\mathbb{Z}-graded Lie Superalgebras of Infinite Depth and Finite Growth

NICOLETTA CANTARINI

Abstract

In 1998 Victor Kac classified infinite-dimensional \mathbb{Z}-graded Lie superalgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a \mathbb{Z}-gradation of infinite depth and finite growth and classify \mathbb{Z}-graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses.

Mathematics Subject Classification (2000): 17B65 (primary), 17B70 (secondary).

Introduction

Simple finite-dimensional Lie superalgebras were classified by V. G. Kac in [K2]. In the same paper Kac classified the finite-dimensional, \mathbb{Z}-graded Lie superalgebras under the hypotheses of irreducibility and transitivity.

The classification of infinite-dimensional, \mathbb{Z}-graded Lie superalgebras of finite depth is also due to V. G. Kac [K3] and is deeply related to the classification of linearly compact Lie superalgebras. We recall that finite depth implies finite growth.

This naturally leads to investigate infinite-dimensional, \mathbb{Z}-graded Lie superalgebras of infinite depth and finite growth. The hypothesis of finite growth is central to the problem; indeed, it is well known that it is not possible to classify \mathbb{Z}-graded Lie algebras (and thus Lie superalgebras) of any growth (see [K1], [M]). The only known examples of infinite-dimensional, \mathbb{Z}-graded Lie superalgebras of finite growth and infinite depth are given by contragredient Lie superalgebras which were classified by V. G. Kac in [K2] in the case of finite dimension and by J.W. van de Leur in the general case [vdL]. Contragredient Lie superalgebras, as well as Kac-Moody Lie algebras, have a \mathbb{Z}-gradation of infinite depth and growth equal to 1 , due to their periodic structure.

We construct three new examples of infinite-dimensional Lie superalgebras with a consistent \mathbb{Z}-gradation of infinite depth and finite growth, and we realize
them as covering superalgebras of finite-dimensional Lie superalgebras. It turns out that if \mathcal{G} is an irreducible, simple Lie superalgebra generated by its local part, with a consistent \mathbb{Z}-gradation, and if we assume that \mathcal{G}_{0} is simple and that \mathcal{G}_{1} is an irreducible \mathcal{G}_{0}-module which is not contragredient to \mathcal{G}_{-1}, then \mathcal{G} is isomorphic to one of these three algebras (Theorem 3.1) and its growth is therefore equal to 1 .

So far, any known example of a \mathbb{Z}-graded Lie superalgebra of infinite depth and finite growth is, up to isomorphism, either a contragredient Lie superalgebra or the covering superalgebra of a finite-dimensional Lie superalgebra. Since the aim of this paper is analyzing \mathbb{Z}-graded Lie superalgebras of infinite depth, we shall not describe the cases of finite depth which can be found in [K2], [K3].

Let \mathcal{G} be a \mathbb{Z}-graded Lie superalgebra. Suppose that \mathcal{G}_{0} is a simple Lie algebra and that \mathcal{G}_{-1} and \mathcal{G}_{1} are irreducible \mathcal{G}_{0}-modules and are not contragredient. Let F_{Λ} be a highest weight vector of \mathcal{G}_{-1} of weight Λ and let E_{M} be a lowest weight vector of \mathcal{G}_{1} of weight M. Since \mathcal{G}_{-1} and \mathcal{G}_{1} are not contragredient, the sum $\Lambda+M$ is a root of \mathcal{G}_{0}, and, without loss of generality, we may assume that it is a negative root, i.e. $\Lambda+M=-\alpha$ for some positive root α. The paper is based on the analysis of the relations between the \mathcal{G}_{0}-modules \mathcal{G}_{-1} and \mathcal{G}_{1}. It is organized in three sections: Section 1 contains some basic definitions and fundamental results in the general theory of Lie superalgebras. In Section 2 the main hypotheses on the Lie superalgebra \mathcal{G} are introduced. Section 2.1 is devoted to the case $(\Lambda, \alpha)=0$. Since Λ is a dominant weight, in this section the rank of \mathcal{G}_{0} is assumed to be greater than 1 . The hypothesis $(\Lambda, \alpha)=0$ always holds for \mathbb{Z}-graded Lie superalgebras of finite depth (see [K2], Lemma 4.1.4 and [K3], Lemma 5.3) but if the Lie superalgebra \mathcal{G} has infinite depth weaker restrictions on the weight Λ are obtained (compare, for example, Lemma 4.1.3 in [K2] with Lemma 1.14 in this paper).

In Section 2.2 we examine the case $(\Lambda, \alpha) \neq 0$. In the finite-depth case this hypothesis may not occur (cf. [K3], Lemma 5.3). It turns out that, under this hypothesis, \mathcal{G}_{0} has necessarily rank one (cf. Theorem 2.17) namely it is isomorphic to $\operatorname{sl}(2)$. Besides, a strong restriction on the possible values of (Λ, α) is obtained (cf. Corollary 2.12) so that \mathcal{G}_{-1} is necessarily isomorphic either to the adjoint module of $\operatorname{sl}(2)$ or to the irreducible $s l(2)$-module of dimension 2.

Finally, Section 3 is devoted to the construction of the examples and to the classification theorem.

Throughout the paper the base field is assumed to be algebraically closed and of characteristic zero.

Acknowledgements. I would like to express my gratitude to Professor Victor Kac for introducing me to the subject and for dedicating me so much of his time.

1. - Basic definitions and main results

1.1. - Lie superalgebras

Definition 1.1. A superalgebra is a \mathbb{Z}_{2}-graded algebra $A=A_{\overline{0}} \oplus A_{\overline{1}} ; A_{\overline{0}}$ is called the even part of A and $A_{\overline{1}}$ is called the odd part of A.

Definition 1.2. A Lie superalgebra is a superalgebra $\mathcal{G}=\mathcal{G}_{\overline{0}} \oplus \mathcal{G}_{\overline{1}}$ whose product $[\cdot, \cdot]$ satisfies the following axioms:
(i) $[a, b]=-(-1)^{\operatorname{deg}(a) \operatorname{deg}(b)}[b, a]$;
(ii) $[a,[b, c]]=[[a, b], c]+(-1)^{\operatorname{deg}(a) \operatorname{deg}(b)}[b,[a, c]]$.

Definition 1.3. A \mathbb{Z}-grading of a Lie superalgebra \mathcal{G} is a decomposition of \mathcal{G} into a direct sum of finite-dimensional \mathbb{Z}_{2} - graded subspaces $\mathcal{G}=\oplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ for which $\left[\mathcal{G}_{i}, \mathcal{G}_{j}\right] \subset \mathcal{G}_{i+j} . A \mathbb{Z}$-grading is said to be consistent if $\mathcal{G}_{\overline{0}}=\oplus \mathcal{G}_{2 i}$ and $\mathcal{G}_{\overline{1}}=\oplus \mathcal{G}_{2 i+1}$.

Remark 1.4. By definition, if \mathcal{G} is a \mathbb{Z}-graded Lie superalgebra, then \mathcal{G}_{0} is a subalgebra of \mathcal{G} and $\left[\mathcal{G}_{0}, \mathcal{G}_{i}\right] \subset \mathcal{G}_{i}$; therefore the restriction of the adjoint representation to \mathcal{G}_{0} induces linear representations of it on the subspaces \mathcal{G}_{i}.

Definition 1.5. A \mathbb{Z}-graded Lie superalgebra \mathcal{G} is called irreducible if \mathcal{G}_{-1} is an irreducible \mathcal{G}_{0}-module.

Definition 1.6. A \mathbb{Z}-graded Lie superalgebra $\mathcal{G}=\oplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ is called transitive if for $a \in \mathcal{G}_{i}, i \geq 0,\left[a, \mathcal{G}_{-1}\right]=0$ implies $a=0$, and bitransitive if, in addition, for $a \in \mathcal{G}_{i}, i \leq 0,\left[a, \mathcal{G}_{1}\right]=0$ implies $a=0$.

Let \hat{G} be a \mathbb{Z}_{2}-graded space, decomposed into the direct sum of \mathbb{Z}_{2}-graded subspaces, $\hat{G}=\mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1}$. Suppose that whenever $|i+j| \leq 1$ a bilinear operation is defined: $\mathcal{G}_{i} \times \mathcal{G}_{j} \rightarrow \mathcal{G}_{i+j}, \quad(x, y) \mapsto[x, y]$, satisfying the axiom of anticommutativity and the Jacobi identity for Lie superalgebras, provided that all the commutators in this identity are defined. Then \hat{G} is called a local Lie superalgebra.

If $\mathcal{G}=\oplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ is a \mathbb{Z}-graded Lie superalgebra then $\mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1}$ is a local Lie superalgebra which is called the local part of \mathcal{G}. The following proposition holds:

Proposition 1.7 [K2]. Two bitransitive \mathbb{Z}-graded Lie superalgebras are isomorphic if and only if their local parts are isomorphic.

Definition 1.8. A Lie superalgebra is called simple if it contains no nontrivial ideals.

Proposition 1.9 [K2]. If in a simple \mathbb{Z}-graded Lie superalgebra $\mathcal{G}=\oplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ the subspace $\mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1}$ generates \mathcal{G} then \mathcal{G} is bitransitive.

1.2. - On the growth of \mathcal{G}

Definition 1.10. Let $\mathcal{G}=\oplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ be a \mathbb{Z}-graded Lie superalgebra. The limit

$$
r(\mathcal{G})=\lim _{n \rightarrow \infty} \ln \left(\sum_{i=-n}^{n} \operatorname{dim} \mathcal{G}_{i}\right) / \ln (n)
$$

is called the growth of \mathcal{G}. If $r(\mathcal{G})$ is finite then we say that \mathcal{G} has finite growth.
Let us fix some notation. Given a semisimple Lie algebra L, by $V(\omega)$ we shall denote its finite-dimensional highest weight module of highest weight ω. ω_{i} will be the fundamental weights. It is well known that if λ is a weight of a finite-dimensional representation of L and β is a root of L, then the set of weights of the form $\lambda+s \beta$ forms a continuous string: $\lambda-p \beta, \lambda-(p-$ 1) $\beta, \ldots, \lambda-\beta, \lambda, \lambda+\beta, \ldots, \lambda+q \beta$, where p and q are nonnegative integers and $p-q=2(\lambda, \beta) /(\beta, \beta)$. Let us put $2(\lambda, \beta) /(\beta, \beta)=\lambda\left(h_{\beta}\right)$. The numbers $\lambda\left(h_{\alpha_{i}}\right)$, for a fixed basis of simple roots α_{i}, are called the numerical marks of the weight λ.

For any positive root β of L we shall denote by e_{β} a root vector of L corresponding to β.

Lemma 1.11 [K1]. Let L be a Lie algebra containing elements $H \neq 0, E_{i}, F_{i}$, $i=1,2$, connected by the equations

$$
\begin{gathered}
{\left[E_{i}, F_{j}\right]=\delta_{i j} H} \\
{\left[H, E_{1}\right]=a E_{1}, \quad\left[H, E_{2}\right]=b E_{2}} \\
{\left[H, F_{1}\right]=-a F_{1}, \quad\left[H, F_{2}\right]=-b F_{2}}
\end{gathered}
$$

where $a \neq-b, b \neq-2 a$, and $a \neq-2 b$, then the growth of L is infinite.
Lemma 1.12 [K1]. Let $L=\oplus L_{i}$ be a graded Lie algebra, where L_{0} is semisimple. Assume that there exist weight vectors x_{λ} and x_{μ} corresponding to the weights λ and μ of the adjoint representation of L_{0} on L, and a root vector e_{γ}, corresponding to the root γ of L_{0}, which satisfy the following relations:

$$
\begin{gathered}
{\left[x_{\mu}, x_{\lambda}\right]=e_{\gamma},} \\
{\left[x_{\lambda}, e_{-\gamma}\right]=0=\left[x_{\mu}, e_{\gamma}\right]} \\
\lambda\left(h_{\gamma}\right) \neq-1, \quad(\lambda, \gamma) \neq 0 .
\end{gathered}
$$

Then the growth of L is infinite.
Lemma 1.13. Let \mathcal{G} be a consistent, \mathbb{Z}-graded Lie superalgebra and suppose that \mathcal{G}_{0} is a semisimple Lie algebra. Let $E_{i}, F_{i}(i=1,2)$ be odd elements and H a non zero element in $\mathcal{G}_{\overline{0}}$ such that:

$$
\begin{equation*}
\left[E_{i}, F_{j}\right]=\delta_{i j} H, \quad\left[H, E_{i}\right]=a_{i} E_{i}, \quad\left[H, F_{i}\right]=-a_{i} F_{i} \tag{1}
\end{equation*}
$$

where $a_{1} \neq-a_{2}, a_{1} \neq-2 a_{2}$ and $a_{2} \neq-2 a_{1}$. Then the growth of \mathcal{G} is infinite.

