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Z-graded Lie Superalgebras
of Infinite Depth and Finite Growth
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Abstract. In 1998 Victor Kac classified infinite-dimensional Z-graded Lie su-
peralgebras of finite depth. We construct new examples of infinite-dimensional
Lie superalgebras with a Z-gradation of infinite depth and finite growth and clas-
sify Z-graded Lie superalgebras of infinite depth and finite growth under suitable
hypotheses.
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Introduction

Simple finite-dimensional Lie superalgebras were classified by V. G. Kac
in [K2]. In the same paper Kac classified the finite-dimensional, Z-graded Lie
superalgebras under the hypotheses of irreducibility and transitivity.

The classification of infinite-dimensional, Z-graded Lie superalgebras of
finite depth is also due to V. G. Kac [K3] and is deeply related to the classifi-
cation of linearly compact Lie superalgebras. We recall that finite depth implies
finite growth.

This naturally leads to investigate infinite-dimensional, Z-graded Lie super-
algebras of infinite depth and finite growth. The hypothesis of finite growth
is central to the problem; indeed, it is well known that it is not possible to
classify Z-graded Lie algebras (and thus Lie superalgebras) of any growth (see
[K1], [M]). The only known examples of infinite-dimensional, Z-graded Lie
superalgebras of finite growth and infinite depth are given by contragredient Lie
superalgebras which were classified by V. G. Kac in [K2] in the case of finite
dimension and by J.W. van de Leur in the general case [vdL]. Contragredient
Lie superalgebras, as well as Kac-Moody Lie algebras, have a Z-gradation of
infinite depth and growth equal to 1, due to their periodic structure.

We construct three new examples of infinite-dimensional Lie superalgebras
with a consistent Z-gradation of infinite depth and finite growth, and we realize
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them as covering superalgebras of finite-dimensional Lie superalgebras. It turns
out that if G is an irreducible, simple Lie superalgebra generated by its local
part, with a consistent Z-gradation, and if we assume that G0 is simple and
that G1 is an irreducible G0-module which is not contragredient to G−1, then G
is isomorphic to one of these three algebras (Theorem 3.1) and its growth is
therefore equal to 1.

So far, any known example of a Z-graded Lie superalgebra of infinite depth
and finite growth is, up to isomorphism, either a contragredient Lie superalgebra
or the covering superalgebra of a finite-dimensional Lie superalgebra. Since the
aim of this paper is analyzing Z-graded Lie superalgebras of infinite depth, we
shall not describe the cases of finite depth which can be found in [K2], [K3].

Let G be a Z-graded Lie superalgebra. Suppose that G0 is a simple Lie
algebra and that G−1 and G1 are irreducible G0-modules and are not contragre-
dient. Let F� be a highest weight vector of G−1 of weight � and let EM be
a lowest weight vector of G1 of weight M . Since G−1 and G1 are not contra-
gredient, the sum � + M is a root of G0, and, without loss of generality, we
may assume that it is a negative root, i.e. � + M = −α for some positive root
α. The paper is based on the analysis of the relations between the G0-modules
G−1 and G1. It is organized in three sections: Section 1 contains some basic
definitions and fundamental results in the general theory of Lie superalgebras.
In Section 2 the main hypotheses on the Lie superalgebra G are introduced.
Section 2.1 is devoted to the case (�, α) = 0. Since � is a dominant weight,
in this section the rank of G0 is assumed to be greater than 1. The hypothesis
(�, α) = 0 always holds for Z-graded Lie superalgebras of finite depth (see
[K2], Lemma 4.1.4 and [K3], Lemma 5.3) but if the Lie superalgebra G has
infinite depth weaker restrictions on the weight � are obtained (compare, for
example, Lemma 4.1.3 in [K2] with Lemma 1.14 in this paper).

In Section 2.2 we examine the case (�, α) �= 0. In the finite-depth case
this hypothesis may not occur (cf. [K3], Lemma 5.3). It turns out that, under
this hypothesis, G0 has necessarily rank one (cf. Theorem 2.17) namely it is
isomorphic to sl(2). Besides, a strong restriction on the possible values of
(�, α) is obtained (cf. Corollary 2.12) so that G−1 is necessarily isomorphic
either to the adjoint module of sl(2) or to the irreducible sl(2)-module of
dimension 2.

Finally, Section 3 is devoted to the construction of the examples and to
the classification theorem.

Throughout the paper the base field is assumed to be algebraically closed
and of characteristic zero.

Acknowledgements. I would like to express my gratitude to Professor
Victor Kac for introducing me to the subject and for dedicating me so much
of his time.
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1. – Basic definitions and main results

1.1. – Lie superalgebras

Definition 1.1. A superalgebra is a Z2-graded algebra A = A0̄ ⊕ A1̄; A0̄ is
called the even part of A and A1̄ is called the odd part of A.

Definition 1.2. A Lie superalgebra is a superalgebra G = G0̄ ⊕ G1̄ whose
product [·, ·] satisfies the following axioms:

(i) [a, b] = −(−1)deg(a) deg(b)[b, a];
(ii) [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]].

Definition 1.3. A Z-grading of a Lie superalgebra G is a decomposition of G
into a direct sum of finite-dimensional Z2-graded subspaces G = ⊕i∈ZGi for which
[Gi ,Gj ] ⊂ Gi+ j . A Z-grading is said to be consistent if G0̄ = ⊕G2i and G1̄ = ⊕G2i+1.

Remark 1.4. By definition, if G is a Z-graded Lie superalgebra, then G0
is a subalgebra of G and [G0,Gi ] ⊂ Gi ; therefore the restriction of the adjoint
representation to G0 induces linear representations of it on the subspaces Gi .

Definition 1.5. A Z-graded Lie superalgebra G is called irreducible if G−1 is
an irreducible G0-module.

Definition 1.6. A Z-graded Lie superalgebra G = ⊕i∈ZGi is called transitive
if for a ∈ Gi , i ≥ 0, [a,G−1] = 0 implies a = 0, and bitransitive if, in addition, for
a ∈ Gi , i ≤ 0, [a,G1] = 0 implies a = 0.

Let Ĝ be a Z2-graded space, decomposed into the direct sum of Z2-graded
subspaces, Ĝ = G−1 ⊕ G0 ⊕ G1. Suppose that whenever |i + j | ≤ 1 a bilinear
operation is defined: Gi × Gj → Gi+ j , (x, y) �→ [x, y], satisfying the axiom of
anticommutativity and the Jacobi identity for Lie superalgebras, provided that
all the commutators in this identity are defined. Then Ĝ is called a local Lie
superalgebra.

If G = ⊕i∈ZGi is a Z-graded Lie superalgebra then G−1 ⊕G0 ⊕G1 is a local
Lie superalgebra which is called the local part of G. The following proposition
holds:

Proposition 1.7 [K2]. Two bitransitive Z-graded Lie superalgebras are iso-
morphic if and only if their local parts are isomorphic.

Definition 1.8. A Lie superalgebra is called simple if it contains no nontrivial
ideals.

Proposition 1.9 [K2]. If in a simple Z-graded Lie superalgebra G = ⊕i∈ZGi

the subspace G−1 ⊕ G0 ⊕ G1 generates G then G is bitransitive.
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1.2. – On the growth of G

Definition 1.10. Let G = ⊕i∈ZGi be a Z-graded Lie superalgebra. The limit

r(G) = lim
n→∞ ln

(
n∑

i=−n

dimGi

)/
ln(n)

is called the growth of G. If r(G) is finite then we say that G has finite growth.

Let us fix some notation. Given a semisimple Lie algebra L , by V (ω) we
shall denote its finite-dimensional highest weight module of highest weight ω.
ωi will be the fundamental weights. It is well known that if λ is a weight
of a finite-dimensional representation of L and β is a root of L , then the set
of weights of the form λ + sβ forms a continuous string: λ − pβ, λ − (p −
1)β, . . . , λ − β, λ, λ + β, . . . , λ + qβ, where p and q are nonnegative integers
and p − q = 2(λ, β)/(β, β). Let us put 2(λ, β)/(β, β) = λ(hβ). The numbers
λ(hαi ), for a fixed basis of simple roots αi , are called the numerical marks of
the weight λ.

For any positive root β of L we shall denote by eβ a root vector of L
corresponding to β.

