a way that

(3.54)
ui,β(x) = uβ(x) in �i , ‖ui,β‖W 2,∞(�) ≤ c‖uβ‖W 2,∞((�)δ∩�),

and u1,β − u2,β ≥ 3

4
S everywhere,

where c is a positive constant independent of β. We require also that

∂νui,β = 0 on ∂�.

By (2.9) and (3.54), and by (5.29), we can state the existence of two positive
constants K and β ′′ depending only on �, such that

(3.55)
‖∇ui,β‖L∞(�ı̂ ∪(�)δ∩�) ≤ K‖g‖W 1,∞(�)

for i = 1, 2, and ‖∇uβ‖L∞(�) ≤ β
1
4 K‖g‖W 1,∞(�)

for every β ≥ β ′′ (above and in the sequel, ı̂ denotes the complement of i , i.e.,
ı̂ is such that i, ı̂ = {1, 2}).

Let β ′′′ > 0 satisfying

(3.56)
1

6

√
β ′′′ = max

{
4(K‖g‖W 1,∞)2, 64/S2, β ′, β ′′, β0

}
+ 1,
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where β0 is the constant appearing in Lemma 3.5 and z1,β′′′ , and let z2,β′′′ be
the two functions constructed in Lemma 3.5 with λ = β ′′′. We denote by v1,
v2 the functions defined as follows:

v1(x) =
{

z1,β′′′(x) if x ∈ �1

2 − z2,β′′′(x) if x ∈ �2

v2(x) =
{

z2,β′′′(x) if x ∈ �2

2 − z1,β′′′(x) if x ∈ �1,

and we choose 0 < D < δ in such a way that

|∇vi (x)| ≥ 1

2
, h̃2(π(x))

|∇vi |
vi

≤ 1 − 25

32

1√
3
, if |d(x)| ≤ D, i = 1, 2,

where

(3.57) h̃(x) = 1√
2
|∇v1(x)|− 1

2 = 1√
2
|∇v2(x)|− 1

2 ∀x ∈ �.

Then we choose ε ∈ (0, 1) in such a way that

(3.58) 12ε‖∇ui,β‖L∞(�ı̂ ∪(�)δ)∩�+4ε2‖∇vi‖L∞(�) <
1

4
for i =1, 2 and β ≥β ′′′.

Let γ be a fixed constant belonging to (0, 1
2 ∧ α): by Proposition 2.7, we

can find two positive constants β ıv and K2 such that

(3.59) ‖∇2uβ‖L∞((�)δ∩�) ≤ K2β
1
2 +γ ‖g‖W 1,∞(�),

for every β ≥ β ıv.
Now we can define, for β > 0,

hβ(x) =


(
h̃(π(x)) − β

1
2 +γ1 |d(x)|

)
∨ ε if |d(x)| ≤ D

2

fβ(|d(x)|) if |d(x)| >
D

2
,

where γ1 is a fixed constant belonging to (γ, 1
2 ) and fβ : [δ, +∞) → R is the
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continuous function satisfying

(3.60)
fβ

(
D

2

)
= ε fβ(t) ≡ sβ :=

(
β

1
4 8K‖g‖W 1,∞(�)

)−1

for t ≥ D fβ is affine in
[

D

2
, D

]
.

It is easy to see that there exists βv > 0 such that hβ is continuous (in fact
Lipschitz) for β > βv.

Finally we introduce a new function ûi,β which is a modification of ui,β

in the region where we cannot perform a uniform control of the L∞-norm of
its gradient; such a function must satisfy, for i = 1, 2:

(3.61)
ûi,β(x) = ui,β(x) for x ∈ �ı̂ ∪ (�) D

2
∩ �

and ûi,β(x) = g(x) for x ∈ �i \ (�)D ,

(3.62)
‖∇ûi,β‖L∞(�) ≤ c(‖∇uβ‖L∞((�)D) ∨ ‖∇g‖L∞(�))

and ‖ûi,β − g‖L∞(�) ≤ ‖uβ − g‖L∞(�),

where c > 0 is independent of β: a possible construction is given by

ûi,β(x) = θ
(
(−1)i d(x)

)
ui,β +

[
1 − θ

(
(−1)i d(x)

)]
g(x),

where θ is a smooth positive function such that θ(t) = 1 for t ≤ D/2 and
θ(t) = 0 for t ≥ D. Now for β ≥ β1 := max{β ′′, β ′′′, β ıv, βv} we consider the
sets

(3.63) Ai := {(x, z)∈�×R : ûi,β(x)−hβ(x)≤ z ≤ ûi,β(x)+hβ(x)}, i = 1, 2;

setting
ĥβ(x) := [

1 + (2/D)(|d(x)| − D/2)+
]

hβ(x),

we can define

φx(x, z) :=


2∇ui,β − 2

ui,β − z

vi
∇vi − 16

ĥβ

(
(−1)i (z − ui,β) − ĥβ

2

)+
∇ui,β

if (x, z) ∈ Ai ,

0 otherwise,
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and

φz|Ai ∩(�i ×R) :=
∣∣∣∣∇uβ − uβ − z

vi
∇vi

∣∣∣∣2 − β(z − g)2 + (β − µi )(uβ − z)2 + �i ,

where the functions �i and µi are defined exactly as in the proof of Theo-
rem 3.1. At this point, as in the proof of Theorem 3.1, the vertical component
φz can be extended to the whole � × R in order to satisfy conditions (a) and
(b) of Section 1 (we do not rewrite the explicit expression). First of all observe

that in
(
(�) D

2
∩ �

)
× R the definition of φ is the same as in Theorem 3.1,

then, we can state the existence of a constant β ′
0 > 0 depending on �, S, and

‖g‖W 1,∞ such that φ satisfies (a), (b), (c), (d), (e), (f), and (g) of Section 1 in(
(�) D

2
∩ �

)
× R.

