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Z~graded Lie Superalgebras
of Infinite Depth and Finite Growth
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Abstract. In 1998 Victor Kac classified infinite-dimensional Z-graded Lie su-
peralgebras of finite depth. We construct new examples of infinite-dimensional
Lie superalgebras with a Z-gradation of infinite depth and finite growth and clas-
sify Z-graded Lie superalgebras of infinite depth and finite growth under suitable
hypotheses.
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Introduction

Simple finite-dimensional Lie superalgebras were classified by V. G. Kac
in [K2]. In the same paper Kac classified the finite-dimensional, Z-graded Lie
superalgebras under the hypotheses of irreducibility and transitivity.

The classification of infinite-dimensional, Z-graded Lie superalgebras of
finite depth is also due to V. G. Kac [K3] and is deeply related to the classifi-
cation of linearly compact Lie superalgebras. We recall that finite depth implies
finite growth.

This naturally leads to investigate infinite-dimensional, Z-graded Lie super-
algebras of infinite depth and finite growth. The hypothesis of finite growth
is central to the problem; indeed, it is well known that it is not possible to
classify Z-graded Lie algebras (and thus Lie superalgebras) of any growth (see
[K1], [M]). The only known examples of infinite-dimensional, Z-graded Lie
superalgebras of finite growth and infinite depth are given by contragredient Lie
superalgebras which were classified by V. G. Kac in [K2] in the case of finite
dimension and by J.W. van de Leur in the general case [vdL]. Contragredient
Lie superalgebras, as well as Kac-Moody Lie algebras, have a Z-gradation of
infinite depth and growth equal to 1, due to their periodic structure.

We construct three new examples of infinite-dimensional Lie superalgebras
with a consistent Z-gradation of infinite depth and finite growth, and we realize
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them as covering superalgebras of finite-dimensional Lie superalgebras. It turns
out that if G is an irreducible, simple Lie superalgebra generated by its local
part, with a consistent Z-gradation, and if we assume that G is simple and
that G; is an irreducible Gy-module which is not contragredient to G_;, then G
is isomorphic to one of these three algebras (Theorem 3.1) and its growth is
therefore equal to 1.

So far, any known example of a Z-graded Lie superalgebra of infinite depth
and finite growth is, up to isomorphism, either a contragredient Lie superalgebra
or the covering superalgebra of a finite-dimensional Lie superalgebra. Since the
aim of this paper is analyzing 7Z-graded Lie superalgebras of infinite depth, we
shall not describe the cases of finite depth which can be found in [K2], [K3].

Let G be a Z-graded Lie superalgebra. Suppose that G, is a simple Lie
algebra and that G_; and G; are irreducible Gy-modules and are not contragre-
dient. Let F) be a highest weight vector of G_; of weight A and let Ej be
a lowest weight vector of G, of weight M. Since G_; and G, are not contra-
gredient, the sum A + M is a root of Gy, and, without loss of generality, we
may assume that it is a negative root, i.e. A+ M = —«a for some positive root
«. The paper is based on the analysis of the relations between the Gy-modules
G_1 and G;. It is organized in three sections: Section 1 contains some basic
definitions and fundamental results in the general theory of Lie superalgebras.
In Section 2 the main hypotheses on the Lie superalgebra G are introduced.
Section 2.1 is devoted to the case (A, «) = 0. Since A is a dominant weight,
in this section the rank of Gy is assumed to be greater than 1. The hypothesis
(A, @) = 0 always holds for Z-graded Lie superalgebras of finite depth (see
[K2], Lemma 4.1.4 and [K3], Lemma 5.3) but if the Lie superalgebra G has
infinite depth weaker restrictions on the weight A are obtained (compare, for
example, Lemma 4.1.3 in [K2] with Lemma 1.14 in this paper).

In Section 2.2 we examine the case (A, «) # 0. In the finite-depth case
this hypothesis may not occur (cf. [K3], Lemma 5.3). It turns out that, under
this hypothesis, Gy has necessarily rank one (cf. Theorem 2.17) namely it is
isomorphic to s/(2). Besides, a strong restriction on the possible values of
(A, o) is obtained (cf. Corollary 2.12) so that G_; is necessarily isomorphic
either to the adjoint module of s/(2) or to the irreducible s/(2)-module of
dimension 2.

Finally, Section 3 is devoted to the construction of the examples and to
the classification theorem.

Throughout the paper the base field is assumed to be algebraically closed
and of characteristic zero.
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1. — Basic definitions and main results

1.1. - Lie superalgebras

DEFINITION 1.1. A superalgebra is a Z,-graded algebra A = Ay ® Aj; Ag is
called the even part of A and Aj is called the odd part of A.

DErFINITION 1.2. A Lie superalgebra is a superalgebra G = Gy ® G whose
product [-, -] satisfies the following axioms:

(i) [a, b] = —(—1)de@dee®p gq];
(i) [a, [b, c]] = [[a, b], c] + (= 1)dee@dee®[p [q4, c]].

DEerINITION 1.3. A Z-grading of a Lie superalgebra G is a decomposition of G
into a direct sum of finite-dimensional 7Z,-graded subspaces G = @®;c7G; for which
[Gi, Gj1 C Giyj. AZ-grading is said to be consistent if G = @Gy and Gi = ®Ga;11.

REMARK 1.4. By definition, if G is a Z-graded Lie superalgebra, then G
is a subalgebra of G and [Gy, G;] C G;; therefore the restriction of the adjoint
representation to Gy induces linear representations of it on the subspaces G;.

DEerINITION 1.5. A Z-graded Lie superalgebra G is called irreducible if G_, is
an irreducible Gy-module.

DEFINITION 1.6. A Z-graded Lie superalgebra G = ®;c7G; is called transitive
iffora € G;, i >0, [a,G_1] = 0implies a = 0, and bitransitive if, in addition, for
a€G,i<0,a,G]=0impliesa=0.

Let G be a Z,-graded space, decomposed into the direct sum of Z,-graded
subspaces, G=0_.1®GG. Suppose that whenever |i + j| < 1 a bilinear
operation is defined: G; x G; — G;;;, (x,y) = [x, y], satisfying the axiom of
anticommutativity and the Jacobi identity for Lie superalgebras, provided that
all the commutators in this identity are defined. Then G is called a local Lie
superalgebra.