Lemma 1.11 [K1]. Let L be a Lie algebra containing elements H �= 0, Ei , Fi ,
i = 1, 2, connected by the equations

[Ei , Fj ] = δi j H ,

[H, E1] = aE1 , [H, E2] = bE2 ,

[H, F1] = −aF1 , [H, F2] = −bF2,

where a �= −b, b �= −2a, and a �= −2b, then the growth of L is infinite.

Lemma 1.12 [K1]. Let L = ⊕Li be a graded Lie algebra, where L0 is
semisimple. Assume that there exist weight vectors xλ and xµ corresponding to the
weights λ and µ of the adjoint representation of L0 on L, and a root vector eγ ,
corresponding to the root γ of L0, which satisfy the following relations:

[xµ, xλ] = eγ ,

[xλ, e−γ ] = 0 = [xµ, eγ ],

λ(hγ ) �= −1, (λ, γ ) �= 0.

Then the growth of L is infinite.

Lemma 1.13. Let G be a consistent, Z-graded Lie superalgebra and suppose
that G0 is a semisimple Lie algebra. Let Ei , Fi (i = 1, 2) be odd elements and H a
non zero element in G0̄ such that:

(1) [Ei , Fj ] = δi j H, [H, Ei ] = ai Ei , [H, Fi ] = −ai Fi ,

where a1 �= −a2, a1 �= −2a2 and a2 �= −2a1. Then the growth of G is infinite.
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Proof. Suppose first that a1 �=0 �=a2. Then the elements Ẽ1 =a1
−1/2[E1,E1],

Ẽ2 = a2
−1/2[E2, E2], F̃1 = a1

−1/2[F1, F1] , F̃2 = a2
−1/2[F2, F2], K = −4H

satisfy the hypotheses of Lemma 1.11 in the Lie algebra G0̄. Thus, the growth
of G0̄ is infinite and we get the thesis.

If, let us say, a1 �= 0, a2 = 0 then the elements E ′
1 = [E1, E1], E ′

2 =
[E1, E2], F ′

1 = −(4a1)
−1[F1, F1], F ′

2 = a−1
1 [F1, F2], H satisfy the hypotheses

of Lemma 1.11 in G0̄, thus we conclude.

Lemma 1.14. Let G = ⊕ Gi be a Z-graded, consistent Lie superalgebra and
suppose that G0 is a semisimple Lie algebra. Assume that there exist odd elements
xλ and xµ that are weight vectors of the adjoint representation of G0 on G of weight
λ and µ respectively, and a root vector e−δ of G0, connected by the relations:{

[xλ, xµ] = e−δ

[xλ, eδ] = [xµ, e−δ] = 0

with 2(λ, δ) �= (δ, δ), (λ, δ) �= 0 and (λ, δ) �= (δ, δ). Then the growth of G is
infinite.

Proof. We choose a root vector eδ in G0 such that [eδ, e−δ] = hδ and
consider the following elements:

E1 = [eδ, xµ]

E2 = [[[xµ, eδ], eδ], eδ]

F1 = xλ

F2 = −1/6λ(hδ)
−1(λ(hδ) − 1)−1[[xλ, e−δ], e−δ]

H = hδ.

By a direct computation it is easy to check that Ei , Fi , H satisfy the
hypotheses of Lemma 1.13 with a1 = (µ+δ)(hδ) = −λ(hδ), a2 = (µ+3δ)(hδ) =
−λ(hδ) + 4. By Lemma 1.13 the growth of G is therefore infinite.

We can reformulate Lemma 1.14 as follows:

Corollary 1.15. Suppose that G is a Lie superalgebra of finite growth. Let xλ,
xµ, e−δ be as in Lemma 1.14. Then one of the following holds:

(i) (λ, δ) = 0,

(ii) (λ, δ) = (δ, δ),

(iii) (λ, δ) = 1/2(δ, δ).

Theorem 1.16 [K1]. Let L = ⊕Li be a Z-graded Lie algebra with the following
properties:

a) the Lie algebra L0 has no center;
b) the representations φ−1 and φ1 of L0 on L−1 and L1 are irreducible;
c) [L−1, L1] �= 0;
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d) � + M = −α where � is the highest weight of φ−1, M is the lowest weight of
φ1 and α is a positive root of L0;

e) the representations φ−1 and φ1 are faithful;
f) the growth of L is finite.

Then L0 is isomorphic to one of the Lie algebras An or Cn, φ−1 is the corresponding
standard representation and α is the highest root of L0.

In the following sln , spn and son will denote the standard representations
of the corresponding Lie algebras.

Corollary 1.17. Let G = ⊕Gi be a Lie superalgebra with a consistent Z-
gradation. Suppose that G0 is simple. Suppose that there exist a highest weight
vector x in G−2 of weight λ �= 0 and a lowest weight vector y in G2 of weight µ such
that [x, y] �= 0 and λ+µ = −ρ for a positive root ρ of G0. Then, if the growth of G
is finite, G0 is isomorphic to one of the Lie algebras An or Cn, ρ is the highest root
of G0 and G−2 is the standard G0-module.

Proof. It follows from Theorem 1.16.

2. – Main results

In this section we will consider an irreducible, consistent, simple Z-graded
Lie superalgebra G generated by its local part, and we will always suppose that
G has finite growth. Besides, we will assume that G0 is a simple Lie algebra
and that G1 is an irreducible G0-module which is not contragredient to G−1. Let
us fix a Cartan subalgebra H of G0 and the following notation: let F� be a
highest weight vector of G−1 of weight � (dominant weight) and let EM be a
lowest weight vector of G1 of weight M . As shown in [K2], Proposition 1.2.10,
it turns out that [F�, EM ] = e−α , where α = −(� + M) is a root of G0 and
e−α is a root vector in G0 corresponding to −α. Interchanging, if necessary,
Gk with G−k we can assume that α is a positive root. Indeed, by transitivity,
[F�, EM ] �= 0 and for any t ∈ H we have:

[t, [F�, EM ]] = (� + M)(t)[F�, EM ].

Notice that � + M �= 0 since the representations of G0 on G−1 and G1 are not
contragredient.

Remark 2.1. Under the above assumptions, −M = � + α is a dominant
weight. Therefore (� + α, β) ≥ 0 for every positive root β of G0.

Lemma 2.2. Under the above hypotheses, [EM ,EM ]=0 and [EM ,[eρ,EM ]]=0
for every positive root ρ.
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Proof. We have [F�, [EM , EM ]] = 2[e−α, EM ] = 0 since EM is a lowest
weight vector. Transitivity and irreducibility imply [EM , EM ] = 0. Now, since
EM is odd, for every positive root ρ we have:

[EM , [eρ, EM ]] = [[EM , eρ], EM ] = −[EM , [eρ, EM ]]

therefore [EM , [eρ, EM ]] = 0.

2.1. – Case (�, α) = 0

In this paragraph we suppose (�, α) = 0. If � is zero then the depth of G
is finite. Therefore we suppose that � is not zero. This implies that the rank
of G0 is greater than one.

Remark 2.3. Let G be a bitransitive, irreducible Z-graded Lie superalgebra.
If (�, α) = 0 then the vectors [F�, F�] and [[F�, e−ρ], F�] are zero for every
positive root ρ.

Proof. Once we have shown that [F�, F�] = 0, we proceed as in Lemma
2.2 and conclude that [[F�, e−ρ], F�] = 0 for every positive root ρ. Since
[[F�, F�], EM ] = 2[F�, e−α] = 0, we conclude by bitransitivity.

Lemma 2.4. α is the highest root of one of the parts of the Dynkin diagram of
G0 into which it is divided by the numerical marks of �.

Proof. Suppose by contradiction that α is not the highest root of one of
the parts of the Dynkin diagram of G0 into which it is divided by the numerical
marks of �. Then there exists a simple root β such that (�, β) = 0 and
α + β is a root. This gives a contradiction because: 0 = [[e−β, F�], EM ] =
[e−β, [F�, EM ]] = e−β−α �= 0.

Lemma 2.5. If � has at least two numerical marks then, for every numerical
mark γ , we have:

(� + α, γ ) = 0.

Proof. From Lemma 2.4 we know that α is the highest root of one of the
parts of the Dynkin diagram of G0 into which it is divided by the numerical
marks of �. Therefore we can choose a numerical mark β such that α +β is a
root. Now suppose that γ is a numerical mark, γ �= β, such that (�+α, γ ) �= 0.

Notice that γ and β are not subroots of α, since (�, γ ) �= 0 and (�, β) �= 0,
therefore γ (hα) ≤ 0, β(hα) < 0.

