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H∞∞∞ Functional Calculus
for an Elliptic Operator on a Half-Space

with General Boundary Conditions

GIOVANNI DORE – ALBERTO VENNI

Abstract. Let A be the L p realization (1 < p < ∞) of a differential operator
P(Dx , Dt ) on Rn ×R+ with general boundary conditions Bk(Dx , Dt )u(x, 0) = 0
(1 ≤ k ≤ m). Here P is a homogeneous polynomial of order 2m in n +1 complex
variables that satisfies a suitable ellipticity condition, and for 1 ≤ k ≤ m Bk
is a homogeneous polynomial of order mk < 2m; it is assumed that the usual
complementing condition is satisfied. We prove that A is a sectorial operator with
a bounded H∞ functional calculus.
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(secondary).

1. – Introduction

When A is a sectorial operator in a complex Banach space X , with spectrum
contained in some closed sector Sω of the complex plane, the H∞ functional
calculus for A is a function f �→ f (A) from the algebra of the bounded holo-
morphic functions on some open sector Sω+ε to the set of the closed operators
acting in X , which has some reasonable algebraic properties; if f (A) is a
bounded operator for any bounded holomorphic function f on Sω+ε then we
say that on that sector the H∞ functional calculus is bounded. As it is well-
known, the boundedness (on some sector) of the H∞ functional calculus for a
sectorial operator is a stronger property than the boundedness of its imaginary
powers; on its turn the boundedness of the imaginary powers of A has important
consequences concerning the domain of Ar with r ∈ ]0, 1[ (see [30], Theorem
1.15.3) and the maximal L p-regularity for the Cauchy problem

(1.1)
{

u′ + Au = f

u(0) = 0

(see [7], [16], [22]).
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In some cases it seems more convenient to study the H∞ functional calculus
instead of the imaginary powers, also because the technical difficulties that one
has to overcome to prove the weaker result are essentially the same that ensure
the stronger one: in the L p setting for a differential operator one has to apply
in both cases some kind of Fourier multiplier theorem.

Several results on the boundedness of the imaginary powers and on the
boundedness of the H∞ functional calculus for elliptic operators in L p can be
found in the existing literature. Among the oldest papers on this subject there
are [24], [25], [26] that go back to the late ’60s; in these papers the boundedness
of the imaginary powers is proved for elliptic systems with C∞ coefficients on
a compact manifold without boundary or on a bounded C∞ domain. In the
same framework the more recent paper [10] proves the boundedness of the H∞
functional calculus.

A certain number of papers deals with the case of second order operators
with boundary conditions of various types. Without aiming at completeness,
we quote [4], [11], [12], [13], [21], [23], [27]. For the case of operators (or
systems of operators) of arbitrary order on the whole space we quote the papers
[3], [14], in which the boundedness of the H∞ functional calculus is proved
with minimal assumptions on the regularity of the coefficients.

The aim of this paper is to prove that if we call A the realization in L p

(1 < p < ∞) of an elliptic operator P(Dx , Dt ) of order 2m on a half-space
(x ∈ Rn , t ∈ R+), with constant coefficients and top order terms only, under
general boundary conditions of the type Bk(Dx , Dt )u = 0, then A is a sectorial
operator and has a bounded H∞ functional calculus. The ellipticity requirement
on P is the following: if (0, 0) �= (x, t) ∈ Rn+1, then P(i x, i t) /∈ R− ∪ {0},
and the boundary operators are expressed by m homogeneous polynomials of
degree < 2m that satisfy the usual complementing condition with respect to P .

The techniques that we use to obtain our result consist in studying the ordi-
nary differential operators Az on R+ that one gets by replacing (both in P and in
Bk) the operators Dx1, . . . , Dxn with complex parameters z1, . . . , zn belonging
to a suitable conical neighbourhood of (i R)n , that is, to a conical neighbour-
hood of the cartesian product of the spectra of the operators Dx1, . . . , Dxn .
The study is carried out by using standard tools that rely on integration on
circuits embracing zeros of polynomials like µ− P(z, ·). This part of the paper
requires some results on “elliptic” polynomials that we expose in detail, even
if they are essentially known (see, e.g., [1], [2], [28]), in order to have a ref-
erence fitting precisely our needs. By means of suitable estimates, we obtain
the boundedness in L(L p(R+)) of the H∞ functional calculus for the operators
Az . Here we have to estimate two integral operators, one of convolution type,
and the other containing boundary terms: we use a Mihlin type theorem for the
former and an estimate concerning the Hilbert kernel for the latter. However
we prove something more, i.e. that the function z �→ h(Az) is holomorphic
and R-bounded for any function h bounded and holomorphic on some sector
containing the spectrum of Az . That allows us to use a recent result of N.
Kalton and L. Weis [19] in order to replace z with Dx = (Dx1, . . . , Dxn ) in
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h(Az), obtaining a bounded operator. Formally that should imply the bounded-
ness of h(A); however we first have to prove that A is sectorial and to give a
representation formula for the resolvents of A.

The paper is organized as follows. In Section 2 we fix some notations and
we state our main result. In Section 3 we collect several auxiliary propositions
concerning polynomials and ordinary differential equations. In Section 4 we give
some information about the notion of R-boundedness for a set of bounded linear
operators, and about H∞ functional calculus. In Section 5 we obtain a number
of preliminary results concerning elliptic polynomials and boundary operators.
In Section 6 we study the operators Az: we show that they are sectorial, and
we prove properties of analyticity and R-boundedness with respect to z of the
resolvent operators (µ − Az)

−1; we also prove that the operators Az have a
bounded H∞ functional calculus, which moreover is R-bounded with respect
to z. In Section 7 we prove that the derivative operators Dx1, . . . , Dxn have a
joint bounded H∞ functional calculus. Finally in Section 8 we prove our main
result, showing that A is a sectorial operator with a bounded H∞ functional
calculus. From our results it follows easily that the usual a priori estimate holds
for the elliptic operator with vanishing boundary conditions.