From now on we focus our attention on what happens in
(
�i \ (�) D

2

)
×R.

Concerning (d), we have only to check that for β large enough the graph
of ui,β belongs to Ai , but this follows from the fact that, by (3.60), Ai contains

the sβ-neighbourhood of the graph of ûi,β , where sβ is of order β− 1
4 , and from

the fact that, by (3.53) and (3.62), it holds

‖ui,β − ûi,β‖∞ ≤ ‖ui,β − g‖∞ + ‖ûi,β − g‖∞ ≤ Cβ− 1
2 .

Concerning condition (c), it is clearly satisfied in Ai , then it remains to check,
for β large enough, the inequality φz(x, z) + β(z − g)2 > 0 holds true outside

Ai . For x ∈
(
�i \ (�) D

2

)
∩ �δ such an estimate can be performed using

estimates (3.55), (3.59), (3.62) and arguing as in the proof of Theorem 3.1.
Now let (x, z) belong to [(�i \ (�)D) × R]\ Ai and suppose also that û2,β(x)+
hβ(x) ≤ z ≤ û1,β(x) − hβ(x) (the other cases would be analogous); since
φz(x, z) = φ(x, ûi,β + (−1)i hβ) · (−∇ûi,β + (−1)i+1∇hβ, 1) and observing that
φ(x, ûi,β + (−1)i hβ) reduces to(

2∇uβ, |∇uβ |2 − β(z − g)2 + β(uβ − z)2
)

,

we obtain

φz(x, z) + β(z − g)2 ≥ −|∇uβ ||∇ûi,β | − 2|∇uβ ||∇hβ | + β(uβ − z)2

≥ −|∇uβ ||∇ûi,β | − 2|∇uβ ||∇hβ | + βs2
β;

in the last expression the positive term βs2
β , which behaves like β

1
2 (see the

definition of sβ) dominates the negative ones, indeed these are either bounded

or of the same order of |∇uβ | which is less or equal to the order of β
1
4 , thanks

to (3.55): therefore for β large enough we get the desired inequality.
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About condition (f) we first observe that if t1, t2 ∈R and x ∈
(
(�)D \ (�) D

2

)
∩

� then we obtain∣∣∣∣∣
∫ t2

t1

φx(x, z) dz

∣∣∣∣∣ ≤

≤
2∑

i=1

[∫ ûi,β+hβ

ûi,β−hβ

(
2‖∇ui,β‖∞ + 16

ĥβ

‖∇ui,β‖∞

(
(−1)i (z − ui,β) − ĥβ

2

)+

+ 4|ui,β − z|‖∇vi‖∞
)

dz

]

≤
2∑

i=1

[
4‖∇ui,β‖∞ε + 4ε2‖∇vi‖∞ + 16

ĥβ
‖∇ui,β‖∞

[
(ui,β − ûi,β)2 + ĥ2

β

4

]]

≤
2∑

i=1

[
4‖∇ui,β‖∞ε + 4ε2‖∇vi‖∞ + 16

sβ

‖∇ui,β‖∞(ui,β − ûi,β)2 + 8‖∇ui,β‖∞ε

]

≤
2∑

i=1

[
12‖∇ui,β‖∞ε + 4ε2‖∇vi‖∞ + Cβ− 3

4

]
[

the fact that 16
sβ

‖∇ui,β‖∞(ui,β − ûi,β)2 ≤ Cβ− 3
4 follows from estimates

(3.55), (3.53), (3.62), and the definition of sβ

]
≤ 1

2
,

if β is large enough, thanks to (3.58).
If x ∈ �i \ (�)D then we can estimate∣∣∣∣∣

∫ t2

t1

φx(x, z) dz

∣∣∣∣∣ ≤ 2sβ‖∇u1,β‖∞ + 2sβ‖∇u2,β‖∞ ≤ 1

2
,

by (3.55) and the definition of sβ . Also condition (f) is proved; since, by
construction, φ has vanishing normal component along ∂� × R, the theorem is
completely proved.

Now we can state a theorem which is the analogous of Theorem 3.3.

Theorem 3.7. Let � as in Proposition 2.7 and � = γ1∪· · ·∪γk where for every
j = 1, . . . , k γj is either a simple, connected, and closed curve of class C2,α con-
tained in � or a connected curve with the same regularity outside a neighbourhood
of its endpoints (where it is supposed to be of class C3), which meets orthogonally
∂� in two regular points (see Fig. 2); suppose in addition that γi ∩ γj = ∅ if
i �= j . Then for every g ∈ W 1,∞(� \ �) discontinuous along � and such that
g+(x) − g−(x) > S > 0 for every x ∈ �, there exists β0 > 0 depending on �, S,
and ‖g‖W 1,∞ , such that for β ≥ β0 the solution uβ of (3.1) is discontinuous along
� (Suβ

= �) and it is the unique minimizer of Fβ,g over SBV (�).
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Fig. 2. An admissible discontinuity set �.

