\mathbb{Z} -graded Lie Superalgebras of Infinite Depth and Finite Growth ### NICOLETTA CANTARINI **Abstract.** In 1998 Victor Kac classified infinite-dimensional Z-graded Lie superalgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a Z-gradation of infinite depth and finite growth and classify Z-graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses. Mathematics Subject Classification (2000): 17B65 (primary), 17B70 (secondary). #### Introduction Simple finite-dimensional Lie superalgebras were classified by V. G. Kac in [K2]. In the same paper Kac classified the finite-dimensional, \mathbb{Z} -graded Lie superalgebras under the hypotheses of irreducibility and transitivity. The classification of infinite-dimensional, \mathbb{Z} -graded Lie superalgebras of finite depth is also due to V. G. Kac [K3] and is deeply related to the classification of linearly compact Lie superalgebras. We recall that finite depth implies finite growth. This naturally leads to investigate infinite-dimensional, \mathbb{Z} -graded Lie superalgebras of infinite depth and finite growth. The hypothesis of finite growth is central to the problem; indeed, it is well known that it is not possible to classify \mathbb{Z} -graded Lie algebras (and thus Lie superalgebras) of any growth (see [K1], [M]). The only known examples of infinite-dimensional, \mathbb{Z} -graded Lie superalgebras of finite growth and infinite depth are given by contragredient Lie superalgebras which were classified by V. G. Kac in [K2] in the case of finite dimension and by J.W. van de Leur in the general case [vdL]. Contragredient Lie superalgebras, as well as Kac-Moody Lie algebras, have a \mathbb{Z} -gradation of infinite depth and growth equal to 1, due to their periodic structure. We construct three new examples of infinite-dimensional Lie superalgebras with a consistent \mathbb{Z} -gradation of infinite depth and finite growth, and we realize Pervenuto alla Redazione il 2 agosto 2001 e in forma definitiva il 6 marzo 2002. them as covering superalgebras of finite-dimensional Lie superalgebras. It turns out that if \mathcal{G} is an irreducible, simple Lie superalgebra generated by its local part, with a consistent \mathbb{Z} -gradation, and if we assume that \mathcal{G}_0 is simple and that \mathcal{G}_1 is an irreducible \mathcal{G}_0 -module which is not contragredient to \mathcal{G}_{-1} , then \mathcal{G} is isomorphic to one of these three algebras (Theorem 3.1) and its growth is therefore equal to 1. So far, any known example of a \mathbb{Z} -graded Lie superalgebra of infinite depth and finite growth is, up to isomorphism, either a contragredient Lie superalgebra or the covering superalgebra of a finite-dimensional Lie superalgebra. Since the aim of this paper is analyzing \mathbb{Z} -graded Lie superalgebras of infinite depth, we shall not describe the cases of finite depth which can be found in [K2], [K3]. Let \mathcal{G} be a \mathbb{Z} -graded Lie superalgebra. Suppose that \mathcal{G}_0 is a simple Lie algebra and that \mathcal{G}_{-1} and \mathcal{G}_1 are irreducible \mathcal{G}_0 -modules and are not contragredient. Let F_{Λ} be a highest weight vector of \mathcal{G}_{-1} of weight Λ and let E_M be a lowest weight vector of \mathcal{G}_1 of weight M. Since \mathcal{G}_{-1} and \mathcal{G}_1 are not contragredient, the sum $\Lambda + M$ is a root of \mathcal{G}_0 , and, without loss of generality, we may assume that it is a negative root, i.e. $\Lambda + M = -\alpha$ for some positive root α . The paper is based on the analysis of the relations between the \mathcal{G}_0 -modules \mathcal{G}_{-1} and \mathcal{G}_1 . It is organized in three sections: Section 1 contains some basic definitions and fundamental results in the general theory of Lie superalgebras. In Section 2 the main hypotheses on the Lie superalgebra \mathcal{G} are introduced. Section 2.1 is devoted to the case $(\Lambda, \alpha) = 0$. Since Λ is a dominant weight, in this section the rank of \mathcal{G}_0 is assumed to be greater than 1. The hypothesis $(\Lambda, \alpha) = 0$ always holds for \mathbb{Z} -graded Lie superalgebras of finite depth (see [K2], Lemma 4.1.4 and [K3], Lemma 5.3) but if the Lie superalgebra \mathcal{G} has infinite depth weaker restrictions on the weight Λ are obtained (compare, for example, Lemma 4.1.3 in [K2] with Lemma 1.14 in this paper). In Section 2.2 we examine the case $(\Lambda, \alpha) \neq 0$. In the finite-depth case this hypothesis may not occur (cf. [K3], Lemma 5.3). It turns out that, under this hypothesis, \mathcal{G}_0 has necessarily rank one (cf. Theorem 2.17) namely it is isomorphic to sl(2). Besides, a strong restriction on the possible values of (Λ, α) is obtained (cf. Corollary 2.12) so that \mathcal{G}_{-1} is necessarily isomorphic either to the adjoint module of sl(2) or to the irreducible sl(2)-module of dimension 2. Finally, Section 3 is devoted to the construction of the examples and to the classification theorem. Throughout the paper the base field is assumed to be algebraically closed and of characteristic zero. ACKNOWLEDGEMENTS. I would like to express my gratitude to Professor Victor Kac for introducing me to the subject and for dedicating me so much of his time. # 1. - Basic definitions and main results # 1.1. – Lie superalgebras DEFINITION 1.1. A superalgebra is a \mathbb{Z}_2 -graded algebra $A = A_{\bar{0}} \oplus A_{\bar{1}}$; $A_{\bar{0}}$ is called the even part of A and $A_{\bar{1}}$ is called the odd part of A. DEFINITION 1.2. A Lie superalgebra is a superalgebra $\mathcal{G} = \mathcal{G}_{\bar{0}} \oplus \mathcal{G}_{\bar{1}}$ whose product $[\cdot, \cdot]$ satisfies the following axioms: - (i) $[a, b] = -(-1)^{\deg(a) \deg(b)}[b, a];$ - (ii) $[a, [b, c]] = [[a, b], c] + (-1)^{deg(a) deg(b)} [b, [a, c]].$ DEFINITION 1.3. A \mathbb{Z} -grading of a Lie superalgebra \mathcal{G} is a decomposition of \mathcal{G} into a direct sum of finite-dimensional \mathbb{Z}_2 -graded subspaces $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ for which $[\mathcal{G}_i, \mathcal{G}_j] \subset \mathcal{G}_{i+j}$. A \mathbb{Z} -grading is said to be consistent if $\mathcal{G}_{\bar{0}} = \bigoplus \mathcal{G}_{2i}$ and $\mathcal{G}_{\bar{1}} = \bigoplus \mathcal{G}_{2i+1}$. Remark 1.4. By definition, if \mathcal{G} is a \mathbb{Z} -graded Lie superalgebra, then \mathcal{G}_0 is a subalgebra of \mathcal{G} and $[\mathcal{G}_0, \mathcal{G}_i] \subset \mathcal{G}_i$; therefore the restriction of the adjoint representation to \mathcal{G}_0 induces linear representations of it on the subspaces \mathcal{G}_i . DEFINITION 1.5. A \mathbb{Z} -graded Lie superalgebra \mathcal{G} is called irreducible if \mathcal{G}_{-1} is an irreducible \mathcal{G}_0 -module. DEFINITION 1.6. A \mathbb{Z} -graded Lie superalgebra $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ is called transitive if for $a \in \mathcal{G}_i$, $i \geq 0$, $[a, \mathcal{G}_{-1}] = 0$ implies a = 0, and bitransitive if, in addition, for $a \in \mathcal{G}_i$, $i \leq 0$, $[a, \mathcal{G}_1] = 0$ implies a = 0. Let \hat{G} be a \mathbb{Z}_2 -graded space, decomposed into the direct sum of \mathbb{Z}_2 -graded subspaces, $\hat{G} = \mathcal{G}_{-1} \oplus \mathcal{G}_0 \oplus \mathcal{G}_1$. Suppose that whenever $|i+j| \leq 1$ a bilinear operation is defined: $\mathcal{G}_i \times \mathcal{G}_j \to \mathcal{G}_{i+j}$, $(x,y) \mapsto [x,y]$, satisfying the axiom of anticommutativity and the Jacobi identity for Lie superalgebras, provided that all the commutators in this identity are defined. Then \hat{G} is called a *local* Lie superalgebra. If $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ is a \mathbb{Z} -graded Lie superalgebra then $\mathcal{G}_{-1} \oplus \mathcal{G}_0 \oplus \mathcal{G}_1$ is a local Lie superalgebra which is called the *local part* of \mathcal{G} . The following proposition holds: PROPOSITION 1.7 [K2]. Two bitransitive \mathbb{Z} -graded Lie superalgebras are isomorphic if and only if their local parts are isomorphic. Definition 1.8. A Lie superalgebra is called simple if it contains no nontrivial ideals. PROPOSITION 1.9 [K2]. If in a simple \mathbb{Z} -graded Lie superalgebra $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ the subspace $\mathcal{G}_{-1} \oplus \mathcal{G}_0 \oplus \mathcal{G}_1$ generates \mathcal{G} then \mathcal{G} is bitransitive. # 1.2. – On the growth of \mathcal{G} DEFINITION 1.10. Let $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ be a \mathbb{Z} -graded Lie superalgebra. The limit $$r(\mathcal{G}) = \lim_{n \to \infty} \ln \left(\sum_{i=-n}^{n} \dim \mathcal{G}_{i} \right) / \ln(n)$$ is called the growth of G. If r(G) is finite then we say that G has finite growth. Let us fix some notation. Given a semisimple Lie algebra L, by $V(\omega)$ we shall denote its finite-dimensional highest weight module of highest weight ω . ω_i will be the fundamental weights. It is well known that if λ is a weight of a finite-dimensional representation of L and β is a root of L, then the set of weights of the form $\lambda + s\beta$ forms a continuous string: $\lambda - p\beta$, $\lambda - (p-1)\beta$,..., $\lambda - \beta$, λ , $\lambda + \beta$,..., $\lambda + q\beta$, where p and q are nonnegative integers and $p - q = 2(\lambda, \beta)/(\beta, \beta)$. Let us put $2(\lambda, \beta)/(\beta, \beta) = \lambda(h_{\beta})$. The numbers $\lambda(h_{\alpha_i})$, for a fixed basis of simple roots α_i , are called the *numerical marks* of the weight λ . For any positive root β of L we shall denote by e_{β} a root vector of L corresponding to β . LEMMA