2. – Notations. Statement of the main result

We establish some notational conventions, that we keep for the whole paper.

(I) The symbol of a norm, ‖·‖, may have different meanings: when convenient,
we shall use suitable indices to distinguish between them. In particular, if
z = (z1, . . . , zr ) ∈ Cr , ‖z‖ will always denote the euclidean norm of z,

i.e.
(∑r

k=1 |zk |2
)1/2

. In every Banach space, B(x, r) and B(x, r) denote,
respectively, the open and closed ball centred at x , with radius r .

(II) When X and Y are Banach spaces, L(X, Y ) denotes the Banach space of
the bounded linear operators on X to Y , and L(X) := L(X, X). IX denotes
the identity operator on X .

(III) When T is a linear operator, its domain and range are denoted by D(T )

and R(T ), respectively. When X is a complex Banach space and T is a
linear operator acting in X (i.e. when D(T ) and R(T ) are vector subspaces
of X ), σ(T ) and ρ(T ) denote, as usual, the spectrum and the resolvent set
of T , respectively.

(IV) The function “principal argument” denoted by “arg” is meant to have
C\ ] − ∞, 0] as domain and ] − π, π [ as range.

(V) When γ is a circuit (that is a finite family of piecewise C1 oriented closed
curves) in C, and a ∈ C \ γ , the winding number of γ with respect to a is
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defined by

w(γ, a) := 1

2π i

∫
γ

1

z − a
dz.

(VI) ∀θ ∈ ]0, π [ we set

Sθ = {ρ eiα; ρ ∈ R+, α ∈ ] − θ, θ [ } = {z ∈ C\ ] − ∞, 0]; | arg z| < θ}

and ∀β ∈ ]0, π
2 [ we set


β = Sβ+π
2

∩ (−Sβ+π
2
) = (i Sβ) ∪ (−i Sβ)

=
{

ρ eiα; ρ ∈ R \ {0}, α ∈
]
π

2
− β,

π

2
+ β

[}
.

Thus Sθ is the (open) sector around R+, with opening angle equal to 2θ ,
and 
β is the (open) “double-sector” around i R with opening angle equal
to 2β. When S0 is mentioned (as it happens e.g. in Definition 5.1) it is
understood that it equals R+ ∪ {0}.

(VII) Derivatives are always meant in the distribution sense. We use the symbol D
for the derivative of a function of one variable. In most cases, however, we
are dealing with functions of n +1 variables, and we denote these variables
by means of (x, t), with x ∈ Rn and t ∈ R; in this case D1, . . . , Dn denote
the derivative operators with respect to x1, . . . , xn , and Dt the derivative
operator with respect to t . In Section 7 and 8 we also use the notation
Dx for (D1, . . . , Dn).
In many cases these derivative operators will be considered as unbounded
operators in some function Banach space, but we will not introduce any
special notation to emphasize this fact.

(VIII) When � is an open subset of RN , r is a positive integer and q ∈ [1, ∞],
we denote by W r,q(�) the Banach space (with the natural norm) of the
functions u ∈ Lq(�) whose distributional derivatives up to the order r
belong to Lq(�).

(IX) The symbol F denotes the Fourier transformation, formally defined by
(F f )(ξ) = ∫

RN e−i〈x,ξ〉 f (x) dx .

After fixing these notations, we can state in a more precise form the result that
we have obtained and the techniques that we used.

Let P be a homogeneous polynomial of degree 2m in n +1 variables, with
complex coefficients. We shall emphasize the last variable by writing the values
of P in the form P(z, λ), with z = (z1, . . . , zn) ∈ Cn and λ ∈ C. We assume
that the polynomial P satisfies the following ellipticity condition:

if x ∈ Rn , t ∈ R and (x, t) �= (0, 0), then P(i x, i t) /∈ ] − ∞, 0].
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As we shall see in Section 5, this condition implies that there exists ω ∈
[0, π [ such that if µ ∈ (C \ Sω) ∪ {0}, x ∈ Rn and (x, µ) �= (0, 0), then ∀λ ∈ C

µ − P(i x, λ) = P+
i x,µ(λ) P−

i x,µ(λ)

where the polynomials P±
i x,µ have degree m, and moreover all the roots of P+

i x,µ

have positive real part and all the roots of P−
i x,µ have negative real part.

The boundary conditions for the elliptic operator will be given by means
of a family B1, . . . , Bm of polynomials in n + 1 variables. It is assumed that
each Bk is a homogeneous polynomial of degree mk < 2m, and moreover that
if x ∈ Rn , µ ∈ (C \ Sω) ∪ {0} and (x, µ) �= (0, 0), then the polynomials (in one
variable) B1(i x, ·), . . . , Bm(i x, ·) are linearly independent modulo P−

i x,µ.
Finally, we fix p ∈ ]1, ∞[ and call A the realization in L p(Rn × R+) of

the differential operator P(Dx , Dt), obtained by taking as domain of A the
space of the functions u ∈ W 2m,p(Rn × R+) satisfying the boundary conditions
Bk(Dx , Dt )u|t=0 = 0. Our main result is

Theorem 2.1. A is a sectorial operator with spectral angle ω and has a bounded
H∞ functional calculus on the sector Sθ , ∀θ ∈ ]ω, π [.

This means that: (i) A has dense domain and range, (ii) σ(A) ⊆ Sω, (iii)
∀ε ∈ ]0, π − ω[ λ(λ − A)−1 is bounded outside of Sω+ε, (iv) for any complex
valued bounded holomorphic function f on Sθ one can define f (A) as a bounded
linear operator on L p(Rn × R+) (see Subsection 4.2 for more details).

3. – Polynomials and ordinary differential equations

We denote by P the algebra of the polynomials in one argument, with
complex coefficients.