Proof. Suppose first that $a_{1} \neq 0 \neq a_{2}$. Then the elements $\tilde{E}_{1}=a_{1}^{-1 / 2}\left[E_{1}, E_{1}\right]$, $\tilde{E}_{2}=a_{2}^{-1 / 2}\left[E_{2}, E_{2}\right], \quad \tilde{F}_{1}=a_{1}^{-1 / 2}\left[F_{1}, F_{1}\right], \quad \tilde{F}_{2}=a_{2}^{-1 / 2}\left[F_{2}, F_{2}\right], \quad K=-4 H$ satisfy the hypotheses of Lemma 1.11 in the Lie algebra $\mathcal{G}_{\overline{0}}$. Thus, the growth of $\mathcal{G}_{\overline{0}}$ is infinite and we get the thesis.

If, let us say, $a_{1} \neq 0, a_{2}=0$ then the elements $E_{1}^{\prime}=\left[E_{1}, E_{1}\right], E_{2}^{\prime}=$ $\left[E_{1}, E_{2}\right], F_{1}^{\prime}=-\left(4 a_{1}\right)^{-1}\left[F_{1}, F_{1}\right], F_{2}^{\prime}=a_{1}^{-1}\left[F_{1}, F_{2}\right], H$ satisfy the hypotheses of Lemma 1.11 in $\mathcal{G}_{\overline{0}}$, thus we conclude.

Lemma 1.14. Let $\mathcal{G}=\oplus \mathcal{G}_{i}$ be a \mathbb{Z}-graded, consistent Lie superalgebra and suppose that \mathcal{G}_{0} is a semisimple Lie algebra. Assume that there exist odd elements x_{λ} and x_{μ} that are weight vectors of the adjoint representation of \mathcal{G}_{0} on \mathcal{G} of weight λ and μ respectively, and a root vector $e_{-\delta}$ of \mathcal{G}_{0}, connected by the relations:

$$
\left\{\begin{array}{l}
{\left[x_{\lambda}, x_{\mu}\right]=e_{-\delta}} \\
{\left[x_{\lambda}, e_{\delta}\right]=\left[x_{\mu}, e_{-\delta}\right]=0}
\end{array}\right.
$$

with $2(\lambda, \delta) \neq(\delta, \delta),(\lambda, \delta) \neq 0$ and $(\lambda, \delta) \neq(\delta, \delta)$. Then the growth of \mathcal{G} is infinite.

Proof. We choose a root vector e_{δ} in \mathcal{G}_{0} such that $\left[e_{\delta}, e_{-\delta}\right]=h_{\delta}$ and consider the following elements:

$$
\begin{gathered}
E_{1}=\left[e_{\delta}, x_{\mu}\right] \\
E_{2}=\left[\left[\left[x_{\mu}, e_{\delta}\right], e_{\delta}\right], e_{\delta}\right] \\
F_{1}=x_{\lambda} \\
F_{2}=-1 / 6 \lambda\left(h_{\delta}\right)^{-1}\left(\lambda\left(h_{\delta}\right)-1\right)^{-1}\left[\left[x_{\lambda}, e_{-\delta}\right], e_{-\delta}\right] \\
H=h_{\delta}
\end{gathered}
$$

By a direct computation it is easy to check that E_{i}, F_{i}, H satisfy the hypotheses of Lemma 1.13 with $a_{1}=(\mu+\delta)\left(h_{\delta}\right)=-\lambda\left(h_{\delta}\right), a_{2}=(\mu+3 \delta)\left(h_{\delta}\right)=$ $-\lambda\left(h_{\delta}\right)+4$. By Lemma 1.13 the growth of \mathcal{G} is therefore infinite.

We can reformulate Lemma 1.14 as follows:
Corollary 1.15. Suppose that \mathcal{G} is a Lie superalgebra of finite growth. Let x_{λ}, $x_{\mu}, e_{-\delta}$ be as in Lemma 1.14. Then one of the following holds:
(i) $(\lambda, \delta)=0$,
(ii) $(\lambda, \delta)=(\delta, \delta)$,
(iii) $(\lambda, \delta)=1 / 2(\delta, \delta)$.

Theorem 1.16 [K1]. Let $L=\oplus L_{i}$ be a \mathbb{Z}-graded Lie algebra with the following properties:
a) the Lie algebra L_{0} has no center;
b) the representations ϕ_{-1} and ϕ_{1} of L_{0} on L_{-1} and L_{1} are irreducible;
c) $\left[L_{-1}, L_{1}\right] \neq 0$;
d) $\Lambda+M=-\alpha$ where Λ is the highest weight of ϕ_{-1}, M is the lowest weight of ϕ_{1} and α is a positive root of L_{0};
e) the representations ϕ_{-1} and ϕ_{1} are faithful;
f) the growth of L is finite.

Then L_{0} is isomorphic to one of the Lie algebras A_{n} or C_{n}, ϕ_{-1} is the corresponding standard representation and α is the highest root of L_{0}.

In the following $s l_{n}, s p_{n}$ and $s o_{n}$ will denote the standard representations of the corresponding Lie algebras.

Corollary 1.17. Let $\mathcal{G}=\oplus \mathcal{G}_{i}$ be a Lie superalgebra with a consistent \mathbb{Z} gradation. Suppose that \mathcal{G}_{0} is simple. Suppose that there exist a highest weight vector x in \mathcal{G}_{-2} of weight $\lambda \neq 0$ and a lowest weight vector y in \mathcal{G}_{2} of weight μ such that $[x, y] \neq 0$ and $\lambda+\mu=-\rho$ for a positive root ρ of \mathcal{G}_{0}. Then, if the growth of \mathcal{G} is finite, \mathcal{G}_{0} is isomorphic to one of the Lie algebras A_{n} or C_{n}, ρ is the highest root of \mathcal{G}_{0} and \mathcal{G}_{-2} is the standard \mathcal{G}_{0}-module.

Proof. It follows from Theorem 1.16.

2. - Main results

In this section we will consider an irreducible, consistent, simple \mathbb{Z}-graded Lie superalgebra \mathcal{G} generated by its local part, and we will always suppose that \mathcal{G} has finite growth. Besides, we will assume that \mathcal{G}_{0} is a simple Lie algebra and that \mathcal{G}_{1} is an irreducible \mathcal{G}_{0}-module which is not contragredient to \mathcal{G}_{-1}. Let us fix a Cartan subalgebra \mathcal{H} of \mathcal{G}_{0} and the following notation: let F_{Λ} be a highest weight vector of \mathcal{G}_{-1} of weight Λ (dominant weight) and let E_{M} be a lowest weight vector of \mathcal{G}_{1} of weight M. As shown in [K2], Proposition 1.2.10, it turns out that $\left[F_{\Lambda}, E_{M}\right]=e_{-\alpha}$, where $\alpha=-(\Lambda+M)$ is a root of \mathcal{G}_{0} and $e_{-\alpha}$ is a root vector in \mathcal{G}_{0} corresponding to $-\alpha$. Interchanging, if necessary, \mathcal{G}_{k} with \mathcal{G}_{-k} we can assume that α is a positive root. Indeed, by transitivity, $\left[F_{\Lambda}, E_{M}\right] \neq 0$ and for any $t \in \mathcal{H}$ we have:

$$
\left[t,\left[F_{\Lambda}, E_{M}\right]\right]=(\Lambda+M)(t)\left[F_{\Lambda}, E_{M}\right]
$$

Notice that $\Lambda+M \neq 0$ since the representations of \mathcal{G}_{0} on \mathcal{G}_{-1} and \mathcal{G}_{1} are not contragredient.

Remark 2.1. Under the above assumptions, $-M=\Lambda+\alpha$ is a dominant weight. Therefore $(\Lambda+\alpha, \beta) \geq 0$ for every positive root β of \mathcal{G}_{0}.

Lemma 2.2. Under the above hypotheses, $\left[E_{M}, E_{M}\right]=0$ and $\left[E_{M},\left[e_{\rho}, E_{M}\right]\right]=0$ for every positive root ρ.

Proof. We have $\left[F_{\Lambda},\left[E_{M}, E_{M}\right]\right]=2\left[e_{-\alpha}, E_{M}\right]=0$ since E_{M} is a lowest weight vector. Transitivity and irreducibility imply $\left[E_{M}, E_{M}\right]=0$. Now, since E_{M} is odd, for every positive root ρ we have:

$$
\left[E_{M},\left[e_{\rho}, E_{M}\right]\right]=\left[\left[E_{M}, e_{\rho}\right], E_{M}\right]=-\left[E_{M},\left[e_{\rho}, E_{M}\right]\right]
$$

therefore $\left[E_{M},\left[e_{\rho}, E_{M}\right]\right]=0$.
2.1. - Case $(\Lambda, \alpha)=0$

In this paragraph we suppose $(\Lambda, \alpha)=0$. If Λ is zero then the depth of \mathcal{G} is finite. Therefore we suppose that Λ is not zero. This implies that the rank of \mathcal{G}_{0} is greater than one.

Remark 2.3. Let \mathcal{G} be a bitransitive, irreducible \mathbb{Z}-graded Lie superalgebra. If $(\Lambda, \alpha)=0$ then the vectors $\left[F_{\Lambda}, F_{\Lambda}\right]$ and $\left[\left[F_{\Lambda}, e_{-\rho}\right], F_{\Lambda}\right]$ are zero for every positive root ρ.

Proof. Once we have shown that $\left[F_{\Lambda}, F_{\Lambda}\right]=0$, we proceed as in Lemma 2.2 and conclude that $\left[\left[F_{\Lambda}, e_{-\rho}\right], F_{\Lambda}\right]=0$ for every positive root ρ. Since $\left[\left[F_{\Lambda}, F_{\Lambda}\right], E_{M}\right]=2\left[F_{\Lambda}, e_{-\alpha}\right]=0$, we conclude by bitransitivity.

Lemma 2.4. α is the highest root of one of the parts of the Dynkin diagram of \mathcal{G}_{0} into which it is divided by the numerical marks of Λ.

Proof. Suppose by contradiction that α is not the highest root of one of the parts of the Dynkin diagram of \mathcal{G}_{0} into which it is divided by the numerical marks of Λ. Then there exists a simple root β such that $(\Lambda, \beta)=0$ and $\alpha+\beta$ is a root. This gives a contradiction because: $0=\left[\left[e_{-\beta}, F_{\Lambda}\right], E_{M}\right]=$ $\left[e_{-\beta},\left[F_{\Lambda}, E_{M}\right]\right]=e_{-\beta-\alpha} \neq 0$.

Lemma 2.5. If Λ has at least two numerical marks then, for every numerical mark γ, we have:

$$
(\Lambda+\alpha, \gamma)=0
$$

Proof. From Lemma 2.4 we know that α is the highest root of one of the parts of the Dynkin diagram of \mathcal{G}_{0} into which it is divided by the numerical marks of Λ. Therefore we can choose a numerical mark β such that $\alpha+\beta$ is a root. Now suppose that γ is a numerical mark, $\gamma \neq \beta$, such that $(\Lambda+\alpha, \gamma) \neq 0$.

Notice that γ and β are not subroots of α, since $(\Lambda, \gamma) \neq 0$ and $(\Lambda, \beta) \neq 0$, therefore $\gamma\left(h_{\alpha}\right) \leq 0, \beta\left(h_{\alpha}\right)<0$.

Consider the following vectors:

$$
\begin{aligned}
x & :=\left[\left[\left[F_{\Lambda}, e_{-\beta}\right], e_{-\gamma}\right], F_{\Lambda}\right] \\
y & :=\left[\left[\left[E_{M}, e_{\alpha}\right], e_{\gamma}\right], E_{M}\right] .
\end{aligned}
$$

First of all we want to show that x is a highest weight vector in \mathcal{G}_{-2}. By Remark 2.3, since β and γ are simple roots, it is sufficient to show that $x \neq 0$. In fact, $\left[e_{\gamma},\left[x, E_{M}\right]\right]=(\Lambda+\alpha)\left(h_{\gamma}\right)\left[F_{\Lambda},\left[e_{-\alpha}, e_{-\beta}\right]\right] \neq 0$.