Consider the following vectors:

x := [[[F�, e−β], e−γ ], F�]

y := [[[EM , eα], eγ ], EM ].

First of all we want to show that x is a highest weight vector in G−2. By
Remark 2.3, since β and γ are simple roots, it is sufficient to show that x �= 0.
In fact, [eγ , [x, EM ]] = (� + α)(hγ )[F�, [e−α, e−β]] �= 0.
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Now let us prove that y is a lowest weight vector in G2. First y �= 0,
indeed:

[y, F�] = (2 − γ (hα))[EM , eγ ]

which is different from 0 since γ (hα) ≤ 0 and by the assumption (�+α, γ ) �= 0.
We now compute the commutators [y, e−αk ] for any simple root αk . If

αk = γ then, by Lemma 2.2, [y, e−αk ] = 0, since α − γ is not a root. If
αk �= γ , [y, e−αk ] = [[[EM , eα−αk ], eγ ], EM ], and this can be shown to be zero
using the transitivity of G.

Notice that [x, y] = (2−γ (hα))(�+α)(hγ )e−α−β . By Theorem 1.16 we get
a contradiction since α+β cannot be the highest root of G0. As a consequence,
(� + α, γ ) = 0. In particular, α + γ is a root and we can repeat the same
argument interchanging β and γ in order to get (� + α, β) = 0.

Corollary 2.6. If G0 is of type An, Bn, Cn, F4, G2 then � has at most two
numerical marks; if G0 is of type Dn, E6, E7, E8 then � has at most three numerical
marks.

Proof. Immediate from Lemma 2.5.

Lemma 2.7. If � has only one numerical mark β then either (� + α, β) = 0
or �(hβ) = 1.

Proof. Suppose both (� + α, β) �= 0 and �(hβ) > 1, and define

x := [[[F�, e−β], e−β], F�]

y := [[[EM , eα], eβ], EM ].

Then x is a highest weight vector in G−2 and y is a lowest weight vector in
G2. Besides, [x, y] = 2(2 − β(hα))(� + α)(hβ)e−α−β . By Theorem 1.16, G0 is
either of type An or of type Cn , α + β is the highest root of G0 and G−2 is
its elementary representation. It is easy to show that these conditions cannot
hold.

Proposition 2.8. Let β be a positive root such that:
• α + β is a root;
• α − β is not a root;
• 2α + β is not a root.

Then either (� + α, β) = 0 or �(hβ) = 1.

Proof. Let us first make some remarks:
(a) Since β +α is a root but β + 2α and β −α are not, we have β(hα) = −1.

It follows that α + β and β are roots of the same length.
(b) Since β − (α + β) is a root and β − 2(α + β) is not, then β(hα+β) ≤ 1.

Now suppose that �(hβ) > 1, which implies [F�, e−β] �= 0.
Let xµ = EM and xλ = [F�, e−β]. We have:

[xλ, xµ] = e−α−β

[e−α−β, xµ] = 0 = [xλ, eα+β].
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Therefore, by Lemma 1.14, we deduce that the difference �(hβ) − β(hα+β) is
equal to 0, 1, or 2. In particular, 2 ≤ �(hβ) ≤ 3 and 0 ≤ β(hα+β) ≤ 1. We
therefore distinguish the following two cases:

Case A: β(hα+β) = 0, i.e. α + 2β is a root, 2α + 3β is not, and �(hβ)=2.
In this case (β, β) = −(β, α) and (�, β) = (β, β) therefore (� + α, β) = 0
which concludes the proof in this case.

Case B: β(hα+β) = 1, i.e. α + 2β is not a root, and �(hβ) is either 2 or 3.
In this case β(hα) = −1 = α(hβ), therefore (� + α, β) �= 0. The two cases
�(hβ) = 2 and �(hβ) = 3 need to be analyzed separately.

(i) �(hβ) = 2
Let us define the following elements:

xλ = [[[F�, e−β], e−β], F�]

xµ = [[[EM , eα+β], eβ], EM ].

Then [xλ, xµ] = 6e−α , [xλ, eα] = 0 since α − β is not a root, and
[xµ, e−α] = 0 since (�+α)(hβ) = 1, thus [[EM , eβ], eβ] = 0. Then we find
a contradiction to Lemma 1.12 applied to the Lie algebra G0̄, since G was
assumed to have finite growth. Indeed, using the same notation as in Lemma
1.12, we have: λ(hγ ) = −λ(hα) = −(2� − 2β)(hα) = 2β(hα) = −2.

(ii) �(hβ) = 3
Let us define the following elements:

E1 = 1/8[[EM , eα+β], [EM , eα+β]]

F1 = [[F�, e−β], [F�, e−β]]

E2 = 1/64[[[EM , eα+β], eβ], [[EM , eα+β], eβ]]

F2 = [[[F�, e−β], e−β], [[F�, e−β], e−β]]

H = hα+β = hα + hβ

Then the hypotheses of Lemma 1.11 are satisfied with a1 = −4 and a2 =
−2, and this leads to a contradiction.

In the following, for what concerns simple Lie algebras, we will use the
same notation as in [H, §11, §12]. In particular we shall adopt the same
enumeration of the vertices in the Dynkin diagrams and refer to the bases of
simple roots described by Humphreys [H].
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Lemma 2.9. Let M be the lowest weight of the G0-module G1.

(i) Let z := [[EM , eα+β], [eγ , EM ]], where β and γ are positive roots of G0 such
that [EM , eβ] = 0, α + β + γ is not a root, β + γ is not a root and γ − α is a
negative root. Then [z, F�] = 0.

(ii) Let β and ρ be positive roots such that α + β and β + ρ are positive roots,
α+β +ρ is not a root, ρ −α is a negative root. If (M, β) = 0 and (M, ρ) �= 0,
then the vector [[EM , eα+β], [eρ, EM ]] is non-zero.

(iii) Let β and ρ be as in (ii) and let αk be a simple root of G0. Suppose, in
addition, that either ρ + β − αk is not a root or (M, ρ + β − αk) = 0. Then
[[[EM , eα+β−αk ], [eρ, EM ]], F�] = 0.

(iv) If ρ is a positive root such that α + ρ is not a root, ρ − α is a negative root,
(M, ρ) �= 0 and ρ(hα) = 1, then [[[EM , eα], [eρ, EM ]], F�] = 0.

Proof. The proof consists of simple direct computations.

Theorem 2.10. Let G be an irreducible, simple, Z-graded Lie superalgebra
of finite growth, generated by its local part. Suppose that G0 is simple, that the
Z-gradation of G is consistent and that (�, α) = 0. If G has infinite depth then one
of the following holds:

• G0 is of type A3, G−1 is its adjoint module, G1 = V (2ω2);

• G0 is of type Bn (n ≥ 2), G−1 is its adjoint module, G1 = V (2ω1);

• G0 is of type Cn (n ≥ 3), G−1
∼= �2

0sp2n, G1 is its adjoint module;

• G0 is of type Dn (n ≥ 4), G−1 is its adjoint module, G1 = V (2ω1).

Proof. Let us analyze all the possible cases. Corollary 2.6 states that if
G0 is of type An , Bn , Cn , F4 or G2 then � might have one or two numerical
marks while if G0 is of type Dn , E6, E7 or E8 then � might also have three
numerical marks. Using Lemma 2.5 one can easily see that if G0 is not of type
An then the hypothesis that � has at least two numerical marks contradicts
Proposition 2.8. It follows that if G0 is not of type An then � has exactly one
numerical mark and this numerical mark satisfies Lemma 2.7.

Using Remark 2.1 we immediately exclude the following possibilities, for
which the weight M is not antidominant:

• G0 of type Bn (n ≥ 2), G−1 = V (ωn);

• G0 of type Cn (n ≥ 3), G−1 = V (ω1);

• G0 of type Cn (n ≥ 3), G−1 = V (ωi ) with 2 ≤ i ≤ n − 1, α = 2αi+1 +
· · · + 2αn−1 + αn;

• G0 of type F4, G−1 = V (ω3), α = α1 + α2;

• G0 of type F4, G−1 = V (ω4);

• G0 of type G2, G−1 = V (2ω1);

• G0 of type G2, G−1 = V (ω1) (simplest representation).
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Proposition 2.8 allows us to rule out the cases summarized in Table 1,
where we describe the irreducible modules G−1 and G1 through their highest
weights and indicate the positive root β used in Proposition 2.8.