Let Q, Q1, . . . , Qr ∈ P . We say that Q1, . . . , Qr are linearly dependent
modulo Q or linearly independent modulo Q according that the equivalence
classes of Q1, . . . , Qr in the quotient algebra of P modulo the ideal generated
by Q are linearly dependent or independent; this means that there does or does
not exist a linear combination of Q1, . . . , Qr with coefficients not all equal to
0 which belongs to the ideal generated by Q, i.e. to {Q R; R ∈ P}.

Definition 3.1. ∀Q ∈ P \ {0} and for k ∈ {0, 1} we denote by �k(Q) the

set of the circuits γ in C such that Q(a) = 0 ⇒
(

a /∈ γ, w(γ, a) = k
)

.

Remark 3.2. Let γ be a circuit, and f a meromorphic function on C

such that for any singular point b of f we have b /∈ γ and w(γ, b) = 0. Let
Q ∈ P \ {0}. The following two statements are straightforward consequences of
the residue theorem and will be used in the sequel without any further reference.
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(a) If γ ∈ �1(Q), then 1
2π i

∫
γ

f (z)
Q(z) dz is the sum of the residues of f/Q at

the roots of Q, and therefore does not depend on γ ∈ �1(Q).

(b) If γ ∈ �0(Q), then
∫
γ

f (z)
Q(z) dz = 0.

Lemma 3.3. Let P0, P1 ∈ P \ {0}, with deg P1 = q, and let γ ∈ �0(P0) ∩
�1(P1). Then ∀ Q ∈ P the following statements are equivalent:

(a) ∀R ∈ P with deg R ≤ q − 1,
∫
γ

R Q
P0 P1

= 0

(b) ∀R ∈ P
∫
γ

R Q
P0 P1

= 0

(c) Q belongs to the ideal of P generated by P1.

Proof. If q = 0, then P1 is constant, so that (a) and (b) hold trivially;
moreover in this case the ideal of P generated by P1 is P , so that also (c)
holds. Hence we assume q ≥ 1.

(a) ⇒ (b) Let R ∈ P . Then R = S P1 + T , with S, T ∈ P and deg T ≤ q − 1.
Therefore ∫

γ

RQ

P0 P1
=

∫
γ

SQ

P0
+
∫

γ

T Q

P0 P1
= 0.

(b) ⇒ (c) Let a be a root of P1, with multiplicity r . If h ∈ {1, . . . , r}, then
P1(λ) = (λ − a)h R(λ) for a suitable polynomial R. Hence

0 =
∫

γ

R P0 Q

P0 P1
=

∫
γ

Q(λ)

(λ − a)h
dλ = 2π i w(γ, a)

(h − 1)!
Q(h−1)(a),

so that Q(h−1)(a) = 0. Therefore a is also a root of Q, with multiplicity ≥ r .
This proves the existence of a polynomial S such that Q = S P1.
(c) ⇒ (a) We have Q = S P1, with S ∈ P; hence ∀R ∈ P with deg R ≤ q − 1

we get
∫
γ

R Q
P0 P1

= ∫
γ

RS
P0

= 0.

Lemma 3.4. Let P0, P1 ∈ P \ {0}, γ ∈ �0(P0) ∩ �1(P1), Q1, . . . , Qr ∈ P .
We call 
 the r × r matrix whose entries are

σk, j = 1

2π i

∫
γ

λ j−1 Qk(λ)

P0(λ) P1(λ)
dλ.

Then a sufficient condition for Q1, . . . , Qr to be linearly independent modulo P1 is
that det 
 �= 0. If moreover deg P1 ≤ r , then this condition is also necessary.

Proof. Let c1, . . . , cr ∈ C such that
∑r

k=1 ck Qk = R P1 for some R ∈ P .
Then ∀ j

r∑
k=1

ckσk, j =
r∑

k=1

ck

2π i

∫
γ

λ j−1 Qk(λ)

P0(λ) P1(λ)
dλ = 1

2π i

∫
γ

λ j−1 R(λ)

P0(λ)
dλ = 0

and this proves the first part of the lemma.
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Suppose that det 
 = 0. Then there exists a non-zero r -tuple (c1, . . . , cr ) ∈
Cr such that, with Q := ∑r

k=1 ck Qk , we have ∀ j ∈ {1, . . . , r}

0 =
r∑

k=1

ckσk, j = 1

2π i

∫
γ

λ j−1 Q(λ)

P0(λ) P1(λ)
dλ,

whence
∫
γ

R Q
P0 P1

= 0 ∀R ∈ P with deg R ≤ r −1. If in particular r ≥ deg P1 =:
q, then this equality holds ∀R ∈ P with deg R ≤ q − 1, and so Q satisfies
condition (a) of Lemma 3.3. Therefore Q belongs to the ideal of P generated
by P1, so that Q1, . . . , Qr are linearly dependent modulo P1.

In the sequel, we will be concerned with polynomials (in one variable)
with no roots on the imaginary axis. As we shall see in Theorem 3.7 the roots
with negative real part will be interesting, and those with positive real part will
not.

As usual, Q �→ Q(D) denotes the natural isomorphism between the algebra
P of the polynomials in one variable and the algebra of the linear differential
operators on R (or on some open interval of R) with constant coefficients.

Theorem 3.5. Let P0, P1 ∈ P \ {0}, deg P1 = m, γ ∈ �0(P0) ∩ �1(P1). The
following statements hold:

(a) ∀Q ∈ P , the function R � t �→ ∫
γ

Q(λ) eλt

P0(λ) P1(λ)
dλ is a solution of the differential

equation P1(D)u = 0;

(b) if we set uj (t) = 1
2π i

∫
γ

λ j−1 eλt

P0(λ)P1(λ)
dλ, then {u1, . . . , um} is a basis of ker P1(D);

(c) if Q1,...,Qm are polynomials linearly independent modulo P1, and (b1,...,bm)∈
Cm, then there is a unique u ∈ ker P1(D) such that (Qk(D)u)(0) = bk for
1 ≤ k ≤ m.