If G = ®;czG; is a Z-graded Lie superalgebra then G_ &Gy P G is a local
Lie superalgebra which is called the local part of G. The following proposition
holds:

ProposiTiON 1.7 [K2]. Two bitransitive Z-graded Lie superalgebras are iso-
morphic if and only if their local parts are isomorphic.

DEeFINITION 1.8. A Lie superalgebra is called simple if it contains no nontrivial
ideals.

ProposiTiON 1.9 [K2]. Ifin a simple Z-graded Lie superalgebra G = ®;c7G;
the subspace G_1 @ Gy ® G generates G then G is bitransitive.
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1.2. — On the growth of G

DEerFINITION 1.10. Let G = ®;c7G; be a Z-graded Lie superalgebra. The limit

r(@) = lim In (Z dimg,-> /)

Il=—n

is called the growth of G. If r(G) is finite then we say that G has finite growth.

Let us fix some notation. Given a semisimple Lie algebra L, by V(w) we
shall denote its finite-dimensional highest weight module of highest weight .
w; will be the fundamental weights. It is well known that if A is a weight
of a finite-dimensional representation of L and § is a root of L, then the set
of weights of the form A + sB forms a continuous string: A — pB, A — (p —
DB, .... =B, A A+ B,...., 1+ gpB, where p and g are nonnegative integers
and p —q =2(x, B)/(B, B). Let us put 2(A, B)/(B, B) = A(hg). The numbers
A(hy,;), for a fixed basis of simple roots «;, are called the numerical marks of
the weight A.

For any positive root B of L we shall denote by eg a root vector of L
corresponding to .

Lemma 1.11 [K1]. Let L be a Lie algebra containing elements H # 0, E;, F;,
i = 1,2, connected by the equations

[E;, Fi1=6;;H,
[H, Ei]=ak, [H, E2] =bE>,
[H,Fl]:—aFl, [HiFZ]:_bF27

where a #= —b, b # —2a, and a # —2b, then the growth of L is infinite.

Lemma 1.12 [K1]. Let L = @L; be a graded Lie algebra, where Ly is
semisimple. Assume that there exist weight vectors x; and x,, corresponding to the
weights X and (v of the adjoint representation of Ly on L, and a root vector e,
corresponding to the root y of Lo, which satisfy the following relations:

[xu, x2] = ey,
[x5, ey ] =0 =[xy, e,],
M) # =1, Gy y) £0.
Then the growth of L is infinite.

LemmaA 1.13. Let G be a consistent, Z-graded Lie superalgebra and suppose
that Gy is a semisimple Lie algebra. Let E;, F; (i =1, 2) be odd elements and H a
non zero element in Gy such that:

(1) [EI,E]I(Sle’ [Hin]zaiEis [H,E]=—a[E,

where ay # —ap, a; # —2a; and ay # —2ay. Then the growth of G is infinite.
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PROOF. Suppose first that a; #0+a,. Then the elements £y =a; ' /2[E}, E|],
Ey = a7 ?Ey, Eal, Fy = ay7'?[F\, F\]. F, = ay '?[Fy, Fy], K = —4H
satisfy the hypotheses of Lemma 1.11 in the Lie algebra Gj. Thus, the growth
of G is infinite and we get the thesis.

If, let us say, a; # 0, a = O then the elements E| = [E;, E|], E), =
[Ei, E3], F| = —(4a) " Fy, F1l, F) = al_l[Fl, F>], H satisfy the hypotheses
of Lemma 1.11 in Gg, thus we conclude. O

Lemma 1.14. Let G = @ G; be a Z-graded, consistent Lie superalgebra and
suppose that Gy is a semisimple Lie algebra. Assume that there exist odd elements
Xy and x,, that are weight vectors of the adjoint representation of Gy on G of weight
A and [ respectively, and a root vector e_s of Gy, connected by the relations:

{ (X, xp] = e—s

[x:., es] =[xy, e—s] =0

with 2(A,8) # (8,6), (A,8) # 0 and (A,8) # (8,8). Then the growth of G is
infinite.

Proor. We choose a root vector es in Gy such that [es, e_s] = hs and
consider the following elements:

E = [es, x,]
E> = [[[xy, es], es], es]
Fi =x,
Fy = —1/60(hs) "' (A(hs) — )7 [x3, e—s], e—s]
H = h;.

By a direct computation it is easy to check that E;, F;, H satisfy the
hypotheses of Lemma 1.13 with a; = (u+96)(hs) = —i(hs), ar = (u+38)(hs) =
—M(hs) +4. By Lemma 1.13 the growth of G is therefore infinite. O

We can reformulate Lemma 1.14 as follows:

COROLLARY 1.15. Suppose that G is a Lie superalgebra of finite growth. Let x;,
X, e—5 be as in Lemma 1.14. Then one of the following holds:
i) (*,8) =0,
(i) (&,8) =(,9),
(i) (x,8) = 1/2(8,9).
THEOREM 1.16 [K1]. Let L = @®L; be aZ-graded Lie algebra with the following
properties:
a) the Lie algebra Ly has no center;

b) the representations ¢_; and ¢; of Lo on L_| and L are irreducible;
c) [L_y, L] #0;
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d) A+ M = —a where A is the highest weight of ¢_1, M is the lowest weight of
¢ and o is a positive root of Lo;

e) the representations ¢_1 and ¢ are faithful;

f) the growth of L is finite.

Then Ly is isomorphic to one of the Lie algebras A,, or C,,, ¢_1 is the corresponding
standard representation and o is the highest root of L.

In the following sl,, sp, and so, will denote the standard representations
of the corresponding Lie algebras.

CorOLLARY 1.17. Let G = @G; be a Lie superalgebra with a consistent 7.-
gradation. Suppose that Gy is simple. Suppose that there exist a highest weight
vector x in G_p of weight A # 0 and a lowest weight vector y in G, of weight . such
that [x, y] # 0 and ) + ;© = —p for a positive root p of Gy. Then, if the growth of G
is finite, Gy is isomorphic to one of the Lie algebras A,, or C,, p is the highest root
of Go and G_; is the standard Gy-module.