Now let us prove that y is a lowest weight vector in \mathcal{G}_{2}. First $y \neq 0$, indeed:

$$
\left[y, F_{\Lambda}\right]=\left(2-\gamma\left(h_{\alpha}\right)\right)\left[E_{M}, e_{\gamma}\right]
$$

which is different from 0 since $\gamma\left(h_{\alpha}\right) \leq 0$ and by the assumption $(\Lambda+\alpha, \gamma) \neq 0$.
We now compute the commutators $\left[y, e_{-\alpha_{k}}\right]$ for any simple root α_{k}. If $\alpha_{k}=\gamma$ then, by Lemma 2.2, $\left[y, e_{-\alpha_{k}}\right]=0$, since $\alpha-\gamma$ is not a root. If $\alpha_{k} \neq \gamma,\left[y, e_{-\alpha_{k}}\right]=\left[\left[\left[E_{M}, e_{\alpha-\alpha_{k}}\right], e_{\gamma}\right], E_{M}\right]$, and this can be shown to be zero using the transitivity of \mathcal{G}.

Notice that $[x, y]=\left(2-\gamma\left(h_{\alpha}\right)\right)(\Lambda+\alpha)\left(h_{\gamma}\right) e_{-\alpha-\beta}$. By Theorem 1.16 we get a contradiction since $\alpha+\beta$ cannot be the highest root of \mathcal{G}_{0}. As a consequence, $(\Lambda+\alpha, \gamma)=0$. In particular, $\alpha+\gamma$ is a root and we can repeat the same argument interchanging β and γ in order to get $(\Lambda+\alpha, \beta)=0$.

Corollary 2.6. If \mathcal{G}_{0} is of type $A_{n}, B_{n}, C_{n}, F_{4}, G_{2}$ then Λ has at most two numerical marks; if \mathcal{G}_{0} is of type $D_{n}, E_{6}, E_{7}, E_{8}$ then Λ has at most three numerical marks.

Proof. Immediate from Lemma 2.5.
Lemma 2.7. If Λ has only one numerical mark β then either $(\Lambda+\alpha, \beta)=0$ or $\Lambda\left(h_{\beta}\right)=1$.

Proof. Suppose both $(\Lambda+\alpha, \beta) \neq 0$ and $\Lambda\left(h_{\beta}\right)>1$, and define

$$
\begin{aligned}
x & :=\left[\left[\left[F_{\Lambda}, e_{-\beta}\right], e_{-\beta}\right], F_{\Lambda}\right] \\
y & :=\left[\left[\left[E_{M}, e_{\alpha}\right], e_{\beta}\right], E_{M}\right]
\end{aligned}
$$

Then x is a highest weight vector in \mathcal{G}_{-2} and y is a lowest weight vector in \mathcal{G}_{2}. Besides, $[x, y]=2\left(2-\beta\left(h_{\alpha}\right)\right)(\Lambda+\alpha)\left(h_{\beta}\right) e_{-\alpha-\beta}$. By Theorem 1.16, \mathcal{G}_{0} is either of type A_{n} or of type $C_{n}, \alpha+\beta$ is the highest root of \mathcal{G}_{0} and \mathcal{G}_{-2} is its elementary representation. It is easy to show that these conditions cannot hold.

Proposition 2.8. Let β be a positive root such that:

- $\alpha+\beta$ is a root;
- $\alpha-\beta$ is not a root;
- $2 \alpha+\beta$ is not a root.

Then either $(\Lambda+\alpha, \beta)=0$ or $\Lambda\left(h_{\beta}\right)=1$.
Proof. Let us first make some remarks:
(a) Since $\beta+\alpha$ is a root but $\beta+2 \alpha$ and $\beta-\alpha$ are not, we have $\beta\left(h_{\alpha}\right)=-1$. It follows that $\alpha+\beta$ and β are roots of the same length.
(b) Since $\beta-(\alpha+\beta)$ is a root and $\beta-2(\alpha+\beta)$ is not, then $\beta\left(h_{\alpha+\beta}\right) \leq 1$.

Now suppose that $\Lambda\left(h_{\beta}\right)>1$, which implies $\left[F_{\Lambda}, e_{-\beta}\right] \neq 0$.
Let $x_{\mu}=E_{M}$ and $x_{\lambda}=\left[F_{\Lambda}, e_{-\beta}\right]$. We have:

$$
\begin{aligned}
{\left[x_{\lambda}, x_{\mu}\right] } & =e_{-\alpha-\beta} \\
{\left[e_{-\alpha-\beta}, x_{\mu}\right] } & =0=\left[x_{\lambda}, e_{\alpha+\beta}\right] .
\end{aligned}
$$

Therefore, by Lemma 1.14, we deduce that the difference $\Lambda\left(h_{\beta}\right)-\beta\left(h_{\alpha+\beta}\right)$ is equal to 0 , 1 , or 2 . In particular, $2 \leq \Lambda\left(h_{\beta}\right) \leq 3$ and $0 \leq \beta\left(h_{\alpha+\beta}\right) \leq 1$. We therefore distinguish the following two cases:

CASE A: $\beta\left(h_{\alpha+\beta}\right)=0$, i.e. $\alpha+2 \beta$ is a root, $2 \alpha+3 \beta$ is not, and $\Lambda\left(h_{\beta}\right)=2$.
In this case $(\beta, \beta)=-(\beta, \alpha)$ and $(\Lambda, \beta)=(\beta, \beta)$ therefore $(\Lambda+\alpha, \beta)=0$ which concludes the proof in this case.

CASE B: $\beta\left(h_{\alpha+\beta}\right)=1$, i.e. $\alpha+2 \beta$ is not a root, and $\Lambda\left(h_{\beta}\right)$ is either 2 or 3 . In this case $\beta\left(h_{\alpha}\right)=-1=\alpha\left(h_{\beta}\right)$, therefore $(\Lambda+\alpha, \beta) \neq 0$. The two cases $\Lambda\left(h_{\beta}\right)=2$ and $\Lambda\left(h_{\beta}\right)=3$ need to be analyzed separately.
(i) $\Lambda\left(h_{\beta}\right)=2$

Let us define the following elements:

$$
\begin{aligned}
x_{\lambda} & =\left[\left[\left[F_{\Lambda}, e_{-\beta}\right], e_{-\beta}\right], F_{\Lambda}\right] \\
x_{\mu} & =\left[\left[\left[E_{M}, e_{\alpha+\beta}\right], e_{\beta}\right], E_{M}\right] .
\end{aligned}
$$

Then $\left[x_{\lambda}, x_{\mu}\right]=6 e_{-\alpha},\left[x_{\lambda}, e_{\alpha}\right]=0$ since $\alpha-\beta$ is not a root, and $\left[x_{\mu}, e_{-\alpha}\right]=0$ since $(\Lambda+\alpha)\left(h_{\beta}\right)=1$, thus $\left[\left[E_{M}, e_{\beta}\right], e_{\beta}\right]=0$. Then we find a contradiction to Lemma 1.12 applied to the Lie algebra $\mathcal{G}_{\overline{0}}$, since \mathcal{G} was assumed to have finite growth. Indeed, using the same notation as in Lemma 1.12, we have: $\lambda\left(h_{\gamma}\right)=-\lambda\left(h_{\alpha}\right)=-(2 \Lambda-2 \beta)\left(h_{\alpha}\right)=2 \beta\left(h_{\alpha}\right)=-2$.
(ii) $\Lambda\left(h_{\beta}\right)=3$

Let us define the following elements:

$$
\left.\begin{array}{l}
E_{1}=1 / 8\left[\left[E_{M}, e_{\alpha+\beta}\right],\left[E_{M}, e_{\alpha+\beta}\right]\right] \\
F_{1}=\left[\left[F_{\Lambda}, e_{-\beta}\right],\left[F_{\Lambda}, e_{-\beta}\right]\right] \\
E_{2}=1 / 64\left[\left[\left[E_{M}, e_{\alpha+\beta}\right], e_{\beta}\right],\left[\left[E_{M}, e_{\alpha+\beta}\right], e_{\beta}\right]\right] \\
F_{2}=\left[\left[\left[F_{\Lambda}, e_{-\beta}\right], e_{-\beta}\right],\left[\left[F_{\Lambda}, e_{-\beta}\right], e_{-\beta}\right]\right] \\
H
\end{array}=h_{\alpha+\beta}=h_{\alpha}+h_{\beta}\right]
$$

Then the hypotheses of Lemma 1.11 are satisfied with $a_{1}=-4$ and $a_{2}=$ -2 , and this leads to a contradiction.

In the following, for what concerns simple Lie algebras, we will use the same notation as in $[\mathrm{H}, \S 11, \S 12]$. In particular we shall adopt the same enumeration of the vertices in the Dynkin diagrams and refer to the bases of simple roots described by Humphreys [H].

Lemma 2.9. Let M be the lowest weight of the \mathcal{G}_{0}-module \mathcal{G}_{1}.
(i) Let $z:=\left[\left[E_{M}, e_{\alpha+\beta}\right],\left[e_{\gamma}, E_{M}\right]\right]$, where β and γ are positive roots of \mathcal{G}_{0} such that $\left[E_{M}, e_{\beta}\right]=0, \alpha+\beta+\gamma$ is not a root, $\beta+\gamma$ is not a root and $\gamma-\alpha$ is a negative root. Then $\left[z, F_{\Lambda}\right]=0$.
(ii) Let β and ρ be positive roots such that $\alpha+\beta$ and $\beta+\rho$ are positive roots, $\alpha+\beta+\rho$ is not a root, $\rho-\alpha$ is a negative root. If $(M, \beta)=0$ and $(M, \rho) \neq 0$, then the vector $\left[\left[E_{M}, e_{\alpha+\beta}\right],\left[e_{\rho}, E_{M}\right]\right]$ is non-zero.
(iii) Let β and ρ be as in (ii) and let α_{k} be a simple root of \mathcal{G}_{0}. Suppose, in addition, that either $\rho+\beta-\alpha_{k}$ is not a root or $\left(M, \rho+\beta-\alpha_{k}\right)=0$. Then $\left[\left[\left[E_{M}, e_{\alpha+\beta-\alpha_{k}}\right],\left[e_{\rho}, E_{M}\right]\right], F_{\Lambda}\right]=0$.
(iv) If ρ is a positive root such that $\alpha+\rho$ is not a root, $\rho-\alpha$ is a negative root, $(M, \rho) \neq 0$ and $\rho\left(h_{\alpha}\right)=1$, then $\left[\left[\left[E_{M}, e_{\alpha}\right],\left[e_{\rho}, E_{M}\right]\right], F_{\Lambda}\right]=0$.

Proof. The proof consists of simple direct computations.
Theorem 2.10. Let \mathcal{G} be an irreducible, simple, \mathbb{Z}-graded Lie superalgebra of finite growth, generated by its local part. Suppose that \mathcal{G}_{0} is simple, that the \mathbb{Z}-gradation of \mathcal{G} is consistent and that $(\Lambda, \alpha)=0$. If \mathcal{G} has infinite depth then one of the following holds:

- \mathcal{G}_{0} is of type A_{3}, \mathcal{G}_{-1} is its adjoint module, $\mathcal{G}_{1}=V\left(2 \omega_{2}\right)$;
- \mathcal{G}_{0} is of type $B_{n}(n \geq 2), \mathcal{G}_{-1}$ is its adjoint module, $\mathcal{G}_{1}=V\left(2 \omega_{1}\right)$;
- \mathcal{G}_{0} is of type $C_{n}(n \geq 3), \mathcal{G}_{-1} \cong \Lambda_{0}^{2} s p_{2 n}, \mathcal{G}_{1}$ is its adjoint module;
- \mathcal{G}_{0} is of type $D_{n}(n \geq 4), \mathcal{G}_{-1}$ is its adjoint module, $\mathcal{G}_{1}=V\left(2 \omega_{1}\right)$.

Proof. Let us analyze all the possible cases. Corollary 2.6 states that if \mathcal{G}_{0} is of type $A_{n}, B_{n}, C_{n}, F_{4}$ or G_{2} then Λ might have one or two numerical marks while if \mathcal{G}_{0} is of type D_{n}, E_{6}, E_{7} or E_{8} then Λ might also have three numerical marks. Using Lemma 2.5 one can easily see that if \mathcal{G}_{0} is not of type A_{n} then the hypothesis that Λ has at least two numerical marks contradicts Proposition 2.8. It follows that if \mathcal{G}_{0} is not of type A_{n} then Λ has exactly one numerical mark and this numerical mark satisfies Lemma 2.7.