On the other hand, Corollary 1.17 allows us to rule out the cases summa-
rized in Table 2, where the vectors x and y used in Corollary 1.17 are indicated,
and where the columns denoted by G−1 and G1 contain the highest weights of
these G0-modules. In order to show that the vectors x and y in Table 2 are
highest and lowest weight vectors in the G0-modules G−2 and G2 respectively,
one can use the bitransitivity of G and, where needed, Lemma 2.9.

For the remaining cases let us point out what follows: suppose that G−2
contains a highest weight vector x of weight λ and that G2 contains a lowest
weight vector y of weight −λ such that [x, y] �= 0. Then the irreducible
submodules Ḡ−2 and Ḡ2 generated respectively by x and y are dual G0-modules
and the Lie subalgebra of G0̄ with local part Ḡ−2⊕G0⊕Ḡ2 is an affine Kac-Moody
algebra which will be denoted by A.

Using the classification of affine Kac-Moody algebras we therefore exclude
the cases in Table 3, where we indicate the highest weight vector x of G−2,
the lowest weight vector y of G2, and the highest weights of the G0-modules
G−1 and G1.

In the same way the classification of affine Kac-Moody algebras shows that
the following cases are allowed:

1) G0 of type A3, G−1 = V (ω1 + ω3), G1 = V (2ω2), α = α2: under these hy-
potheses G−2 contains the highest weight vector x = [[F�, e−α1], [e−α3, F�]]
and G2 contains the lowest weight vector y = [[EM , eα1+α2], [eα2+α3, EM ]].

The algebra A is an affine Kac-Moody algebra of type A(2)
5 .

2) G0 of type Bn (n ≥3), G−1 =V (ω2), G1 =V (2ω1), α=α1: G−2 contains the
highest weight vector x = [[F�, e−α2], [e−α2−2α3−···−2αn , F�]] and G2 con-
tains the lowest weight vector y = [[EM , eα1+α2], [eα1+α2+2α3+···+2αn , EM ]].

The algebra A is an affine Kac-Moody algebra of type A(2)
2n .

3) G0 of type B2, G−1 = V (2ω2), G1 = V (2ω1), α = α1: G−2 contains
the highest weight vector x = [[F�, e−α2], [e−α2, F�]] and G2 contains the
lowest weight vector y = [[EM , eα1+2α2], [eα1, EM ]]. The algebra A is an

affine Kac-Moody algebra of type A(2)
4 .

4) G0 of type Cn (n ≥ 3), G−1 = V (ω2), G1 = V (2ω1), α = α1: G−2 contains
the highest weight vector x = [[F�, e−α2−···−αn ], [e−α1−···−αn−1, F�]] and G2
contains the lowest weight vector y = [[EM , eα1], [e2α1+···+2αn−1+αn , EM ]].

The algebra A is an affine Kac-Moody algebra of type A(2)
2n−1.

5) G0 of type Dn (n ≥4), G−1 =V (ω2), G1 =V (2ω1), α=α1: in this case x =
[[F�,e−α2], [e−α2−2α3−···−2αn−2−αn−1−αn ,F�]] and y = [[EM ,eα1+α2], [eα1+α2+
2α3+···+2αn−2+αn−1+αn , EM ]]. The algebra A is an affine Kac-Moody algebra

of type A(2)
2n−1.



556 NICOLETTA CANTARINI

T
ab

le
1

G 0
G −

1
G 1

α
β

B
n

ω
i

ω
1
+

ω
i−

1
α

1
+

··
·+

α
i−

1
α

i−
1
+

2α
i
+

··
·+

2α
n

3
≤

i
≤

n
−

1
B

n
2ω

n
ω

1
+

ω
n−

1
α

1
+

··
·+

α
n−

1
α

n−
1
+

2α
n

n
>

2
C

n
ω

i
ω

1
+

ω
i−

1
α

1
+

··
·+

α
i−

1
α

i−
1
+

2α
i
+

··
·+

2α
n−

1
+

α
n

3
≤

i
≤

n
−

1
D

n
ω

i
ω

1
+

ω
i−

1
α

1
+

··
·+

α
i−

1
α

i−
1
+

2α
i
+

··
·+

2α
n−

2
+

α
n−

1
+

α
n

3
≤

i
≤

n
−

2
E

6
ω

3
ω

1
+

ω
2

α
2
+

α
4
+

α
5
+

α
6

α
1
+

α
2
+

2α
3
+

2α
4
+

α
5

E
6

ω
5

ω
2
+

ω
6

α
1
+

α
2
+

α
3
+

α
4

α
2
+

α
3
+

2α
4
+

2α
5
+

α
6

E
6

ω
4

ω
5
+

ω
6

α
1
+

α
3

α
2
+

α
3
+

2α
4
+

α
5

E
6

ω
4

2ω
2

α
2

α
1
+

α
2
+

2α
3
+

3α
4
+

2α
5
+

α
6

E
7

ω
3

2ω
1

α
1

α
1
+

2α
2
+

3α
3
+

4α
4
+

3α
5
+

2α
6
+

α
7

E
7

ω
3

ω
2
+

ω
7

α
3
+

α
4
+

α
5
+

α
6
+

α
7

α
1
+

α
2
+

2α
3
+

2α
4
+

α
5

E
7

ω
2

ω
1
+

ω
7

α
1
+

α
3
+

α
4
+

α
5
+

α
6
+

α
7

α
1
+

2α
2
+

2α
3
+

3α
4
+

2α
5
+

α
6

E
7

ω
4

ω
1
+

ω
3

α
1
+

α
3

α
2
+

α
3
+

2α
4
+

α
5

E
7

ω
4

2ω
2

α
2

α
1
+

α
2
+

2α
3
+

3α
4
+

2α
5
+

α
6

E
7

ω
4

ω
5
+

ω
7

α
5
+

α
6
+

α
7

α
2
+

α
3
+

2α
4
+

α
5

E
7

ω
5

ω
1
+

ω
2

α
1
+

α
2
+

α
3
+

α
4

α
2
+

α
3
+

2α
4
+

2α
5
+

α
6

E
7

ω
5

ω
6
+

ω
7

α
6
+

α
7

α
2
+

α
3
+

2α
4
+

2α
5
+

α
6

E
7

ω
6

ω
3

α
1
+

α
2
+

2α
3
+

2α
4
+

α
5

α
1
+

α
2
+

α
3
+

2α
4
+

2α
5
+

2α
6
+

α
7

E
8

ω
1

ω
7

α
2
+

α
3
+

2α
4
+

2α
5
+

2α
6
+

2α
7
+

α
8

2α
1
+

2α
2
+

3α
3
+

4α
4
+

3α
5
+

2α
6
+

α
7
+

α
8

E
8

ω
3

ω
2
+

ω
8

α
2
+

α
4
+

α
5
+

α
6
+

α
7
+

α
8

α
1
+

α
2
+

2α
3
+

2α
4
+

α
5

E
8

ω
2

ω
1
+

ω
8

α
1
+

α
3
+

α
4
+

α
5
+

α
6
+

α
7
+

α
8

α
1
+

2α
2
+

2α
3
+

3α
4
+

2α
5
+

α
6

E
8

ω
k

ω
k+

1
+

ω
8

α
k+

1
+

··
·+

α
8

α
2
+

α
3
+

2α
4
+

··
·+

2α
k
+

α
k+

1
4

≤
k

≤
6

E
8

ω
7

2ω
8

α
8

2α
1
+

3α
2
+

4α
3
+

6α
4
+

5α
5
+

4α
6
+

3α
7
+

α
8

F
4

ω
2

2ω
1

α
1

α
1
+

3α
2
+

4α
3
+

2α
4

F
4

ω
2

ω
3
+

ω
4

α
3
+

α
4

α
1
+

2α
2
+

2α
3
+

α
4

F
4

2ω
3

ω
1
+

ω
2

α
1
+

α
2

α
2
+

2α
3

F
4

ω
3

2ω
4

α
4

α
1
+

2α
2
+

3α
3
+

α
4

F
4

2ω
4

ω
2

α
1
+

2α
2
+

2α
3

α
1
+

α
2
+

2α
3
+

2α
4

G
2

3ω
1

2ω
2

α
2

3α
1
+

α
2



Z-GRADED LIE SUPERALGEBRAS OF INFINITE DEPTH AND FINITE GROWTH 557

T
ab

le
2

G 0
G −

1
G 1

x
y

A
n

ω
s

ω
n−

s+
2
+

ω
n

[[
F

�
,
e −

α
s
],

[e
−α

s−
1
−α

s−
α

s+
1
,

F
�

]]
[[

E
M

,
e α

+α
s
],

[e
α

s−
1
,

E
M

]]
n

≥
5,

s
�=

1,
2,

n
A

n
ω

s
ω

1
+

ω
n−

s
[[

F
�
,
e −

α
s
],

[e
−α

s−
1
−α

s−
α

s+
1
,

F
�

]]
[[

E
M

,
e α

+α
s
],

[e
α

s+
1
,

E
M

]]
n

≥
5,

s
�=

1,
n

−
1,

n
A

n
ω

s
+

ω
t

ω
n−

s
+

ω
n−

t+
2

[[
F

�
,
e −

α
s
],

[e
−α

t,
F

�
]]