Proor. It follows from Theorem 1.16. O

2. — Main results

In this section we will consider an irreducible, consistent, simple Z-graded
Lie superalgebra G generated by its local part, and we will always suppose that
G has finite growth. Besides, we will assume that Gy is a simple Lie algebra
and that G is an irreducible Gyo-module which is not contragredient to G_;. Let
us fix a Cartan subalgebra H of Gy and the following notation: let F, be a
highest weight vector of G_; of weight A (dominant weight) and let E) be a
lowest weight vector of G; of weight M. As shown in [K2], Proposition 1.2.10,
it turns out that [Fa, Ey] = e_y, Where « = —(A + M) is a root of Gy and
e_q 1s a root vector in Gy corresponding to —«. Interchanging, if necessary,
Gr with G_; we can assume that « is a positive root. Indeed, by transitivity,
[Fa, Ey] # 0 and for any t € H we have:

[t,[Fa, EMIl = (A +M)@)[Fa, Eml.
Notice that A + M # 0 since the representations of Gy on G_; and G; are not

contragredient.

REMARK 2.1. Under the above assumptions, —M = A + « is a dominant
weight. Therefore (A + «, ) > 0 for every positive root  of Gy.

LemMA 2.2. Under the above hypotheses, [Ey, Ey]1=0and[Ey,[e,, Ey11=0
for every positive root p.
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Proor. We have [Fa, [Ey, Ey]] = 2[e—y, Ey] = 0 since Ejy is a lowest
weight vector. Transitivity and irreducibility imply [Ey, Ep] = 0. Now, since
Ey is odd, for every positive root p we have:

(Eum, [ep, EM]l = [[Em, ep), En] = —[Eum, lep, Enll
therefore [Ey, [e,, Ey]] = 0. O

2.1. -Case (A,a) =0

In this paragraph we suppose (A, ) = 0. If A is zero then the depth of G
is finite. Therefore we suppose that A is not zero. This implies that the rank
of Gy is greater than one.

REMARK 2.3. Let G be a bitransitive, irreducible Z-graded Lie superalgebra.
If (A, @) =0 then the vectors [Fa, Fal and [[Fa, e_,], Fal are zero for every
positive root p.

ProoF. Once we have shown that [Fy, Fx] = 0, we proceed as in Lemma
2.2 and conclude that [[Fa,e_,], Fa] = 0 for every positive root p. Since
[[Fa, FAl, Ep] = 2[Fa, e—4] =0, we conclude by bitransitivity. O

LEMMA 2.4. « is the highest root of one of the parts of the Dynkin diagram of
Go into which it is divided by the numerical marks of A.

PrOOF. Suppose by contradiction that « is not the highest root of one of
the parts of the Dynkin diagram of Gy into which it is divided by the numerical
marks of A. Then there exists a simple root 8 such that (A, ) = 0 and
a + B is a root. This gives a contradiction because: 0 = [[e_g, Fal, Ey] =
le—p, [Fa, EM]]l = e_p_o # 0. O

LEMMA 2.5. If A has at least two numerical marks then, for every numerical
mark y, we have:
(A+oa,y)=0.

ProoF. From Lemma 2.4 we know that « is the highest root of one of the
parts of the Dynkin diagram of Gy into which it is divided by the numerical
marks of A. Therefore we can choose a numerical mark § such that  + 8 is a
root. Now suppose that y is a numerical mark, y # g, such that (A+«, y) # 0.

Notice that y and B are not subroots of «, since (A, y) # 0 and (A, B) # 0,
therefore y (hy) <0, B(hy) < 0.

Consider the following vectors:

x = [[[Fa,e—gl, ey 1, Fal
y = IlEm, el ey ], En].

First of all we want to show that x is a highest weight vector in G_,. By
Remark 2.3, since  and y are simple roots, it is sufficient to show that x # 0.
In fact, [ey, [x, Epy]] = (A +a)(hy)[Fa, [e—a, e—g]] #O.
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Now let us prove that y is a lowest weight vector in G,. First y # O,
indeed:
[y, FaAl = 2 =y (ha))[Em, )]

which is different from O since y (k) < 0 and by the assumption (A+c, y) # 0.

We now compute the commutators [y, e_q, ] for any simple root oy. If
o = y then, by Lemma 2.2, [y,e_o ] = 0, since @ — y is not a root. If
ar #y, [y, e ] = [[[Em, €a—q;)s )], En], and this can be shown to be zero
using the transitivity of G.

Notice that [x, y] = 2~y (he))(A+a)(hy,)e_q_pg. By Theorem 1.16 we get
a contradiction since o+ 8 cannot be the highest root of Gy. As a consequence,
(A +o,y) =0. In particular, ¢ + y is a root and we can repeat the same
argument interchanging g and y in order to get (A + «, 8) = 0. O

COROLLARY 2.6. If Gy is of type A,, B,, Cn, Fs4, Gy then A has at most two
numerical marks, if Gy is of type D, E¢, E7, Eg then A has at most three numerical
marks.

Proor. Immediate from Lemma 2.5. O

Lemma 2.7. If A has only one numerical mark B then either (A + «, f) =0
or A(hg) = 1.

Proor. Suppose both (A +«, ) #0 and A(hg) > 1, and define
x :=[[[Fa,e_gl. e_gl, Fal

y:=I[llEwm, el egl, Eml.

Then x is a highest weight vector in G_» and y is a lowest weight vector in
G>. Besides, [x, y] =22 — B(hy))(A +a)(hg)e_y_pg. By Theorem 1.16, Gy is
either of type A, or of type C,, o + B is the highest root of Gy and G_, is
its elementary representation. It is easy to show that these conditions cannot
hold. O

ProposiTION 2.8. Let B be a positive root such that:

e o + B isaroot;
e o — B is not a root;
e 2a + B is not a root.

Then either (A + o, ) =0or A(hg) = 1.

PrOOF. Let us first make some remarks:

(a) Since B+« is a root but 8+ 2« and B — « are not, we have B(hy) = —1.
It follows that o + 8 and S are roots of the same length.

(b) Since B — (a + B) is a root and B — 2(a + B) is not, then B(hg4p) < 1.

Now suppose that A(hg) > 1, which implies [Fy, e_g] # 0.
Let x, = Ey and x) = [Fa, e_g]. We have:

[x3, xu] =€ _q-p

le—a—p, X ] =0 =[x;, earpl
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Therefore, by Lemma 1.14, we deduce that the difference A(hg) — B(hg4p) is
equal to O, 1, or 2. In particular, 2 < A(hg) <3 and 0 < B(heqp) < 1. We
therefore distinguish the following two cases:

CasE A: B(hqyp) =0, ie. a+ 2B is a root, 2a + 38 is not, and A(hg)=2.
In this case (8,8) = —(B,«) and (A, B) = (B, B) therefore (A +«,8) =0
which concludes the proof in this case.