Using Remark 2.1 we immediately exclude the following possibilities, for which the weight M is not antidominant:

- \mathcal{G}_{0} of type $B_{n}(n \geq 2), \mathcal{G}_{-1}=V\left(\omega_{n}\right)$;
- \mathcal{G}_{0} of type $C_{n}(n \geq 3), \mathcal{G}_{-1}=V\left(\omega_{1}\right)$;
- \mathcal{G}_{0} of type $C_{n}(n \geq 3), \mathcal{G}_{-1}=V\left(\omega_{i}\right)$ with $2 \leq i \leq n-1, \alpha=2 \alpha_{i+1}+$ $\cdots+2 \alpha_{n-1}+\alpha_{n} ;$
- \mathcal{G}_{0} of type $F_{4}, \mathcal{G}_{-1}=V\left(\omega_{3}\right), \alpha=\alpha_{1}+\alpha_{2}$;
- \mathcal{G}_{0} of type $F_{4}, \mathcal{G}_{-1}=V\left(\omega_{4}\right)$;
- \mathcal{G}_{0} of type $G_{2}, \mathcal{G}_{-1}=V\left(2 \omega_{1}\right)$;
- \mathcal{G}_{0} of type $G_{2}, \mathcal{G}_{-1}=V\left(\omega_{1}\right)$ (simplest representation).

Proposition 2.8 allows us to rule out the cases summarized in Table 1, where we describe the irreducible modules \mathcal{G}_{-1} and \mathcal{G}_{1} through their highest weights and indicate the positive root β used in Proposition 2.8.

On the other hand, Corollary 1.17 allows us to rule out the cases summarized in Table 2, where the vectors x and y used in Corollary 1.17 are indicated, and where the columns denoted by \mathcal{G}_{-1} and \mathcal{G}_{1} contain the highest weights of these \mathcal{G}_{0}-modules. In order to show that the vectors x and y in Table 2 are highest and lowest weight vectors in the \mathcal{G}_{0}-modules \mathcal{G}_{-2} and \mathcal{G}_{2} respectively, one can use the bitransitivity of \mathcal{G} and, where needed, Lemma 2.9.

For the remaining cases let us point out what follows: suppose that \mathcal{G}_{-2} contains a highest weight vector x of weight λ and that \mathcal{G}_{2} contains a lowest weight vector y of weight $-\lambda$ such that $[x, y] \neq 0$. Then the irreducible submodules $\overline{\mathcal{G}}_{-2}$ and $\overline{\mathcal{G}}_{2}$ generated respectively by x and y are dual \mathcal{G}_{0}-modules and the Lie subalgebra of $\mathcal{G}_{\overline{0}}$ with local part $\overline{\mathcal{G}}_{-2} \oplus \mathcal{G}_{0} \oplus \overline{\mathcal{G}}_{2}$ is an affine Kac-Moody algebra which will be denoted by \mathcal{A}.

Using the classification of affine Kac-Moody algebras we therefore exclude the cases in Table 3, where we indicate the highest weight vector x of \mathcal{G}_{-2}, the lowest weight vector y of \mathcal{G}_{2}, and the highest weights of the \mathcal{G}_{0}-modules \mathcal{G}_{-1} and \mathcal{G}_{1}.

In the same way the classification of affine Kac-Moody algebras shows that the following cases are allowed:

1) \mathcal{G}_{0} of type $A_{3}, \mathcal{G}_{-1}=V\left(\omega_{1}+\omega_{3}\right), \mathcal{G}_{1}=V\left(2 \omega_{2}\right), \alpha=\alpha_{2}$: under these hypotheses \mathcal{G}_{-2} contains the highest weight vector $x=\left[\left[F_{\Lambda}, e_{-\alpha_{1}}\right],\left[e_{-\alpha_{3}}, F_{\Lambda}\right]\right]$ and \mathcal{G}_{2} contains the lowest weight vector $y=\left[\left[E_{M}, e_{\alpha_{1}+\alpha_{2}}\right],\left[e_{\alpha_{2}+\alpha_{3}}, E_{M}\right]\right]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{5}^{(2)}$.
2) \mathcal{G}_{0} of type $B_{n}(n \geq 3), \mathcal{G}_{-1}=V\left(\omega_{2}\right), \mathcal{G}_{1}=V\left(2 \omega_{1}\right), \alpha=\alpha_{1}: \mathcal{G}_{-2}$ contains the highest weight vector $x=\left[\left[F_{\Lambda}, e_{-\alpha_{2}}\right],\left[e_{-\alpha_{2}-2 \alpha_{3}-\ldots-2 \alpha_{n}}, F_{\Lambda}\right]\right]$ and \mathcal{G}_{2} contains the lowest weight vector $y=\left[\left[E_{M}, e_{\alpha_{1}+\alpha_{2}}\right],\left[e_{\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\cdots+2 \alpha_{n}}, E_{M}\right]\right]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{2 n}^{(2)}$.
3) \mathcal{G}_{0} of type $B_{2}, \mathcal{G}_{-1}=V\left(2 \omega_{2}\right)$, $\mathcal{G}_{1}=V\left(2 \omega_{1}\right), \alpha=\alpha_{1}$: \mathcal{G}_{-2} contains the highest weight vector $x=\left[\left[F_{\Lambda}, e_{-\alpha_{2}}\right],\left[e_{-\alpha_{2}}, F_{\Lambda}\right]\right]$ and \mathcal{G}_{2} contains the lowest weight vector $y=\left[\left[E_{M}, e_{\alpha_{1}+2 \alpha_{2}}\right],\left[e_{\alpha_{1}}, E_{M}\right]\right]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{4}^{(2)}$.
4) \mathcal{G}_{0} of type $C_{n}(n \geq 3), \mathcal{G}_{-1}=V\left(\omega_{2}\right), \mathcal{G}_{1}=V\left(2 \omega_{1}\right), \alpha=\alpha_{1}: \mathcal{G}_{-2}$ contains the highest weight vector $x=\left[\left[F_{\Lambda}, e_{-\alpha_{2}-\cdots-\alpha_{n}}\right],\left[e_{-\alpha_{1}-\cdots-\alpha_{n-1}}, F_{\Lambda}\right]\right]$ and \mathcal{G}_{2} contains the lowest weight vector $y=\left[\left[E_{M}, e_{\alpha_{1}}\right],\left[e_{2 \alpha_{1}+\cdots+2 \alpha_{n-1}+\alpha_{n}}, E_{M}\right]\right]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{2 n-1}^{(2)}$.
5) \mathcal{G}_{0} of type $D_{n}(n \geq 4), \mathcal{G}_{-1}=V\left(\omega_{2}\right), \mathcal{G}_{1}=V\left(2 \omega_{1}\right), \alpha=\alpha_{1}$: in this case $x=$ $\left[\left[F_{\Lambda}, e_{-\alpha_{2}}\right],\left[e_{-\alpha_{2}-2 \alpha_{3}-\cdots-2 \alpha_{n-2}-\alpha_{n-1}-\alpha_{n}}, F_{\Lambda}\right]\right]$ and $y=\left[\left[E_{M}, e_{\alpha_{1}+\alpha_{2}}\right],\left[e_{\alpha_{1}+\alpha_{2}+}\right.\right.$ $\left.\left.2 \alpha_{3}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}, E_{M}\right]\right]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{2 n-1}^{(2)}$.
Table 1

$\mathcal{G} 0$	\mathcal{G}_{-1}	\mathcal{G}_{1}	α	β	
B_{n}	ω_{i}	$\omega_{1}+\omega_{i-1}$	$\alpha_{1}+\cdots+\alpha_{i-1}$	$\alpha_{i-1}+2 \alpha_{i}+\cdots+2 \alpha_{n}$	$3 \leq i \leq n-1$
B_{n}	$2 \omega_{n}$	$\omega_{1}+\omega_{n-1}$	$\alpha_{1}+\cdots+\alpha_{n-1}$	$\alpha_{n-1}+2 \alpha_{n}$	$n>2$
C_{n}	ω_{i}	$\omega_{1}+\omega_{i-1}$	$\alpha_{1}+\cdots+\alpha_{i-1}$	$\alpha_{i-1}+2 \alpha_{i}+\cdots+2 \alpha_{n-1}+\alpha_{n}$	$3 \leq i \leq n-1$
D_{n}	ω_{i}	$\omega_{1}+\omega_{i-1}$	$\alpha_{1}+\cdots+\alpha_{i-1}$	$\alpha_{i-1}+2 \alpha_{i}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$	$3 \leq i \leq n-2$
E_{6}	ω_{3}	$\omega_{1}+\omega_{2}$	$\alpha_{2}+\alpha_{4}+\alpha_{5}+\alpha_{6}$	$\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}$	
E_{6}	ω_{5}	$\omega_{2}+\omega_{6}$	$\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$	
E_{6}	ω_{4}	$\omega_{5}+\omega_{6}$	$\alpha_{1}+\alpha_{3}$	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+\alpha_{5}$	
E_{6}	ω_{4}	$2 \omega_{2}$	α_{2}	$\alpha_{1}+\alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$	
E_{7}	ω_{3}	$2 \omega_{1}$	α_{1}	$\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7}$	
E_{7}	ω_{3}	$\omega_{2}+\omega_{7}$	$\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7}$	$\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}$	
E_{7}	ω_{2}	$\omega_{1}+\omega_{7}$	$\alpha_{1}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7}$	$\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$	
E_{7}	ω_{4}	$\omega_{1}+\omega_{3}$	$\alpha_{1}+\alpha_{3}$	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+\alpha_{5}$	
E_{7}	ω_{4}	$2 \omega_{2}$	α_{2}	$\alpha_{1}+\alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$	
E_{7}	ω_{4}	$\omega_{5}+\omega_{7}$	$\alpha_{5}+\alpha_{6}+\alpha_{7}$	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+\alpha_{5}$	
E_{7}	ω_{5}	$\omega_{1}+\omega_{2}$	$\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$	
E_{7}	ω_{5}	$\omega_{6}+\omega_{7}$	$\alpha_{6}+\alpha_{7}$	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$	
E_{7}	ω_{6}	ω_{3}	$\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}$	$\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+\alpha_{7}$	
E_{8}	ω_{1}	ω_{7}	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+2 \alpha_{7}+\alpha_{8}$	$2 \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7}+\alpha_{8}$	
E_{8}	ω_{3}	$\omega_{2}+\omega_{8}$	$\alpha_{2}+\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7}+\alpha_{8}$	$\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}$	
E_{8}	ω_{2}	$\omega_{1}+\omega_{8}$	$\alpha_{1}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7}+\alpha_{8}$	$\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$	
E_{8}	ω_{k}	$\omega_{k+1}+\omega_{8}$	$\alpha_{k+1}+\cdots+\alpha_{8}$	$\alpha_{2}+\alpha_{3}+2 \alpha_{4}+\cdots+2 \alpha_{k}+\alpha_{k+1}$	$4 \leq k \leq 6$
E_{8}	ω_{7}	$2 \omega_{8}$	α_{8}	$2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+6 \alpha_{4}+5 \alpha_{5}+4 \alpha_{6}+3 \alpha_{7}+\alpha_{8}$	
F_{4}	ω_{2}	$2 \omega_{1}$	α_{1}	$\alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}$	
F_{4}	ω_{2}	$\omega_{3}+\omega_{4}$	$\alpha_{3}+\alpha_{4}$	$\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}$	
F_{4}	$2 \omega_{3}$	$\omega_{1}+\omega_{2}$	$\alpha_{1}+\alpha_{2}$	$\alpha_{2}+2 \alpha_{3}$	
F_{4}	ω_{3}	$2 \omega_{4}$	α_{4}	$\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\alpha_{4}$	
F_{4}	$2 \omega_{4}$	ω_{2}	$\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}$	$\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}$	
G_{2}	$3 \omega_{1}$	$2 \omega_{2}$	α_{2}	$3 \alpha_{1}+\alpha_{2}$	