4. – Gradient flow for the Mumford-Shah functional

In this section we are going to apply the previous results to the study
of the gradient flow of the Mumford-Shah functional by the method of mini-
mizing movements with an initial datum u0 which is regular outside a regular
discontinuity set �: we will show that, for an initial interval of time, the dis-
continuity set does not move while the function evolves according to the heat
equation. Let us first recall the definition of gradient flow for the homogeneous
Mumford-Shah functional (1.4) via minimizing movements (see for instance [7]
or [3]). Let � be a bounded open subset of Rn and consider an initial datum
u0 ∈ L∞(�). For fixed δ > 0 (which is the time discretization parameter) we
can define the δ-approximate evolution uδ(·) : [0, +∞) → SBV (�) as the affine
interpolation of the discrete function

δN → SBV (�)

δi �→ uδ,i ,

where uδ,i is inductively defined as follows: uδ,0 = u0 and uδ,i is a solution of

min
v∈SBV (�)

∫
�

|∇v|2 dx + Hn−1(Sv) + 1

δ

∫
�

|v − uδ,i−1|2 dx .

The existence of a solution of the problem above is guaranteed by the Ambrosio
theorem (see [4]). We call minimizing movement for F0 with initial datum u0,
the set of all functions v : [0, +∞) → SBV (�) such that, for a suitable
subsequence δn ↓ 0, uδn (t) → v(t) in L2(�), for every t > 0.

Our main result is stated in the following theorem:

Theorem 4.1. Let � and � be either as in Theorem 3.3 or as in Theorem 3.7.
Suppose that u0 is a function belonging to W 2,∞(� \ �), discontinuous along �,
and such that u+

0 (x) − u−
0 (x) > S > 0 for every x ∈ � and ∂νu0 = 0 on ∂� ∪ �.
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Then there exists T > 0 such that the minimizing movement for the Mumford-Shah
functional is unique in [0, T ] and it is given by the function u(x, t) satisfying

Su(·,t) = � ∀t ∈ [0, T ],

and 
∂t u = �u in (� \ �) × [0, T ],

∂νu = 0 on ∂(� \ �) × [0, T ],

u(x, 0) = u0(x) in � \ �.

Moreover if
min

�
u+

0 − max
�

u−
0 > 0

then we have T = +∞.

Proof. For fixed δ > 0, let vδ(t) be the affine interpolation of the discrete
function

vδ : δN → H 1(� \ �)

vδ(δi) �→ vδ,i ,

where vδ,i is inductively defined as follows:

(4.1)



vδ,0 = u0,

vδ,i is the unique solution of

min
z∈H1(�\�)

∫
�\�

|∇z|2 dx + 1

δ

∫
�\�

|z − vδ,i−1|2 dx .

Claim 1. For every T > 0, we have that

vδ → v in L∞([0, T ]; L∞(� \ �)) as δ → 0,

where v is the solution of

(4.2)


∂tv = �v in (� \ �) × [0, T ],

∂νv = 0 on ∂(� \ �) × [0, T ],

v(x, 0) = u0(x) in � \ �.

We will show that the functions (vδ)δ>0 are equibounded in C0,1([0, T ]; L∞(�\
�)): since it is well known that, for every T > 0, vδ → v in L∞([0, T ]; L2(�\
�)) as δ → 0 (see for example [3]), the a priori estimate in the C0,1-norm (via
Ascoli-Arzelà Theorem) will give the thesis of Claim 1. First of all we will
show that

(4.3) ‖�vi,δ‖∞ ≤ ‖�u0‖∞ ∀δ > 0, ∀i ∈ N.
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We first prove it for vδ,1: if ε ≥ ‖�u0‖∞/β, then v1 := u0 +ε and v2 := u0 −ε

satisfy:{
�v1 ≤ β(v1 − u0) in � \ �

∂νv1 = 0 on ∂(� \ �),

{
�v2 ≥ β(v2 − u0) in � \ �

∂νv2 = 0 on ∂(� \ �),

that is v1 and v2 are a supersolution and a subsolution respectively of the
problem solved by v1,δ . This implies that

‖v1,δ − u0‖∞ ≤ ‖�u0‖∞
β

which is equivalent to
‖�v1,δ‖∞ ≤ ‖�u0‖∞.

By the same argument we can prove that

‖�vi,δ‖∞ ≤ ‖�vi−1,δ‖∞ ∀i ≥ 2

and so (4.3) follows by induction on i .
By a standard truncation argument, one can prove also that

(4.4) ‖vδ,i‖∞ ≤ ‖u0‖∞ ∀δ > 0, ∀i ∈ N.

Then for s, t > 0, using Claim 1, we can estimate

‖vδ(t)−vδ(s)‖∞ ≤
∫ t

s
‖(vδ)

′(ξ)‖∞ dξ ≤
∫ t

s
sup

i
‖�vδ,i‖∞ dξ ≤ ‖�u0‖∞|t −s|;

this, together with (4.4) concludes the proof of Claim 1.
As a consequence of (4.3), by the well-known Calderon-Zygmund estimates,

we get the existence of a constant C such that

(4.5) ‖∇vi,δ‖∞ ≤ C‖�vi,δ‖∞ ≤ C‖�u0‖∞ ∀δ > 0, ∀i ∈ N.