CaSE B: B(hotp) =1, i.e. o+ 2p is not a root, and A(hg) is either 2 or 3.
In this case B(hy) = —1 = a(hg), therefore (A + «, B) # 0. The two cases
A(hg) =2 and A(hg) =3 need to be analyzed separately.

(i) Athg) =2
Let us define the following elements:
X5 = [[[Fa,e—gl,e_gl, Fal

X = [[[Em, earpls egl, Eml.
Then [x;,x,] = 6e_y, [x1,eq] = 0 since o — B is not a root, and
[x., e—o] =0 since (A+a)(hg) =1, thus [[Ey, egl, eg] = 0. Then we find
a contradiction to Lemma 1.12 applied to the Lie algebra G, since G was

assumed to have finite growth. Indeed, using the same notation as in Lemma
1.12, we have: A(h),) = —A(hy) = —(2A —2B)(he) = 2B(hy) = —2.

(ii) A(hg) =3
Let us define the following elements:
Ey = 1/8[[Em; extpls [Em; earpll
Fir =[[Fa, e—gl, [Fa, e—gl]
Ey = 1/64[[[Ewm, ea+pl, egl. [[Em, easpl, egll
Fy =[[[Fa,e—plie_gl, [[Fa,e—gl, e_gll
H =hgip=hy+hg

Then the hypotheses of Lemma 1.11 are satisfied with a; = —4 and a; =
—2, and this leads to a contradiction. O

In the following, for what concerns simple Lie algebras, we will use the
same notation as in [H, §11, §12]. In particular we shall adopt the same
enumeration of the vertices in the Dynkin diagrams and refer to the bases of
simple roots described by Humphreys [H].
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LEMMA 2.9. Let M be the lowest weight of the Gy-module G;.

(i) Let z :=[[Eum, ea+gl, ley, Em]l, where B and y are positive roots of Gy such
that [Ey, eg]l =0, a + B+ y isnot a root, B+ y is notarootand y — a is a
negative root. Then [z, Fp] = 0.

(i1) Let B and p be positive roots such that @ +  and B + p are positive roots,
o+ B+ p isnotaroot, p—« is a negative root. If (M, B) = 0and (M, p) # 0,
then the vector [[Ey, eq ], [y, Ep]] is non-zero.

(iii) Let B and p be as in (i) and let ay be a simple root of Gy. Suppose, in
addition, that either p + B — oy is not a root or (M, p + B — o) = 0. Then
([[EMm, earp—o s [€p, Em]l, Fal =0.

(iv) If p is a positive root such that o 4 p is not a root, p — o is a negative root,
(M, p) # 0and p(hy) =1, then [[[Eum, e4], [¢p, Em]], Fa] = 0.

Proor. The proof consists of simple direct computations. O

THEOREM 2.10. Let G be an irreducible, simple, Z-graded Lie superalgebra
of finite growth, generated by its local part. Suppose that Gy is simple, that the
Z-gradation of G is consistent and that (A, o) = 0. If G has infinite depth then one
of the following holds:

e Gy is of type Az, G_1 is its adjoint module, G| = V (2wy);
e Gyisoftype B, (n > 2), G_y is its adjoint module, G| = V Q2wy);
e Goisoftype C,, (n>3), G_| = A%sp2n, Gy is its adjoint module;
e Gyisoftype D, (n > 4), G_ is its adjoint module, G; = V 2wy).
ProoF. Let us analyze all the possible cases. Corollary 2.6 states that if
Go is of type A,, B,, C,, F4 or G, then A might have one or two numerical
marks while if Gy is of type D,, Eq, E7 or Eg then A might also have three
numerical marks. Using Lemma 2.5 one can easily see that if Gy is not of type
A, then the hypothesis that A has at least two numerical marks contradicts
Proposition 2.8. It follows that if Gy is not of type A, then A has exactly one
numerical mark and this numerical mark satisfies Lemma 2.7.
Using Remark 2.1 we immediately exclude the following possibilities, for
which the weight M is not antidominant:
e Gy of type B, (n>2), G| = V(wy);
e Gy of type C, (n >3), G_1 = V(wy);

e Go of type C,, (n > 3), G_) = V(w;) with 2 <i <n—1, o =204 +
"'+2an—1 +an;

e Gy of type Fy, G- = V(w3), @ = a1 + 23

o Go of type Fy, G_1 = V(wy);

e Gy of type Ga, G_1 = V(2wy);

e Gy of type G, G_; = V(w;) (simplest representation).
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Proposition 2.8 allows us to rule out the cases summarized in Table 1,
where we describe the irreducible modules G_; and G; through their highest
weights and indicate the positive root 8 used in Proposition 2.8.

On the other hand, Corollary 1.17 allows us to rule out the cases summa-
rized in Table 2, where the vectors x and y used in Corollary 1.17 are indicated,
and where the columns denoted by G_; and G; contain the highest weights of
these Gp-modules. In order to show that the vectors x and y in Table 2 are
highest and lowest weight vectors in the Gp-modules G_, and G, respectively,
one can use the bitransitivity of G and, where needed, Lemma 2.9.

For the remaining cases let us point out what follows: suppose that G_,
contains a highest weight vector x of weight A and that G, contains a lowest
weight vector y of weight —XA such that [x, y] # 0. Then the irreducible
submodules G_, and G, generated respectively by x and y are dual Gy-modules
and the Lie subalgebra of Gz with local part G_,®GoDG, is an affine Kac-Moody
algebra which will be denoted by A.

Using the classification of affine Kac-Moody algebras we therefore exclude
the cases in Table 3, where we indicate the highest weight vector x of G_,,
the lowest weight vector y of G, and the highest weights of the Gy-modules
G-1 and §i.

In the same way the classification of affine Kac-Moody algebras shows that
the following cases are allowed:

1) Go of type A3, G_1 = V(w1 +w3), G = V(2w2), o = az: under these hy-
potheses G_, contains the highest weight vector x = [[Fa, e, ], [€—ay, Fall
and G, contains the lowest weight vector y = [[Ewy, €y +a]s [€ay+asy, Emll-

The algebra A is an affine Kac-Moody algebra of type Agz).