TABLE 2

\mathcal{G}_{0}	\mathcal{G}_{-1}	\mathcal{G}_{1}	x	y	
A_{n}	ω_{s}	$\omega_{n-s+2}+\omega_{n}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{s}}\right],\left[e_{-\alpha_{s-1}-\alpha_{s}-\alpha_{s+1}}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{S}}\right],\left[e_{\alpha_{s-1}}, E_{M}\right]\right]$	$n \geq 5, s \neq 1,2, n$
A_{n}	ω_{s}	$\omega_{1}+\omega_{n-s}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{s}}\right],\left[e_{-\alpha_{s-1}-\alpha_{s}-\alpha_{s+1}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{s}}\right],\left[e_{\alpha_{s+1}}, E_{M}\right]\right]$	$n \geq 5, s \neq 1, n-1, n$
A_{n}	$\omega_{s}+\omega_{t}$	$\omega_{n-s}+\omega_{n-t+2}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{S}}\right],\left[e_{-\alpha_{t}}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{s}}\right],\left[e_{\alpha_{s+1}}, E_{M}\right]\right]$	$s \geq 1, s+2<t \leq n$
B_{n}	ω_{s}	ω_{s+2}	$\left[\left[F_{\Lambda}, e_{-\alpha_{s}}\right],\left[e_{-\alpha_{s-1}-\alpha_{s}-\alpha_{s+1}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{s}}\right],\left[e_{\alpha_{s+1}+\alpha_{s+2}}, E_{M}\right]\right]$	$2 \leq s \leq n-3$
B_{n}	ω_{n-2}	$2 \omega_{n}$	[[$\left.\left.F_{\Lambda}, e_{-\alpha_{n-2}}\right],\left[e_{-\alpha_{n-3}-\alpha_{n-2}-\alpha_{n-1}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{n-2}}\right],\left[e_{\alpha_{n-1}+\alpha_{n}}, E_{M}\right]\right]$	
B_{n}	ω_{n-1}	$2 \omega_{n}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{n-1}}\right],\left[e_{-\alpha_{n-2}-\alpha_{n-1}-\alpha_{n}}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha_{n}}\right],\left[e_{\alpha_{n-1}+2 \alpha_{n}}, E_{M}\right]\right]$	$n \geq 3$
C_{n}	$2 \omega_{i}$	$2 \omega_{i+1}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{i}}\right],\left[e_{-\alpha_{i}}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{i}}\right],\left[e_{\alpha_{i+1}}, E_{M}\right]\right]$	$1 \leq i \leq n-2$
C_{n}	ω_{n}	$\omega_{1}+\omega_{n-1}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{n-1}-\alpha_{n}}\right],\left[e_{-\alpha_{n-1}-\alpha_{n}}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{n}}\right],\left[e_{\alpha_{n-1}}, E_{M}\right]\right]$	
D_{n}	ω_{i}	ω_{i+2}	[$\left.\left[F_{\Lambda}, e_{-\alpha_{i}}\right],\left[e_{-\alpha_{i-1}-\alpha_{i}-\alpha_{i+1}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{i}}\right],\left[e_{\alpha_{i+1}+\alpha_{i+2}}, E_{M}\right]\right]$	$2 \leq i \leq n-4$
D_{n}	ω_{n-3}	$\omega_{n-1}+\omega_{n}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{n-3}}\right],\left[e_{-\alpha_{n-4}-\alpha_{n-3}-\alpha_{n-2}}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{n-3}}\right],\left[e_{\alpha_{n-2}+\alpha_{n-1}}, E_{M}\right]\right]$	
D_{n}	ω_{n}	$\omega_{1}+\omega_{n}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{n}}\right],\left[e_{-\alpha_{n-3}-2 \alpha_{n-2}-\alpha_{n-1}-\alpha_{n}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{n}}\right],\left[e_{\alpha_{n-2}+\alpha_{n-1}}, E_{M}\right]\right]$	$n>4$
D_{n}	ω_{n-1}	$\omega_{1}+\omega_{n-1}$	[$\left[F_{\Lambda}, e_{-\alpha_{n-1}}\right],\left[e_{\left.\left.-\alpha_{n-3}-2 \alpha_{n-2}-\alpha_{n-1}-\alpha_{n}, F_{\Lambda}\right]\right]}\right.$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{n-1}}\right],\left[e_{\alpha_{n-2}+\alpha_{n}}, E_{M}\right]\right]$	$n>4$
E_{6}	ω_{1}	ω_{3}	$\left.\left[\left[F_{\Lambda}, e_{-\alpha_{1}}\right],\left[e_{-\left(\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}\right)}\right], F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{1}}\right],\left[e_{\alpha_{3}+\alpha_{4}+\alpha_{5}}, E_{M}\right]\right]$	
E_{6}	ω_{6}	ω_{5}	$\left[\left[F_{\Lambda}, e_{-\alpha_{6}}\right],\left[e_{-\left(\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}\right)}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{6}}\right],\left[e_{\alpha_{3}+\alpha_{4}+\alpha_{5}}, E_{M}\right]\right]$	
E_{6}	ω_{2}	$\omega_{1}+\omega_{6}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{2}}\right],\left[e_{-\left(\alpha_{2}+\alpha_{3}+2 \alpha_{4}+\alpha_{5}\right)}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{2}}\right],\left[e_{\alpha_{4}+\alpha_{5}+\alpha_{6}}, E_{M}\right]\right]$	
E_{7}	ω_{1}	ω_{6}	$\left[\left[F_{\Lambda}, e_{-\alpha_{1}}\right],\left[e_{-\left(\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}\right)}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{1}}\right],\left[e_{\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}}, E_{M}\right]\right]$	
E_{7}	ω_{7}	ω_{2}	$\left[\left[F_{\Lambda}, e_{-\alpha_{7}}\right],\left[e_{-\gamma}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{7}}\right],\left[e_{\alpha_{2}+\alpha_{4}+\alpha_{5}+\alpha_{6}}, E_{M}\right]\right]$	$\gamma=\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+\alpha_{7}$
E_{8}	ω_{8}	ω_{1}	[$\left.\left[F_{\Lambda}, e_{-\alpha_{8}}\right],\left[e_{-\gamma}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{8}}\right],\left[e_{\alpha_{1}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7}}, E_{M}\right]\right.$	$\gamma=\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+2 \alpha_{7}+\alpha_{8}$
E_{8}	ω_{7}	ω_{2}	[$\left.\left[F_{\Lambda}, e_{-\alpha_{7}}\right],\left[e_{-\gamma}, F_{\Lambda}\right]\right]$	[$\left.\left[E_{M}, e_{\alpha+\alpha_{7}}\right],\left[e_{\alpha_{2}+\alpha_{4}+\alpha_{5}+\alpha_{6}}, E_{M}\right]\right]$	$\gamma=\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+\alpha_{7}$
F_{4}	ω_{1}	$2 \omega_{4}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{1}}\right],\left[e_{-\alpha_{1}-2 \alpha_{2}-2 \alpha_{3}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{1}}\right],\left[e_{\alpha_{2}+\alpha_{3}+\alpha_{4}}, E_{M}\right]\right]$	
G_{2}	Ad	$2 \omega_{1}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{1}-\alpha_{2}}\right],\left[e_{-\alpha_{1}-\alpha_{2}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{2 \alpha_{1}+\alpha_{2}}\right],\left[e_{\alpha_{1}}, E_{M}\right]\right]$	

Table 3

\mathcal{G}_{0}	\mathcal{G}_{-1}	\mathcal{G}_{1}	x	y
$\begin{gathered} A_{n} \\ (n \geq 4) \end{gathered}$	$\begin{gathered} \omega_{s}+\omega_{s+2} \\ (1 \leq s \leq n-2) \end{gathered}$	$2 \omega_{n-s}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{S}}\right],\left[e_{-\alpha_{s+2}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha+\alpha_{s}}\right],\left[e_{\alpha_{s+1}+\alpha_{s+2}}, E_{M}\right]\right]$
$\begin{gathered} C_{n} \\ (n \geq 3) \end{gathered}$	$2 \omega_{n-1}$	$2 \omega_{n}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{n-1}}\right],\left[e_{-\alpha_{n-1}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha_{n-1}+\alpha_{n}}\right],\left[e_{\alpha_{n-1}+\alpha_{n}}, E_{M}\right]\right]$
$\begin{gathered} D_{n} \\ (n>4) \end{gathered}$	ω_{n-2}	$2 \omega_{n}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{n-3}-\alpha_{n-2}-\alpha_{n}}\right],\left[e_{-\alpha_{n-2}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha_{n-3}+\alpha_{n-2}+\alpha_{n-1}}\right],\left[e_{\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}, E_{M}\right]\right]$
$\begin{gathered} D_{n} \\ (n>4) \end{gathered}$	ω_{n-2}	$2 \omega_{n-1}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{n-3}-\alpha_{n-2}-\alpha_{n-1}}\right],\left[e_{-\alpha_{n-2}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha_{n-3}+\alpha_{n-2}+\alpha_{n}}\right],\left[e_{\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}}, E_{M}\right]\right]$
E_{6}	ω_{3}	$2 \omega_{6}$	[$\left.\left[F_{\Lambda}, e_{-\alpha_{3}}\right],\left[e_{-\alpha_{2}-\alpha_{3}-2 \alpha_{4}-\alpha_{5}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha_{1}}\right],\left[e_{\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}}, E_{M}\right]\right]$
E_{6}	ω_{5}	$2 \omega_{1}$	[[$\left.\left.F_{\Lambda}, e_{-\alpha_{5}}\right],\left[e_{-\alpha_{2}-\alpha_{3}-2 \alpha_{4}-\alpha_{5}}, F_{\Lambda}\right]\right]$	$\left[\left[E_{M}, e_{\alpha_{6}}\right],\left[e_{\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6}}, E_{M}\right]\right]$
E_{7}	ω_{6}	$2 \omega_{7}$	$\left[\left[F_{\Lambda}, e_{-\alpha_{6}}\right],\left[e_{-\alpha_{2}-\alpha_{3}-2 \alpha_{4}-2 \alpha_{5}-\alpha_{6}}, F_{\Lambda}\right]\right]$	[[E $\left.E_{M}, e_{\alpha_{7}}\right],\left[e_{\left.\left.\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+\alpha_{7}, E_{M}\right]\right]}\right.$

We finally analyze and rule out the remaining cases:

- \mathcal{G}_{0} of type $A_{n}, \mathcal{G}_{-1}=V\left(\omega_{s}\right)$:
(i) if $s=1$ (or, equivalently, $s=n$) then $\mathcal{G}_{1}=V\left(\omega_{1}+\omega_{n-1}\right)$ and $\mathcal{G}_{-2} \subset$ $S^{2} \mathcal{G}_{-1}=S^{2} V\left(\omega_{1}\right)=0$ since $S^{2} V\left(\omega_{1}\right)=V\left(2 \omega_{1}\right)$ and $\left[F_{\Lambda}, F_{\Lambda}\right]=0$, therefore \mathcal{G} has finite depth;
(ii) if $s=2, \mathcal{G}_{1}=V\left(2 \omega_{n}\right), \alpha=\alpha_{1}$, (or, equivalently, $s=n-1, \mathcal{G}_{1}=$ $\left.V\left(2 \omega_{1}\right), \alpha=\alpha_{n}\right)$ then \mathcal{G} is isomorphic to the finite-dimensional Lie superalgebra $p(n)$ (for the definition of $p(n)$ see [K2]);
(iii) if $n=4$ and $s=3$, i.e. $\mathcal{G}_{-1} \cong \Lambda^{2} s l_{5}^{*}, \mathcal{G}_{1}=V\left(\omega_{3}+\omega_{4}\right), \alpha=\alpha_{1}+\alpha_{2}$ (or, equivalently, $\mathcal{G}_{-1}=V\left(\omega_{2}\right), \mathcal{G}_{1}=V\left(\omega_{1}+\omega_{2}\right), \alpha=\alpha_{3}+\alpha_{4}$), then \mathcal{G} is isomorphic to the infinite-dimensional Lie superalgebra $E(5,10)$ (for the definition of $E(5,10)$ see [K3]).
- \mathcal{G}_{0} of type $B_{n}(n \geq 2), \mathcal{G}_{-1}=V\left(\omega_{1}\right)$ and:
(i) $\mathcal{G}_{1}=V\left(\omega_{3}\right)$ if $n>3\left(\alpha=\alpha_{2}+2 \alpha_{3}+\cdots+2 \alpha_{n}\right)$,
(ii) $\mathcal{G}_{1}=V\left(2 \omega_{3}\right)$ if $n=3\left(\alpha=\alpha_{2}+2 \alpha_{3}\right)$,
(iii) $\mathcal{G}_{1}=V\left(\omega_{2}\right)$ if $n=2\left(\alpha=\alpha_{2}\right)$.

For all these cases $\mathcal{G}_{-2} \subset S^{2} \mathcal{G}_{-1}=S^{2} V\left(\omega_{1}\right)=V\left(2 \omega_{1}\right)+1=1$ since $\left[F_{\Lambda}, F_{\Lambda}\right]=0$. Thus \mathcal{G} has finite depth.

- \mathcal{G}_{0} of type $D_{n}(n \geq 4)$:
(i) $\mathcal{G}_{-1}=V\left(\omega_{1}\right), \mathcal{G}_{1}=V\left(\omega_{1}+\omega_{3}\right)$, then $\mathcal{G}_{-2} \subset S^{2} \mathcal{G}_{-1}=S^{2} V\left(\omega_{1}\right)=$ $V\left(2 \omega_{1}\right)+1=1$ hence \mathcal{G} has finite depth.
(ii) $n=4, \mathcal{G}_{-1}=V\left(\omega_{4}\right), \mathcal{G}_{1}=V\left(\omega_{1}+\omega_{4}\right)\left(\alpha=\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$ (or, equivalently, $\left.\mathcal{G}_{-1}=V\left(\omega_{3}\right), \mathcal{G}_{1}=V\left(\omega_{1}+\omega_{3}\right)\right)$, then we can use the same argument as in (i) and conclude.