Proof.
(a) Let Q ∈ P and u(t) = ∫

γ
Q(λ) eλt

P0(λ) P1(λ)
dλ. Since it is obvious that we can

differentiate with respect to t within the integral, we get (P1(D)u)(t) =∫
γ

Q(λ) eλt

P0(λ)
dλ = 0.

(b) Since the dimension of ker P1(D) equals m, we have only to show that
u1, ...,um are linearly independent. Let (c1, ...,cm)∈Cm , with

∑m
k=1ckuk =0.

We set Q(λ) = ∑m
k=1

ck
2π i λk−1. Then ∀R ∈ P

0 =
(

R(D)

m∑
k=1

ckuk

)
(0) =

m∑
k=1

ck (R(D)uk)(0)

=
m∑

k=1

ck

2π i

∫
γ

λk−1 R(λ)

P0(λ) P1(λ)
dλ =

∫
γ

Q R

P0 P1
.
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It follows from Lemma 3.3 that Q belongs to the ideal generated by P1,
which is possible only if Q = 0 (that is ck = 0 ∀k), since deg Q < m =
deg P1.

(c) Let u = ∑m
j=1 cj uj . Then for 1 ≤ k ≤ m

(Qk(D)u)(0) =
m∑

j=1

cj (Qk(D)uj )(0) =
m∑

j=1

cj

2π i

∫
γ

λ j−1 Qk(λ)

P0(λ) P1(λ)
dλ

=
m∑

j=1

cj σk, j ,

where σk, j is the same as in Lemma 3.4. By the same lemma we have
det 
 �= 0, so that the system

∑m
j=1 cj σk, j = bk (1 ≤ k ≤ m) has a unique

solution.

Lemma 3.6. Let λ1, . . . , λr be complex numbers such that λh �= λk for h �= k
and Re λk ≥ 0 ∀k. Let Q1, . . . , Qr be polynomials, and suppose that the function
t �→ ∑r

k=1 Qk(t) eλk t belongs to L p(R+) for some p ∈ [1, ∞[. Then Qk = 0 ∀k.

Proof. We perform the proof in three steps.

(I) Let c1, . . . , cr be complex numbers, let α1, . . . , αr be real numbers such
that αh �= αk for h �= k, and assume that t �→ ∑r

k=1 ck t−1eiαk t belongs to
L1(1, ∞). Then ck = 0 ∀k. Indeed let us assume that, say, cr �= 0, and let us set
f (t) = e−iαr t ∑r

k=1 ck t−1eiαk t . Then f ∈ L1(1, ∞), so that
∫∞

1 e−εt f (t) dt →
ε→0∫∞

1 f (t) dt . However

∫ ∞

1
e−εt f (t) dt =

r∑
k=1

ck

∫ ∞

1
t−1 e−εt+i(αk−αr )t dt = cr

∫ ∞

1
t−1 e−εt dt

+
r−1∑
k=1

ck

(
e−ε+i(αk−αr )

ε−i(αk −αr )
− 1

ε−i(αk −αr )

∫ ∞

1
t−2 e−εt+i(αk−αr )t dt

)

which does not converge as ε → 0.

(II) Let Q1, . . . , Qr be polynomials, and let α1, . . . , αr be as in step (I).
Assume that t �→ ∑r

k=1 Qk(t)eiαk t belongs to L p(R+) for some p ∈ [1, ∞[.
Then Qk = 0 ∀k. Indeed if this is not the case, setting s := max1≤k≤r deg Qk ,
since t �→ t−s−1 belongs to L p′

(1, ∞) (where p′ is the exponent conjugate to
p), the function t �→ t−s−1 ∑r

k=1 Qk(t)eiαk t belongs to L1(1, ∞), and so we
obtain a contradiction with step (I).
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(III) In the situation of the statement, assume that some Qk is �= 0. Then we
can suppose that Qk �= 0 ∀k. We set ρ = max1≤k≤q Re λk . As the function
t �→ e−ρt belongs to L∞(R+), also the function

t �→
q∑

k=1

Qk(t) e(λk−ρ)t =
∑

Re λk<ρ

Qk(t) e(λk−ρ)t +
∑

Re λk=ρ

Qk(t) e(λk−ρ)t

belongs to L p(R+). Here t �→ ∑
Re λk<ρ Qk(t) e(λk−ρ)t belongs to L p(R+), and

so also the function t �→ ∑
Re λk=ρ Qk(t) e(λk−ρ)t belongs to L p(R+). Remark

that in the last sum there is at least one summand, that all the polynomials that
appear in it are �= 0 and that λk − ρ = irk , with rk ∈ R and rh �= rk for h �= k.
Hence we have contradicted step (II).

Theorem 3.7. Let P+, P− ∈ P \ {0}, and assume that all the roots of P+
have non-negative real part and all the roots of P− have negative real part. Then
ker(P+ P−)(D) = ker P+(D) ⊕ ker P−(D), and ∀p ∈ [1, ∞[ we have

ker P−(D) ⊆
⋂
n∈N

W n,p(R+), ker P+(D) ∩ L p(R+) = {0}.

Proof. It is well known that ∀Q ∈ P \{0} dim ker Q(D) = deg Q. Since it
is obvious that ker P+(D) and ker P−(D) are linear subspaces of ker(P+ P−)(D),
in order to prove that ker(P+ P−)(D) = ker P+(D) ⊕ ker P−(D) it is sufficient
to show that ker P+(D) ∩ ker P−(D) = {0}, and this follows from the two
formulas of the last line of the statement.

By Theorem 3.5 (b) any u ∈ ker P−(D) is of the type

u(t) = 1

2π i

∫
γ

Q(λ) eλt

P+(λ) P−(λ)
dλ,

with Q ∈ P , deg Q < deg P− and γ ∈ �1(P−) ∩ �0(P+). We can take γ in
such a way that maxλ∈γ Re λ = −M < 0; then for t ≥ 0 and ∀n ∈ N

|u(n)(t)| ≤ 1

2π

∫
γ

∣∣∣∣ λn Q(λ)

P+(λ) P−(λ)

∣∣∣∣ d|λ| e−Mt ,

and this proves that u(n) ∈ L p(R+). Therefore u ∈ ⋂
n∈N

W n,p(R+).