2) Go of type B, (n>3), G_1=V(»2), G1=V (2w), a=a;: G-, contains the
highest weight vector x = [[Fa, e_a,], [6—ay—2a3——2a,» Fall and Gy con-
tains the lowest weight vector y = [[Ewy, €q|+a, s [€u)+ay+203++20n» Em]]-
The algebra A is an affine Kac-Moody algebra of type qu).

3) Go of type By, G = V(Q2w), G = VQwy), ¢ = «;: G_» contains
the highest weight vector x = [[Fa, €_4,], [e—,, Fall and G, contains the
lowest weight vector y = [[Ey, €| +2a,], [€a;» Em]]. The algebra A is an
affine Kac-Moody algebra of type Af).

4) Go of type C,, (n >=3), G_1 = V(w), G1 = V(Q2w)), ¢ = o;: G_, contains
the highest weight vector x = [[Fa, €—ay—.—ay ], [€—aj——a,_;» Fall and G,
contains the lowest weight vector y = [[Ewm, €q, ], [€20)+-+20,_ | +an» Em]]-
The algebra A is an affine Kac-Moody algebra of type Agl)f].

5) Go of type D, (n>4), G_1=V(02), G1=V(w;), «=cw: in this case x =
[[FA’e—oQ], [e—a2—2a3—-~-—2an,2—an,1—ozy,vFA]] and y=[[EM,eoc1+a2]’ [ea1+o(2+
2a3+-+20,_o+a,_1+ans Em1]. The algebra A is an affine Kac-Moody algebra

of type Ag,)_l .
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We finally analyze and rule out the remaining cases:
Go of type A,, G_| = V(wy):

(i) if s =1 (or, equivalently, s = n) then G; = V(w; + w,—1) and G_, C
S2G_1 = §?V(w;) = 0 since S?V(w;) = VQw;) and [Fy, Fa]l = 0,
therefore G has finite depth;

(i) if s =2, G = VQw,), « = oy, (or, equivalently, s =n —1, G| =
V(Q2w;), @ = «y) then G is isomorphic to the finite-dimensional Lie
superalgebra p(n) (for the definition of p(n) see [K2]);

(i) if n=4 and s =3, ie. G_1 = Azslg“, G =V(ws+ws), 0 =a; + oy
(or, equivalently, G_| = V(wy), G = V(w; + w2), o = a3 + @4), then
G is isomorphic to the infinite-dimensional Lie superalgebra E (S, 10)
(for the definition of E(5, 10) see [K3]).

Go of type B, (n >2), G_1 = V(w;) and:

(1) Gi=V(ws) if n >3 (¢ =ay + 203 + - + 20,),
(i) G =V(Q@w3) if n =3 (¢ = ar + 23),
(iii) G = V(an) if n =2 (¢ = ap).

For all these cases G_o» C S’G_; = S?V(w;) = VQw;) + 1 = 1 since
[FA, FA]l =0. Thus G has finite depth.

Go of type D, (n > 4):

() G_1 = V(w1), G = V(o1 + »3), then G, C §?G_; = $*V () =
V(Q2w;) +1 =1 hence G has finite depth.

(i) n =4, G 1 = V(m), G = V(w1 +wyg) (@ = a1 +a + az) (or,
equivalently, G_; = V(w3), G1 = V(w1 + w3)), then we can use the
same argument as in (i) and conclude. O

2.2. —Case (A, ) #£0
In the following we assume (A, o) # 0.

REMARK 2.11. Under the hypothesis (A, ) # 0 the vector [Fu, Fp] is

different from 0: [Ey, [Fa, Faoll = 2[e_q, FA] # 0.
Nevertheless, [Ey, Ey] = 0 and therefore [[Ey, egl, Ey] = O for every positive
root B (see Lemma 2.2).

COROLLARY 2.12. If (A, @) # O then either (A, a) = (o, o) or (A,a) =

(o0, @) /2.

Proor. It is enough to apply Lemma 1.14 to the following vectors:

X, =Fpr, x, =Epy. O
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Lemma 2.13. Suppose that o is not simple. Then there exists j such that:
a — o is a root and o+ aj, 200 — aj, o — 2 are not roots, in all cases except those
in the following list:
e Gooftype Byanda = o; + i1 + -+ + oy, @ = oty 1 + 205
o Gooftype C,and oo =20; + -+ - + 20,1 + Qp, @ = 01 + Qp;

e Gooftype Fpanda = o) + o + a3, 0 = ap + a3, ¢ = o] + 200 + 4oz + 204,
a =0+ 203, ¢ =0ar+ 203 + 204, ¢ = o) + 200 + 203 + a4;

e Gooftype Gyand o =20 + oy, @ = o + o, @ = 31 + .
Proor. Case by case check. O
LEMMA 2.14. Let « be a positive root of Gy and suppose that it is not simple.

If a; is a simple root of Gy such that o — «; is a root and o + o, 200 — @, o — 205
are not roots, then either

% = [[[Ew. ea; ], Ca—ay ). En]
is a lowest weight vector in G_, or x = 0 and

x = [[[Ewm, eq;]. €al, Em]
is a lowest weight vector in G_5.

ProofF. If X # O then, using the transitivity of G, one can show that it is a
lowest weight vector in G_,. If X =0 then [x, e_;]=0 for every k=1,...,n. O

ProposiTION 2.15. If « is not a simple root and the growth of G is finite then
either (Gy, a) belongs to the list in Lemma 2.13 or (Gy, o) = (A,, longest root)
and X := [[[EMa eotj]’ ea,aj], EM] 7& 0.

Proor. Suppose that (Gp, ) is not in the list in Lemma 2.13. Since «o
is not a simple root we can apply Lemma 2.14: in the case X = 0 we take
y = [Fa, FA]. Then [x,y] = 2A(ha)e,a+aj # 0, and, by Theorem 1.16, we
get infinite growth.

If x = [[[Epm, €], ea—a;], Eu] # O then, by bitransitivity, [x, FA] =
(A(hg) —2A(hj))Ey #0, thus [X, y] = (A(hy) —2A(hj))e_ is different from
zero. Then the thesis follows from Theorem 1.16. (Notice that the case Gy
of type C,, « its longest root, is in the list of Lemma 2.13 and is therefore
excluded by the hypotheses.) O

LEMMA 2.16. Ifthe growth of G is finite and B is a positive root such that o + B
and oo — B are not roots, then (A, B) = 0.