2.2. - Case $(\Lambda, \alpha) \neq 0$

In the following we assume $(\Lambda, \alpha) \neq 0$.
Remark 2.11. Under the hypothesis $(\Lambda, \alpha) \neq 0$ the vector $\left[F_{\Lambda}, F_{\Lambda}\right]$ is different from 0: $\left[E_{M},\left[F_{\Lambda}, F_{\Lambda}\right]\right]=2\left[e_{-\alpha}, F_{\Lambda}\right] \neq 0$.
Nevertheless, $\left[E_{M}, E_{M}\right]=0$ and therefore $\left[\left[E_{M}, e_{\beta}\right], E_{M}\right]=0$ for every positive root β (see Lemma 2.2).

Corollary 2.12. If $(\Lambda, \alpha) \neq 0$ then either $(\Lambda, \alpha)=(\alpha, \alpha)$ or $(\Lambda, \alpha)=$ $(\alpha, \alpha) / 2$.

Proof. It is enough to apply Lemma 1.14 to the following vectors:

$$
x_{\lambda}=F_{\Lambda}, \quad x_{\mu}=E_{M}
$$

Lemma 2.13. Suppose that α is not simple. Then there exists j such that: $\alpha-\alpha_{j}$ is a root and $\alpha+\alpha_{j}, 2 \alpha-\alpha_{j}, \alpha-2 \alpha_{j}$ are not roots, in all cases except those in the following list:

- \mathcal{G}_{0} of type B_{n} and $\alpha=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{n}$, $\alpha=\alpha_{n-1}+2 \alpha_{n}$;
- \mathcal{G}_{0} of type C_{n} and $\alpha=2 \alpha_{i}+\cdots+2 \alpha_{n-1}+\alpha_{n}, \alpha=\alpha_{n-1}+\alpha_{n}$;
- \mathcal{G}_{0} of type F_{4} and $\alpha=\alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha=\alpha_{2}+\alpha_{3}, \alpha=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}$, $\alpha=\alpha_{2}+2 \alpha_{3}, \alpha=\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}, \alpha=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}$;
- \mathcal{G}_{0} of type G_{2} and $\alpha=2 \alpha_{1}+\alpha_{2}, \alpha=\alpha_{1}+\alpha_{2}, \alpha=3 \alpha_{1}+\alpha_{2}$.

Proof. Case by case check.
Lemma 2.14. Let α be a positive root of \mathcal{G}_{0} and suppose that it is not simple. If α_{j} is a simple root of \mathcal{G}_{0} such that $\alpha-\alpha_{j}$ is a root and $\alpha+\alpha_{j}, 2 \alpha-\alpha_{j}, \alpha-2 \alpha_{j}$ are not roots, then either

$$
\tilde{x}:=\left[\left[\left[E_{M}, e_{\alpha_{j}}\right], e_{\alpha-\alpha_{j}}\right], E_{M}\right]
$$

is a lowest weight vector in \mathcal{G}_{-2} or $\tilde{x}=0$ and

$$
x:=\left[\left[\left[E_{M}, e_{\alpha_{j}}\right], e_{\alpha}\right], E_{M}\right]
$$

is a lowest weight vector in \mathcal{G}_{-2}.
Proof. If $\tilde{x} \neq 0$ then, using the transitivity of \mathcal{G}, one can show that it is a lowest weight vector in \mathcal{G}_{-2}. If $\tilde{x}=0$ then $\left[x, e_{-k}\right]=0$ for every $k=1, \ldots, n$.

Proposition 2.15. If α is not a simple root and the growth of \mathcal{G} is finite then either $\left(\mathcal{G}_{0}, \alpha\right)$ belongs to the list in Lemma 2.13 or $\left(\mathcal{G}_{0}, \alpha\right)=\left(A_{n}\right.$, longest root $)$ and $\tilde{x}:=\left[\left[\left[E_{M}, e_{\alpha_{j}}\right], e_{\alpha-\alpha_{j}}\right], E_{M}\right] \neq 0$.

Proof. Suppose that $\left(\mathcal{G}_{0}, \alpha\right)$ is not in the list in Lemma 2.13. Since α is not a simple root we can apply Lemma 2.14: in the case $\tilde{x}=0$ we take $y=\left[F_{\Lambda}, F_{\Lambda}\right]$. Then $[x, y]=2 \Lambda\left(h_{\alpha}\right) e_{-\alpha+\alpha_{j}} \neq 0$, and, by Theorem 1.16, we get infinite growth.

If $\tilde{x}:=\left[\left[\left[E_{M}, e_{\alpha_{j}}\right], e_{\alpha-\alpha_{j}}\right], E_{M}\right] \neq 0$ then, by bitransitivity, $\left[\tilde{x}, F_{\Lambda}\right]=$ $\left(\Lambda\left(h_{\alpha}\right)-2 \Lambda\left(h_{j}\right)\right) E_{M} \neq 0$, thus $[\tilde{x}, y]=\left(\Lambda\left(h_{\alpha}\right)-2 \Lambda\left(h_{j}\right)\right) e_{-\alpha}$ is different from zero. Then the thesis follows from Theorem 1.16. (Notice that the case \mathcal{G}_{0} of type C_{n}, α its longest root, is in the list of Lemma 2.13 and is therefore excluded by the hypotheses.)

Lemma 2.16. If the growth of \mathcal{G} is finite and β is a positive root such that $\alpha+\beta$ and $\alpha-\beta$ are not roots, then $(\Lambda, \beta)=0$.

Proof. Suppose $(\Lambda, \beta) \neq 0$. We define:

$$
\begin{aligned}
& E_{1}=\left[e_{\alpha}, E_{M}\right], \quad E_{2}=\left[\left[E_{M}, e_{\alpha}\right], e_{\beta}\right], \\
& F_{1}=F_{\Lambda}, \quad F_{2}=\Lambda\left(h_{\beta}\right)^{-1}\left[F_{\Lambda}, e_{-\beta}\right], \\
& H=h_{\alpha} .
\end{aligned}
$$

It is easy to verify that the conditions of Lemma 1.13 are satisfied with $a_{1}=$ $a_{2}=-\Lambda\left(h_{\alpha}\right)$, thus $r(\mathcal{G})=\infty$.

Theorem 2.17. Let $\mathcal{G}=\oplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ be a \mathbb{Z}-graded, consistent, simple, irreducible Lie superalgebra of finite growth. Assume that \mathcal{G}_{0} is a simple Lie algebra, that \mathcal{G}_{1} is an irreducible \mathcal{G}_{0}-module which is not contragredient to \mathcal{G}_{-1} and that the local part generates \mathcal{G}. Let F_{Λ} be a highest weight vector in \mathcal{G}_{-1} and E_{M} a lowest weight vector in \mathcal{G}_{1} so that $\Lambda+M=-\alpha$ for a positive root α. If $(\Lambda, \alpha) \neq 0$ then \mathcal{G}_{0} has rank 1.

Proof. By Proposition 2.15 and its proof only the following cases may occur:

- α is a simple root;
- $\left(\mathcal{G}_{0}, \alpha\right)=\left(A_{n}\right.$, longest root $)$;
- $\left(\mathcal{G}_{0}, \alpha\right)$ is in the list of Lemma 2.13.

Let us analyze these possibilities case by case:

1) \mathcal{G}_{0} of type $A_{n}, \alpha=\alpha_{1}+\cdots+\alpha_{n}$. If $n=1$ we get the thesis. Now suppose $n \geq 2$. The proof of Proposition 2.15 shows that this possibility holds if

$$
\tilde{x}=\left[\left[\left[E_{M}, e_{j}\right], e_{\alpha-\alpha_{j}}\right], E_{M}\right]
$$

is a nonzero vector, thus either $j=1$ or $j=n$. If we apply Lemma 2.16 to $\alpha=\alpha_{1}+\cdots+\alpha_{n}$ and $\beta=\alpha_{2}+\cdots+\alpha_{n-1}$ we deduce that $\left(\Lambda, \alpha_{i}\right)=0$ for every $i=2, \ldots, n-1$, therefore $(\Lambda, \alpha)=\left(\Lambda, \alpha_{1}\right)+\left(\Lambda, \alpha_{n}\right)$.
As we already noticed in the proof of Proposition 2.15, for every $k=$ $1, \ldots, n,\left[\tilde{x}, e_{-k}\right]=0$ thus, since we assume $\tilde{x} \neq 0$, transitivity implies $\left[\tilde{x}, F_{\Lambda}\right] \neq 0$. Since $\left[\tilde{x}, F_{\Lambda}\right]=\left(\Lambda\left(h_{\alpha}\right)-2 \Lambda\left(h_{j}\right)\right) E_{M}$, it turns out that $\Lambda\left(h_{1}\right) \neq \Lambda\left(h_{n}\right)$. Corollary 2.12 now implies that either $\left(\Lambda, \alpha_{1}\right)=0$ or $\left(\Lambda, \alpha_{n}\right)=0$. But this hypothesis contradicts Theorem 1.16, since if we take the highest weight vector $y=\left[F_{\Lambda}, F_{\Lambda}\right]$ in \mathcal{G}_{-2}, then $[\tilde{x}, y] \neq 0$ but the irreducible submodule of \mathcal{G}_{-2} generated by $\left[F_{\Lambda}, F_{\Lambda}\right]$ is not the standard A_{n}-module.
2) \mathcal{G}_{0} of type A_{n}, α simple, $n \geq 2$.

2a) $n \geq 3, \alpha=\alpha_{j}$ with $j \neq 1, n$
If we apply Lemma 2.16 with $\alpha=\alpha_{j}$ and $\beta=\alpha_{j-1}+\alpha_{j}+\alpha_{j+1}$ we find a contradiction.
2b) $\alpha=\alpha_{1}$ (or, equivalently, $\alpha=\alpha_{n}$).
Again, by applying Lemma 2.16 with $\beta=\alpha_{3}+\cdots+\alpha_{n}$, we find $\left(\Lambda, \alpha_{i}\right)=0$ for every $i \geq 3$. On the other hand, $\left(\Lambda, \alpha_{2}\right) \neq 0$ since $\left[E_{M},\left[F_{\Lambda}, e_{-\alpha_{2}}\right]\right]=e_{-\alpha_{1}-\alpha_{2}} \neq 0$. We distinguish two cases:
Case 1: $\left(\Lambda, \alpha_{2}\right) \neq 1$
Under this hypothesis let us consider the following vectors:

$$
\begin{aligned}
x_{\mu} & =\left[\left[\left[E_{M}, e_{1}\right],\left[E_{M}, e_{2}\right]\right],\left[E_{M}, e_{1}\right]\right], \\
x_{\lambda} & =\Lambda\left(h_{1}\right)^{-1}\left(1-\Lambda\left(h_{2}\right)\right)^{-1}\left(3+\Lambda\left(h_{1}\right)\right)^{-1}\left[F_{\Lambda},\left[F_{\Lambda},\left[F_{\Lambda}, e_{-2}\right]\right]\right] .
\end{aligned}
$$

Then x_{λ} and x_{μ} satisfy the hypotheses of Lemma 1.14 with $\delta=\alpha_{1}$. Since $\left(3 \Lambda-\alpha_{2}, \alpha_{1}\right)=3\left(\Lambda, \alpha_{1}\right)+1 \geq 4$ we find a contradiction.