It is well known (see, for example, [15]) that

v(t) → u0 in L∞(� \ �) as t → 0+;
therefore, by our assumption on u0, for every 0 < c < S we can find Tc > 0
such that

(4.6) inf
x∈�

|v+(x, t) − v−(x, t)| > c ∀t ∈ [0, Tc],

and therefore, by Claim 1, we can choose δ0 > 0 such that

(4.7) inf
x∈�

|v+
δ (t, x) − v−

δ (t, x)| >
c

2
∀t ∈ [0, Tc], ∀δ ≤ δ0.
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We recall now that, by Theorems 3.3 and 3.7, there exists β such that, for
every function g ∈ W 2,∞(� \ �) satisfying

(4.8) ‖∇g‖∞ ≤ C‖�u0‖∞ inf
x∈�

|g+(x) − g−(x)| >
c

2
,

where C is the constant appearing in (4.5), and for every β ≥ β, the function
uβ,g solution of (3.1), minimizes the functional Fβ,g over SBV (�).

Claim 2. For every δ ≤ δ0 ∧ (β)−1 the δ-approximate evolution uδ(t) (see
the end of Section 2 for the definition) coincides in the interval [0, Tc] with the
function vδ(t).

Clearly it is enough to show that

vδ,i = uδ,i for i = 0, . . . ,

[
Tc

δ

]
,

and this can be done by induction on i : indeed for i = 0 the identity is trivial,

and suppose it true for i − 1 (for i ≤
[

Tc
δ

]
); this means in particular (by (4.5)

and by (4.7)) that g = uδ,i−1 satisfies (4.8) and so, being 1
δ

> β, we have

uδ,i = u 1
δ
,uδ,i−1

= vδ,i .

Claim 2 is proved and the first part of the thesis is now evident. The last
assertion easily follows from the Maximum Principle.

5. – Appendix

In this Appendix we are going to prove Theorem 2.6 and Proposition 2.7.
We will use some technical results coming from sectorial operators theory and
from interpolation theory.

First let us recall what a sectorial operator is.
Let X a complex Banach space and A : D(A) → X a closed linear operator

with not necessarily dense domain; call ρ(A) the resolvent set of A and for
λ ∈ ρ(A) denote by R(λ,A) the resolvent operator (λI − A)−1 belonging to
L(X).

Definition 5.1. A is said to be sectorial (in X ) if the following two
conditions are satisfied:

i) there exist ω ∈ R and θ ∈ (π
2 , π) such that

Sθ,ω := {λ ∈ C : |arg(λ − ω)| ≤ θ} ⊂ ρ(A);
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ii) there exists a positive constant M such that, for every λ ∈ Sθ,ω, there holds

‖R(λ,A)‖L(x) ≤ M

|λ − ω| .

We recall that D(A), endowed with the norm

‖x‖D(A) = ‖x‖X + ‖Ax‖X

is a Banach space continuously embedded in X .
Let � be either Rn or Rn

+ and let A : � → Rn×n be a matrix with
coefficients belonging to W 1,∞(�) and uniformly elliptic, i.e., satisfying

A(x)ξ · ξ ≥ λ0|ξ |2 ∀x ∈ �, ∀ξ ∈ Rn,

where λ0 is a suitable positive constant; set

D(A0) :=

:=
u ∈ L∞(�) : u ∈

⋂
p≥1

W 2,p
loc (�),div(A∇u)∈ L∞(�) and A∇u · ν =0 on ∂�


D(A1) :=

{
u ∈ D(A0) : div(A∇u) ∈ W 1,∞(�)

}
,

where ν(x) denotes the outer unit normal vector at x to �, and define the
operators

(5.1)
A0 : D(A0) → L∞(�)

u �→ f div(A∇u),

and

(5.2)
A1 : D(A1) → W 1,∞(�)

u �→ f div(A∇u),

where f : � → (0, +∞) is a positive function of class W 1,∞ satisfying

f (x) ≥ λ1 > 0 ∀x ∈ �.

The following fact is proved in [15] (see Theorem 3.1.6, page 77, Theorem
3.1.7, page 78, and 3.1.26, page 103) when the coefficients of the matrix A are
of class C1, but the same proof works for Lipischitz coefficients (alternatively
one can use a standard approximation argument).
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Theorem 5.2. The operators A0 and A1 are sectorial in L∞(�) and W 1,∞(�)

respectively. In particular there exist two positive constants β0 and K , depending
on the constants λ0, λ1, on W 1,∞-norm of A and f , such that the problem

(5.3)
{

f div(A∇u) = β(u − g) in �,

A∇u · ν = 0 in ∂�,

admits a unique solution u ∈ D(A), for every β ≥ β0 and for every g ∈ L∞(�).
Moreover u satisfies

(5.4) ‖u‖∞ + β− 1
2 ‖∇u‖∞ ≤ K‖g‖∞;

if g belongs to W 1,∞(�) then the following estimate actually holds

(5.5)
‖u‖W 1,∞ + β− 1

2 ‖ f div(A∇u)‖∞ + sup
x0∈�

β
n

2p −1‖∇2u‖
L p
(

B(x0, 1√
β

)∩�

)
≤ K‖g‖W 1,∞ .