[[
E

M
,
e α

+α
s
],

[e
α

s+
1
,

E
M

]]
s

≥
1,

s
+

2
<

t
≤

n
B

n
ω

s
ω

s+
2

[[
F

�
,
e −

α
s
],

[e
−α

s−
1
−α

s−
α

s+
1
,

F
�

]]
[[

E
M

,
e α

+α
s
],

[e
α

s+
1
+α

s+
2
,

E
M

]]
2

≤
s

≤
n

−
3

B
n

ω
n−

2
2ω

n
[[

F
�
,
e −

α
n−

2
],

[e
−α

n−
3
−α

n−
2
−α

n−
1
,

F
�

]]
[[

E
M

,
e α

+α
n−

2
],

[e
α

n−
1
+α

n
,

E
M

]]
B

n
ω

n−
1

2ω
n

[[
F

�
,
e −

α
n−

1
],

[e
−α

n−
2
−α

n−
1
−α

n
,

F
�

]]
[[

E
M

,
e α

n
],

[e
α

n−
1
+2

α
n
,

E
M

]]
n

≥
3

C
n

2ω
i

2ω
i+

1
[[

F
�
,
e −

α
i],

[e
−α

i,
F

�
]]

[[
E

M
,
e α

+α
i],

[e
α

i+
1
,

E
M

]]
1

≤
i
≤

n
−

2
C

n
ω

n
ω

1
+

ω
n−

1
[[

F
�
,
e −

α
n−

1
−α

n
],

[e
−α

n−
1
−α

n
,

F
�

]]
[[

E
M

,
e α

+α
n

],
[e

α
n−

1
,

E
M

]]
D

n
ω

i
ω

i+
2

[[
F

�
,
e −

α
i],

[e
−α

i−
1
−α

i−
α

i+
1
,

F
�

]]
[[

E
M

,
e α

+α
i],

[e
α

i+
1
+α

i+
2
,

E
M

]]
2

≤
i
≤

n
−

4
D

n
ω

n−
3

ω
n−

1
+

ω
n

[[
F

�
,
e −

α
n−

3
],

[e
−α

n−
4
−α

n−
3
−α

n−
2
,

F
�

]]
[[

E
M

,
e α

+α
n−

3
],

[e
α

n−
2
+α

n−
1
,

E
M

]]
D

n
ω

n
ω

1
+

ω
n

[[
F

�
,
e −

α
n

],
[e

−α
n−

3
−2

α
n−

2
−α

n−
1
−α

n
,

F
�

]]
[[

E
M

,
e α

+α
n

],
[e

α
n−

2
+α

n−
1
,

E
M

]]
n

>
4

D
n

ω
n−

1
ω

1
+

ω
n−

1
[[

F
�
,
e −

α
n−

1
],

[e
−α

n−
3
−2

α
n−

2
−α

n−
1
−α

n
,

F
�

]]
[[

E
M

,
e α

+α
n−

1
],

[e
α

n−
2
+α

n
,

E
M

]]
n

>
4

E
6

ω
1

ω
3

[[
F

�
,
e −

α
1
],

[e
−(

α
1
+α

2
+2

α
3
+2

α
4
+α

5
)
],

F
�

]]
[[

E
M

,
e α

+α
1
],

[e
α

3
+α

4
+α

5
,

E
M

]]
E

6
ω

6
ω

5
[[

F
�
,
e −

α
6

],
[e

−(
α

2
+α

3
+2

α
4
+2

α
5
+α

6
)
,

F
�

]]
[[

E
M

,
e α

+α
6
],

[e
α

3
+α

4
+α

5
,

E
M

]]
E

6
ω

2
ω

1
+

ω
6

[[
F

�
,
e −

α
2

],
[e

−(
α

2
+α

3
+2

α
4
+α

5
)
,

F
�

]]
[[

E
M

,
e α

+α
2
],

[e
α

4
+α

5
+α

6
,

E
M

]]
E

7
ω

1
ω

6
[[

F
�
,
e −

α
1

],
[e

−(
α

1
+α

2
+2

α
3
+2

α
4
+α

5
)
,

F
�

]]
[[

E
M

,
e α

+α
1

],
[e

α
3
+α

4
+α

5
+α

6
,

E
M

]]
E

7
ω

7
ω

2
[[

F
�
,
e −

α
7
],

[e
−γ

,
F

�
]]

[[
E

M
,
e α

+α
7

],
[e

α
2
+α

4
+α

5
+α

6
,

E
M

]]
γ

=
α

2
+

α
3
+

2α
4
+

2α
5
+

2α
6
+

α
7

E
8

ω
8

ω
1

[[
F

�
,
e −

α
8
],

[e
−γ

,
F

�
]]

[[
E

M
,
e α

+α
8

],
[e

α
1
+α

3
+α

4
+α

5
+α

6
+α

7
,

E
M

]]
γ

=
α

2
+

α
3
+

2α
4
+

2α
5
+

2α
6
+

2α
7
+

α
8

E
8

ω
7

ω
2

[[
F

�
,
e −

α
7
],

[e
−γ

,
F

�
]]

[[
E

M
,
e α

+α
7

],
[e

α
2
+α

4
+α

5
+α

6
,

E
M

]]
γ

=
α

2
+

α
3
+

2α
4
+

2α
5
+

2α
6
+

α
7

F
4

ω
1

2ω
4

[[
F

�
,
e −

α
1
],

[e
−α

1
−2

α
2
−2

α
3
,

F
�

]]
[[

E
M

,
e α

+α
1
],

[e
α

2
+α

3
+α

4
,

E
M

]]
G

2
A

d
2ω

1
[[

F
�
,
e −

α
1
−α

2
],

[e
−α

1
−α

2
,

F
�

]]
[[

E
M

,
e 2

α
1
+α

2
],

[e
α

1
,

E
M

]]



558 NICOLETTA CANTARINI

T
ab

le
3

G 0
G −

1
G 1

x
y

A
n

ω
s
+

ω
s+

2
2ω

n−
s

[[
F

�
,
e −

α
s
],

[e
−α

s+
2
,

F
�

]]
[[

E
M

,
e α

+α
s
],

[e
α

s+
1
+α

s+
2
,

E
M

]]
(n

≥
4)

(1
≤

s
≤

n
−

2)
C

n
2ω

n−
1

2ω
n

[[
F

�
,
e −

α
n−

1
],

[e
−α

n−
1
,

F
�

]]
[[

E
M

,
e α

n−
1
+α

n
],

[e
α

n−
1
+α

n
,

E
M

]]
(n

≥
3)

D
n

ω
n−

2
2ω

n
[[

F
�
,
e −

α
n−

3
−α

n−
2
−α

n
],

[e
−α

n−
2
,

F
�

]]
[[

E
M

,
e α

n−
3
+α

n−
2
+α

n−
1

],
[e

α
n−

2
+α

n−
1
+α

n
,

E
M

]]
(n

>
4)

D
n

ω
n−

2
2ω

n−
1

[[
F

�
,
e −

α
n−

3
−α

n−
2
−α

n−
1

],
[e

−α
n−

2
,

F
�

]]
[[

E
M

,
e α

n−
3
+α

n−
2
+α

n
],

[e
α

n−
2
+α

n−
1
+α

n
,

E
M

]]
(n

>
4)