1.11 [K1]. Let L be a Lie algebra containing elements $H \neq 0$, E_i , F_i , i = 1, 2, connected by the equations $$[E_i, F_j] = \delta_{ij}H$$, $$[H, E_1] = aE_1$$, $[H, E_2] = bE_2$, $$[H, F_1] = -aF_1$$, $[H, F_2] = -bF_2$, where $a \neq -b$, $b \neq -2a$, and $a \neq -2b$, then the growth of L is infinite. LEMMA 1.12 [K1]. Let $L = \bigoplus L_i$ be a graded Lie algebra, where L_0 is semisimple. Assume that there exist weight vectors x_{λ} and x_{μ} corresponding to the weights λ and μ of the adjoint representation of L_0 on L, and a root vector e_{γ} , corresponding to the root γ of L_0 , which satisfy the following relations: $$[x_{\mu}, x_{\lambda}] = e_{\gamma},$$ $$[x_{\lambda}, e_{-\gamma}] = 0 = [x_{\mu}, e_{\gamma}],$$ $$\lambda(h_{\gamma}) \neq -1, \quad (\lambda, \gamma) \neq 0.$$ *Then the growth of L is infinite.* LEMMA 1.13. Let \mathcal{G} be a consistent, \mathbb{Z} -graded Lie superalgebra and suppose that \mathcal{G}_0 is a semisimple Lie algebra. Let E_i , F_i (i=1,2) be odd elements and H a non zero element in $\mathcal{G}_{\bar{0}}$ such that: (1) $$[E_i, F_j] = \delta_{ij}H, \quad [H, E_i] = a_iE_i, \quad [H, F_i] = -a_iF_i,$$ where $a_1 \neq -a_2$, $a_1 \neq -2a_2$ and $a_2 \neq -2a_1$. Then the growth of \mathcal{G} is infinite. PROOF. Suppose first that $a_1 \neq 0 \neq a_2$. Then the elements $\tilde{E}_1 = a_1^{-1/2}[E_1, E_1]$, $\tilde{E}_2 = a_2^{-1/2}[E_2, E_2]$, $\tilde{F}_1 = a_1^{-1/2}[F_1, F_1]$, $\tilde{F}_2 = a_2^{-1/2}[F_2, F_2]$, K = -4H satisfy the hypotheses of Lemma 1.11 in the Lie algebra $\mathcal{G}_{\bar{0}}$. Thus, the growth of $\mathcal{G}_{\bar{0}}$ is infinite and we get the thesis. If, let us say, $a_1 \neq 0$, $a_2 = 0$ then the elements $E_1' = [E_1, E_1]$, $E_2' = [E_1, E_2]$, $F_1' = -(4a_1)^{-1}[F_1, F_1]$, $F_2' = a_1^{-1}[F_1, F_2]$, H satisfy the hypotheses of Lemma 1.11 in $\mathcal{G}_{\bar{0}}$, thus we conclude. Lemma 1.14. Let $\mathcal{G} = \bigoplus \mathcal{G}_i$ be a \mathbb{Z} -graded, consistent Lie superalgebra and suppose that \mathcal{G}_0 is a semisimple Lie algebra. Assume that there exist odd elements x_{λ} and x_{μ} that are weight vectors of the adjoint representation of \mathcal{G}_0 on \mathcal{G} of weight λ and μ respectively, and a root vector $e_{-\delta}$ of \mathcal{G}_0 , connected by the relations: $$\begin{cases} [x_{\lambda}, x_{\mu}] = e_{-\delta} \\ [x_{\lambda}, e_{\delta}] = [x_{\mu}, e_{-\delta}] = 0 \end{cases}$$ with $2(\lambda, \delta) \neq (\delta, \delta)$, $(\lambda, \delta) \neq 0$ and $(\lambda, \delta) \neq (\delta, \delta)$. Then the growth of \mathcal{G} is infinite. PROOF. We choose a root vector e_{δ} in \mathcal{G}_0 such that $[e_{\delta}, e_{-\delta}] = h_{\delta}$ and consider the following elements: $$E_1 = [e_{\delta}, x_{\mu}]$$ $$E_2 = [[[x_{\mu}, e_{\delta}], e_{\delta}], e_{\delta}]$$ $$F_1 = x_{\lambda}$$ $$F_2 = -1/6\lambda(h_{\delta})^{-1}(\lambda(h_{\delta}) - 1)^{-1}[[x_{\lambda}, e_{-\delta}], e_{-\delta}]$$ $$H = h_{\delta}.$$ By a direct computation it is easy to check that E_i , F_i , H satisfy the hypotheses of Lemma 1.13 with $a_1 = (\mu + \delta)(h_{\delta}) = -\lambda(h_{\delta})$, $a_2 = (\mu + 3\delta)(h_{\delta}) = -\lambda(h_{\delta}) + 4$. By Lemma 1.13 the growth of \mathcal{G} is therefore infinite. We can reformulate Lemma 1.14 as follows: COROLLARY 1.15. Suppose that G is a Lie superalgebra of finite growth. Let x_{λ} , x_{μ} , $e_{-\delta}$ be as in Lemma 1.14. Then one of the following holds: - (i) $(\lambda, \delta) = 0$, - (ii) $(\lambda, \delta) = (\delta, \delta)$, - (iii) $(\lambda, \delta) = 1/2(\delta, \delta)$. THEOREM 1.16 [K1]. Let $L = \bigoplus L_i$ be a \mathbb{Z} -graded Lie algebra with the following properties: - a) the Lie algebra L_0 has no center; - b) the representations ϕ_{-1} and ϕ_1 of L_0 on L_{-1} and L_1 are irreducible; - c) $[L_{-1}, L_1] \neq 0$; - d) $\Lambda + M = -\alpha$ where Λ is the highest weight of ϕ_{-1} , M is the lowest weight of ϕ_1 and α is a positive root of L_0 ; - e) the representations ϕ_{-1} and ϕ_1 are faithful; - f) the growth of L is finite. Then L_0 is isomorphic to one of the Lie algebras A_n or C_n , ϕ_{-1} is the corresponding standard representation and α is the highest root of L_0 . In the following sl_n , sp_n and so_n will denote the standard representations of the corresponding Lie algebras. COROLLARY 1.17. Let $\mathcal{G} = \oplus \mathcal{G}_i$ be a Lie superalgebra with a consistent \mathbb{Z} -gradation. Suppose that \mathcal{G}_0 is simple. Suppose that there exist a highest weight vector x in \mathcal{G}_{-2} of weight $\lambda \neq 0$ and a lowest weight vector y in \mathcal{G}_2 of weight μ such that $[x, y] \neq 0$ and $\lambda + \mu = -\rho$ for a positive root ρ of \mathcal{G}_0 . Then, if the growth of \mathcal{G} is finite, \mathcal{G}_0 is isomorphic to one of the Lie algebras A_n or C_n , ρ is the highest root of \mathcal{G}_0 and \mathcal{G}_{-2} is the standard \mathcal{G}_0 -module. PROOF. It follows from Theorem 1.16. #### 2. – Main results In this section we will consider an irreducible, consistent, simple \mathbb{Z} -graded Lie superalgebra \mathcal{G} generated by its local part, and we will always suppose that \mathcal{G} has finite growth. Besides, we will assume that \mathcal{G}_0 is a simple Lie algebra and that \mathcal{G}_1 is an irreducible \mathcal{G}_0 -module which is not contragredient to \mathcal{G}_{-1} . Let us fix a Cartan subalgebra \mathcal{H} of \mathcal{G}_0 and the following notation: let F_{Λ} be a highest weight vector of \mathcal{G}_{-1} of weight Λ (dominant weight) and let E_M be a lowest weight vector of \mathcal{G}_1 of weight M. As shown in [K2], Proposition 1.2.10, it turns out that $[F_{\Lambda}, E_M] = e_{-\alpha}$, where $\alpha = -(\Lambda + M)$ is a root of \mathcal{G}_0 and $e_{-\alpha}$ is a root vector in \mathcal{G}_0 corresponding to $-\alpha$. Interchanging, if necessary, \mathcal{G}_k with \mathcal{G}_{-k} we can assume that α is a positive root. Indeed, by transitivity, $[F_{\Lambda}, E_M] \neq 0$ and for any $t \in \mathcal{H}$ we have: $$[t, [F_{\Lambda}, E_M]] = (\Lambda + M)(t)[F_{\Lambda}, E_M].$$ Notice that $\Lambda + M \neq 0$ since the representations of \mathcal{G}_0 on \mathcal{G}_{-1} and \mathcal{G}_1 are not contragredient. REMARK 2.1. Under the above assumptions, $-M = \Lambda + \alpha$ is a dominant weight. Therefore $(\Lambda + \alpha, \beta) \ge 0$ for every positive root β of \mathcal{G}_0 . Lemma 2.2. Under the above hypotheses, $[E_M, E_M] = 0$ and $[E_M, [e_\rho, E_M]] = 0$ for every positive root ρ . PROOF. We have $[F_{\Lambda}, [E_M, E_M]] = 2[e_{-\alpha}, E_M] = 0$ since E_M is a lowest weight vector. Transitivity and irreducibility imply $[E_M, E_M] = 0$. Now, since E_M is odd, for every positive root ρ we have: $$[E_M, [e_\rho, E_M]] = [[E_M, e_\rho], E_M] = -[E_M, [e_\rho, E_M]]$$ therefore $[E_M, [e_\rho, E_M]] = 0$. **2.1.