ProoF. Suppose (A, ) # 0. We define:
Ey = [eq, Eml, E> =[[Ey, eql, egl,
Fi = Fy, Fy = A(hp)™'[Fa, e—g],
H = hy.

It is easy to verify that the conditions of Lemma 1.13 are satisfied with a; =
ay, = —A(hy), thus r(G) = oo. O
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THEOREM 2.17. Let G = ®;c7G; be a Z-graded, consistent, simple, irreducible
Lie superalgebra of finite growth. Assume that Gy is a simple Lie algebra, that G,
is an irreducible Gy-module which is not contragredient to G_, and that the local
part generates G. Let Fp be a highest weight vector in G_ and Ey; a lowest weight
vector in Gy so that A + M = —u for a positive root o. If (A, a) #£ O then Gy has
rank 1.

ProoF. By Proposition 2.15 and its proof only the following cases may
occur:

e « is a simple root;
e (Go, ) = (A,, longest root);
e (Go, ) is in the list of Lemma 2.13.

Let us analyze these possibilities case by case:

1) Go of type A, « =1 +---+a,. If n =1 we get the thesis. Now suppose
n > 2. The proof of Proposition 2.15 shows that this possibility holds if

X =[[Eu, ¢j], ea—q; ], Ep]

is a nonzero vector, thus either j =1 or j = n. If we apply Lemma 2.16
toa=a;+---+a, and g =ar+---+a,—; we deduce that (A, ;) =0
for every i =2,...,n — 1, therefore (A, o) = (A, o)) + (A, @y).

As we already noticed in the proof of Proposition 2.15, for every k =
1,...,n, [X,e_x] = 0 thus, since we assume X # 0, transitivity implies
[X, Fal # 0. Since [X, Fa]l = (A(hy) — 2A(hj))Ey, it turns out that
A(hy) # A(h,). Corollary 2.12 now implies that either (A, «;) = 0 or
(A, o) = 0. But this hypothesis contradicts Theorem 1.16, since if we
take the highest weight vector y = [Fy, Fa] in G_,, then [X, y] # 0 but
the irreducible submodule of G_, generated by [F,, Fa] is not the standard
A,-module.

2) Go of type A,, a simple, n > 2.
2a) n > 3, a =«a; with j #1,n

If we apply Lemma 2.16 with « = «; and f = aj_1 +a; + aj;1 we
find a contradiction.

2b) o = «a; (or, equivalently, ¢ = «,,).

Again, by applying Lemma 2.16 with § = a3 + --- + «,, we find
(A, ;) = 0 for every i > 3. On the other hand, (A, ;) # 0 since
[Em, [Fa,e—a,]] = €_a;—a, # 0. We distinguish two cases:

Case 1: (A, ap) #1
Under this hypothesis let us consider the following vectors:

Xy =[Eum, e1l, [Enm, e2]l, [Ey, er]l,

X = Ah) T (1= Ah) '3+ A(hy) " [Fa, [Fa, [Fa, e-2]ll.
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Then x, and x, satisfy the hypotheses of Lemma 1.14 with § = «;.
Since (3A — an, 1) = 3(A, ;) + 1 >4 we find a contradiction.

CASE 2: (A, ) =1

By Corollary 2.12, either A(h;) =1 or A(h;) = 2. Notice that x :=
[Fa, Fal is a highest weight vector in G_, and y:=[[Ey, e1], [En, e1]]
is a lowest weight vector in G,. Since [x, y] = —4A(h1)h1, G contains
a Z-graded Lie subalgebra with local part s_»,@®GyPs,, where s_; is the
irreducible submodule of G_, generated by x and s, is the irreducible
submodule of G, generated by y. The classification of Kac-Moody Lie
algebras immediately allows us to rule out the case A(h;) = 2 and
the case A(h)) =1, n > 2.

Now suppose n = 2, A(h;) = 1 = A(hy). Under these hypotheses
G_, contains the highest weight vector

7:=— 4[[FA7 e—oll—az]v FA] + 5[[[FA9 e—(xl]v e—olz]’ FA]
- 3[[[FA1 e—a{z]v FA]! e—al]
of weight A. Besides, [z, y] = —24e_4,—«, and this contradicts The-

orem 1.16 since the irreducible Gy-submodule of G_, containing z is
the adjoint module and not the standard one.

3) Goof type B, n>2), a =a; +---+a, 1 <i<n-—1).

3a)

3b)

3¢)

Ifi>1take B =0oj_1+a; +20;41+- -+ 2y, then ¢+ 8 and o — B
are not roots and, by Lemma 2.16, (A, ) =0, i.e. (A, ;) =0 for
every j > i — 1 which contradicts the hypothesis (A, o) # 0.

Ifi=1and n>3 take B = oy + --- + 2,. Then, by Lemma 2.16,
(A, ;) =0 for every i # 1. This implies the following contradiction:

0=1[Em,[Fr,e_o, ]l =le—a, 64,1 #0.

Leti=1and n =2, ie. ¢ =] + as.
If (A, ay) =0, as above we have:

0=1[Em,[Fr,e-a,]] =le—a,e-a,] #0.

Thus suppose (A,ay) # 0. Since o and o have both length 1,
Corollary 2.12 implies (A, «;) = 0 and either A(hy) = 1 or A(hy) = 2.
Notice that G_, contains the highest weight vector x := [Fj, Fjl.
Now, if A(hy) = 1 then G, contains the lowest weight vector y :=
[[Em, eq ], [Em, €ay]] and [x, y] = 2e_, thus Gy has infinite growth
according to Theorem 1.16.

If A(hy) =2, by bitransitivity, then y = 0 and the vector

Z = [[EM7 €a1+a2], [EM7 eaz]]
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is a lowest weight vector in G,. Again, since [x,z] = —8e_q,, this
contradicts Theorem 1.16.

Go of type B,, o simple.

4a) If « = «; with i # 1,n, we proceed as for A,.
4b) If o = oy we take f = oy + 202 + - - - + 20, and apply Lemma 2.16.

4c) If « = «,, and n > 3 we take B = o> + 20,1 + 2c0,,. Then Lemma
2.16 holds and we get a contradiction.