E
6

ω
3

2ω
6

[[
F

�
,
e −

α
3

],
[e

−α
2
−α

3
−2

α
4
−α

5
,

F
�

]]
[[

E
M

,
e α

1
],

[e
α

1
+α

2
+2

α
3
+2

α
4
+α

5
,

E
M

]]
E

6
ω

5
2ω

1
[[

F
�
,
e −

α
5

],
[e

−α
2
−α

3
−2

α
4
−α

5
,

F
�

]]
[[

E
M

,
e α

6
],

[e
α

2
+α

3
+2

α
4
+2

α
5
+α

6
,

E
M

]]
E

7
ω

6
2ω

7
[[

F
�
,
e −

α
6

],
[e

−α
2
−α

3
−2

α
4
−2

α
5
−α

6
,

F
�

]]
[[

E
M

,
e α

7
],

[e
α

2
+α

3
+2

α
4
+2

α
5
+2

α
6
+α

7
,

E
M

]]



Z-GRADED LIE SUPERALGEBRAS OF INFINITE DEPTH AND FINITE GROWTH 559

We finally analyze and rule out the remaining cases:

• G0 of type An , G−1 = V (ωs):

(i) if s = 1 (or, equivalently, s = n) then G1 = V (ω1 + ωn−1) and G−2 ⊂
S2G−1 = S2V (ω1) = 0 since S2V (ω1) = V (2ω1) and [F�, F�] = 0,
therefore G has finite depth;

(ii) if s = 2, G1 = V (2ωn), α = α1, (or, equivalently, s = n − 1, G1 =
V (2ω1), α = αn) then G is isomorphic to the finite-dimensional Lie
superalgebra p(n) (for the definition of p(n) see [K2]);

(iii) if n = 4 and s = 3, i.e. G−1
∼= �2sl∗5 , G1 = V (ω3 + ω4), α = α1 + α2

(or, equivalently, G−1 = V (ω2), G1 = V (ω1 + ω2), α = α3 + α4), then
G is isomorphic to the infinite-dimensional Lie superalgebra E(5, 10)

(for the definition of E(5, 10) see [K3]).

• G0 of type Bn (n ≥ 2), G−1 = V (ω1) and:

(i) G1 = V (ω3) if n > 3 (α = α2 + 2α3 + · · · + 2αn),

(ii) G1 = V (2ω3) if n = 3 (α = α2 + 2α3),

(iii) G1 = V (ω2) if n = 2 (α = α2).

For all these cases G−2 ⊂ S2G−1 = S2V (ω1) = V (2ω1) + 1 = 1 since
[F�, F�] = 0. Thus G has finite depth.

• G0 of type Dn (n ≥ 4):

(i) G−1 = V (ω1), G1 = V (ω1 + ω3), then G−2 ⊂ S2G−1 = S2V (ω1) =
V (2ω1) + 1 = 1 hence G has finite depth.

(ii) n = 4, G−1 = V (ω4), G1 = V (ω1 + ω4) (α = α1 + α2 + α3) (or,
equivalently, G−1 = V (ω3), G1 = V (ω1 + ω3)), then we can use the
same argument as in (i) and conclude.

2.2. – Case (�, α) �= 0

In the following we assume (�, α) �= 0.

Remark 2.11. Under the hypothesis (�, α) �= 0 the vector [F�, F�] is
different from 0: [EM , [F�, F�]] = 2[e−α, F�] �= 0.
Nevertheless, [EM , EM ] = 0 and therefore [[EM , eβ], EM ] = 0 for every positive
root β (see Lemma 2.2).

Corollary 2.12. If (�, α) �= 0 then either (�, α) = (α, α) or (�, α) =
(α, α)/2.

Proof. It is enough to apply Lemma 1.14 to the following vectors:

xλ = F�, xµ = EM .
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Lemma 2.13. Suppose that α is not simple. Then there exists j such that:
α −αj is a root and α +αj , 2α −αj , α − 2αj are not roots, in all cases except those
in the following list:

• G0 of type Bn and α = αi + αi+1 + · · · + αn, α = αn−1 + 2αn;
• G0 of type Cn and α = 2αi + · · · + 2αn−1 + αn, α = αn−1 + αn;
• G0 of type F4 and α = α1 + α2 + α3, α = α2 + α3, α = α1 + 2α2 + 4α3 + 2α4,

α = α2 + 2α3, α = α2 + 2α3 + 2α4, α = α1 + 2α2 + 2α3 + α4;
• G0 of type G2 and α = 2α1 + α2, α = α1 + α2, α = 3α1 + α2.

Proof. Case by case check.

Lemma 2.14. Let α be a positive root of G0 and suppose that it is not simple.
If αj is a simple root of G0 such that α − αj is a root and α + αj , 2α − αj , α − 2αj

are not roots, then either

x̃ := [[[EM , eαj ], eα−αj ], EM ]

is a lowest weight vector in G−2 or x̃ = 0 and

x := [[[EM , eαj ], eα], EM ]

is a lowest weight vector in G−2.

Proof. If x̃ �= 0 then, using the transitivity of G, one can show that it is a
lowest weight vector in G−2. If x̃ =0 then [x, e−k]=0 for every k =1, . . . , n.

Proposition 2.15. If α is not a simple root and the growth of G is finite then
either (G0, α) belongs to the list in Lemma 2.13 or (G0, α) = (An, longest root)
and x̃ := [[[EM , eαj ], eα−αj ], EM ] �= 0.

Proof. Suppose that (G0, α) is not in the list in Lemma 2.13. Since α

is not a simple root we can apply Lemma 2.14: in the case x̃ = 0 we take
y = [F�, F�]. Then [x, y] = 2�(hα)e−α+αj �= 0, and, by Theorem 1.16, we
get infinite growth.

If x̃ := [[[EM , eαj ], eα−αj ], EM ] �= 0 then, by bitransitivity, [x̃, F�] =
(�(hα) − 2�(hj ))EM �= 0, thus [x̃, y] = (�(hα) − 2�(hj ))e−α is different from
zero. Then the thesis follows from Theorem 1.16. (Notice that the case G0
of type Cn , α its longest root, is in the list of Lemma 2.13 and is therefore
excluded by the hypotheses.)

Lemma 2.16. If the growth of G is finite and β is a positive root such that α +β

and α − β are not roots, then (�, β) = 0.

Proof. Suppose (�, β) �= 0. We define:

E1 = [eα, EM ], E2 = [[EM , eα], eβ],

F1 = F�, F2 = �(hβ)−1[F�, e−β],

H = hα.

It is easy to verify that the conditions of Lemma 1.13 are satisfied with a1 =
a2 = −�(hα), thus r(G) = ∞.
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Theorem 2.17. Let G = ⊕i∈ZGi be a Z-graded, consistent, simple, irreducible
Lie superalgebra of finite growth. Assume that G0 is a simple Lie algebra, that G1
is an irreducible G0-module which is not contragredient to G−1 and that the local
part generates G. Let F� be a highest weight vector in G−1 and EM a lowest weight
vector in G1 so that � + M = −α for a positive root α. If (�, α) �= 0 then G0 has
rank 1.

Proof. By Proposition 2.15 and its proof only the following cases may
occur:

• α is a simple root;

• (G0, α) = (An, longest root);

• (G0, α) is in the list of Lemma 2.13.

Let us analyze these possibilities case by case:

1) G0 of type An , α = α1 +· · ·+αn . If n = 1 we get the thesis. Now suppose
n ≥ 2. The proof of Proposition 2.15 shows that this possibility holds if

x̃ = [[[EM , ej ], eα−αj ], EM ]

is a nonzero vector, thus either j = 1 or j = n. If we apply Lemma 2.16
to α = α1 + · · · + αn and β = α2 + · · · + αn−1 we deduce that (�, αi ) = 0
for every i = 2, . . . , n − 1, therefore (�, α) = (�, α1) + (�, αn).
As we already noticed in the proof of Proposition 2.15, for every k =
1, . . . , n, [x̃, e−k] = 0 thus, since we assume x̃ �= 0, transitivity implies
[x̃, F�] �= 0. Since [x̃, F�] = (�(hα) − 2�(hj ))EM , it turns out that
�(h1) �= �(hn). Corollary 2.12 now implies that either (�, α1) = 0 or
(�, αn) = 0. But this hypothesis contradicts Theorem 1.16, since if we
take the highest weight vector y = [F�, F�] in G−2, then [x̃, y] �= 0 but
the irreducible submodule of G−2 generated by [F�, F�] is not the standard
An-module.

2) G0 of type An , α simple, n ≥ 2.

2a) n ≥ 3, α = αj with j �= 1, n

If we apply Lemma 2.16 with α = αj and β = αj−1 + αj + αj+1 we
find a contradiction.

2b) α = α1 (or, equivalently, α = αn).