Given a sectorial operator A : D(A) → X there is a natural way to construct
a family of intermediate spaces between D(A) and X , by setting for θ ∈ (0, 1)

D(A, θ, ∞) =
{

x ∈ X : sup
t>2ω∨1

(
tθ‖AR(t,A)x‖L(X)

)
< +∞

}
,

where ω is the real number appearing in i) of Definition 5.1. Setting

(5.6) [x]D(A,θ,∞) = sup
t>2ω∨1

(
tθ‖AR(t,A)x‖L(X)

)
,

one sees that [x]D(A,θ,∞) is a seminorm and D(A, θ, ∞) endowed with the
norm

(5.7) ‖x‖D(A,θ,∞) = ‖x‖X + [x]D(A,θ,∞)

is a Banach space. Moreover, for 0 ≤ θ1 < θ2 ≤ 1,

Y ⊆ D(A, θ2, ∞) ⊂ D(A, θ1, ∞) ⊆ X,

with continuous embeddings. An important fact is stated in the following propo-
sition

Proposition 5.3 (see Proposition 2.2.7, page 50 of [15]).

Aθ : D(A, θ + 1, ∞) := {x ∈ D(A) : Ax ∈ D(A, θ, ∞)} → D(A, θ, ∞)

x �→ Ax,

is sectorial in D(A, θ, ∞); moreover

(5.8) ‖R(λ,Aθ )‖L(D(A,θ,∞)) ≤ ‖R(λ,A)‖L(X).

Next theorem gives a useful characterization of the intermediate spaces
D(A, θ, ∞) in the case of elliptic operators.
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Theorem 5.4 (see Theorem 3.1.30, page 108 of [15]). LetA0 be the operator
defined in (5.1). Then for every θ ∈ (0, 1

2 ),

D(A0, θ, ∞) = C0,2θ (�),

with equivalence of the respective norms. In particular there exists two constants
C1 and C2 depending only on the W 1,∞-norm of A and f and on the constants λ0
and λ1, such that

(5.9) C1‖g‖D(A0,θ,∞) ≤ ‖g‖C0,2θ (�) ≤ C2‖g‖D(A0,θ,∞).

Lemma 5.5. Let � be either Rn or Rn
+ and A0 be the operator defined in (5.1).

Then for every γ ∈ (0, 1
2 ) there exist two positive constants K0 and β0, depending

only on the constants of ellipticity λ0, λ1, on γ , and on the W 1,∞-norm of the matrix
A and of the function f , such that for every β ≥ β0 and for every g ∈ C0,1−γ (�)

the solution u of (5.3) satisfies

(5.10) β
1
2 −γ ‖u − g‖C0,γ (�) ≤ K0‖g‖C0,1−γ (�).

Proof. Recall that u − g = A0 R(β,A0)g: in order to obtain the thesis we

have to estimate the quantity β
1
2 −γ ‖A0 R(β,A0)g‖C0,γ (�). By Theorems 5.2

and 5.4, by (5.6) and (5.7), there exist C0 > 0, C1 > 0, and β0 > 0, depending
only on λ0, λ1, on γ , and on the W 1,∞-norm of A and f , such that

(5.11)

‖A0 R(β,A0)g‖C0,γ (�)

≤ C0‖A0 R(β,A0)g‖D(A0,
γ
2 ,∞)

= C0

(
‖A0 R(β,A0)g‖∞ + sup

t≥2β0∨1
t

γ
2 ‖A0 R(t,A0)A0 R(β,A0)g‖∞

)
,

and

(5.12) sup
2β0∨1≤t

t
1−γ

2 ‖A0 R(t,A0)g‖∞ ≤ C1‖g‖C0,1−γ (�).

We observe that (5.4) implies the existence of two positive constants β0 and
C2, depending in turn on λ0, λ1 and on the W 1,∞-norm of A and f , such that

(5.13) ‖β R(β,A0)‖L(L∞(�)) ≤ C2,

for every β ≥ β0. Using (5.13) and (5.12), we can estimate

(5.14)

sup
2β0∨1≤β≤t

β
1
2 −γ t

γ
2 ‖A0 R(t,A0)A0 R(β,A0)g‖∞

= sup
2β0∨1≤β≤t

β
1
2 −γ t

γ
2 ‖A0 R(β,A0)A0 R(t,A0)g‖∞

= sup
2β0∨1≤β≤t

(
β

t

) 1
2 −γ

t
1−γ

2 ‖(β R(β,A0) − I )A0 R(t,A0)g‖∞

≤ (C2 + 1) sup
2β0∨1≤t

t
1−γ

2 ‖A0 R(t,A0)g‖∞

≤ (C2 + 1)C1‖g‖C0,1−γ ,
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and analogously

(5.15) sup
2β0∨1≤t≤β

β
1
2 −γ t

γ
2 ‖A0 R(t,A0)A0 R(β,A0)g‖∞ ≤ (C2 + 1)C1‖g‖C0,1−γ .

Combining (5.14), (5.15), (5.11), and using again (5.12), we finally obtain

sup
β≥2β0∨1

β
1
2 −γ ‖A0 R(β,A0)g‖C0,γ (�)

≤ C0

(
sup

β≥2β0∨1
β

1
2 −γ ‖A0 R(β,A0)g‖∞

+ sup
β,t≥2β0∨1

β
1
2 −γ t

γ
2 ‖A0 R(t,A0)A0 R(β,A0)g‖∞

)
≤ C0(C1 + C2 + 1)‖g‖C0,1−γ .