** – Case $$(\Lambda, \alpha) = 0$$ In this paragraph we suppose $(\Lambda, \alpha) = 0$. If Λ is zero then the depth of \mathcal{G} is finite. Therefore we suppose that Λ is not zero. This implies that the rank of \mathcal{G}_0 is greater than one. Remark 2.3. Let \mathcal{G} be a bitransitive, irreducible \mathbb{Z} -graded Lie superalgebra. If $(\Lambda, \alpha) = 0$ then the vectors $[F_{\Lambda}, F_{\Lambda}]$ and $[[F_{\Lambda}, e_{-\rho}], F_{\Lambda}]$ are zero for every positive root ρ . PROOF. Once we have shown that $[F_{\Lambda}, F_{\Lambda}] = 0$, we proceed as in Lemma 2.2 and conclude that $[[F_{\Lambda}, e_{-\rho}], F_{\Lambda}] = 0$ for every positive root ρ . Since $[[F_{\Lambda}, F_{\Lambda}], E_{M}] = 2[F_{\Lambda}, e_{-\alpha}] = 0$, we conclude by bitransitivity. Lemma 2.4. α is the highest root of one of the parts of the Dynkin diagram of \mathcal{G}_0 into which it is divided by the numerical marks of Λ . PROOF. Suppose by contradiction that α is not the highest root of one of the parts of the Dynkin diagram of \mathcal{G}_0 into which it is divided by the numerical marks of Λ . Then there exists a simple root β such that $(\Lambda, \beta) = 0$ and $\alpha + \beta$ is a root. This gives a contradiction because: $0 = [[e_{-\beta}, F_{\Lambda}], E_M] = [e_{-\beta}, [F_{\Lambda}, E_M]] = e_{-\beta-\alpha} \neq 0$. Lemma 2.5. If Λ has at least two numerical marks then, for every numerical mark γ , we have: $$(\Lambda + \alpha, \gamma) = 0.$$ PROOF. From Lemma 2.4 we know that α is the highest root of one of the parts of the Dynkin diagram of \mathcal{G}_0 into which it is divided by the numerical marks of Λ . Therefore we can choose a numerical mark β such that $\alpha + \beta$ is a root. Now suppose that γ is a numerical mark, $\gamma \neq \beta$, such that $(\Lambda + \alpha, \gamma) \neq 0$. Notice that γ and β are not subroots of α , since $(\Lambda, \gamma) \neq 0$ and $(\Lambda, \beta) \neq 0$, therefore $\gamma(h_{\alpha}) \leq 0$, $\beta(h_{\alpha}) < 0$. Consider the following vectors: $$x := [[[F_{\Lambda}, e_{-\beta}], e_{-\gamma}], F_{\Lambda}]$$ $y := [[[E_{M}, e_{\alpha}], e_{\gamma}], E_{M}].$ First of all we want to show that x is a highest weight vector in \mathcal{G}_{-2} . By Remark 2.3, since β and γ are simple roots, it is sufficient to show that $x \neq 0$. In fact, $[e_{\gamma}, [x, E_M]] = (\Lambda + \alpha)(h_{\gamma})[F_{\Lambda}, [e_{-\alpha}, e_{-\beta}]] \neq 0$. Now let us prove that y is a lowest weight vector in
\mathcal{G}_2 . First $y \neq 0$, indeed: $$[y, F_{\Lambda}] = (2 - \gamma(h_{\alpha}))[E_M, e_{\gamma}]$$ which is different from 0 since $\gamma(h_{\alpha}) \leq 0$ and by the assumption $(\Lambda + \alpha, \gamma) \neq 0$. We now compute the commutators $[y,e_{-\alpha_k}]$ for any simple root α_k . If $\alpha_k = \gamma$ then, by Lemma 2.2, $[y,e_{-\alpha_k}] = 0$, since $\alpha - \gamma$ is not a root. If $\alpha_k \neq \gamma$, $[y,e_{-\alpha_k}] = [[[E_M,e_{\alpha-\alpha_k}],e_{\gamma}],E_M]$, and this can be shown to be zero using the transitivity of \mathcal{G} . Notice that $[x, y] = (2 - \gamma(h_{\alpha}))(\Lambda + \alpha)(h_{\gamma})e_{-\alpha - \beta}$. By Theorem 1.16 we get a contradiction since $\alpha + \beta$ cannot be the highest root of \mathcal{G}_0 . As a consequence, $(\Lambda + \alpha, \gamma) = 0$. In particular, $\alpha + \gamma$ is a root and we can repeat the same argument interchanging β and γ in order to get $(\Lambda + \alpha, \beta) = 0$. COROLLARY 2.6. If G_0 is of type A_n , B_n , C_n , F_4 , G_2 then Λ has at most two numerical marks; if G_0 is of type D_n , E_6 , E_7 , E_8 then Λ has at most three numerical marks. PROOF. Immediate from Lemma 2.5. Lemma 2.7. If Λ has only one numerical mark β then either $(\Lambda + \alpha, \beta) = 0$ or $\Lambda(h_{\beta}) = 1$. PROOF. Suppose both $(\Lambda + \alpha, \beta) \neq 0$ and $\Lambda(h_{\beta}) > 1$, and define $$x := [[[F_{\Lambda}, e_{-\beta}], e_{-\beta}], F_{\Lambda}]$$ $$y := [[[E_M, e_\alpha], e_\beta], E_M].$$ Then x is a highest weight vector in \mathcal{G}_{-2} and y is a lowest weight vector in \mathcal{G}_2 . Besides, $[x, y] = 2(2 - \beta(h_\alpha))(\Lambda + \alpha)(h_\beta)e_{-\alpha-\beta}$. By Theorem 1.16, \mathcal{G}_0 is either of type A_n or of type C_n , $\alpha + \beta$ is the highest root of \mathcal{G}_0 and \mathcal{G}_{-2} is its elementary representation. It is easy to show that these conditions cannot hold. PROPOSITION 2.8. Let β be a positive root such that: - $\alpha + \beta$ is a root; - $\alpha \beta$ is not a root; - $2\alpha + \beta$ is not a root. *Then either* $(\Lambda + \alpha, \beta) = 0$ *or* $\Lambda(h_{\beta}) = 1$. PROOF. Let us first make some remarks: - (a) Since $\beta + \alpha$ is a root but $\beta + 2\alpha$ and $\beta \alpha$ are not, we have $\beta(h_{\alpha}) = -1$. It follows that $\alpha + \beta$ and β are roots of the same length. - (b) Since $\beta (\alpha + \beta)$ is a root and $\beta 2(\alpha + \beta)$ is not, then $\beta(h_{\alpha+\beta}) \le 1$. Now suppose that $\Lambda(h_{\beta}) > 1$, which implies $[F_{\Lambda}, e_{-\beta}] \neq 0$. Let $x_{\mu} = E_M$ and $x_{\lambda} = [F_{\Lambda}, e_{-\beta}]$. We have: $$[x_{\lambda}, x_{\mu}] = e_{-\alpha-\beta}$$ $$[e_{-\alpha-\beta}, x_{\mu}] = 0 = [x_{\lambda}, e_{\alpha+\beta}].$$ Therefore, by Lemma 1.14, we deduce that the difference $\Lambda(h_{\beta}) - \beta(h_{\alpha+\beta})$ is equal to 0, 1, or 2. In particular, $2 \le \Lambda(h_{\beta}) \le 3$ and $0 \le \beta(h_{\alpha+\beta}) \le 1$. We therefore distinguish the following two cases: Case A: $\beta(h_{\alpha+\beta}) = 0$, i.e. $\alpha + 2\beta$ is a root, $2\alpha + 3\beta$ is not, and $\Lambda(h_{\beta})=2$. In this case $(\beta, \beta) = -(\beta, \alpha)$ and $(\Lambda, \beta) = (\beta, \beta)$ therefore $(\Lambda + \alpha, \beta) = 0$ which concludes the proof in this case. CASE B: $\beta(h_{\alpha+\beta}) = 1$, i.e. $\alpha + 2\beta$ is not a root, and $\Lambda(h_{\beta})$ is either 2 or 3. In this case $\beta(h_{\alpha}) = -1 = \alpha(h_{\beta})$, therefore $(\Lambda + \alpha, \beta) \neq 0$. The two cases $\Lambda(h_{\beta}) = 2$ and $\Lambda(h_{\beta}) = 3$ need to be analyzed separately. (i) $\Lambda(h_{\beta}) = 2$ Let us define the following elements: $$x_{\lambda} = [[[F_{\Lambda}, e_{-\beta}], e_{-\beta}], F_{\Lambda}]$$ $x_{\mu} = [[[E_{M}, e_{\alpha+\beta}], e_{\beta}], E_{M}].$ Then $[x_{\lambda}, x_{\mu}] = 6e_{-\alpha}$, $[x_{\lambda}, e_{\alpha}] = 0$ since $\alpha - \beta$ is not a root, and $[x_{\mu}, e_{-\alpha}] = 0$ since $(\Lambda + \alpha)(h_{\beta}) = 1$, thus $[[E_M, e_{\beta}], e_{\beta}] = 0$. Then we find a contradiction to Lemma 1.12 applied to the Lie algebra $\mathcal{G}_{\bar{0}}$, since \mathcal{G} was assumed to have finite growth. Indeed, using the same notation as in Lemma 1.12, we have: $\lambda(h_{\gamma}) = -\lambda(h_{\alpha}) = -(2\Lambda - 2\beta)(h_{\alpha}) = 2\beta(h_{\alpha}) = -2$. (ii) $\Lambda(h_{\beta}) = 3$ Let us define the following elements: $$\begin{split} E_1 &= 1/8[[E_M, e_{\alpha+\beta}], [E_M, e_{\alpha+\beta}]] \\ F_1 &= [[F_\Lambda, e_{-\beta}], [F_\Lambda, e_{-\beta}]] \\ E_2 &= 1/64[[[E_M, e_{\alpha+\beta}], e_\beta], [[E_M, e_{\alpha+\beta}], e_\beta]] \\ F_2 &= [[[F_\Lambda, e_{-\beta}], e_{-\beta}], [[F_\Lambda, e_{-\beta}], e_{-\beta}]] \\ H &= h_{\alpha+\beta} = h_\alpha + h_\beta \end{split}$$ Then the hypotheses of Lemma 1.11 are satisfied with $a_1 = -4$ and $a_2 = -2$, and this leads to a contradiction. In the following, for what concerns simple Lie algebras, we will use the same notation as in [H, §11, §12]. In particular we shall adopt the same enumeration of the vertices in the Dynkin diagrams and refer to the bases of simple roots described by Humphreys [H]. LEMMA 2.9. Let M be the lowest weight of the G_0 -module G_1 . - (i) Let $z := [[E_M, e_{\alpha+\beta}], [e_{\gamma}, E_M]]$, where β and γ are positive roots of \mathcal{G}_0 such that $[E_M, e_{\beta}] = 0$, $\alpha + \beta + \gamma$ is not a root, $\beta + \gamma$ is not a root and $\gamma \alpha$ is a negative root. Then $[z, F_{\Lambda}] = 0$. - (ii) Let β and ρ be positive roots such that $\alpha + \beta$ and $\beta + \rho$ are positive roots, $\alpha + \beta + \rho$ is not a root, $\rho \alpha$ is a negative root. If $(M, \beta) = 0$ and $(M, \rho) \neq 0$, then the vector $[[E_M, e_{\alpha+\beta}], [e_\rho, E_M]]$ is non-zero. - (iii) Let β and ρ be as in (ii) and let α_k be a simple root of \mathcal{G}_0 . Suppose, in addition, that either $\rho + \beta \alpha_k$ is not a root or $(M, \rho + \beta \alpha_k) = 0$. Then $[[E_M, e_{\alpha+\beta-\alpha_k}], [e_\rho, E_M]], F_\Lambda] = 0$. - (iv) If ρ is a positive root such that $\alpha + \rho$ is not a root, $\rho \alpha$ is a negative root, $(M, \rho) \neq 0$ and $\rho(h_{\alpha}) = 1$, then $[[[E_M, e_{\alpha}], [e_{\rho}, E_M]], F_{\Lambda}] = 0$. PROOF. The proof consists of simple direct computations. Theorem 2.10. Let \mathcal{G} be an irreducible, simple, \mathbb{Z} -graded Lie superalgebra of finite growth, generated by its local part. Suppose that \mathcal{G}_0 is simple, that the \mathbb{Z} -gradation of \mathcal{G} is consistent