Likewise, any u ∈ ker P+(D) is of the type u(t) = 1
2π i

∫
γ

Q(λ) eλt

P+(λ) P−(λ)
dλ

with Q ∈ P , deg Q < deg P+ and γ ∈ �1(P+) ∩ �0(P−). Let a1, . . . , ar be
the roots of P+ (with aj �= ak for j �= k), and let mk be the multiplicity of ak .
Then the residue theorem yields

u(t) =
r∑

k=1

1

(mk − 1)!

dmk−1

dλmk−1

(
Q(λ) (λ − ak)

mk

P+(λ) P−(λ)
eλt

)
|λ=ak

=
r∑

k=1

1

(mk − 1)!

mk−1∑
h=0

(
mk − 1

h

)
dmk−1−h

dλmk−1−h

(
Q(λ) (λ−ak)

mk

P+(λ) P−(λ)

)
|λ=ak th eak t

=
r∑

k=1

Qk(t) eak t
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for suitable polynomials Q1, . . . , Qr . Now, if u ∈ L p(R+), from Lemma 3.6
it follows that u = 0.

Summing up, we have

Theorem 3.8. Let P−, P+ be as in Theorem 3.7, and let m = deg P−, r =
deg P+ + deg P−. Let Q1, . . . , Qm be polynomials linearly independent modulo
P−. Let p ∈ [1, ∞[ and (b1, . . . , bm) ∈ Cm. Then the problem

u ∈ W r,p(R+)

(P+ P−)(D)u = 0

(Qk(D)u)(0) = bk 1 ≤ k ≤ m

has a unique solution.

Proof. By Theorem 3.7 we have W r,p(R+) ∩ ker(P+ P−)(D) = ker P−(D).
Then the result follows from Theorem 3.5 (c).

4. – R-boundedness and functional calculus

4.1. – R-boundedness

Let X , Y be Banach spaces. A subset T of L(X, Y ) is said to be R-
bounded if ∃ C > 0 such that for any positive integer N and for arbitrary
choices of T1, . . . , TN ∈ T and x1, . . . , xN ∈ X one has

(4.1)
∑

ε∈{−1,1}N

∥∥∥ N∑
k=1

εk Tk xk

∥∥∥
Y

≤ C
∑

ε∈{−1,1}N

∥∥∥ N∑
k=1

εk xk

∥∥∥
X
.

We call R1-bound of T the best constant C that can be put in the right-hand
side of (4.1).

Due to the Khintchine-Kahane inequality (see [6], 11.1), formula (4.1) can
be written in an equivalent form as

 ∑
ε∈{−1,1}N

∥∥∥ N∑
k=1

εk Tk xk

∥∥∥q

Y

1/q

≤ Cq

 ∑
ε∈{−1,1}N

∥∥∥ N∑
k=1

εk xk

∥∥∥q

X

1/q

where q ∈ R+. The best Cq will be called the Rq -bound of T . By setting
N = 1 in this inequality, one sees at once that if T is a R-bounded subset of
L(X, Y ), with Rq -bound C , then T is bounded, and sup

T ∈T
‖T ‖ ≤ C . Moreover

a simple application of the triangle inequality proves the following lemma.
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Lemma 4.2. Let X, Y be Banach spaces, and let T ′, T ′′ be R-bounded subsets
of L(X, Y ). Then T ′ +T ′′ is R-bounded, and ∀p ∈ [1, ∞[ the Rp-bound of T ′ +T ′′
is not greater than the sum of the Rp-bounds of T ′ and T ′′.

The simplest example of R-bounded set is given in the following well-
known result (see [6], 12.2).

Theorem 4.3 (Kahane’s contraction principle). Let X be a Banach space,
M ∈ R+. Then the set {λIX ; λ ∈ C, |λ| ≤ M} is R-bounded, and ∀p ∈ [1, ∞[ its
Rp-bound is ≤ 2M.

The following theorem (which can be found in [31]) provides a nontriv-
ial example of a R-bounded set of operators. Recall that F is the Fourier
transformation.

Theorem 4.4. Let (ψi )i∈I be a family of elements of L1(R) and assume that
∀i ∈ I Fψi ∈ W 1,1

loc (R\{0}), while the function m1 (Fψi )
′ (where m1(t) = t ∀t ∈ R)

belongs to L∞(R). Assume moreover that

sup
i∈I

max
{
‖Fψi‖L∞(R), ‖m1 (Fψi )

′‖L∞(R)

}
=: η < +∞.

Let p ∈ ]1, ∞[ and let Ti : L p(R) → L p(R) be the bounded linear operator defined
by Ti f = ψi ∗ f . Then {Ti : i ∈ I } is a R-bounded set of operators, and its Rp-bound
is ≤ C(p) η.

Another sufficient condition for R-boundedness is given in the following
result.

Theorem 4.5. Let M ∈ R+ and let KM be the set of the measurable functions
on R+ × R+ to C such that

ess sup
t,s∈R+

(t + s) |K (t, s)| ≤ M.

Let p ∈ ]1, ∞[ and let X be a Banach space. ∀K ∈ KM let TK be the operator
formally defined on L p(R+, X) by

TK f (t) =
∫ ∞

0
K (t, s) f (s) ds.

Then ∀K ∈ KM TK is a bounded linear operator on L p(R+, X) to itself, and the set
{TK ; K ∈ KM} is R-bounded, its Rp-bound being ≤ 2Mπ

sin(π/p)
.

Proof. The statement that TK ∈ L(L p(R+, X)) and the inequality

‖TK ‖L(L p(R+,X)) ≤ Mπ

sin(π/p)
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are well-known: a proof can be found in ([17], Theorem 319). In order to prove
the R-boundedness, we choose f j ∈ L p(R+, X) and Kj ∈ KM (1 ≤ j ≤ N ).
Then  ∑

ε∈{−1,1}N

∥∥∥ N∑
j=1

εj TKj f j

∥∥∥p

L p(R+,X)

1/p

=
∫ ∞

0

∑
ε∈{−1,1}N

∥∥∥ ∫ ∞

0

N∑
j=1

εj K j (t, s) f j (s) ds
∥∥∥p

X
dt

1/p

.