4d) n = 2, a = ap. In this case relation [Ey, [Fa,e 4]l = € 4y
implies (A, «;) # 0. This possibility is therefore ruled out by the
classification of Kac-Moody Lie algebras once we have noticed that
since G_, contains the highest weight vector x := [Fj, Fa] and G,
contains the lowest weight vector y := [[Eum, €n,], [Ey, €q,]], with
[x, y] # 0, Gy contains an affine Kac-Moody, Z-graded Lie subalgebra
with local part s_, @ Gy @D sp, where s_, is the Gp-irreducible mod-
ule with highest weight 2A and s, is the Gyp-module contragredient
to s_».

Go of type By, o = a1 + 20t,.

S5Sa) If n >3 take B = «a,_» + @,_1 + @, and use Lemma 2.16.

5b) Let n=2, a=0o; + 205. If we take S =« then Lemma 2.16 implies
(A, o) = 0 thus A(hy) = A(hy) is either 1 or 2. One can easily verify,
using the bitransitivity of G, that the vector z:=[[Ey,€u,+a,], [Epm,€a,]]
is equal to 0, the vector y := [[Ey, €y 12a,]s [Em, €a,]] is a lowest
weight vector in G, and, as in the previous cases, x := [Fy, Fp] is
a highest weight vector in G_». Since [x, y] = 24(A(h2) + De_4;—a,
this contradicts Theorem 1.16.

Go of type C,, (n>3), « =2a; + -+ 20,—1 +a, (1 <i<n-—1).

If i #1 we apply Lemma 2.16 to 8 = o1 +o; +20ti41+ -+ 201 + ¢y
and get a contradiction.

Ifi=1tke =20+ -+ 20,-1 + . Then Lemma 2.16 implies
(A, ;) =0 for every i > 2. Thus (A, o) = 2(A, ).

Consider the following vectors:

X = [FAa FA]
y =I[l[Ewm, el eal, Enl.

Then x is a highest weight vector in G_, and y is a lowest weight vector
in G. Besides, [x, y] = 2A(hy)eq, . This contradicts Theorem 1.16 since
o — «y is not the highest root of Gy.

Go of type C, (n > 3), a = a1 + .
If we take B = 200,,—»+20t;,—1 +,, by Lemma 2.16, we get a contradiction.
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8) Go of type C,, (n > 3), o simple.

8a) If « =o; with i % 1,n — 1, n then we proceed as for A,, case 2a).

8b) If @ = &1, take B = 2w, + 20— + @, and apply Lemma 2.16.

8c) If o = oy, [Ey, [Fa,e—o,]] = € 4, implies (A, az) # 0. Thus
we apply the same argument as in case 4d) with x = [Fy, Fa] and
y = [[EMs eal]s [EMv eocl]]~

8d) If « = «, we take B = 20,1 + o, By Lemma 2.16 we find a
contradiction.

9) Gy of type D, (n > 4), a simple.

9a) If « =, i # 1,n—1,n we proceed as for A,, case 2a).

9b) If « = ) we apply Lemma 2.16 to 8 = o) + 2a0 + - -+ + 202 +
o,—1 + o, and find a contradiction.

9) If ¢« = «, (or, equivalently, « = «o,_;) we apply Lemma 2.16 to
B=0op3+ 20002 + 0ty 1 + .

10) Gy of type Eg, o simple, o = «;.
If i #1, 2, 6 we proceed as for A,, case 2a).
Otherwise we apply Lemma 2.16 as follows:

if i =1 we take B = o) + ap + 203 + 204 + a's;
if i =6 we take B = o + 202 + 203 + 304 + 2005 + o
if i =2 we take B = ay + a3 + 204 + «s.

11) Gy of type E; or Ejg.
The situation is analogous to case 10).

12) Gy of type F4 and « in the list.
We apply Lemma 2.16 with the following roots « and f:
o 0 =0 +a+az, f=a+3a+ 4oz + 2ay;
e 0 =yt a3, B =201+ 30y + 4oz + 204;
o o =0y + 20 +4a3 + 204, B =01+ 20 + 203 + ay;
o o =0+ 20 + 203 + g, B =01 + 200 + 4oz + 204;
o a=oun+ 203, B=oar+ a3+ ay;
o o =0+ 203+ 204, B =01 +ar + 203 + oy
13) Gy of type Fy, a simple.
We apply Lemma 2.16 with the following roots « and f:
e 0 =, B =0+ 20 + 203;
e a=uop B=oa +ou+as3;
o o =w3, B =20 430 + 4oz + 204
o o =0y, B =2a + 30 + 4oz + 204.
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14) Go of type G,, « in the list.

14a) o =2a; + oy
If we apply Lemma 2.16 with 8 = «ay we find (A, ) = 0 thus
(A, @) = 2(A, «p). Besides, Corollary 2.12 implies A(hy) = 2, i.e.
A(hy) = 1.
Consider the vector x := [[Ey, es], [En, ey ]1]. Then one can verify
that x is a lowest weight vector. Now, if we take y := [Fj, Fa] in
G_», then [x, y] # 0 and this contradicts Theorem 1.16.

14b) o = a; + an
In this case we apply Lemma 2.16 with § = 3w 4+ o, and find a
contradiction.

14¢) o = 3a; + oy
We proceed as in 14b) with 8 = o) + an.

15) Gy of type G,, o simple.
If « =a; apply Lemma 2.16 with 8 = 3a; + 2a».
If « =y apply Lemma 2.16 with 8 = 2«1 + «y. O

3. — The classification theorem

Let L be a finite-dimensional Lie superalgebra and let o be an automor-
phism of L of finite order k. Then

3) L=a L

where L; = {x € Llo(x) = €'x}, € = ¥/ Notice that (3) is a mod-k
gradation of L.
Consider the Lie superalgebra Clx,x '] ® L = & x' ® L and its
subalgebra
GN(L,0) = @ X" ® Li mod)
called the covering superalgebra of L. Then G*(L,o) is a Z-graded Lie su-
peralgebra of infinite depth and growth 1.