and that $(\Lambda, \alpha) = 0$. If \mathcal{G} has infinite depth then one of the following holds: - \mathcal{G}_0 is of type A_3 , \mathcal{G}_{-1} is its adjoint module, $\mathcal{G}_1 = V(2\omega_2)$; - \mathcal{G}_0 is of type B_n $(n \geq 2)$, \mathcal{G}_{-1} is its adjoint module, $\mathcal{G}_1 = V(2\omega_1)$; - \mathcal{G}_0 is of type C_n $(n \geq 3)$, $\mathcal{G}_{-1} \cong \Lambda_0^2 sp_{2n}$, \mathcal{G}_1 is its adjoint module; - \mathcal{G}_0 is of type D_n $(n \geq 4)$, \mathcal{G}_{-1} is its adjoint module, $\mathcal{G}_1 = V(2\omega_1)$. PROOF. Let us analyze all the possible cases. Corollary 2.6 states that if \mathcal{G}_0 is of type A_n , B_n , C_n , F_4 or G_2 then Λ might have one or two numerical marks while if \mathcal{G}_0 is of type D_n , E_6 , E_7 or E_8 then Λ might also have three numerical marks. Using Lemma 2.5 one can easily see that if \mathcal{G}_0 is not of type A_n then the hypothesis that Λ has at least two numerical marks contradicts Proposition 2.8. It follows that if \mathcal{G}_0 is not of type A_n then Λ has exactly one numerical mark and this numerical mark satisfies Lemma 2.7. Using Remark 2.1 we immediately exclude the following possibilities, for which the weight M is not antidominant: - \mathcal{G}_0 of type B_n $(n \ge 2)$, $\mathcal{G}_{-1} = V(\omega_n)$; - \mathcal{G}_0 of type C_n $(n \ge 3)$, $\mathcal{G}_{-1} = V(\omega_1)$; - \mathcal{G}_0 of type C_n $(n \geq 3)$, $\mathcal{G}_{-1} = V(\omega_i)$ with $2 \leq i \leq n-1$, $\alpha = 2\alpha_{i+1} + \cdots + 2\alpha_{n-1} + \alpha_n$; - \mathcal{G}_0 of type F_4 , $\mathcal{G}_{-1} = V(\omega_3)$, $\alpha = \alpha_1 + \alpha_2$; - \mathcal{G}_0 of type F_4 , $\mathcal{G}_{-1} = V(\omega_4)$; - \mathcal{G}_0 of type G_2 , $\mathcal{G}_{-1} = V(2\omega_1)$; - \mathcal{G}_0 of type G_2 , $\mathcal{G}_{-1} = V(\omega_1)$ (simplest representation). Proposition 2.8 allows us to rule out the cases summarized in Table 1, where we describe the irreducible modules \mathcal{G}_{-1} and \mathcal{G}_1 through their highest weights and indicate the positive root β used in Proposition 2.8. On the other hand, Corollary 1.17 allows us to rule out the cases summarized in Table 2, where the vectors x and y used in Corollary 1.17 are indicated, and where the columns denoted by \mathcal{G}_{-1} and \mathcal{G}_1 contain the highest weights of these \mathcal{G}_0 -modules. In order to show that the vectors x and y in Table 2 are highest and lowest weight vectors in the \mathcal{G}_0 -modules \mathcal{G}_{-2} and \mathcal{G}_2 respectively, one can use the bitransitivity of \mathcal{G} and, where needed, Lemma 2.9. For the remaining cases let us point out what follows: suppose that \mathcal{G}_{-2} contains a highest weight vector x of weight λ and that \mathcal{G}_2 contains a lowest weight vector y of weight $-\lambda$ such that $[x, y] \neq 0$. Then the irreducible
submodules $\bar{\mathcal{G}}_{-2}$ and $\bar{\mathcal{G}}_2$ generated respectively by x and y are dual \mathcal{G}_0 -modules and the Lie subalgebra of \mathcal{G}_0 with local part $\bar{\mathcal{G}}_{-2} \oplus \mathcal{G}_0 \oplus \bar{\mathcal{G}}_2$ is an affine Kac-Moody algebra which will be denoted by \mathcal{A} . Using the classification of affine Kac-Moody algebras we therefore exclude the cases in Table 3, where we indicate the highest weight vector x of \mathcal{G}_{-2} , the lowest weight vector y of \mathcal{G}_2 , and the highest weights of the \mathcal{G}_0 -modules \mathcal{G}_{-1} and \mathcal{G}_1 . In the same way the classification of affine Kac-Moody algebras shows that the following cases are allowed: - 1) \mathcal{G}_0 of type A_3 , $\mathcal{G}_{-1} = V(\omega_1 + \omega_3)$, $\mathcal{G}_1 = V(2\omega_2)$, $\alpha = \alpha_2$: under these hypotheses \mathcal{G}_{-2} contains the highest weight vector $x = [[F_\Lambda, e_{-\alpha_1}], [e_{-\alpha_3}, F_\Lambda]]$ and \mathcal{G}_2 contains the lowest weight vector $y = [[E_M, e_{\alpha_1 + \alpha_2}], [e_{\alpha_2 + \alpha_3}, E_M]]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_5^{(2)}$. - 2) \mathcal{G}_0 of type B_n $(n \ge 3)$, $\mathcal{G}_{-1} = V(\omega_2)$, $\mathcal{G}_1 = V(2\omega_1)$, $\alpha = \alpha_1$: \mathcal{G}_{-2} contains the highest weight vector $x = [[F_\Lambda, e_{-\alpha_2}], [e_{-\alpha_2-2\alpha_3-\cdots-2\alpha_n}, F_\Lambda]]$ and \mathcal{G}_2 contains the lowest weight vector $y = [[E_M, e_{\alpha_1+\alpha_2}], [e_{\alpha_1+\alpha_2+2\alpha_3+\cdots+2\alpha_n}, E_M]]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{2n}^{(2)}$. - 3) \mathcal{G}_0 of type B_2 , $\mathcal{G}_{-1} = V(2\omega_2)$, $\mathcal{G}_1 = V(2\omega_1)$, $\alpha = \alpha_1$: \mathcal{G}_{-2} contains the highest weight vector $x = [[F_\Lambda, e_{-\alpha_2}], [e_{-\alpha_2}, F_\Lambda]]$ and \mathcal{G}_2 contains the lowest weight vector $y = [[E_M, e_{\alpha_1 + 2\alpha_2}], [e_{\alpha_1}, E_M]]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_4^{(2)}$. - 4) \mathcal{G}_0 of type C_n $(n \geq 3)$, $\mathcal{G}_{-1} = V(\omega_2)$, $\mathcal{G}_1 = V(2\omega_1)$, $\alpha = \alpha_1$: \mathcal{G}_{-2} contains the highest weight vector $x = [[F_\Lambda, e_{-\alpha_2 \cdots \alpha_n}], [e_{-\alpha_1 \cdots \alpha_{n-1}}, F_\Lambda]]$ and \mathcal{G}_2 contains the lowest weight vector $y = [[E_M, e_{\alpha_1}], [e_{2\alpha_1 + \cdots + 2\alpha_{n-1} + \alpha_n}, E_M]]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{2n-1}^{(2)}$. - 5) \mathcal{G}_0 of type D_n $(n \ge 4)$, $\mathcal{G}_{-1} = V(\omega_2)$, $\mathcal{G}_1 = V(2\omega_1)$, $\alpha = \alpha_1$: in this case $x = [[F_\Lambda, e_{-\alpha_2}], [e_{-\alpha_2-2\alpha_3-\cdots-2\alpha_{n-2}-\alpha_n-1}-\alpha_n, F_\Lambda]]$ and $y = [[E_M, e_{\alpha_1+\alpha_2}], [e_{\alpha_1+\alpha_2+2\alpha_3+\cdots+2\alpha_{n-2}+\alpha_{n-1}+\alpha_n}, E_M]]$. The algebra \mathcal{A} is an affine Kac-Moody algebra of type $A_{2n-1}^{(2)}$. | TABLE 1 | | | | | | |-----------------|--------------------|---------------------------|--|--|---------------------| | \mathcal{G}_0 | \mathcal{G}_{-1} | \mathcal{G}_1 | σ | β | | | B_n | ω_i | $\omega_1 + \omega_{i-1}$ | $\alpha_1+\cdots+\alpha_{i-1}$ | $\alpha_{i-1}+2\alpha_i+\cdots+2\alpha_n$ | $3 \le i \le n - 1$ | | B_n | $2\omega_n$ | $\omega_1 + \omega_{n-1}$ | $\alpha_1+\cdots+\alpha_{n-1}$ | $\alpha_{n-1} + 2\alpha_n$ | n > 2 | | C_n | ω_i | $\omega_1 + \omega_{i-1}$ | $\alpha_1+\cdots+\alpha_{i-1}$ | $\alpha_{i-1}+2\alpha_i+\cdots+2\alpha_{n-1}+\alpha_n$ | $3 \le i \le n-1$ | | D_n | ω_i | $\omega_1 + \omega_{i-1}$ | $\alpha_1+\cdots+\alpha_{i-1}$ | $\alpha_{i-1}+2\alpha_i+\cdots+2\alpha_{n-2}+\alpha_{n-1}+\alpha_n$ | $3 \le i \le n-2$ | | E_6 | ω_3 | $\omega_1 + \omega_2$ | $\alpha_2 + \alpha_4 + \alpha_5 + \alpha_6$ | $\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5$ | | | E_6 | ω_5 | $\omega_2 + \omega_6$ | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ | $\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6$ | | | E_6 | ω_4 | $\omega_5 + \omega_6$ | $\alpha_1 + \alpha_3$ | $\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5$ | | | E_6 | ω_4 | $2\omega_2$ | α_2 | $\alpha_1 + \alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6$ | | | E_7 | ω_3 | $2\omega_1$ | α_1 | $\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + \alpha_7$ | | | E_7 | ω_3 | $\omega_2 + \omega_7$ | $\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7$ | $\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5$ | | | E_7 | ω_2 | $\omega_1 + \omega_7$ | $\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7$ | $\alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6$ | | | E_7 | ω_4 | $\omega_1 + \omega_3$ | $\alpha_1 + \alpha_3$ | $\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5$ | | | E_7 | ω_4 | $2\omega_2$ | α_2 | $\alpha_1 + \alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6$ | | | E_7 | ω_4 | $\omega_5 + \omega_7$ | $\alpha_5 + \alpha_6 + \alpha_7$ | $\alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5$ | | | E_7 | ω_5 | $\omega_1 + \omega_2$ | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ | $\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6$ | | | E_7 | ω_5 | $\omega_6 + \omega_7$ | $\alpha_6 + \alpha_7$ | $\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6$ | | | E_7 | ω_6 | <i>w</i> ₃ | $\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5$ | $\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7$ | | | E_8 | ω_1 | -ω | $\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + 2\alpha_7 + \alpha_8$ | $2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + \alpha_7 + \alpha_8$ | | | E_8 | ω_3 | $\omega_2 + \omega_8$ | $\alpha_2 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8$ | $\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5$ | | | E_8 | ω_2 | $\omega_1 + \omega_8$ | $\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8$ | $\alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6$ | | | E_8 | ω_k | $\omega_{k+1} + \omega_8$ | $lpha_{k+1}+\cdots+lpha_8$ | $\alpha_2 + \alpha_3 + 2\alpha_4 + \cdots + 2\alpha_k + \alpha_{k+1}$ | $4 \le k \le 6$ | | E_8 | 700 | $2\omega_8$ | α_8 | $2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 6\alpha_4 + 5\alpha_5 + 4\alpha_6 + 3\alpha_7 + \alpha_8$ | | | F_4 | ω_2 | $2\omega_1$ | α_1 | $\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4$ | | | F_4 | ω_2 | $\omega_3 + \omega_4$ | $\alpha_3 + \alpha_4$ | $\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4$ | | | F_4 | $2\omega_3$ | $\omega_1 + \omega_2$ | $\alpha_1 + \alpha_2$ | $\alpha_2 + 2\alpha_3$ | | | F_4 | ω_3 | $2\omega_4$ | α_4 | $\alpha_1 + 2\alpha_2 + 3\alpha_3 + \alpha_4$ | | | F_4 | $2\omega_4$ | ω_2 | $\alpha_1 + 2\alpha_2 + 2\alpha_3$ | $\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4$ | | | G_2 | $3\omega_1$ | $2\omega_2$ | α_2 | $3\alpha_1 + \alpha_2$ | | | E 2 | | |----------------|---| | Γ_{ABI} | | | | • | | | $n \geq 5, s \neq 1, 2, n$ | $n \geq 5, s \neq 1, n-1, n$ | $s \ge 1, s + 2 < t \le n$ | $2 \le s \le n-3$ | | $n \ge 3$ | $1 \le i \le n-2$ | | $2 \le i \le n-4$ | | n > 4 | n > 4 | | | | | $\gamma = \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7$ | $[[E_M, e_{\alpha+\alpha_8}], [e_{\alpha_1+\alpha_3+\alpha_4+\alpha_5+\alpha_7}, E_M]] \ \gamma = \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + 2\alpha_7 + \alpha_8$ | $\gamma = \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7$ | | | |--------------------|---|---|---|---|---|--|---|--|---|--|--|---|---|--|--|--|---|---
---|---|---| | у | $[[E_M,e_{\alpha+\alpha_S}],[e_{\alpha_{S-1}},E_M]]$ | $[[E_M,e_{\alpha+\alpha_S}],[e_{\alpha_{S+1}},E_M]]$ | $[[E_M,e_{\alpha+\alpha_S}],[e_{\alpha_{S+1}},E_M]]$ | $[[E_M,e_{\alpha+\alpha_S}],[e_{\alpha_{S+1}+\alpha_{S+2}},E_M]]$ | $[[E_M,e_{\alpha+\alpha_{n-2}}],[e_{\alpha_{n-1}+\alpha_n},E_M]]$ | $[[E_M,e_{\alpha_n}],[e_{\alpha_{n-1}+2\alpha_n},E_M]]$ | $[[E_M,e_{\alpha+\alpha_i}],[e_{\alpha_i+1},E_M]]$ | $[[E_M,e_{\alpha+\alpha_n}],[e_{\alpha_n1},E_M]]$ | $[[E_M, e_{\alpha+lpha_i}], [e_{lpha_{i+1}+lpha_{i+2}}, E_M]]$ | $[[E_M, e_{\alpha+\alpha_{n-3}}], [e_{\alpha_{n-2}+\alpha_{n-1}}, E_M]]$ | $[[E_M, e_{\alpha+\alpha_n}], [e_{\alpha_{n-2}+\alpha_{n-1}}, E_M]]$ | $[[E_M, e_{\alpha+\alpha_{n-1}}], [e_{\alpha_{n-2}+\alpha_n}, E_M]]$ | | $[[E_M,e_{\alpha+\alpha_6}],[e_{\alpha_3+\alpha_4+\alpha_5},E_M]]$ | $[[E_M,e_{lpha+lpha_2}],[e_{lpha_4+lpha_5+lpha_6},E_M]]$ | $[[E_M, e_{\alpha+\alpha_1}], [e_{\alpha_3+\alpha_4+\alpha_5+\alpha_6}, E_M]]$ | $[[E_M,e_{lpha+lpha7}],[e_{lpha_2+lpha_4+lpha_5+lpha_6},E_M]]$ | $[[E_M, e_{\alpha+\alpha_8}], [e_{\alpha_1+\alpha_3+\alpha_4+\alpha_5+\alpha_6+\alpha_7}, E_M]]$) | $[[E_M,e_{lpha+lpha7}],[e_{lpha_2+lpha_4+lpha_5+lpha_6},E_M]]$ | $[[E_M,e_{\alpha+\alpha_1}],[e_{\alpha_2+\alpha_3+\alpha_4},E_M]]$ | $[[E_M, e_{2\alpha_1 + \alpha_2}], [e_{\alpha_1}, E_M]]$ | | x | $[[F_{\Lambda},e_{-\alpha_S}],[e_{-\alpha_{S-1}-\alpha_S-\alpha_{S+1}},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_S}],[e_{-\alpha_{S-1}-\alpha_S-\alpha_{S+1}},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_{\mathcal{S}}}],[e_{-\alpha_{\mathcal{I}}},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_{S}}],[e_{-\alpha_{S}-1}-\alpha_{S}-\alpha_{S+1},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_{n-2}}],[e_{-\alpha_{n-3}-\alpha_{n-2}-\alpha_{n-1}},F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_{n-1}}], [e_{-\alpha_{n-2}-\alpha_{n-1}-\alpha_n}, F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_i}],[e_{-\alpha_i},F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_{n-1}-\alpha_{n}}], [e_{-\alpha_{n-1}-\alpha_{n}}, F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-lpha_{i}}],[e_{-lpha_{i-1}-lpha_{i}-lpha_{i+1}},F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_{n-3}}], [e_{-\alpha_{n-4}-\alpha_{n-3}-\alpha_{n-2}}, F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_n}], [e_{-\alpha_{n-3}-2\alpha_{n-2}-\alpha_{n-1}-\alpha_n}, F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_{n-1}}],[e_{-\alpha_{n-3}-2\alpha_{n-2}-\alpha_{n-1}-\alpha_{n}},F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_1}], [e_{-(\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5)}], F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_6}], [e_{-(\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6)}, F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_2}], [e_{-(\alpha_2+\alpha_3+2\alpha_4+\alpha_5)}, F_{\Lambda}]]$ | $[[F_{\Lambda}, e_{-\alpha_1}], [e_{-(\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5)}, F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_{7}}],[e_{-\gamma},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_8}],[e_{-\gamma},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha 7}],[e_{-\gamma},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-lpha_1}],[e_{-lpha_1-2lpha_2-2lpha_3},F_{\Lambda}]]$ | $[[F_{\Lambda},e_{-\alpha_1-\alpha_2}],[e_{-\alpha_1-\alpha_2},F_{\Lambda}]]$ | | \mathcal{G}_1 | ω_s $\omega_{n-s+2} + \omega_n$ | $\omega_1 + \omega_{n-s}$ | $\omega_{n-s} + \omega_{n-t+2}$ | ω_{s+2} | $2\omega_n$ | $2\omega_n$ | $2\omega_{i+1}$ | $\omega_1 + \omega_{n-1}$ | ω_{i+2} | $\omega_{n-1} + \omega_n$ | $\omega_1 + \omega_n$ | $\omega_1 + \omega_{n-1}$ | <i>ω</i> 3 | ω5 | $\omega_1 + \omega_6$ | 900 | ω_2 | ω_1 | ω_2 | $2\omega_4$ | $2\omega_1$ | | \mathcal{G}_{-1} | ω_s | ω_s | $\omega_s + \omega_t$ | ω_s | ω_{n-2} | ω_{n-1} | $2\omega_i$ | ω_n | ω_i | ω_{n-3} | ω_n | ω_{n-1} | ω_1 | ω_6 | ω_2 | ω_1 | ω_7 | ω_8 | ω_7 | ω_1 | Ad | | \mathcal{Q}_0 | A_n | A_n | A_n | B_n | B_n | B_n | C_n | C_n | D_n | D_n | D_n | D_n | E_6 | E_6 | E_6 | E_7 | E_7 | E_8 | E_8 | F_4 | G_2 | | | \mathcal{G}_1 | $2\omega_{n-s}$ | |---------|--------------------|---------------------------| | | \mathcal{G}_{-1} | $\omega_s + \omega_{s+2}$ | | TABLE 3 | \mathcal{G}_0 | A_n | | | | | | \mathcal{S}_0 | \mathcal{G}_{-1} | \mathcal{G}_1 | × | у | |--|---------------------------------------|-----------------|---|---| | A_n | $\omega_s + \omega_{s+2}$ | $2\omega_{n-s}$ | $[[F_{\Lambda},e_{-\alpha_{\delta}}],[e_{-\alpha_{\delta}+2},F_{\Lambda}]]$ | $[[E_M, e_{\alpha+\alpha_s}], [e_{\alpha_{s+1}+\alpha_{s+2}}, E_M]]$ | | (" (" (" (" (" (" (" (" (" (" (" (" (" (" (" (" (" (| $(1 \ge 3 \ge n - 2)$ $2\omega_{n-1}$ | $2\omega_n$ | $[[F_{\Lambda},e^{-\alpha_{n-1}}],[e^{-\alpha_{n-1}},F_{\Lambda}]]$ | $[[E_M,e_{\alpha_{n-1}+\alpha_n}],[e_{\alpha_{n-1}+\alpha_n},E_M]]$ | | $(n \ge 3)$ D_n | $(n \ge 3)$ $D_n \qquad \omega_{n-2}$ | $2\omega_n$ | $[[F_{\Lambda},e_{-\alpha_{n-3}-\alpha_{n-2}-\alpha_{n}}],[e_{-\alpha_{n-2}},F_{\Lambda}]]$ | $[[E_M,e_{\alpha_{n-3}+\alpha_{n-2}+\alpha_{n-1}}],[e_{\alpha_{n-2}+\alpha_{n-1}+\alpha_n},E_M]]$ | | $(n > 4)$ D_n | ω_{n-2} | $2\omega_{n-1}$ | $[[F_{\Lambda}, e_{-\alpha_{n-3}-\alpha_{n-2}-\alpha_{n-1}}], [e_{-\alpha_{n-2}}, F_{\Lambda}]]$ | $[[E_M, e_{\alpha_{n-3}+\alpha_{n-2}+\alpha_n}], [e_{\alpha_{n-2}+\alpha_{n-1}+\alpha_n}, E_M]]$ | | $(n > 4)$ E_6 | ω_3 | $2\omega_6$ | $[[F_{\Lambda},e_{-\alpha_3}],[e_{-\alpha_2-\alpha_3-2\alpha_4-\alpha_5},F_{\Lambda}]]$ | $[[E_M,e_{lpha_1}],[e_{lpha_1+lpha_2+2lpha_3+2lpha_4+lpha_5},E_M]]$ | | E_6 | <i>ω</i> 5 | $2\omega_1$ | $[[F_{\Lambda},e_{-lpha_{5}}],[e_{-lpha_{2}-lpha_{3}-2lpha_{4}-lpha_{5}},F_{\Lambda}]]$ | $[[E_M,e_{\alpha_6}],[e_{\alpha_2+\alpha_3+2\alpha_4+2\alpha_5+\alpha_6},E_M]]$ | | E_7 | ω_6 | $2\omega_7$ | $[[F_{\Lambda},e_{-lpha_{\mathcal{E}}}],[e_{-lpha_{\mathcal{I}}-lpha_{\mathcal{I}}-2lpha_{\mathcal{I}}-2lpha_{\mathcal{E}},F_{\Lambda}]]$ | $[[E_M,e_{\alpha\gamma}],[e_{\alpha\gamma+\alpha\gamma+2\alpha_A+2\alpha_5+2\alpha_6+\alpha\gamma},E_M]]$ | We finally analyze and rule out the remaining cases: - \mathcal{G}_0 of type A_n , $\mathcal{G}_{-1} = V(\omega_s)$: - (i) if s=1 (or, equivalently, s=n) then $\mathcal{G}_1=V(\omega_1+\omega_{n-1})$ and $\mathcal{G}_{-2}\subset S^2\mathcal{G}_{-1}=S^2V(\omega_1)=0$ since $S^2V(\omega_1)=V(2\omega_1)$ and $[F_\Lambda,F_\Lambda]=0$, therefore \mathcal{G} has finite depth; - (ii) if s = 2, $\mathcal{G}_1 = V(2\omega_n)$, $\alpha = \alpha_1$, (or, equivalently, s = n 1, $\mathcal{G}_1 = V(2\omega_1)$, $\alpha = \alpha_n$) then \mathcal{G} is isomorphic to the finite-dimensional Lie superalgebra p(n) (for the definition of p(n) see [K2]); - (iii) if n = 4 and s = 3, i.e. $\mathcal{G}_{-1} \cong \Lambda^2 s l_5^*$, $\mathcal{G}_1 = V(\omega_3 + \omega_4)$, $\alpha = \alpha_1 + \alpha_2$ (or, equivalently, $\mathcal{G}_{-1} = V(\omega_2)$, $\mathcal{G}_1 = V(\omega_1 + \omega_2)$, $\alpha = \alpha_3 + \alpha_4$), then \mathcal{G} is isomorphic to the infinite-dimensional Lie superalgebra E(5, 10) (for the definition of E(5, 10) see [K3]). - \mathcal{G}_0 of type B_n $(n \ge 2)$, $\mathcal{G}_{-1} = V(\omega_1)$ and: - (i) $\mathcal{G}_1 = V(\omega_3)$ if n > 3 ($\alpha = \alpha_2 + 2\alpha_3 + \cdots + 2\alpha_n$), - (ii) $G_1 = V(2\omega_3)$ if n = 3 ($\alpha = \alpha_2 + 2\alpha_3$), - (iii) $G_1 = V(\omega_2)$ if n = 2 ($\alpha = \alpha_2$). For all these cases $\mathcal{G}_{-2} \subset S^2 \mathcal{G}_{-1} = S^2 V(\omega_1) = V(2\omega_1) + 1 = 1$ since $[F_{\Lambda}, F_{\Lambda}] = 0$. Thus \mathcal{G} has finite depth. - \mathcal{G}_0 of type D_n $(n \ge 4)$: - (i) $\mathcal{G}_{-1} = V(\omega_1)$, $\mathcal{G}_1 = V(\omega_1 + \omega_3)$, then $\mathcal{G}_{-2} \subset S^2 \mathcal{G}_{-1} = S^2 V(\omega_1) = V(2\omega_1) + 1 = 1$ hence \mathcal{G} has finite depth. - (ii) n=4, $\mathcal{G}_{-1}=V(\omega_4)$, $\mathcal{G}_1=V(\omega_1+\omega_4)$ ($\alpha=\alpha_1+\alpha_2+\alpha_3$) (or, equivalently, $\mathcal{G}_{-1}=V(\omega_3)$, $\mathcal{G}_1=V(\omega_1+\omega_3)$), then we can use the same argument as in (i) and conclude. ## **2.2.** – Case $(\Lambda, \alpha) \neq 0$ In the following we assume $(\Lambda, \alpha) \neq 0$. REMARK 2.11. Under the hypothesis $(\Lambda, \alpha) \neq 0$ the vector $[F_{\Lambda}, F_{\Lambda}]$ is different from 0: $[E_M, [F_{\Lambda}, F_{\Lambda}]] = 2[e_{-\alpha}, F_{\Lambda}] \neq 0$. Nevertheless, $[E_M, E_M] = 0$ and therefore $[[E_M, e_{\beta}], E_M] = 0$ for every positive root β (see Lemma 2.2). COROLLARY 2.12. If $(\Lambda, \alpha) \neq 0$ then either $(\Lambda, \alpha) = (\alpha, \alpha)$ or $(\Lambda, \alpha) = (\alpha, \alpha)/2$. PROOF. It is enough to apply Lemma 1.14 to the following vectors: $$x_{\lambda} = F_{\Lambda}, \ x_{\mu} = E_{M}.$$ Lemma 2.13. Suppose that α is not simple. Then there exists j such that: $\alpha - \alpha_j$ is a root and $\alpha + \alpha_j$, $2\alpha - \alpha_j$, $\alpha - 2\alpha_j$ are not roots, in all cases except those in the following list: - \mathcal{G}_0 of type B_n and $\alpha = \alpha_i + \alpha_{i+1} + \cdots + \alpha_n$, $\alpha = \alpha_{n-1} + 2\alpha_n$; - \mathcal{G}_0 of type C_n and $\alpha = 2\alpha_i + \cdots + 2\alpha_{n-1} + \alpha_n$, $\alpha =
\alpha_{n-1} + \alpha_n$; - G_0 of type F_4 and $\alpha = \alpha_1 + \alpha_2 + \alpha_3$, $\alpha = \alpha_2 + \alpha_3$, $\alpha = \alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4$, $\alpha = \alpha_2 + 2\alpha_3$, $\alpha = \alpha_2 + 2\alpha_3 + 2\alpha_4$, $\alpha = \alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4$; • G_0 of type G_2 and $\alpha = 2\alpha_1 + \alpha_2$, $\alpha = \alpha_1 + \alpha_2$, $\alpha = 3\alpha_1 + \alpha_2$. PROOF. Case by case check. Lemma 2.14. Let α be a positive root of \mathcal{G}_0 and suppose that it is not simple. If α_j is a simple root of \mathcal{G}_0 such that $\alpha - \alpha_j$ is a root and $\alpha + \alpha_j$, $2\alpha - \alpha_j$, $\alpha - 2\alpha_j$ are not roots, then either $$\tilde{x} := [[[E_M, e_{\alpha_i}], e_{\alpha - \alpha_i}], E_M]$$ is a lowest weight vector in \mathcal{G}_{-2} or $\tilde{x}=0$ and $$x := [[[E_M, e_{\alpha_i}], e_{\alpha}], E_M]$$ is a lowest weight vector in \mathcal{G}_{-2} . PROOF. If $\tilde{x} \neq 0$ then, using the transitivity of \mathcal{G} , one can show that it is a lowest weight vector in \mathcal{G}_{-2} . If $\tilde{x} = 0$ then $[x, e_{-k}] = 0$ for every $k = 1, \ldots, n$. \square PROPOSITION 2.15. If α is not a simple root and the growth of \mathcal{G} is finite then either (\mathcal{G}_0, α) belongs to the list in Lemma 2.13 or $(\mathcal{G}_0, \alpha) = (A_n, longest root)$ and $\tilde{x} := [[[E_M, e_{\alpha_i}], e_{\alpha - \alpha_i}], E_M] \neq 0$. PROOF. Suppose that (\mathcal{G}_0, α) is not in the list in Lemma 2.13. Since α is not a simple root we can apply Lemma 2.14: in the case $\tilde{x}=0$ we take $y=[F_\Lambda,F_\Lambda]$. Then $[x,y]=2\Lambda(h_\alpha)e_{-\alpha+\alpha_j}\neq 0$, and, by Theorem 1.16, we get infinite growth. If $\tilde{x} := [[[E_M, e_{\alpha_j}], e_{\alpha-\alpha_j}], E_M] \neq 0$ then, by bitransitivity, $[\tilde{x}, F_{\Lambda}] = (\Lambda(h_{\alpha}) - 2\Lambda(h_j))E_M \neq 0$, thus $[\tilde{x}, y] = (\Lambda(h_{\alpha}) - 2\Lambda(h_j))e_{-\alpha}$ is different from zero. Then the thesis follows from Theorem 1.16. (Notice that the case \mathcal{G}_0 of type C_n , α its longest root, is in the list of Lemma 2.13 and is therefore excluded by the hypotheses.) LEMMA 2.16. If the growth of G is finite and β is a positive root such that $\alpha + \beta$ and $\alpha - \beta$ are not roots, then $(\Lambda, \beta) = 0$. PROOF. Suppose $(\Lambda, \beta) \neq 0$. We define: $$E_{1} = [e_{\alpha}, E_{M}],$$ $E_{2} = [[E_{M}, e_{\alpha}], e_{\beta}],$ $F_{1} = F_{\Lambda},$ $F_{2} = \Lambda(h_{\beta})^{-1}[F_{\Lambda}, e_{-\beta}],$ $H = h_{\alpha}.$ It is easy to verify that the conditions of Lemma 1.13 are satisfied with $a_1 = a_2 = -\Lambda(h_\alpha)$, thus $r(\mathcal{G}) = \infty$. Theorem 2.17. Let $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ be a \mathbb{Z} -graded, consistent, simple, irreducible Lie superalgebra of finite growth. Assume that \mathcal{G}_0 is a simple Lie algebra, that \mathcal{G}_1 is an irreducible \mathcal{G}_0 -module which is not contragredient to \mathcal{G}_{-1} and that the local part generates \mathcal{G} . Let F_{Λ} be a highest weight vector in \mathcal{G}_{-1} and E_M a lowest weight vector in \mathcal{G}_1 so that $\Lambda + M = -\alpha$ for a positive root α . If $(\Lambda, \alpha) \neq 0$ then \mathcal{G}_0 has rank 1. PROOF. By Proposition 2.15 and its proof only the following cases may occur: - α is a simple root; - $(\mathcal{G}_0, \alpha) = (A_n, \text{longest root});$ - (\mathcal{G}_0, α) is in the list of Lemma 2.13. Let us analyze these possibilities case by case: 1) G_0 of type A_n , $\alpha = \alpha_1 + \cdots + \alpha_n$. If n = 1 we get the thesis. Now suppose $n \ge 2$. The proof of Proposition 2.15 shows that this possibility holds if $$\tilde{x} = [[[E_M, e_j], e_{\alpha - \alpha_i}], E_M]$$ is a nonzero vector, thus either j=1 or j=n. If we apply Lemma 2.16 to $\alpha=\alpha_1+\cdots+\alpha_n$ and $\beta=\alpha_2+\cdots+\alpha_{n-1}$ we deduce that $(\Lambda,\alpha_i)=0$ for every $i=2,\ldots,n-1$, therefore $(\Lambda,\alpha)=(\Lambda,\alpha_1)+(\Lambda,\alpha_n)$. As we already noticed in the proof of Proposition 2.15, for every $k=1,\ldots,n,\ [\tilde{x},e_{-k}]=0$ thus, since we assume $\tilde{x}\neq 0$, transitivity implies $[\tilde{x},F_{\Lambda}]\neq 0$. Since $[\tilde{x},F_{\Lambda}]=(\Lambda(h_{\alpha})-2\Lambda(h_{j}))E_{M}$, it turns out that $\Lambda(h_{1})\neq \Lambda(h_{n})$. Corollary 2.12 now implies that either $(\Lambda,\alpha_{1})=0$ or $(\Lambda,\alpha_{n})=0$. But this hypothesis contradicts Theorem 1.16, since if we take the highest weight vector $y=[F_{\Lambda},F_{\Lambda}]$ in \mathcal{G}_{-2} , then $[\tilde{x},y]\neq 0$ but the irreducible submodule of \mathcal{G}_{-2} generated by $[F_{\Lambda},F_{\Lambda}]$ is not the standard A_{n} -module. - 2) \mathcal{G}_0 of type A_n , α simple, $n \geq 2$. - 2a) $n \ge 3$, $\alpha = \alpha_j$ with $j \ne 1$, n If we apply Lemma 2.16 with $\alpha = \alpha_j$ and $\beta = \alpha_{j-1} + \alpha_j + \alpha_{j+1}$ we find a contradiction. 2b) $\alpha = \alpha_1$ (or, equivalently, $\alpha = \alpha_n$). Again, by applying Lemma 2.16 with $\beta = \alpha_3 + \cdots + \alpha_n$, we find $(\Lambda, \alpha_i) = 0$ for every $i \geq 3$. On the other hand, $(\Lambda, \alpha_2) \neq 0$ since $[E_M, [F_\Lambda, e_{-\alpha_2}]] = e_{-\alpha_1 - \alpha_2} \neq 0$. We distinguish two cases: Case 1: $(\Lambda, \alpha_2) \neq 1$ Under this hypothesis let us consider the following vectors: $$x_{\mu} = [[[E_M, e_1], [E_M, e_2]], [E_M, e_1]],$$ $$x_{\lambda} = \Lambda(h_1)^{-1} (1 - \Lambda(h_2))^{-1} (3 + \Lambda(h_1))^{-1} [F_{\Lambda}, [F_{\Lambda}, [F_{\Lambda}, e_{-2}]]].