The last term can be interpreted in the following way. In the space∏
ε∈{−1,1}N Xε, where each Xε is a copy of X , we consider the norm ‖x‖p :=( ∑

ε∈{−1,1}N
‖xε‖p

X

)1/p
(where x =(xε)ε∈{−1,1}N ). If we set xε(t,s)=

N∑
j=1

εj K j (t,s) f j (s)

and x(t,s) = (xε(t,s))ε∈{−1,1}N , then∑
ε∈{−1,1}N

∥∥∥ ∫ ∞

0

N∑
j=1

εj K j (t, s) f j (s) ds
∥∥∥p

X
=

∥∥∥ ∫ ∞

0
x(t, s) ds

∥∥∥p

p

≤
(∫ ∞

0
‖x(t, s)‖p ds

)p

=

∫ ∞

0

 ∑
ε∈{−1,1}N

∥∥∥ N∑
j=1

εj K j (t, s) f j (s)
∥∥∥p

X

1/p

ds


p

.

Therefore ∑
ε∈{−1,1}N

∥∥∥ N∑
j=1

εj TKj f j

∥∥∥p

L p(R+,X)

1/p

≤

∫ ∞

0

∫ ∞

0

 ∑
ε∈{−1,1}N

∥∥∥ N∑
j=1

εj K j (t, s) f j (s)
∥∥∥p

X

1/p

ds


p

dt


1/p

(by the contraction principle, as Kj ∈ KM )

≤

∫ ∞

0

∫ ∞

0

2 M

t + s

 ∑
ε∈{−1,1}N

∥∥∥ N∑
j=1

εj f j (s)
∥∥∥p

X

1/p

ds


p

dt


1/p

≤ 2 Mπ

sin(π/p)

∥∥∥
 ∑

ε∈{−1,1}N

∥∥∥ N∑
j=1

εj f j (·)
∥∥∥p

X

1/p ∥∥∥
L p(R+)

= 2 Mπ

sin(π/p)

 ∑
ε∈{−1,1}N

∥∥∥ N∑
j=1

εj f j

∥∥∥p

L p(R+,X)

1/p

.
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Remark 4.6. Let X , Y be Banach spaces, and for k = 1, 2 let (�k, µk) be
a σ -finite measure space. We call (�, µ) the product measure space. Assume
that T ∈ L(L p(µ2, X), L p(µ2, Y )). Then we can define an operator T̂ on
L p(µ, X) to L p(µ, Y ) by the formula

(T̂ f )(t1, t2) =
(

T ( f (t1, ·))
)
(t2)

and we have ‖T̂ f ‖L p(µ,Y ) ≤ ‖T ‖ ‖ f ‖L p(µ,X). Since the linearity of T obviously
implies the linearity of T̂ , we have that T̂ ∈ L(L p(µ, X), L p(µ, Y )), with ‖T̂ ‖ ≤
‖T ‖. Remark that the transformation T �→ T̂ , from L(L p(µ2, X), L p(µ2, Y ))

to L(L p(µ, X), L p(µ, Y )), is linear and continuous.

Lemma 4.7. With the notations of Remark 4.6, assume that T is a R-bounded
subset of L(L p(µ2, X), L p(µ2, Y )). We set T̂ = {T̂ ; T ∈ T }. Then T̂ is R-
bounded, and the Rp-bound of T̂ is not greater than the Rp-bound of T .

Proof. If M is the Rp-bound of T , then

∑
ε∈{−1,1}N

∥∥∥ N∑
k=1

εk T̂k fk

∥∥∥p

L p(µ,Y )
=
∫

�1

∑
ε∈{−1,1}N

∥∥∥ N∑
k=1

εk Tk( fk(t1, ·))
∥∥∥p

L p(µ2,Y )
dµ1(t1)

≤ M p
∫

�1

∑
ε∈{−1,1}N

∥∥∥ N∑
k=1

εk fk(t1, ·)
∥∥∥p

L p(µ2,X)
dµ1(t1)

= M p
∑

ε∈{−1,1}N

∥∥∥ N∑
k=1

εk fk

∥∥∥p

L p(µ,X)
.

In Section 8, we shall apply Remark 4.6 and Lemma 4.7 to the case of
�1 = Rn and �2 = R+ (with the Lebesgue measure, in both cases).

4.2. – Joint functional calculus for sectorial operators

What follows is a short review of some part of the theory of H∞ functional
calculus for n-tuples of sectorial and bisectorial operators. Proofs and details
can be found in [8]. We also refer the reader to the papers [5] and [20].

Definition 4.8. Let T be a linear operator in the complex Banach space
X , and let β ∈ [0, π [. We say that T is sectorial with spectral angle β if:

(i) D(T ) and R(T ) are dense in X ;
(ii) σ(T ) ⊆ Sβ ;

(iii) ∀ε ∈ ]0, π − β[ ∃ Cε ∈ R+ such that ‖λ(λ − T )−1‖ ≤ Cε ∀λ ∈ C \ Sβ+ε.

From condition 4.8(iii) it follows that ker T ∩ R(T ) = {0}; therefore from
condition 4.8(i) one obtains that any sectorial operator is injective.
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Conversely, if X is reflexive, then conditions (ii) and (iii) of Definition 4.8
imply that D(T ) is dense in X , and that X = ker T ⊕ R(T ), so that T has
dense range if and only if it is injective (see [5], Theorem 3.8).