CASE 2: $\left(\Lambda, \alpha_{2}\right)=1$
By Corollary 2.12, either $\Lambda\left(h_{1}\right)=1$ or $\Lambda\left(h_{1}\right)=2$. Notice that $x:=$ $\left[F_{\Lambda}, F_{\Lambda}\right]$ is a highest weight vector in \mathcal{G}_{-2} and $y:=\left[\left[E_{M}, e_{1}\right],\left[E_{M}, e_{1}\right]\right]$ is a lowest weight vector in \mathcal{G}_{2}. Since $[x, y]=-4 \Lambda\left(h_{1}\right) h_{1}, \mathcal{G}_{\overline{0}}$ contains a \mathbb{Z}-graded Lie subalgebra with local part $s_{-2} \oplus \mathcal{G}_{0} \oplus s_{2}$, where s_{-2} is the irreducible submodule of \mathcal{G}_{-2} generated by x and s_{2} is the irreducible submodule of \mathcal{G}_{2} generated by y. The classification of Kac-Moody Lie algebras immediately allows us to rule out the case $\Lambda\left(h_{1}\right)=2$ and the case $\Lambda\left(h_{1}\right)=1, n>2$.
Now suppose $n=2, \Lambda\left(h_{1}\right)=1=\Lambda\left(h_{2}\right)$. Under these hypotheses \mathcal{G}_{-2} contains the highest weight vector

$$
\begin{aligned}
z:= & -4\left[\left[F_{\Lambda}, e_{-\alpha_{1}-\alpha_{2}}\right], F_{\Lambda}\right]+5\left[\left[\left[F_{\Lambda}, e_{-\alpha_{1}}\right], e_{-\alpha_{2}}\right], F_{\Lambda}\right] \\
& -3\left[\left[\left[F_{\Lambda}, e_{-\alpha_{2}}\right], F_{\Lambda}\right], e_{-\alpha_{1}}\right]
\end{aligned}
$$

of weight Λ. Besides, $[z, y]=-24 e_{-\alpha_{1}-\alpha_{2}}$ and this contradicts Theorem 1.16 since the irreducible \mathcal{G}_{0}-submodule of \mathcal{G}_{-2} containing z is the adjoint module and not the standard one.
3) \mathcal{G}_{0} of type $B_{n}(n \geq 2), \alpha=\alpha_{i}+\cdots+\alpha_{n}(1 \leq i \leq n-1)$.

3a) If $i>1$ take $\beta=\alpha_{i-1}+\alpha_{i}+2 \alpha_{i+1}+\cdots+2 \alpha_{n}$, then $\alpha+\beta$ and $\alpha-\beta$ are not roots and, by Lemma 2.16, $(\Lambda, \beta)=0$, i.e. $\left(\Lambda, \alpha_{j}\right)=0$ for every $j \geq i-1$ which contradicts the hypothesis $(\Lambda, \alpha) \neq 0$.
3b) If $i=1$ and $n \geq 3$ take $\beta=\alpha_{2}+\cdots+2 \alpha_{n}$. Then, by Lemma 2.16, $\left(\Lambda, \alpha_{i}\right)=0$ for every $i \neq 1$. This implies the following contradiction:

$$
0=\left[E_{M},\left[F_{\Lambda}, e_{-\alpha_{n}}\right]\right]=\left[e_{-\alpha}, e_{-\alpha_{n}}\right] \neq 0
$$

3c) Let $i=1$ and $n=2$, i.e. $\alpha=\alpha_{1}+\alpha_{2}$.
If $\left(\Lambda, \alpha_{2}\right)=0$, as above we have:

$$
0=\left[E_{M},\left[F_{\Lambda}, e_{-\alpha_{2}}\right]\right]=\left[e_{-\alpha}, e_{-\alpha_{2}}\right] \neq 0
$$

Thus suppose $\left(\Lambda, \alpha_{2}\right) \neq 0$. Since α and α_{2} have both length 1 , Corollary 2.12 implies $\left(\Lambda, \alpha_{1}\right)=0$ and either $\Lambda\left(h_{2}\right)=1$ or $\Lambda\left(h_{2}\right)=2$. Notice that \mathcal{G}_{-2} contains the highest weight vector $x:=\left[F_{\Lambda}, F_{\Lambda}\right]$. Now, if $\Lambda\left(h_{2}\right)=1$ then \mathcal{G}_{2} contains the lowest weight vector $y:=$ $\left[\left[E_{M}, e_{\alpha_{1}}\right],\left[E_{M}, e_{\alpha_{2}}\right]\right]$ and $[x, y]=2 e_{-\alpha}$ thus \mathcal{G}_{0} has infinite growth according to Theorem 1.16.
If $\Lambda\left(h_{2}\right)=2$, by bitransitivity, then $y=0$ and the vector

$$
z:=\left[\left[E_{M}, e_{\alpha_{1}+\alpha_{2}}\right],\left[E_{M}, e_{\alpha_{2}}\right]\right]
$$

is a lowest weight vector in \mathcal{G}_{2}. Again, since $[x, z]=-8 e_{-\alpha_{1}}$, this contradicts Theorem 1.16.
4) \mathcal{G}_{0} of type B_{n}, α simple.

4a) If $\alpha=\alpha_{i}$ with $i \neq 1, n$, we proceed as for A_{n}.
4b) If $\alpha=\alpha_{1}$ we take $\beta=\alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{n}$ and apply Lemma 2.16.
4c) If $\alpha=\alpha_{n}$ and $n \geq 3$ we take $\beta=\alpha_{n-2}+2 \alpha_{n-1}+2 \alpha_{n}$. Then Lemma 2.16 holds and we get a contradiction.

4d) $n=2, \alpha=\alpha_{2}$. In this case relation $\left[E_{M},\left[F_{\Lambda}, e_{-\alpha_{1}}\right]\right]=e_{-\alpha_{2}-\alpha_{1}}$ implies $\left(\Lambda, \alpha_{1}\right) \neq 0$. This possibility is therefore ruled out by the classification of Kac-Moody Lie algebras once we have noticed that since \mathcal{G}_{-2} contains the highest weight vector $x:=\left[F_{\Lambda}, F_{\Lambda}\right]$ and \mathcal{G}_{2} contains the lowest weight vector $y:=\left[\left[E_{M}, e_{\alpha_{2}}\right],\left[E_{M}, e_{\alpha_{2}}\right]\right]$, with $[x, y] \neq 0, \mathcal{G}_{\overline{0}}$ contains an affine Kac-Moody, \mathbb{Z}-graded Lie subalgebra with local part $s_{-2} \oplus \mathcal{G}_{0} \oplus s_{2}$, where s_{-2} is the \mathcal{G}_{0}-irreducible module with highest weight 2Λ and s_{2} is the \mathcal{G}_{0}-module contragredient to s_{-2}.
5) \mathcal{G}_{0} of type $B_{n}, \alpha=\alpha_{n-1}+2 \alpha_{n}$.

5a) If $n \geq 3$ take $\beta=\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$ and use Lemma 2.16.
5b) Let $n=2, \alpha=\alpha_{1}+2 \alpha_{2}$. If we take $\beta=\alpha_{1}$ then Lemma 2.16 implies $\left(\Lambda, \alpha_{1}\right)=0$ thus $\Lambda\left(h_{\alpha}\right)=\Lambda\left(h_{2}\right)$ is either 1 or 2 . One can easily verify, using the bitransitivity of \mathcal{G}, that the vector $z:=\left[\left[E_{M}, e_{\alpha_{1}+\alpha_{2}}\right],\left[E_{M}, e_{\alpha_{2}}\right]\right]$ is equal to 0 , the vector $y:=\left[\left[E_{M}, e_{\alpha_{1}+2 \alpha_{2}}\right],\left[E_{M}, e_{\alpha_{2}}\right]\right]$ is a lowest weight vector in \mathcal{G}_{2} and, as in the previous cases, $x:=\left[F_{\Lambda}, F_{\Lambda}\right]$ is a highest weight vector in \mathcal{G}_{-2}. Since $[x, y]=24\left(\Lambda\left(h_{2}\right)+1\right) e_{-\alpha_{1}-\alpha_{2}}$ this contradicts Theorem 1.16.
6) \mathcal{G}_{0} of type $C_{n}(n \geq 3), \alpha=2 \alpha_{i}+\cdots+2 \alpha_{n-1}+\alpha_{n}(1 \leq i \leq n-1)$.

If $i \neq 1$ we apply Lemma 2.16 to $\beta=\alpha_{i-1}+\alpha_{i}+2 \alpha_{i+1}+\cdots+2 \alpha_{n-1}+\alpha_{n}$ and get a contradiction.
If $i=1$ take $\beta=2 \alpha_{2}+\cdots+2 \alpha_{n-1}+\alpha_{n}$. Then Lemma 2.16 implies $\left(\Lambda, \alpha_{i}\right)=0$ for every $i \geq 2$. Thus $(\Lambda, \alpha)=2\left(\Lambda, \alpha_{1}\right)$.
Consider the following vectors:

$$
\begin{aligned}
& x=\left[F_{\Lambda}, F_{\Lambda}\right] \\
& y=\left[\left[\left[E_{M}, e_{1}\right], e_{\alpha}\right], E_{M}\right] .
\end{aligned}
$$

Then x is a highest weight vector in \mathcal{G}_{-2} and y is a lowest weight vector in \mathcal{G}_{2}. Besides, $[x, y]=2 \Lambda\left(h_{\alpha}\right) e_{\alpha_{1}-\alpha}$. This contradicts Theorem 1.16 since $\alpha-\alpha_{1}$ is not the highest root of \mathcal{G}_{0}.
7) \mathcal{G}_{0} of type $C_{n}(n \geq 3), \alpha=\alpha_{n-1}+\alpha_{n}$.

If we take $\beta=2 \alpha_{n-2}+2 \alpha_{n-1}+\alpha_{n}$, by Lemma 2.16, we get a contradiction.
8) \mathcal{G}_{0} of type $C_{n}(n \geq 3), \alpha$ simple.

8a) If $\alpha=\alpha_{i}$ with $i \neq 1, n-1, n$ then we proceed as for A_{n}, case 2 a).
8b) If $\alpha=\alpha_{n-1}$, take $\beta=2 \alpha_{n-2}+2 \alpha_{n-1}+\alpha_{n}$ and apply Lemma 2.16.
8c) If $\alpha=\alpha_{1},\left[E_{M},\left[F_{\Lambda}, e_{-\alpha_{2}}\right]\right]=e_{-\alpha_{1}-\alpha_{2}}$ implies $\left(\Lambda, \alpha_{2}\right) \neq 0$. Thus we apply the same argument as in case 4 d$)$ with $x=\left[F_{\Lambda}, F_{\Lambda}\right]$ and $y=\left[\left[E_{M}, e_{\alpha_{1}}\right],\left[E_{M}, e_{\alpha_{1}}\right]\right]$.
8d) If $\alpha=\alpha_{n}$ we take $\beta=2 \alpha_{n-1}+\alpha_{n}$. By Lemma 2.16 we find a contradiction.
9) \mathcal{G}_{0} of type $D_{n}(n \geq 4), \alpha$ simple.

9a) If $\alpha=\alpha_{i}, i \neq 1, n-1, n$ we proceed as for A_{n}, case 2 a).
9b) If $\alpha=\alpha_{1}$ we apply Lemma 2.16 to $\beta=\alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{n-2}+$ $\alpha_{n-1}+\alpha_{n}$ and find a contradiction.
9c) If $\alpha=\alpha_{n}$ (or, equivalently, $\alpha=\alpha_{n-1}$) we apply Lemma 2.16 to $\beta=\alpha_{n-3}+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$.
10) \mathcal{G}_{0} of type E_{6}, α simple, $\alpha=\alpha_{i}$.

If $i \neq 1,2,6$ we proceed as for A_{n}, case 2 a).
Otherwise we apply Lemma 2.16 as follows:
if $i=1$ we take $\beta=\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}$;
if $i=6$ we take $\beta=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$;
if $i=2$ we take $\beta=\alpha_{2}+\alpha_{3}+2 \alpha_{4}+\alpha_{5}$.
11) \mathcal{G}_{0} of type E_{7} or E_{8}.

The situation is analogous to case 10).
12) \mathcal{G}_{0} of type F_{4} and α in the list.

We apply Lemma 2.16 with the following roots α and β :

- $\alpha=\alpha_{1}+\alpha_{2}+\alpha_{3}, \beta=\alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}$;
- $\alpha=\alpha_{2}+\alpha_{3}, \beta=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}$;
- $\alpha=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}, \beta=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}$;
- $\alpha=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}, \beta=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}$;
- $\alpha=\alpha_{2}+2 \alpha_{3}, \beta=\alpha_{2}+\alpha_{3}+\alpha_{4}$;
- $\alpha=\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}, \beta=\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}$.

13) \mathcal{G}_{0} of type F_{4}, α simple.

We apply Lemma 2.16 with the following roots α and β :

- $\alpha=\alpha_{1}, \beta=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}$;
- $\alpha=\alpha_{2}, \beta=\alpha_{1}+\alpha_{2}+\alpha_{3}$;
- $\alpha=\alpha_{3}, \beta=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}$;
- $\alpha=\alpha_{4}, \beta=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}$.

14) \mathcal{G}_{0} of type G_{2}, α in the list.