Proof of Theorem 2.6. We will prove in details only ii). Fix p ∈ ∂�′.
By Proposition 2.1 there exist two positive constants η and M1, the former
depending only on R while the latter also on �α(∂�) , such that the cylinder
Cη := {x ∈ Rn−1 : |x | < η}×]−R, R[ (expressed with respect to a coordinate
system belonging to S p

�′), intersected with�′ is the subgraph of a function f
belonging to C2,α(S) (S := Cη ∩ {xn = 0}) and satisfying

(5.16) ‖ f ‖C2,α ≤ M1.

Let θ ∈ C2,α
0 (Cη), 0 ≤ θ ≤ 1 and θ ≡ 1 in 2−1Cη, such that

(5.17) ∂νθ = 0 on ∂�′ ∩ Cη and ‖θ‖C2,α ≤ M2,

where M2 depends only on R.
Set v = θu and note that v solves{

�v = β(v − h) in �′ ∩ Cη,

∂νv = 0 on ∂(�′ ∩ Cη),

where h := θg + β−1(�θu + 2∇u∇θ); finally, denoting by ψ the map

Cη → ψ(Cη)

(x1, . . . , xn−1, xn) �→ (x1, . . . , xn−1, xn − f (x1, . . . , xn−1)),

and setting ṽ := v ◦ ψ−1 and h̃ := h ◦ ψ−1, one sees that (recall that ṽ and h̃
have compact support in ψ(Cη)){ f̃ div( Ã∇ṽ) = β(ṽ − h̃) in Rn

+,

Ã∇ṽ · ν = 0 on ∂(Rn
+),
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where Ã and f̃ are W 1,∞-extensions to Rn
+ of the matrix-valued function A :=[

Dψ(Dψ)∗
|detψ |

]
◦ψ−1 and of the function f := |detψ | ◦ψ−1 respectively , satisfying

‖ Ã‖W 1,∞(Rn+) = ‖A‖W 1,∞(ψ(Cη)), ‖ f̃ ‖W 1,∞(Rn+) = ‖ f ‖W 1,∞(ψ(Cη))

and

Ã(x)ξ · ξ ≥ 1

2
|ξ |2 ∀x ∈ Rn

+, ∀ξ ∈ Rn, f̃ (x) ≥ 1

2
∀x ∈ Rn

+

(since A(0) = I and f (0) = 1, by (5.16), we can choose η depending only on
R such that the property above holds true in ψ(Cη)).

The solution ṽ can be suitably decomposed as ṽ = ṽ1 + ṽ2 + ṽ3 in the
following way: set h1 = θg, h2 = β−1∇u∇θ , h3 := β−1�θu, and h̃i = hi ◦ψ−1

(i = 1, 2, 3) and choose ṽi as the solution of{ div( Ã∇ṽi ) = β(ṽi − h̃i ) in Rn
+,

Ã∇ṽi · ν = 0 on ∂(Rn
+),

for i = 1, 2, 3.
Applying Lemma 5.5 we have, for i = 1, 2, 3,

(5.18) β
1
2 −γ ‖ṽi − h̃i‖C0,γ ≤ K0‖g‖C0,1−γ ,

where K0 is a constant depending only on γ and on the norm of Ã, therefore
(by definition of A and by (5.16)) only on γ and R.

Estimate for ṽ1. From (5.18), (5.16), (5.17) and the definition of h̃1 we deduce

β
1
2 −γ ‖ṽ1 − h̃1‖C0,γ ≤ K0 K1(‖g‖C0,1−γ + β−1‖u‖C0,1−γ ),

where K1 depends only on R, and therefore, since by (5.8) and (5.9), we have

‖u‖C0,1−γ ≤ K2‖g‖C0,1−γ ,

we obtain
β

1
2 −γ ‖ṽ1 − h̃1‖C0,γ ≤ K0 K1 K2‖g‖C0,1−γ ,

where K2 depends only on R. Combining the above inequality with the well
known Schauder estimate, we finally obtain

(5.19)

‖∇2ṽ1‖∞ ≤ K3‖ f̃ div( Ã∇ṽ1)‖C0,γ

= K3β
1
2 +γ β

1
2 −γ ‖ṽ1 − h̃1‖C0,γ

≤ K3 K0 K1 K2β
1
2 +γ ‖g‖C0,1−γ ,
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where K3 depends only on C1,γ -norm of A and f and therefore only on R
and �.

Estimate for ṽ2. Arguing exactly as in the previous point, we obtain

(5.20) β
1
2 −γ ‖ṽ2 − h̃2‖C0,γ ≤ K0 K1β

−1‖∇u‖C0,1−γ .

By the Sobolev Embedding Theorem and by estimate (2.6) (with p = n
γ

) we

have, for β ≥ β0 and for every x ∈ � \ �′,

(5.21)

[∇u]
C0,1−γ

(
(�\�′)∩B

(
x,β

− 1
2

)) ≤ Q0‖∇2u‖
L

n
γ (�\�′∩B(x,β

− 1
2 ))

≤ Q0 Q1β
1− γ

2 ‖g‖W 1,∞,

and

(5.22) ‖∇u‖∞ ≤ Q1‖g‖W 1,∞,

where Q0 is the constant of Sobolev Embedding and depends only on γ while

Q1 depends only on R. If |x − y| ≥ β− 1
2 , then, by (5.22), we infer

(5.23)
|∇u(x) − ∇u(y)|

|x − y|1−γ
≤ β

1−γ
2 2‖∇u‖∞ ≤ 2Q1β

1−γ
2 ‖g‖W 1,∞ .