Again, by applying Lemma 2.16 with β = α3 + · · · + αn , we find
(�, αi ) = 0 for every i ≥ 3. On the other hand, (�, α2) �= 0 since
[EM , [F�, e−α2]] = e−α1−α2 �= 0. We distinguish two cases:

Case 1: (�, α2) �= 1
Under this hypothesis let us consider the following vectors:

xµ = [[[EM , e1], [EM , e2]], [EM , e1]],

xλ = �(h1)
−1(1 − �(h2))

−1(3 + �(h1))
−1[F�, [F�, [F�, e−2]]].
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Then xλ and xµ satisfy the hypotheses of Lemma 1.14 with δ = α1.
Since (3� − α2, α1) = 3(�, α1) + 1 ≥ 4 we find a contradiction.

Case 2: (�, α2) = 1
By Corollary 2.12, either �(h1) = 1 or �(h1) = 2. Notice that x :=
[F�, F�] is a highest weight vector in G−2 and y := [[EM , e1], [EM , e1]]
is a lowest weight vector in G2. Since [x, y] = −4�(h1)h1, G0̄ contains
a Z-graded Lie subalgebra with local part s−2⊕G0⊕s2, where s−2 is the
irreducible submodule of G−2 generated by x and s2 is the irreducible
submodule of G2 generated by y. The classification of Kac-Moody Lie
algebras immediately allows us to rule out the case �(h1) = 2 and
the case �(h1) = 1, n > 2.
Now suppose n = 2, �(h1) = 1 = �(h2). Under these hypotheses
G−2 contains the highest weight vector

z := − 4[[F�, e−α1−α2], F�] + 5[[[F�, e−α1], e−α2], F�]

− 3[[[F�, e−α2], F�], e−α1]

of weight �. Besides, [z, y] = −24e−α1−α2 and this contradicts The-
orem 1.16 since the irreducible G0-submodule of G−2 containing z is
the adjoint module and not the standard one.

3) G0 of type Bn (n ≥ 2), α = αi + · · · + αn (1 ≤ i ≤ n − 1).

3a) If i > 1 take β = αi−1 +αi + 2αi+1 +· · ·+ 2αn , then α +β and α −β

are not roots and, by Lemma 2.16, (�, β) = 0, i.e. (�, αj ) = 0 for
every j ≥ i − 1 which contradicts the hypothesis (�, α) �= 0.

3b) If i = 1 and n ≥ 3 take β = α2 + · · · + 2αn . Then, by Lemma 2.16,
(�, αi ) = 0 for every i �= 1. This implies the following contradiction:

0 = [EM , [F�, e−αn ]] = [e−α, e−αn ] �= 0.

3c) Let i = 1 and n = 2, i.e. α = α1 + α2.
If (�, α2) = 0, as above we have:

0 = [EM , [F�, e−α2]] = [e−α, e−α2] �= 0.

Thus suppose (�, α2) �= 0. Since α and α2 have both length 1,
Corollary 2.12 implies (�, α1) = 0 and either �(h2) = 1 or �(h2) = 2.
Notice that G−2 contains the highest weight vector x := [F�, F�].
Now, if �(h2) = 1 then G2 contains the lowest weight vector y :=
[[EM , eα1], [EM , eα2]] and [x, y] = 2e−α thus G0̄ has infinite growth
according to Theorem 1.16.
If �(h2) = 2, by bitransitivity, then y = 0 and the vector

z := [[EM , eα1+α2], [EM , eα2]]
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is a lowest weight vector in G2. Again, since [x, z] = −8e−α1 , this
contradicts Theorem 1.16.

4) G0 of type Bn , α simple.

4a) If α = αi with i �= 1, n, we proceed as for An .

4b) If α = α1 we take β = α1 + 2α2 + · · · + 2αn and apply Lemma 2.16.

4c) If α = αn and n ≥ 3 we take β = αn−2 + 2αn−1 + 2αn . Then Lemma
2.16 holds and we get a contradiction.

4d) n = 2, α = α2. In this case relation [EM , [F�, e−α1]] = e−α2−α1
implies (�, α1) �= 0. This possibility is therefore ruled out by the
classification of Kac-Moody Lie algebras once we have noticed that
since G−2 contains the highest weight vector x := [F�, F�] and G2
contains the lowest weight vector y := [[EM , eα2], [EM , eα2]], with
[x, y] �= 0, G0̄ contains an affine Kac-Moody, Z-graded Lie subalgebra
with local part s−2 ⊕ G0 ⊕ s2, where s−2 is the G0-irreducible mod-
ule with highest weight 2� and s2 is the G0-module contragredient
to s−2.

5) G0 of type Bn , α = αn−1 + 2αn .

5a) If n ≥ 3 take β = αn−2 + αn−1 + αn and use Lemma 2.16.

5b) Let n =2, α=α1 + 2α2. If we take β =α1 then Lemma 2.16 implies
(�, α1) = 0 thus �(hα) = �(h2) is either 1 or 2. One can easily verify,
using the bitransitivity of G, that the vector z := [[EM ,eα1+α2], [EM ,eα2]]
is equal to 0, the vector y := [[EM , eα1+2α2], [EM , eα2]] is a lowest
weight vector in G2 and, as in the previous cases, x := [F�, F�] is
a highest weight vector in G−2. Since [x, y] = 24(�(h2) + 1)e−α1−α2
this contradicts Theorem 1.16.

6) G0 of type Cn (n ≥ 3), α = 2αi + · · · + 2αn−1 + αn (1 ≤ i ≤ n − 1).
If i �= 1 we apply Lemma 2.16 to β = αi−1 +αi +2αi+1 +· · ·+2αn−1 +αn

and get a contradiction.
If i = 1 take β = 2α2 + · · · + 2αn−1 + αn . Then Lemma 2.16 implies
(�, αi ) = 0 for every i ≥ 2. Thus (�, α) = 2(�, α1).
Consider the following vectors:

x = [F�, F�]

y = [[[EM , e1], eα], EM ].

Then x is a highest weight vector in G−2 and y is a lowest weight vector
in G2. Besides, [x, y] = 2�(hα)eα1−α . This contradicts Theorem 1.16 since
α − α1 is not the highest root of G0.

7) G0 of type Cn (n ≥ 3), α = αn−1 + αn .
If we take β = 2αn−2+2αn−1+αn , by Lemma 2.16, we get a contradiction.
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8) G0 of type Cn (n ≥ 3), α simple.

8a) If α = αi with i �= 1, n − 1, n then we proceed as for An , case 2a).

8b) If α = αn−1, take β = 2αn−2 + 2αn−1 + αn and apply Lemma 2.16.

8c) If α = α1, [EM , [F�, e−α2]] = e−α1−α2 implies (�, α2) �= 0. Thus
we apply the same argument as in case 4d) with x = [F�, F�] and
y = [[EM , eα1], [EM , eα1]].

8d) If α = αn we take β = 2αn−1 + αn . By Lemma 2.16 we find a
contradiction.

9) G0 of type Dn (n ≥ 4), α simple.

9a) If α = αi , i �= 1, n − 1, n we proceed as for An , case 2a).

9b) If α = α1 we apply Lemma 2.16 to β = α1 + 2α2 + · · · + 2αn−2 +
αn−1 + αn and find a contradiction.

9c) If α = αn (or, equivalently, α = αn−1) we apply Lemma 2.16 to
β = αn−3 + 2αn−2 + αn−1 + αn .

10) G0 of type E6, α simple, α = αi .
If i �= 1, 2, 6 we proceed as for An , case 2a).
Otherwise we apply Lemma 2.16 as follows:

if i = 1 we take β = α1 + α2 + 2α3 + 2α4 + α5;

if i = 6 we take β = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6;

if i = 2 we take β = α2 + α3 + 2α4 + α5.

11) G0 of type E7 or E8.
The situation is analogous to case 10).

12) G0 of type F4 and α in the list.
We apply Lemma 2.16 with the following roots α and β:

• α = α1 + α2 + α3, β = α1 + 3α2 + 4α3 + 2α4;

• α = α2 + α3, β = 2α1 + 3α2 + 4α3 + 2α4;

• α = α1 + 2α2 + 4α3 + 2α4, β = α1 + 2α2 + 2α3 + α4;

• α = α1 + 2α2 + 2α3 + α4, β = α1 + 2α2 + 4α3 + 2α4;

• α = α2 + 2α3, β = α2 + α3 + α4;

• α = α2 + 2α3 + 2α4, β = α1 + α2 + 2α3 + α4.