Definition 4.9. Let X be a complex Banach space, � = ∏N
j=1 Sβj , with

βj ∈ ]0, π [ ∀ j . We call

H(�, X) the vector space of the X -valued holomorphic functions on �;
H∞(�, X) the Banach space of the X -valued bounded holomorphic func-
tions on �, with the norm ‖ f ‖∞ := sup

z∈�

‖ f (z)‖X ;

H∞
0 (�, X) the set of the holomorphic functions f : � → X satisfying the

following condition: ∃ C > 0, s > 0 such that ∀z = (z1, . . . , zN ) ∈ �

‖ f (z)‖X ≤ C
N∏

j=1

min
{
|zj |s, |zj |−s

}
.

In the notations H(�, X) etc., the mention of X will be omitted when
X = C. Remark, however, that when X = L(Y ) (for some Banach space Y ),
then the scalar valued functions can be identified with the X -valued functions
in a natural way, by replacing f with f (·) IY .

It is obvious that H∞
0 (�, X) is a vector subspace of H∞(�, X); moreover,

if X is a Banach algebra, then also H∞(�, X) is a Banach algebra, and
H∞

0 (�, X) is a two-sided ideal of H∞(�, X).

Let T1, . . . , TN be sectorial operators in the complex Banach space X
(with spectral angles α1, . . . , αN ). We assume that the resolvent operators of
T1, . . . , TN commute, and call B the set all bounded linear operators on X
that commute with these resolvent operators. Then B is a closed subalgebra of
L(X). Let us set � = ∏N

j=1 Sβj , with αj < βj < π . If f ∈ H∞
0 (�,B), then

the operator f (T1, . . . , TN ) ∈ B is defined as follows.
Let γj ∈ ]αj , βj [ . We set � = ∏N

j=1 �j , where �j is the curve parametrized

by t �→ |t | e−iγj sgn t for t ∈ R \ {0}, and oriented according to the increasing
values of t (i.e. according to the decreasing imaginary parts). If f ∈ H∞

0 (�,B),
then the function z �→ f (z)

∏N
j=1(zj − Tj )

−1 is summable on �, and its integral
(which belongs to B) does not depend on the choice of the angular values
γj ∈ ]αj , βj [. Therefore we set

f (T1, . . . , TN ) = (2π i)−N
∫

�

f (z)
N∏

j=1

(zj − Tj )
−1 dz

and we obtain that the map f �→ f (T1, . . . , TN ) is an algebra homomorphism
of H∞

0 (�,B) to B.
Among the (scalar valued) functions that belong to H∞

0 (�) there are the
very useful functions introduced in the following definition.
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Definition 4.10. For any positive integer k, we define the function
�k,N : (C \ {−k, −k−1})N → C by

�k,N (z) =
N∏

j=1

k2zj

(k + zj ) (1 + kzj )
.

We usually will not mention the dimensional parameter N , and we set

�(z) = �1(z) =
N∏

j=1

zj

(1 + zj )2
.

One has

Lemma 4.11.

�(T1, . . . , TN ) =
N∏

j=1

Tj (1 + Tj )
−2.

Moreover �(T1, . . . , TN ) is injective and has dense range.

Then one can extend the definition of f (T1, . . . , TN ) to the case of f ∈
H∞(�,B) (and even to a larger space, actually) with the following device. If
f ∈ H∞(�,B), then � f ∈ H∞

0 (�,B). Then we can set

f (T1, . . . , TN ) := �(T1, . . . , TN )−1 (� f )(T1, . . . , TN ).

This definition extends the one given for f ∈ H∞
0 (�,B), but in general

f (T1, . . . , TN ) is a closed, densely defined, and not necessarily bounded, op-
erator. One can prove that

Lemma 4.12. If f, g ∈ H∞(�,B), then

f (T1, . . . , TN ) + g(T1, . . . , TN ) ⊆ ( f + g)(T1, . . . , TN )

and
f (T1, . . . , TN ) g(T1, . . . , TN ) ⊆ ( f g)(T1, . . . , TN ).

Lemma 4.13. If S ∈ B and f (z) = S ∀z ∈ �, then f (T1, . . . , TN ) = S.

Lemma 4.14. ∀x ∈ X limk→+∞ �k(T1, . . . , TN )x = x.

Remark 4.15. If f ∈ H∞(�,B) and f (T1, . . . , TN ) ∈ L(X), then from
Lemma 4.12 we get

(�k f )(T1, . . . , TN ) = �k(T1, . . . , TN ) f (T1, . . . , TN );
therefore ∀x ∈ X we have, by Lemma 4.14,

f (T1, . . . , TN )x = lim
k→+∞

(�k f )(T1, . . . , TN )x .

Definition 4.16. Let A be a closed subalgebra of B. We say that (T1, ...,TN )

has a bounded joint H∞(�,A) functional calculus if f (T1, . . . , TN ) ∈ L(X)

∀ f ∈ H∞(�,A).

Remark that this definition includes the case of scalar valued functions f ,
when A = {λ IX ; λ ∈ C}.

Another useful result is the following.



502 GIOVANNI DORE – ALBERTO VENNI

Lemma 4.17. Let A be a closed subalgebra of B. Then a necessary and
sufficient condition for (T1, . . . , TN ) to have a bounded joint H∞(�,A) functional
calculus is that ∃ C ∈ R+ such that ∀ f ∈ H∞

0 (�,A) ‖ f (T1, . . . , TN )‖ ≤ C ‖ f ‖∞.
In this case, ∀ f ∈ H∞(�,A) ‖ f (T1, . . . , TN )‖ ≤ C

∏N
j=1 cos−2(βj/2) ‖ f ‖∞.

In some concrete cases, e.g. when X = L p(Rn), in order to prove the
estimate ‖ f (T1, . . . , TN )‖ ≤ C ‖ f ‖∞ for f ∈ H∞

0 (�,A) it may be useful
to use multiplier theorems. Therefore the “vector-valued case” (that is, f ∈
H∞

0 (�,A)) is expected to be much more difficult than the “scalar-valued case”
(i.e. f ∈ H∞

0 (�, C)), for in the former case one should work with operator
valued multipliers, instead of scalar valued multipliers. Other difficulties can
be found if we do not know anything about the existence of a bounded joint
H∞(�,A) functional calculus, and we want to prove that f (T1, . . . , TN ) is
bounded for a given f ∈ H∞(�,A). In this connection we have the following
theorem, that we shall use later.