Combining (5.21), (5.22), and (5.23), we get

‖∇u‖C0,1−γ ≤ Q1(Q0 + 1)β1− γ
2 ‖g‖W 1,∞,

and substitution in (5.20), together with Schauder Estimate, yields

(5.24)
‖∇2ṽ2‖∞ ≤ K3‖ f̃ div( Ã∇ṽ2)‖C0,γ = K3β

1
2 +γ β

1
2 −γ ‖ṽ2 − h̃2‖C0,γ

≤ K3 K0 K1 Q1(Q0 + 1)β
1+γ

2 ‖g‖W 1,∞ .

Estimate for ṽ3. First we note that, by (5.8) and (5.9),

‖ṽ3‖C0,γ ≤ K4‖h̃3‖C0,γ ,

with K4 depending only on R; so we can estimate

‖ṽ3 − h̃3‖C0,γ ≤ ‖ṽ3‖C0,γ + ‖h̃3‖C0,γ

≤ (K4 + 1)‖h̃3‖C0,γ ≤ β−1(K4 + 1)M‖u‖C0,γ

≤ β−1(K4 + 1)K4 M‖g‖W 1,∞ .
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By Schauder Estimate we finally obtain,

(5.25) ‖∇2ṽ3‖∞ ≤ K3(K4 + 1)K4‖g‖W 1,∞ .

By (5.16) and again (2.6) we have

‖∇2u‖L∞(2−1Cη) ≤ C
(
‖∇2ṽ‖L∞(Rn+) + ‖ṽ‖W 1,∞(Rn+)

)
≤ CC ′

(
‖∇2ṽ1‖L∞(Rn+)+‖∇2ṽ2‖L∞(Rn+)+‖∇2ṽ3‖L∞(Rn+)+‖g‖W 1,∞(Rn+)

)
,

where C and C ′ depend only on R. Using (5.19) (5.24), and (5.25), we finally
deduce for β ≥ β0 ∨ 1

‖∇2u‖L∞(2−1Cη) ≤ CC ′C ′′
(
β

1
2 +γ ‖g‖W 1,∞(Rn+) + ‖g‖W 1,∞(Rn+)

)
≤ 2CC ′C ′′β

1
2 +γ ‖g‖W 1,∞(Rn+),

where C ′′ depends only on γ , R, and �. Repeating all the above argument for
every p ∈ ∂�′ we get ii).

The proof of statement i) can be done in a similar way: by localizing,
straightening the boundary, and using Theorem 5.2.

In the following � ⊂ R2 will denote a curvilinear polygon such that ∂�

is given by the union of a finite number of simple connected curves τ1, . . . , τk

of class C3 (up to their endpoints) meeting at corners with different angles
αj ∈ (0, π) ( j = 1, . . . , k). Finally we will denote by S the set of the vertices,
i.e. the set of the singular points of ∂�.

Proposition 5.6. Let � be as above. Then there exists β0 > 0 and K > 0 such
that for every β > β0 and for every g ∈ L∞(�), the solution u of

(5.26)
{

�u = β(u − g) in �

∂νu = 0 on ∂�,

satisfies

(5.27) ‖u‖∞ + β− 1
2 ‖∇u‖∞ ≤ K‖g‖∞.

Proof. The estimate is proved in [13] for the corresponding Dirichlet prob-
lem in a polygon, but one easily sees that the same proof actually works also
in our case: indeed the change of boundary conditions does not affect the
argument, and the main tool, which is a Calderon-Zygmund type inequality,
proved in [14], is actually available also for curvilinear polygon, as shown, for
example, in [20].

The following proposition is proved in [20].
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proposition 5.7. Let � be as above. Then there exists K > 0 such that for
every β > 0 and for every g ∈ W 1,∞(�), the function u solution of (5.26), satisfies

(5.28) β
1
2 ‖u − g‖∞ ≤ K‖∇g‖∞.

Proposition 5.8. Let � be as above. Then there exists a positive constant K
such that for every β ≥ 1 and for every g ∈ W 1,∞(�), the solution u of (5.26)

satisfies

(5.29) ‖∇u‖∞ ≤ K‖g‖W 1,∞β
1
4 .

Proof. Fix β ≥ 1; by Proposition 5.6 there exists λ0 > 0 independent of
β such that, setting gλ = �u−λu

λ
, for λ ≥ λ0 we have

(5.30)
‖∇u‖∞ ≤ K

√
λ‖gλ‖∞ ≤ K

√
λ

(‖�u‖∞
λ

+ ‖u‖∞
)

= K
(‖�u‖∞√

λ
+

√
λ‖u‖∞

)
.