14a) $\alpha=2 \alpha_{1}+\alpha_{2}$
If we apply Lemma 2.16 with $\beta=\alpha_{2}$ we find $\left(\Lambda, \alpha_{2}\right)=0$ thus $(\Lambda, \alpha)=2\left(\Lambda, \alpha_{1}\right)$. Besides, Corollary 2.12 implies $\Lambda\left(h_{\alpha}\right)=2$, i.e. $\Lambda\left(h_{1}\right)=1$.
Consider the vector $x:=\left[\left[E_{M}, e_{\alpha}\right],\left[E_{M}, e_{\alpha_{1}}\right]\right]$. Then one can verify that x is a lowest weight vector. Now, if we take $y:=\left[F_{\Lambda}, F_{\Lambda}\right]$ in \mathcal{G}_{-2}, then $[x, y] \neq 0$ and this contradicts Theorem 1.16.
14b) $\alpha=\alpha_{1}+\alpha_{2}$
In this case we apply Lemma 2.16 with $\beta=3 \alpha_{1}+\alpha_{2}$ and find a contradiction.
14c) $\alpha=3 \alpha_{1}+\alpha_{2}$
We proceed as in 14b) with $\beta=\alpha_{1}+\alpha_{2}$.
15) \mathcal{G}_{0} of type G_{2}, α simple.

If $\alpha=\alpha_{1}$ apply Lemma 2.16 with $\beta=3 \alpha_{1}+2 \alpha_{2}$.
If $\alpha=\alpha_{2}$ apply Lemma 2.16 with $\beta=2 \alpha_{1}+\alpha_{2}$.

3. - The classification theorem

Let L be a finite-dimensional Lie superalgebra and let σ be an automorphism of L of finite order k. Then

$$
\begin{equation*}
L=\oplus_{i=0}^{k-1} L_{i} \tag{3}
\end{equation*}
$$

where $L_{i}=\left\{x \in L \mid \sigma(x)=\epsilon^{i} x\right\}, \epsilon=e^{2 \pi i / k}$. Notice that (3) is a mod-k gradation of L .

Consider the Lie superalgebra $\mathbf{C}\left[x, x^{-1}\right] \otimes L=\oplus_{i=-\infty}^{+\infty} x^{i} \otimes L$ and its subalgebra

$$
G^{k}(L, \sigma):=\oplus_{i=-\infty}^{+\infty} x^{i} \otimes L_{i(\bmod k)}
$$

called the covering superalgebra of L. Then $G^{k}(L, \sigma)$ is a \mathbb{Z}-graded Lie superalgebra of infinite depth and growth 1.

Example 1 (The Lie superalgebra $S_{1}(n)$). We recall that $\operatorname{sl}(m, n)$ is the Lie superalgebra of $(m+n) \times(m+n)$ matrices with supertrace equal to 0 , i.e., in suitable coordinates, the set of matrices $\left\{\left.\left(\begin{array}{c|c}a & b \\ \hline c & d\end{array}\right) \right\rvert\, \operatorname{tr}(a)=\operatorname{tr}(d)\right\}$.

Let $\tilde{Q}(n)(n \geq 2)$ be the subalgebra of $\operatorname{sl}(n+1, n+1)$ consisting of matrices of the form $\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$, where $\operatorname{tr}(b)=0$. Then $\tilde{Q}(n)$ has a one-dimensional centre $C=\left\langle I_{2 n+2}\right\rangle$ and we define $Q(n)=\tilde{Q}(n) / C$. Notice that $Q(n)$ has even part isomorphic to the Lie algebra of type A_{n} and odd part isomorphic to
$a d s l_{n+1}$ and has therefore dimension $2\left(n^{2}+2 n\right)$. We consider the following automorphism σ of $Q(n)$:

$$
\sigma\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)=\left(\begin{array}{cc}
-a^{t} & i b^{t} \\
i b^{t} & -a^{t}
\end{array}\right)
$$

Then σ has order 4 and $Q(n)=\oplus_{i=0}^{3} Q(n)_{i}$ where
$Q(n)_{0} \cong s o_{n+1}$,
$Q(n)_{1}=\left\{b \in s l_{n+1} \mid b=b^{t}\right\}$,
$Q(n)_{2}=\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a=a^{t}\right\} / C$,
$Q(n)_{3}=\left\{b \in s l_{n+1} \mid b=-b^{t}\right\}$.
Let us suppose $n \neq 3$ and denote by $S_{1}(n)$ the covering superalgebra $G^{4}(Q(n), \sigma)$. Notice that $Q(n)_{3}$ is isomorphic to the adjoint module of $s o_{n+1}$ and if $n>2$ then $Q(n)_{1}$ and $Q(n)_{2}$ are isomorphic, as $s o_{n+1}$-modules, to the highest weight module $V\left(2 \omega_{1}\right)$, while if $n=2 Q(n)_{1}$ and $Q(n)_{2}$ are $s l(2)$-irreducible modules of dimension 5 .

Example 2 (The Lie superalgebra $S_{2}(m)$). Suppose $m=2 n-1$ and consider the following automorphism τ of $Q(m)$:

$$
\tau\left(\begin{array}{cc|cc}
a & b & r & s \\
c & d & v & w \\
\hline r & s & a & b \\
v & w & c & d
\end{array}\right)=\left(\begin{array}{cc|cc}
-d^{t} & b^{t} & -i w^{t} & i s^{t} \\
c^{t} & -a^{t} & i v^{t} & -i r^{t} \\
\hline-i w^{t} & i s^{t} & -d^{t} & b^{t} \\
i v^{t} & -i r^{t} & c^{t} & -a^{t}
\end{array}\right)
$$

where a, b, c, d, r, s, v, w are $n \times n$-blocks and $\operatorname{tr}(r)+\operatorname{tr}(w)=0$.
Then $\tau^{4}=1$ and $Q(m)=\oplus_{i=0}^{3} Q(m)_{i}$ where
$Q(m)_{0} \cong \operatorname{sp}(2 n)$,
$Q(m)_{1}=\left\{\left.\left(\begin{array}{cc}r & s \\ v & w\end{array}\right) \right\rvert\, r=-w^{t}, s=s^{t}, v=v^{t}\right\}$,
$Q(m)_{2}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, b^{t}=-b, c^{t}=-c, a^{t}=d\right\} / C$,
$Q(m)_{3}=\left\{\left.\left(\begin{array}{cc}r & s \\ v & w\end{array}\right) \right\rvert\, w^{t}=r, s^{t}=-s, v^{t}=-v, \operatorname{tr}(r)=0\right\}$.
Let us denote by $S_{2}(m)$ the covering superalgebra $G^{4}(Q(m), \tau)$. Notice that $Q(m)_{1}$ is isomorphic to the adjoint module of the Lie algebra $s p(2 n)$ and $Q(m)_{2}, Q(m)_{3}$ are isomorphic to the $\operatorname{sp}(2 n)$-module $\Lambda_{0}^{2} s p_{2 n}$.

Example 3 (The Lie superalgebra S_{3}). Let $D(2,1 ; \alpha)$ be the one-parameter family of 17-dimensional Lie superalgebras with even part isomorphic to $A_{1} \oplus$ $A_{1} \oplus A_{1}$ and odd part isomorphic to $s l_{2} \otimes s l_{2} \otimes s l_{2}$. We recall that two members $D(2,1 ; \alpha)$ and $D(2,1 ; \beta)$ of this family are isomorphic if and only if α and
β lie in the same orbit of the group V of order 6 generated by $\alpha \mapsto-1-\alpha$, $\alpha \mapsto 1 / \alpha$.
$D(2,1 ; \alpha)$ is the contragredient Lie superalgebra associated to the matrix

$$
\left(\begin{array}{ccc}
0 & 1 & -1-\alpha \\
1 / \alpha & 0 & 1 \\
1 & -\alpha /(1+\alpha) & 0
\end{array}\right)
$$

Suppose that $\alpha^{2}+\alpha+1=0$ and consider the following automorphism φ of $D(2,1 ; \alpha)$:

$$
\begin{array}{lll}
\varphi\left(e_{1}\right)=-e_{2} & \varphi\left(f_{1}\right)=-f_{2} & \varphi\left(h_{1}\right)=h_{2} \\
\varphi\left(e_{2}\right)=-e_{3} & \varphi\left(f_{2}\right)=-f_{3} & \varphi\left(h_{2}\right)=h_{3} \\
\varphi\left(e_{3}\right)=-e_{1} & \varphi\left(f_{3}\right)=-f_{1} & \varphi\left(h_{3}\right)=h_{1} .
\end{array}
$$

Then φ has order 6 and $D(2,1 ; \alpha)=\oplus_{i=0}^{5} V_{i}$ where

- V_{0} is isomorphic to the Lie algebra of type A_{1};
- V_{1} is isomorphic, as a V_{0}-module, to the $s l(2)$-irreducible module of dimension 4;
- V_{2} is isomorphic, as a V_{0}-module, to the adjoint module of $\operatorname{sl}(2)$;
- V_{3} is isomorphic to the $\operatorname{sl}(2)$-irreducible module of dimension 2 ;
- V_{4} is isomorphic to the adjoint module of $s l(2)$;
- V_{5} is isomorphic to the $\operatorname{sl}(2)$-irreducible module of dimension 2.

We denote by S_{3} the covering superalgebra $G^{6}(D(2,1 ; \alpha), \varphi)$.
Theorem 3.1. Let $\mathcal{G}=\oplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ be an infinite-dimensional \mathbb{Z}-graded Lie superalgebra. Suppose that:

- \mathcal{G} is simple and generated by its local part,
- the \mathbb{Z}-gradation is consistent and has infinite depth,
- \mathcal{G}_{0} is simple,
- \mathcal{G}_{-1} and \mathcal{G}_{1} are irreducible \mathcal{G}_{0}-modules which are not contragredient.

Then \mathcal{G} has finite growth if and only if it is isomorphic to one of the Lie superalgebras S_{i} for some $1 \leq i \leq 3$.

Proof. Theorems 2.10 and 2.17 show that under our hypotheses either \mathcal{G}_{0} has rank 1 or one of the following possibilities occur:
a) \mathcal{G}_{0} is of type A_{3}, \mathcal{G}_{-1} is its adjoint module and $\mathcal{G}_{1}=V\left(2 \omega_{2}\right)$;
b) \mathcal{G}_{0} is of type B_{n}, \mathcal{G}_{-1} is its adjoint module and $\mathcal{G}_{1}=V\left(2 \omega_{1}\right)$;
c) \mathcal{G}_{0} is of type $C_{n}(n \geq 3), \mathcal{G}_{1}$ is its adjoint module and $\mathcal{G}_{-1} \cong \Lambda_{0}^{2} s p_{2 n}$;
d) \mathcal{G}_{0} is of type $D_{n}(n \geq 4), \mathcal{G}_{-1}$ is its adjoint module and $\mathcal{G}_{1}=V\left(2 \omega_{1}\right)$.

Besides, if \mathcal{G}_{0} has rank 1, by Corollary 2.12, either
e) $\mathcal{G}_{-1} \cong V(\omega)$ and $\mathcal{G}_{1} \cong V(3 \omega)$ or
f) \mathcal{G}_{-1} is isomorphic to the adjoint module of A_{1} and $\mathcal{G}_{1} \cong V(4 \omega)$.

By Propositions 1.7 and 1.9 we conclude that \mathcal{G} is isomorphic to the Lie superalgebra $S_{1}(m)=G^{4}(Q(m), \sigma)$ with $m=5$ in case a), $m=2 n$ in case b), $m=2$ in case f) and $m=2 n-1$ in case d); in case c) \mathcal{G} is isomorphic to the Lie superalgebra $S_{2}(m)=G^{4}(Q(m), \tau)$ with $m=2 n-1$. Finally, in case e) \mathcal{G} is isomorphic to the Lie superalgebra S_{3}.

REFERENCES

[H] J. E. Humphreys, "Introduction to Lie Algebras and Representation Theory", Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978.
[K1] V. G. Kac, Simple Irreducible Graded Lie Algebras of Finite Growth, Math. USSR Izvestija, Vol 2, 6 (1968).
[K2] V. G. Kac, Lie Superalgebras, Adv. Math. 26 (1977), 8-96.
[K3] V. G. Kac, Classification of Infinite-Dimensional Simple Linearly Compact Lie Superalgebras, Adv. Math. 139 (1998), 1-55.
[K4] V. G. KAC, "Infinite Dimensional Lie Algebras", Cambridge University Press, Boston, 1990.
[M] O. Mathieu, Classification of Simple Graded Lie Algebras of Finite Growth, Invent. Math. 108 (1992), 455-519.
[OV] A. L. Onishchik - E. B. Vinberg, "Lie Groups and Algebraic Groups", Springer-Verlag, New York-Berlin, 1990.
[vdL] J. W. van de Leur, A Classification of Contragredient Lie Superalgebras, Comm. Algebra 17 (1989), 1815-1841.

Dipartimento di Matematica Pura ed Applicata Università degli Studi di Padova Via Belzoni, 7-35131 Padova - Italy cantarin@math.unipd.it