13) G0 of type F4, α simple.
We apply Lemma 2.16 with the following roots α and β:

• α = α1, β = α1 + 2α2 + 2α3;

• α = α2, β = α1 + α2 + α3;

• α = α3, β = 2α1 + 3α2 + 4α3 + 2α4;

• α = α4, β = 2α1 + 3α2 + 4α3 + 2α4.



Z-GRADED LIE SUPERALGEBRAS OF INFINITE DEPTH AND FINITE GROWTH 565

14) G0 of type G2, α in the list.

14a) α = 2α1 + α2

If we apply Lemma 2.16 with β = α2 we find (�, α2) = 0 thus
(�, α) = 2(�, α1). Besides, Corollary 2.12 implies �(hα) = 2, i.e.
�(h1) = 1.
Consider the vector x := [[EM , eα], [EM , eα1]]. Then one can verify
that x is a lowest weight vector. Now, if we take y := [F�, F�] in
G−2, then [x, y] �= 0 and this contradicts Theorem 1.16.

14b) α = α1 + α2

In this case we apply Lemma 2.16 with β = 3α1 + α2 and find a
contradiction.

14c) α = 3α1 + α2

We proceed as in 14b) with β = α1 + α2.

15) G0 of type G2, α simple.
If α = α1 apply Lemma 2.16 with β = 3α1 + 2α2.
If α = α2 apply Lemma 2.16 with β = 2α1 + α2.

3. – The classification theorem

Let L be a finite-dimensional Lie superalgebra and let σ be an automor-
phism of L of finite order k. Then

(3) L = ⊕k−1
i=0 Li

where Li = {x ∈ L|σ(x) = εi x}, ε = e2π i/k . Notice that (3) is a mod-k
gradation of L.

Consider the Lie superalgebra C[x, x−1] ⊗ L = ⊕+∞
i=− ∞xi ⊗ L and its

subalgebra
Gk(L , σ ) := ⊕+∞

i=− ∞xi ⊗ Li (mod k)

called the covering superalgebra of L . Then Gk(L , σ ) is a Z-graded Lie su-
peralgebra of infinite depth and growth 1.

Example 1 (The Lie superalgebra S1(n)). We recall that sl(m, n) is the
Lie superalgebra of (m + n) × (m + n) matrices with supertrace equal to 0, i.e.,

in suitable coordinates, the set of matrices
{(

a
∣∣ b

c
∣∣ d

) ∣∣ tr(a) = tr(d)

}
.

Let Q̃(n) (n ≥ 2) be the subalgebra of sl(n+1, n+1) consisting of matrices

of the form
(

a b
b a

)
, where tr(b) = 0. Then Q̃(n) has a one-dimensional centre

C = 〈I2n+2〉 and we define Q(n) = Q̃(n)/C . Notice that Q(n) has even
part isomorphic to the Lie algebra of type An and odd part isomorphic to
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ad sln+1 and has therefore dimension 2(n2 + 2n). We consider the following
automorphism σ of Q(n):

σ
( a b

b a

)
=

(−at ibt

ibt −at

)
.

Then σ has order 4 and Q(n) = ⊕3
i=0 Q(n)i where

Q(n)0
∼= son+1,

Q(n)1 = {b ∈ sln+1|b = bt },
Q(n)2 =

{(
a 0
0 a

)
|a = at

}
/C ,

Q(n)3 = {b ∈ sln+1|b = −bt } .

Let us suppose n �=3 and denote by S1(n) the covering superalgebra G4(Q(n),σ ).
Notice that Q(n)3 is isomorphic to the adjoint module of son+1 and if n > 2
then Q(n)1 and Q(n)2 are isomorphic, as son+1-modules, to the highest weight
module V (2ω1), while if n = 2 Q(n)1 and Q(n)2 are sl(2)-irreducible modules
of dimension 5.

Example 2 (The Lie superalgebra S2(m)). Suppose m = 2n − 1 and consider
the following automorphism τ of Q(m):

τ


a b

∣∣ r s
c d

∣∣ v w

r s
∣∣ a b

v w
∣∣ c d

 =


−dt bt

∣∣ −iwt i st

ct −at
∣∣ ivt −ir t

−iwt i st
∣∣∣ −dt bt

ivt −ir t
∣∣ ct −at


where a, b, c, d, r , s, v, w are n × n-blocks and tr(r) + tr(w) = 0.
Then τ 4 = 1 and Q(m) = ⊕3

i=0 Q(m)i where

Q(m)0
∼= sp(2n),

Q(m)1 =
{(

r s
v w

)
|r = −wt , s = st , v = vt

}
,

Q(m)2 =
{(

a b
c d

)
|bt = −b, ct = −c, at = d

}
/C ,

Q(m)3 =
{(

r s
v w

)
|wt = r, st = −s, vt = −v, tr(r) = 0

}
.

Let us denote by S2(m) the covering superalgebra G4(Q(m), τ ). Notice that
Q(m)1 is isomorphic to the adjoint module of the Lie algebra sp(2n) and
Q(m)2, Q(m)3 are isomorphic to the sp(2n)-module �2

0sp2n .

Example 3 (The Lie superalgebra S3). Let D(2, 1; α) be the one-parameter
family of 17-dimensional Lie superalgebras with even part isomorphic to A1 ⊕
A1 ⊕ A1 and odd part isomorphic to sl2 ⊗ sl2 ⊗ sl2. We recall that two members
D(2, 1; α) and D(2, 1; β) of this family are isomorphic if and only if α and
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β lie in the same orbit of the group V of order 6 generated by α �→ −1 − α,
α �→ 1/α.

D(2, 1; α) is the contragredient Lie superalgebra associated to the matrix( 0 1 −1 − α

1/α 0 1
1 −α/(1 + α) 0

)
.

Suppose that α2 + α + 1 = 0 and consider the following automorphism ϕ

of D(2, 1; α):
ϕ(e1) = −e2 ϕ( f1) = − f2 ϕ(h1) = h2
ϕ(e2) = −e3 ϕ( f2) = − f3 ϕ(h2) = h3
ϕ(e3) = −e1 ϕ( f3) = − f1 ϕ(h3) = h1.

Then ϕ has order 6 and D(2, 1; α) = ⊕5
i=0Vi where

• V0 is isomorphic to the Lie algebra of type A1;
• V1 is isomorphic, as a V0-module, to the sl(2)-irreducible module of di-

mension 4;
• V2 is isomorphic, as a V0-module, to the adjoint module of sl(2);
• V3 is isomorphic to the sl(2)-irreducible module of dimension 2;
• V4 is isomorphic to the adjoint module of sl(2);
• V5 is isomorphic to the sl(2)-irreducible module of dimension 2.

We denote by S3 the covering superalgebra G6(D(2, 1; α), ϕ).

Theorem 3.1. Let G = ⊕i∈ZGi be an infinite-dimensional Z-graded Lie super-
algebra. Suppose that:

• G is simple and generated by its local part,
• the Z-gradation is consistent and has infinite depth,
• G0 is simple,
• G−1 and G1 are irreducible G0-modules which are not contragredient.

Then G has finite growth if and only if it is isomorphic to one of the Lie superalgebras
Si for some 1 ≤ i ≤ 3.

Proof. Theorems 2.10 and 2.17 show that under our hypotheses either G0
has rank 1 or one of the following possibilities occur:

a) G0 is of type A3, G−1 is its adjoint module and G1 = V (2ω2);
b) G0 is of type Bn , G−1 is its adjoint module and G1 = V (2ω1);
c) G0 is of type Cn (n ≥ 3), G1 is its adjoint module and G−1

∼= �2
0sp2n;

d) G0 is of type Dn (n ≥ 4), G−1 is its adjoint module and G1 = V (2ω1).
Besides, if G0 has rank 1, by Corollary 2.12, either

e) G−1
∼= V (ω) and G1

∼= V (3ω) or
f) G−1 is isomorphic to the adjoint module of A1 and G1

∼= V (4ω).

By Propositions 1.7 and 1.9 we conclude that G is isomorphic to the Lie
superalgebra S1(m) = G4(Q(m), σ ) with m = 5 in case a), m = 2n in case b),
m = 2 in case f) and m = 2n − 1 in case d); in case c) G is isomorphic to the
Lie superalgebra S2(m) = G4(Q(m), τ ) with m = 2n − 1. Finally, in case e) G
is isomorphic to the Lie superalgebra S3.
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