Now set λmin := ‖�u‖∞
‖u‖∞ and suppose that ‖�u‖∞ ≥ λ0‖g‖∞. It follows that

λmin ≥ λ0 (recall that ‖u‖∞ ≤ ‖g‖∞): therefore, taking λ = λmin in (5.30), we
obtain

‖∇u‖∞ ≤ 2K‖�u‖
1
2∞‖u‖

1
2∞

and therefore, by Proposition 5.7,

‖∇u‖∞ ≤ 2K‖g‖
1
2∞
(

K ′β
1
2 ‖∇g‖∞

) 1
2 ≤ K ′′‖g‖W 1,∞β

1
4 ,

where K ′′ is independent of β.
If ‖�u‖∞ < λ0‖g‖∞, then we simply use the Calderon-Zygmund type

estimate proved in [20] (it is crucial here the hypothesis that all the angles are
less than π ) to get the existence of a constant C > 0, depending only on �,
such that

‖u‖W 2,p ≤ C‖g‖∞ ≤ C‖g‖∞β
1
4 .

We conclude by applying the Sobolev Embedding Theorem.

Proof of Proposition 2.7. The estimate can be performed by a localization
procedure as for Theorem 2.6 and in fact we have only to look at what happens
in a neighbourhood of x1 and x2. We will look only at x1 considered as a
point of ∂�1, the other cases being analogous.

First of all, as in [20], we can find a neighbourhood U = B(x1, r) ∩ �1
of x1, for a suitable r ≤ δ, and a diffeomorphism which transforms U into a
right angle, more precisely we can construct a one-to-one map � = (�1, �2) :
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U ∩ �1 → �(U ∩ �1) of class C1,1 such that ∇�(x1) = I and �(U ) = {w =
(w1, w2) ∈ R2 : w1 > 0, w2 > 0} ∩ V , where V is a neighbourhood of the
origin; we can endow � with the further property that if v is a function defined
in U with normal derivative vanishing on ∂� ∩ U , then v ◦ �−1 has normal
derivative vanishing on �(∂�∩U ) and vice-versa. It follows, in particular, that
�2(x) has the following properties:

• �2(x) = 0 for every x ∈ � ∩ U ;
• ∂ν�2 = 0 on ∂� ∩ U .

It is easy to see that we can choose a positive convex function f such that

f (0) = 0, f ′(0) = 0, and �( f ◦ �2) ≥ 0 on U ′ := B(x1, r ′) ∩ �1,

with r ′ ≤ r , if needed. Thus we see that f ◦ �2 is a subsolution of
�u = 0 in U ′

u = 0 on � ∩ U ′

∂νu = 0 on ∂� ∩ U ′

u = f ◦ �2 on ∂U ′ \ (∂� ∪ �)

and therefore f ◦ �2 ≤ u in U ′. By Theorem 5.1.3.1 of [14] (actually it is
stated only for polygons, but it can be extended to curvilinear polygons, by
the continuity method used, for example, in [20]) and the Sobolev Embedding
Theorem, u is in C2(U ′′), where U ′′ = B(x1, r ′′) ∩ �, with r ′′ < r ′. Therefore,
since ∇( f ◦ �2)(x1) �= 0, and so ∇u(x1) �= 0, we can say that the map
� := (v, u), where v is the harmonic anticonjugate of u, is conformal in a
neighbourhood U ′′′ := B(x1, r ′′′) ∩ �1, with r ′′′ ≤ r ′′, it belongs to C2(U ′′′)
and �(U ′′′) = {w = (w1, w2) ∈ R2 : w1 > 0, w2 > 0} ∩ V , where V is a
neighbourhood of the origin. Now take a cut-off function θ of class C3 such
that θ ≡ 1 on B(x1, r ′′′/2) ∩ �1, θ(x) = 0 for |x | ≥ (2/3)r ′′′, and ∂νθ = 0 on
∂� ∪ � ∩ U ′′′; note that v1 := (θu1) ◦ �−1 solves{

A(w)�v1 = β(v1 − h) in �(U ′′′)
∂νv1 = 0 on {w1 = 0} ∪ {w2 = 0} ∩ �(U ′′′),

where h := [θg + β−1(�θu + 2∇u∇θ)] ◦ �−1 and A := |∇u|2 ◦ �−1.
Moreover we have that ∂ν A = 0 on {w1 = 0} ∩�(U ′′′), indeed, in view of

the conformality of �, this is equivalent to say that ∂ν |∇u|2 = 0 on ∂� ∩ U ′′′,
which is true by the following computation

∂ν |∇u|2 = ∂ν(∂τ u)2 = 2∂τ u∂2
ντ u = 0,

where we used the fact that u ∈ C2(U ′′′) and ∂νu ≡ 0 on ∂� ∩ U ′′′. As a
consequence, the function

Ã :=
{

A(w1, w2) if w1 > 0 and (w1, w2) ∈ �(U ′′′)
A(−w1, w2) if w1 < 0 and (−w1, w2) ∈ �(U ′′′)
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turns out to be of class C1 up to the boundary; in particular it can be extended
to a function, still denoted by Ã, belonging to C1(R2+) ∩ W 1,∞(R2

+). Now it
is easy to check that, denoting by ṽ1 and h̃ the extensions by reflection of v1
and h respectively,{

Ã(w)�ṽ1 = β(ṽ1 − h̃) in R2
+

∂νṽ1 = 0 on {w2 = 0};
at this point we are in a position to apply the regularity theorems stated at the
beginning of the Appendix, obtaining the desired estimate for ṽ1. To complete
the proof we can now proceed exactly as we did for Theorem 2.6.
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