ExampPLE | (The Lie superalgebra S;(n)). We recall that si(m,n) is the
Lie superalgebra of (m +n) x (m + n) matrices with supertrace equal to 0, i.e.,

in suitable coordinates, the set of matrices {( %) | tr(a) = tr(d)}.
Let Q(n) (n > 2) be the subalgebra of s/(n+1, n+1) consisting of matrices
of the form (Z Z) where tr(b) = 0. Then Q(n) has a one-dimensional centre

C = (Iy;4+2) and we define Q(n) = Q(n)/C. Notice that Q(n) has even
part isomorphic to the Lie algebra of type A, and odd part isomorphic to
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ad sl and has therefore dimension 2(n”> 4+ 2n). We consider the following
automorphism o of Q(n):

a b —a' b’
0<b a) :<ib’ —a’)'

Then o has order 4 and Q(n) = @?ZOQ(n)i where
Q(n)o = $0n+1,
Q(n)y = {b € sl,11|b =b"},
oy ={(4%)1a=a}/c.
Q(n); =1{b € sl 1|b=—-b"} .
Let us suppose n %3 and denote by S;(n) the covering superalgebra G*(Q(n),o).
Notice that Q(n)3; is isomorphic to the adjoint module of so,;; and if n > 2
then Q(n); and Q(n), are isomorphic, as so,;1-modules, to the highest weight

module V (2w), while if n =2 Q(n); and Q(n), are s/(2)-irreducible modules
of dimension 5.

ExampPLE 2 (The Lie superalgebra S>(m)). Suppose m = 2n — 1 and consider
the following automorphism 7 of Q(m):

a b ros —d" b —iw' Qs

c d vow ' —a' vt —ir!
T = . .

ros ‘ a b —iw' s’ —-d b

vow c d vt —irt cl 4

where a, b, ¢, d, r, s, v, w are n X n-blocks and tr(r) + tr(w) = 0.
Then t* =1 and Q(m) = EB?:OQ(m)i where

0(m)o = sp(2n),

oy ={(}2)Ir=—w,s=sv=21},

0mn ={(“2) 0 = b,¢' = —c.a' =d} /C,
0mys = { () Iw' =r.s" = =5, v' = v, u(r) = 0}.

Let us denote by S,(m) the covering superalgebra G*(Q(m), t). Notice that
Q(m); is isomorphic to the adjoint module of the Lie algebra sp(2n) and
Q(m),, Q(m)s are isomorphic to the sp(2n)-module A%spz,,.

ExampLE 3 (The Lie superalgebra S3). Let D(2, 1;«) be the one-parameter
family of 17-dimensional Lie superalgebras with even part isomorphic to A; &
A1 @D A and odd part isomorphic to sl, ® sl @ sl;. We recall that two members
D2, 1; ) and D(2,1; B) of this family are isomorphic if and only if o and
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B lie in the same orbit of the group V of order 6 generated by o > —1 — «,
o= 1/a.
D(2, 1; ) is the contragredient Lie superalgebra associated to the matrix

0 1 -1 -«
<1/a 0 1 )
I —a/(0+a) 0

Suppose that «? + a + 1 = 0 and consider the following automorphism ¢
of D(2,1; ):

ple)) = —e e(fi) =—1 o(hy) =hy
p(er) = —e;3 o(f2) =—13 @(hs) = h3
p(e3) = —eg o(f3) =—Ni @(h3) = hy.

Then ¢ has order 6 and D(2, 1; @) = @fzoV,- where

e Vj is isomorphic to the Lie algebra of type Aj;

e V| is isomorphic, as a Vp-module, to the s/(2)-irreducible module of di-
mension 4;

V, is isomorphic, as a Vy-module, to the adjoint module of s/(2);

V3 is isomorphic to the s/(2)-irreducible module of dimension 2;

V4 is isomorphic to the adjoint module of s/(2);

Vs is isomorphic to the sl/(2)-irreducible module of dimension 2.

We denote by S; the covering superalgebra G®(D(2, 1; ), ).

THEOREM 3.1. Let G = ®;czG; be an infinite-dimensional 7.-graded Lie super-
algebra. Suppose that:
G is simple and generated by its local part,
the Z-gradation is consistent and has infinite depth,
Go is simple,
G_1 and G are irreducible Gy-modules which are not contragredient.

Then G has finite growth if and only if it is isomorphic to one of the Lie superalgebras
S; for some 1 <i < 3.
Proor. Theorems 2.10 and 2.17 show that under our hypotheses either Gy
has rank 1 or one of the following possibilities occur:
a) Gy is of type Az, G_; is its adjoint module and G; = V (2w,);
b) Gy is of type B,, G_; is its adjoint module and G; = V (2w));
¢) Gop is of type C, (n > 3), Gy is its adjoint module and G_| = A%spz,,;
d) Gp is of type D, (n > 4), G_; is its adjoint module and G; = V (2wy).
Besides, if Gy has rank 1, by Corollary 2.12, either
e) G_1 =EV(w) and G| = V(QBw) or
f) G_ is isomorphic to the adjoint module of A; and G| = V (4w).
By Propositions 1.7 and 1.9 we conclude that G is isomorphic to the Lie
superalgebra S;(m) = G*(Q(m), o) with m =5 in case a), m = 2n in case b),
m =2 in case f) and m = 2n — 1 in case d); in case ¢) G is isomorphic to the
Lie superalgebra S,(m) = G*(Q(m), t) with m = 2n — 1. Finally, in case e) G
is isomorphic to the Lie superalgebra S;. O



568

(H]

[K1]

(K2]
[K3]

[K4]

M]

[OV]

[vdL]

NICOLETTA CANTARINI
REFERENCES

J. E. HUMPHREYS, “Introduction to Lie Algebras and Representation Theory”, Graduate
Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978.

V. G. Kac, Simple Irreducible Graded Lie Algebras of Finite Growth, Math. USSR -
Izvestija, Vol 2, 6 (1968).

V. G. Kac, Lie Superalgebras, Adv. Math. 26 (1977), 8-96.

V. G. Kac, Classification of Infinite-Dimensional Simple Linearly Compact Lie Super-
algebras, Adv. Math. 139 (1998), 1-55.

V. G. Kac, “Infinite Dimensional Lie Algebras”, Cambridge University Press, Boston,
1990.

O. MaTtHIEU, Classification of Simple Graded Lie Algebras of Finite Growth, Invent.
Math. 108 (1992), 455-519.

A. L. ONisHCHIK — E. B. VINBERG, “Lie Groups and Algebraic Groups”, Springer- Verlag,
New York-Berlin, 1990.

J. W. VAN DE LEUR, A Classification of Contragredient Lie Superalgebras, Comm. Al-
gebra 17 (1989), 1815-1841.

Dipartimento di Matematica Pura ed Applicata
Universita degli Studi di Padova

Via Belzoni, 7 - 35131 Padova - Italy

cantarin @math.unipd.it