$$ Then x_{λ} and x_{μ} satisfy the hypotheses of Lemma 1.14 with $\delta = \alpha_1$. Since $(3\Lambda - \alpha_2, \alpha_1) = 3(\Lambda, \alpha_1) + 1 \ge 4$ we find a contradiction. Case 2: $(\Lambda, \alpha_2) = 1$ By Corollary 2.12, either $\Lambda(h_1)=1$ or $\Lambda(h_1)=2$. Notice that $x:=[F_\Lambda,F_\Lambda]$ is a highest weight vector in \mathcal{G}_{-2} and $y:=[[E_M,e_1],[E_M,e_1]]$ is a lowest weight vector in \mathcal{G}_2 . Since $[x,y]=-4\Lambda(h_1)h_1$, $\mathcal{G}_{\bar{0}}$ contains a \mathbb{Z} -graded Lie subalgebra with local part $s_{-2}\oplus\mathcal{G}_0\oplus s_2$, where s_{-2} is the irreducible submodule of \mathcal{G}_{-2} generated by x and s_2 is the irreducible submodule of \mathcal{G}_2 generated by y. The classification of Kac-Moody Lie algebras immediately allows us to rule out the case $\Lambda(h_1)=2$ and the case $\Lambda(h_1)=1$, n>2. Now suppose n=2, $\Lambda(h_1)=1=\Lambda(h_2)$. Under these hypotheses \mathcal{G}_{-2} contains the highest weight vector $$z := -4[[F_{\Lambda}, e_{-\alpha_1 - \alpha_2}], F_{\Lambda}] + 5[[[F_{\Lambda}, e_{-\alpha_1}], e_{-\alpha_2}], F_{\Lambda}] - 3[[[F_{\Lambda}, e_{-\alpha_2}], F_{\Lambda}], e_{-\alpha_1}]$$ of weight Λ . Besides, $[z, y] = -24e_{-\alpha_1-\alpha_2}$ and this contradicts Theorem 1.16 since the irreducible \mathcal{G}_0 -submodule of \mathcal{G}_{-2} containing z is the adjoint module and not the standard one. - 3) \mathcal{G}_0 of type B_n $(n \ge 2)$, $\alpha = \alpha_i + \cdots + \alpha_n$ $(1 \le i \le n-1)$. - 3a) If i > 1 take $\beta = \alpha_{i-1} + \alpha_i + 2\alpha_{i+1} + \cdots + 2\alpha_n$, then $\alpha + \beta$ and $\alpha \beta$ are not roots and, by Lemma 2.16, $(\Lambda, \beta) = 0$, i.e. $(\Lambda, \alpha_j) = 0$ for every $j \ge i 1$ which contradicts the hypothesis $(\Lambda, \alpha) \ne 0$. - 3b) If i = 1 and $n \ge 3$ take $\beta = \alpha_2 + \cdots + 2\alpha_n$. Then, by Lemma 2.16, $(\Lambda, \alpha_i) = 0$ for every $i \ne 1$. This implies the following contradiction: $$0 = [E_M, [F_\Lambda, e_{-\alpha_n}]] = [e_{-\alpha}, e_{-\alpha_n}] \neq 0.$$ 3c) Let i = 1 and n = 2, i.e. $\alpha = \alpha_1 + \alpha_2$. If $(\Lambda, \alpha_2) = 0$, as above we have: $$0 = [E_M, [F_\Lambda, e_{-\alpha_2}]] = [e_{-\alpha}, e_{-\alpha_2}] \neq 0.$$ Thus suppose $(\Lambda, \alpha_2) \neq 0$. Since α and α_2 have both length 1, Corollary 2.12 implies $(\Lambda, \alpha_1) = 0$ and either $\Lambda(h_2) = 1$ or $\Lambda(h_2) = 2$. Notice that \mathcal{G}_{-2} contains the highest weight vector $x := [F_{\Lambda}, F_{\Lambda}]$. Now, if $\Lambda(h_2) = 1$ then \mathcal{G}_2 contains the lowest weight vector $y := [[E_M, e_{\alpha_1}], [E_M, e_{\alpha_2}]]$ and $[x, y] = 2e_{-\alpha}$ thus $\mathcal{G}_{\bar{0}}$ has infinite growth according to Theorem 1.16. If $\Lambda(h_2) = 2$, by bitransitivity, then y = 0 and the vector $$z := [[E_M, e_{\alpha_1 + \alpha_2}], [E_M, e_{\alpha_2}]]$$ is a lowest weight vector in G_2 . Again, since $[x, z] = -8e_{-\alpha_1}$, this contradicts Theorem 1.16. - 4) \mathcal{G}_0 of type B_n , α simple. - 4a) If $\alpha = \alpha_i$ with $i \neq 1, n$, we proceed as for A_n . - 4b) If $\alpha = \alpha_1$ we take $\beta = \alpha_1 + 2\alpha_2 + \cdots + 2\alpha_n$ and apply Lemma 2.16. - 4c) If $\alpha = \alpha_n$ and $n \ge 3$ we take $\beta = \alpha_{n-2} + 2\alpha_{n-1} + 2\alpha_n$. Then Lemma 2.16 holds and we get a contradiction. - 4d) n=2, $\alpha=\alpha_2$. In this case relation $[E_M,[F_\Lambda,e_{-\alpha_1}]]=e_{-\alpha_2-\alpha_1}$ implies $(\Lambda,\alpha_1)\neq 0$. This possibility is therefore ruled out by the classification of Kac-Moody Lie algebras once we have noticed that since \mathcal{G}_{-2} contains the highest weight vector $x:=[F_\Lambda,F_\Lambda]$ and \mathcal{G}_2 contains the lowest weight vector $y:=[E_M,e_{\alpha_2}],[E_M,e_{\alpha_2}]]$, with $[x,y]\neq 0$, $\mathcal{G}_{\bar{0}}$ contains an affine Kac-Moody, \mathbb{Z} -graded Lie subalgebra with local part
$s_{-2}\oplus\mathcal{G}_0\oplus s_2$, where s_{-2} is the \mathcal{G}_0 -module contragredient to s_{-2} . - 5) \mathcal{G}_0 of type B_n , $\alpha = \alpha_{n-1} + 2\alpha_n$. - 5a) If $n \ge 3$ take $\beta = \alpha_{n-2} + \alpha_{n-1} + \alpha_n$ and use Lemma 2.16. - 5b) Let n=2, $\alpha=\alpha_1+2\alpha_2$. If we take $\beta=\alpha_1$ then Lemma 2.16 implies $(\Lambda, \alpha_1)=0$ thus $\Lambda(h_\alpha)=\Lambda(h_2)$ is either 1 or 2. One can easily verify, using the bitransitivity of \mathcal{G} , that the vector $z:=[[E_M,e_{\alpha_1+\alpha_2}],[E_M,e_{\alpha_2}]]$ is equal to 0, the vector $y:=[[E_M,e_{\alpha_1+2\alpha_2}],[E_M,e_{\alpha_2}]]$ is a lowest weight vector in \mathcal{G}_2 and, as in the previous cases, $x:=[F_\Lambda,F_\Lambda]$ is a highest weight vector in \mathcal{G}_{-2} . Since $[x,y]=24(\Lambda(h_2)+1)e_{-\alpha_1-\alpha_2}$ this contradicts Theorem 1.16. - 6) \mathcal{G}_0 of type C_n $(n \ge 3)$, $\alpha = 2\alpha_i + \cdots + 2\alpha_{n-1} + \alpha_n$ $(1 \le i \le n-1)$. If $i \ne 1$ we apply Lemma 2.16 to $\beta = \alpha_{i-1} + \alpha_i + 2\alpha_{i+1} + \cdots + 2\alpha_{n-1} + \alpha_n$ and get a contradiction. If i=1 take $\beta=2\alpha_2+\cdots+2\alpha_{n-1}+\alpha_n$. Then Lemma 2.16 implies $(\Lambda,\alpha_i)=0$ for every $i\geq 2$. Thus $(\Lambda,\alpha)=2(\Lambda,\alpha_1)$. Consider the following vectors: $$x = [F_{\Lambda}, F_{\Lambda}]$$ $$y = [[[E_M, e_1], e_{\alpha}], E_M].$$ Then x is a highest weight vector in \mathcal{G}_{-2} and y is a lowest weight vector in \mathcal{G}_2 . Besides, $[x, y] = 2\Lambda(h_\alpha)e_{\alpha_1-\alpha}$. This contradicts Theorem 1.16 since $\alpha - \alpha_1$ is not the highest root of \mathcal{G}_0 . 7) \mathcal{G}_0 of type C_n $(n \ge 3)$, $\alpha = \alpha_{n-1} + \alpha_n$. If we take $\beta = 2\alpha_{n-2} + 2\alpha_{n-1} + \alpha_n$, by Lemma 2.16, we get a contradiction. - 8) \mathcal{G}_0 of type C_n $(n \ge 3)$, α simple. - 8a) If $\alpha = \alpha_i$ with $i \neq 1, n 1, n$ then we proceed as for A_n , case 2a). - 8b) If $\alpha = \alpha_{n-1}$, take $\beta = 2\alpha_{n-2} + 2\alpha_{n-1} + \alpha_n$ and apply Lemma 2.16. - 8c) If $\alpha = \alpha_1$, $[E_M, [F_\Lambda, e_{-\alpha_2}]] = e_{-\alpha_1 \alpha_2}$ implies $(\Lambda, \alpha_2) \neq 0$. Thus we apply the same argument as in case 4d) with $x = [F_\Lambda, F_\Lambda]$ and $y = [[E_M, e_{\alpha_1}], [E_M, e_{\alpha_1}]]$. - 8d) If $\alpha = \alpha_n$ we take $\beta = 2\alpha_{n-1} + \alpha_n$. By Lemma 2.16 we find a contradiction. - 9) \mathcal{G}_0 of type D_n $(n \ge 4)$, α simple. - 9a) If $\alpha = \alpha_i$, $i \neq 1, n 1, n$ we proceed as for A_n , case 2a). - 9b) If $\alpha = \alpha_1$ we apply Lemma 2.16 to $\beta = \alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n$ and find a contradiction. - 9c) If $\alpha = \alpha_n$ (or, equivalently, $\alpha = \alpha_{n-1}$) we apply Lemma 2.16 to $\beta = \alpha_{n-3} + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n$. - 10) \mathcal{G}_0 of type E_6 , α simple, $\alpha = \alpha_i$. If $i \neq 1, 2, 6$ we proceed as for A_n , case 2a). Otherwise we apply Lemma 2.16 as follows: if $$i = 1$$ we take $\beta = \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5$; if $$i = 6$$ we take $\beta = \alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6$; if $$i = 2$$ we take $\beta = \alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5$. 11) \mathcal{G}_0 of type E_7 or E_8 . The situation is analogous to case 10). 12) \mathcal{G}_0 of type F_4 and α in the list. We apply Lemma 2.16 with the following roots α and β : - $\alpha = \alpha_1 + \alpha_2 + \alpha_3$, $\beta = \alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4$; - $\alpha = \alpha_2 + \alpha_3$, $\beta = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4$; - $\alpha = \alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4$, $\beta = \alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4$; - $\alpha = \alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4$, $\beta = \alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4$; - $\alpha = \alpha_2 + 2\alpha_3$, $\beta = \alpha_2 + \alpha_3 + \alpha_4$; - $\alpha = \alpha_2 + 2\alpha_3 + 2\alpha_4$, $\beta = \alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4$. - 13) G_0 of type F_4 , α simple. We apply Lemma 2.16 with the following roots α and β : - $\alpha = \alpha_1$, $\beta = \alpha_1 + 2\alpha_2 + 2\alpha_3$; - $\alpha = \alpha_2$, $\beta = \alpha_1 + \alpha_2 + \alpha_3$; - $\alpha = \alpha_3$, $\beta = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4$; - $\alpha = \alpha_4$, $\beta = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4$. - 14) \mathcal{G}_0 of type G_2 , α in the list. - 14a) $\alpha = 2\alpha_1 + \alpha_2$ If we apply Lemma 2.16 with $\beta=\alpha_2$ we find $(\Lambda,\alpha_2)=0$ thus $(\Lambda,\alpha)=2(\Lambda,\alpha_1)$. Besides, Corollary 2.12 implies $\Lambda(h_\alpha)=2$, i.e. $\Lambda(h_1)=1$. Consider the vector $x := [[E_M, e_{\alpha}], [E_M, e_{\alpha_1}]]$. Then one can verify that x is a lowest weight vector. Now, if we take $y := [F_{\Lambda}, F_{\Lambda}]$ in \mathcal{G}_{-2} , then $[x, y] \neq 0$ and this contradicts Theorem 1.16. - 14b) $\alpha = \alpha_1 + \alpha_2$ In this case we apply Lemma 2.16 with $\beta = 3\alpha_1 + \alpha_2$ and find a contradiction. - 14c) $\alpha = 3\alpha_1 + \alpha_2$ We proceed as in 14b) with $\beta = \alpha_1 + \alpha_2$. - 15) \mathcal{G}_0 of type G_2 , α simple. If $\alpha = \alpha_1$ apply Lemma 2.16 with $\beta = 3\alpha_1 + 2\alpha_2$. If $\alpha = \alpha_2$ apply Lemma 2.16 with $\beta = 2\alpha_1 + \alpha_2$. ## 3. - The classification theorem Let L be a finite-dimensional Lie superalgebra and let σ be an automorphism of L of finite order k. Then $$(3) L = \bigoplus_{i=0}^{k-1} L_i$$ where $L_i = \{x \in L | \sigma(x) = \epsilon^i x\}$, $\epsilon = e^{2\pi i/k}$. Notice that (3) is a mod-k gradation of L. Consider the Lie superalgebra ${\bf C}[x,x^{-1}]\otimes L=\oplus_{i=-\infty}^{+\infty}x^i\otimes L$ and its subalgebra $$G^k(L,\sigma) := \bigoplus_{i=-\infty}^{+\infty} x^i \otimes L_{i \pmod{k}}$$ called the *covering superalgebra* of L. Then $G^k(L, \sigma)$ is a \mathbb{Z} -graded Lie superalgebra of infinite depth and growth 1. Example 1 (The Lie superalgebra $S_1(n)$). We recall that sl(m,n) is the Lie superalgebra of $(m+n)\times (m+n)$ matrices with supertrace equal to 0, i.e., in suitable coordinates, the set of matrices $\left\{\left(\frac{a}{c} \mid \frac{b}{d}\right) \mid \operatorname{tr}(a) = \operatorname{tr}(d)\right\}$. Let $\tilde{Q}(n)$ $(n \ge 2)$ be the subalgebra of sl(n+1,n+1) consisting of matrices of the form $\binom{a\ b}{b\ a}$, where $\mathrm{tr}(b)=0$. Then $\tilde{Q}(n)$ has a one-dimensional centre $C=\langle I_{2n+2}\rangle$ and we define $Q(n)=\tilde{Q}(n)/C$. Notice that Q(n) has even part isomorphic to the Lie algebra of type A_n and odd part isomorphic to ad sl_{n+1} and has therefore dimension $2(n^2 + 2n)$. We consider the following automorphism σ of Q(n): $$\sigma\begin{pmatrix} a & b \\ b & a \end{pmatrix} = \begin{pmatrix} -a^t & ib^t \\ ib^t & -a^t \end{pmatrix}.$$ Then σ has order 4 and $Q(n) = \bigoplus_{i=0}^{3} Q(n)_i$ where $$Q(n)_0 \cong so_{n+1}$$, $$Q(n)_1 = \{b \in sl_{n+1} | b = b^t\},\$$ $$Q(n)_2 = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} | a = a^t \right\} / C,$$ $$Q(n)_3 = \{b \in sl_{n+1} | b = -b^t\}$$. Let us suppose $n \neq 3$ and denote by $S_1(n)$ the covering superalgebra $G^4(Q(n), \sigma)$. Notice that $Q(n)_3$ is isomorphic to the adjoint module of so_{n+1} and if n > 2 then $Q(n)_1$ and $Q(n)_2$ are isomorphic, as so_{n+1} -modules, to the highest weight module $V(2\omega_1)$, while if n = 2 $Q(n)_1$ and $Q(n)_2$ are sl(2)-irreducible modules of dimension 5. EXAMPLE 2 (The Lie superalgebra $S_2(m)$). Suppose m = 2n - 1 and consider the following automorphism τ of Q(m): $$\tau \begin{pmatrix} a & b & | & r & s \\ c & d & | & v & w \\ r & s & | & a & b \\ v & w & | & c & d \end{pmatrix} = \begin{pmatrix} -d^t & b^t & | & -iw^t & is^t \\ c^t & -a^t & | & iv^t & -ir^t \\ -iw^t & is^t & | & -d^t & b^t \\ iv^t & -ir^t & | & c^t & -a^t \end{pmatrix}$$ where a, b, c, d, r, s, v, w are $n \times n$ -blocks and tr(r) + tr(w) = 0. Then $\tau^4 = 1$ and $Q(m) = \bigoplus_{i=0}^3 Q(m)_i$ where $$Q(m)_0 \cong sp(2n),$$ $$Q(m)_1 = \left\{ \begin{pmatrix} r & s \\ v & w \end{pmatrix} | r = -w^t, s = s^t, v = v^t \right\},\,$$ $$Q(m)_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | b^t = -b, c^t = -c, a^t = d \right\} / C,$$ $$Q(m)_3 = \left\{ \begin{pmatrix} r & s \\ v & w \end{pmatrix} | w^t = r, s^t = -s, v^t = -v, \operatorname{tr}(r) = 0 \right\}.$$ Let us denote by $S_2(m)$ the covering superalgebra $G^4(Q(m), \tau)$. Notice that $Q(m)_1$ is isomorphic to the adjoint module of the Lie algebra sp(2n) and $Q(m)_2$, $Q(m)_3$ are isomorphic to the sp(2n)-module $\Lambda_0^2 sp_{2n}$. Example 3 (The Lie superalgebra S_3). Let $D(2, 1; \alpha)$ be the one-parameter family of 17-dimensional Lie superalgebras with even part isomorphic to $A_1 \oplus A_1 \oplus A_1$ and odd part isomorphic to $sl_2 \otimes sl_2 \otimes sl_2$. We recall that two members $D(2, 1; \alpha)$ and $D(2, 1; \beta)$ of this family are isomorphic if and only if α and β lie in the same orbit of the group V of order 6 generated by $\alpha \mapsto -1 - \alpha$, $\alpha \mapsto 1/\alpha$. $D(2, 1; \alpha)$ is the contragredient Lie superalgebra associated to the matrix $$\begin{pmatrix} 0 & 1 & -1 - \alpha \\ 1/\alpha & 0 & 1 \\ 1 & -\alpha/(1+\alpha) & 0 \end{pmatrix}.$$ Suppose that $\alpha^2 + \alpha + 1 = 0$ and consider the following automorphism φ of $D(2, 1; \alpha)$: $$\begin{array}{lll} \varphi(e_1) = -e_2 & \qquad \varphi(f_1) = -f_2 & \qquad \varphi(h_1) = h_2
\\ \varphi(e_2) = -e_3 & \qquad \varphi(f_2) = -f_3 & \qquad \varphi(h_2) = h_3 \\ \varphi(e_3) = -e_1 & \qquad \varphi(f_3) = -f_1 & \qquad \varphi(h_3) = h_1. \end{array}$$ Then φ has order 6 and $D(2, 1; \alpha) = \bigoplus_{i=0}^{5} V_i$ where - V_0 is isomorphic to the Lie algebra of type A_1 ; - V_1 is isomorphic, as a V_0 -module, to the sl(2)-irreducible module of dimension 4: - V_2 is isomorphic, as a V_0 -module, to the adjoint module of sl(2); - V_3 is isomorphic to the sl(2)-irreducible module of dimension 2; - V_4 is isomorphic to the adjoint module of sl(2); - V_5 is isomorphic to the sl(2)-irreducible module of dimension 2. We denote by S_3 the covering superalgebra $G^6(D(2, 1; \alpha), \varphi)$. THEOREM 3.1. Let $\mathcal{G} = \bigoplus_{i \in \mathbb{Z}} \mathcal{G}_i$ be an infinite-dimensional \mathbb{Z} -graded Lie superalgebra. Suppose that: - *G* is simple and generated by its local part, - the \mathbb{Z} -gradation is consistent and has infinite depth, - \mathcal{G}_0 is simple, - \mathcal{G}_{-1} and \mathcal{G}_1 are irreducible \mathcal{G}_0 -modules which are not contragredient. Then G has finite growth if and only if it is isomorphic to one of the Lie superalgebras S_i for some $1 \le i \le 3$. PROOF. Theorems 2.10 and 2.17 show that under our hypotheses either \mathcal{G}_0 has rank 1 or one of the following possibilities occur: - a) \mathcal{G}_0 is of type A_3 , \mathcal{G}_{-1} is its adjoint module and $\mathcal{G}_1 = V(2\omega_2)$; - b) \mathcal{G}_0 is of type B_n , \mathcal{G}_{-1} is its adjoint module and $\mathcal{G}_1 = V(2\omega_1)$; - c) \mathcal{G}_0 is of type C_n $(n \geq 3)$, \mathcal{G}_1 is its adjoint module and $\mathcal{G}_{-1} \cong \Lambda_0^2 s p_{2n}$; - d) \mathcal{G}_0 is of type D_n $(n \ge 4)$, \mathcal{G}_{-1} is its adjoint module and $\mathcal{G}_1 = V(2\omega_1)$. Besides, if \mathcal{G}_0 has rank 1, by Corollary 2.12, either - e) $\mathcal{G}_{-1} \cong V(\omega)$ and $\mathcal{G}_1 \cong V(3\omega)$ or - f) \mathcal{G}_{-1} is isomorphic to the adjoint module of A_1 and $\mathcal{G}_1 \cong V(4\omega)$. By Propositions 1.7 and 1.9 we conclude that \mathcal{G} is isomorphic to the Lie superalgebra $S_1(m) = G^4(\mathcal{Q}(m), \sigma)$ with m = 5 in case a), m = 2n in case b), m = 2 in case f) and m = 2n - 1 in case d); in case c) \mathcal{G} is isomorphic to the Lie superalgebra $S_2(m) = G^4(\mathcal{Q}(m), \tau)$ with m = 2n - 1. Finally, in case e) \mathcal{G} is isomorphic to the Lie superalgebra S_3 . #### REFERENCES - [H] J. E. Humphreys, "Introduction to Lie Algebras and Representation Theory", Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978. - [K1] V. G. KAC, Simple Irreducible Graded Lie Algebras of Finite Growth, Math. USSR -Izvestija, Vol 2, 6 (1968). - [K2] V. G. KAC, Lie Superalgebras, Adv. Math. 26 (1977), 8-96. - [K3] V. G. KAC, Classification of Infinite-Dimensional Simple Linearly Compact Lie Superalgebras, Adv. Math. 139 (1998), 1-55. - [K4] V. G. KAC, "Infinite Dimensional Lie Algebras", Cambridge University Press, Boston, 1990. - [M] O. MATHIEU, Classification of Simple Graded Lie Algebras of Finite Growth, Invent. Math. 108 (1992), 455-519. - [OV] A. L. Onishchik E. B. Vinberg, "Lie Groups and Algebraic Groups", Springer-Verlag, New York-Berlin, 1990. - [vdL] J. W. VAN DE LEUR, A Classification of Contragredient Lie Superalgebras, Comm. Algebra 17 (1989), 1815-1841. Dipartimento di Matematica Pura ed Applicata Università degli Studi di Padova Via Belzoni, 7 - 35131 Padova - Italy cantarin@math.unipd.it