Theorem 4.18 (see [19], Theorem 4.4; [8] Theorem 6.7). Assume that
(T1, . . . , TN ) have a bounded joint H∞(�′) functional calculus, where �′ is a set
of the same type as �, defined with respect to smaller angles. Let f : � → B be
a holomorphic function whose range is R-bounded. Then f (T1, . . . , TN ) ∈ L(X).
Moreover ∃ C(T1, . . . , TN , p, X) ∈ R+ such that ‖ f (T1, . . . , TN )‖ is not greater
than C(T1, . . . , TN , p, X) times the Rp-bound of the range of f .

In the sequel, we shall deal also with a different situation. To explain what
is the matter, we first give a definition.

Definition 4.19. Let T be a linear operator acting in the complex Banach
space X , δ ∈ [0, π/2[. We say that T is bisectorial with spectral angle δ if:

(i) D(T ) and R(T ) are dense in X ;
(ii) 
δ ⊇ σ(T );

(iii) ∀δ′ ∈ ]δ, π
2 [ ∃ C(δ′) ∈ R+ such that ∀λ ∈ C \ 
δ′ ‖λ(λ − T )−1‖ ≤ C(δ′).

Since 
δ ⊂ Sδ+π
2

, it is obvious that a bisectorial operator with spectral
angle δ ∈ ]0, π

2 [ is also a sectorial operator with spectral angle δ + π
2 . However

in this case we wish to define f (T ) also when f is holomorphic on 
δ′ , with
δ < δ′ < π/2, and not necessarily on the whole sector Sπ

2 +δ′ . In a similar way,
if T1, . . . , TN are bisectorial operators with commuting resolvents, we wish to
define f (T1, . . . , TN ) when f is holomorphic on the set � = ∏n

k=1 
βk , where
∀k βk is greater than the spectral angle αk of the bisectorial operator Tk .

In order to do this, let us agree that in the present situation the meaning of
such symbols as H(�, X), H∞(�, X), H∞

0 (�, X) is analogous to the one of
the sectorial case, given in Definition 4.9. Then we define at first f (T1, . . . , TN )

when f ∈ H∞
0 (�,B). If γk ∈ ]αk+ π

2 , βk+ π
2 [, we call �k the curve parametrized

by R \ {0} � t �→ |t | e−iγk sgn t , and set �̃k = �k ∪ (−�k), where �k is oriented,
as above, according to the decreasing imaginary parts, while −�k is oriented
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according to the increasing imaginary parts. With �̃ = ∏N
k=1 �̃k , we can set

f (T1, . . . , TN ) := (2π i)−N
∫

�̃

f (z)
N∏

k=1

(zk − Tk)
−1 dz.

One can prove again that this integral exists, and does not depend on the choice

of the γk ∈ ]αk + π
2 , βk + π

2 [. Moreover, when f ∈ H∞
0

(∏N
k=1 Sβk ,B

)
, if we

set � = ∏N
k=1 �k , we have∫

�

f (z)
N∏

k=1

(zk − Tk)
−1 dz =

∫
�̃

f (z)
N∏

k=1

(zk − Tk)
−1 dz

and this means that, for such functions f , the definition of f (T1, . . . , TN ) for the
bisectorial case coincides with its definition for the sectorial case. This happens,
for instance, for the scalar function �; hence also in the bisectorial case we
can extend the definition of f (T1, . . . , TN ) to the functions f ∈ H∞(�,B) by
the formula

f (T1, . . . , TN ) := �(T1, . . . , TN )−1(� f )(T1, . . . , TN ).

Then it is possible to prove that also in the bisectorial case Lemmas 4.12, 4.13,
4.14, 4.17, and Theorem 4.18 hold true. Details can be found in the paper [8].

5. – Some preliminary results on elliptic polynomials

In the sequel, m and n are positive integers, and P : Cn+1 → C is a homo-
geneous polynomial of degree 2m, with complex coefficients. We’ll emphasize
the last argument of P by writing P(z, λ) with z ∈ Cn and λ ∈ C.

Definition 5.1. Let ω ∈ [0, π [ , L ∈ R+. We say that P is (L , ω)-elliptic
if the following conditions hold:

(i) |P(i x, i t)| ≥ L−1 ‖(x, t)‖2m ∀(x, t) ∈ Rn × R;
(ii) P(i x, i t) ∈ Sω ∀(x, t) ∈ Rn × R;

(iii) the maximum of the moduli of the coefficients of P is ≤ L .

Remark 5.2.

(a) It is quite obvious that a sufficient condition for a homogeneous polynomial
P to be (L , ω)-elliptic for some L and ω is that P(i x, i t) /∈ R− ∪ {0}
∀(x, t) ∈ (Rn × R) \ {(0, 0)}.

(b) Assume that P is (L , ω)-elliptic. If we write

P(z, λ) =
2m∑

k=0

( ∑
|α|=2m−k

ck,α zα
)

λk,
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then by condition (i) of Definition 5.1 c2m,0 = (−1)m P(0, i) �= 0; in
particular ∀z ∈ Cn the polynomial C � λ �→ P(z, λ) has degree 2m.

(c) It follows from condition (iii) that L ≥ |c2m,0| = |P(0, i)| ≥ L−1; therefore
L ≥ 1.

Henceforth it is understood that P is (L , ω)-elliptic, for some fixed L ≥ 1
and ω ∈ [0, π [. In all the inequalities that will follow, the constants will depend
on P , but only through L and ω.

We now study the behaviour of P(z, λ) when (z, λ) ∈ (
ϕ)n × 
ϕ . We
need some lemmas.

Lemma 5.3. If w = |w| eiα , z = |z| eiβ , with α, β ∈ R, then

|w − z| ≥ ( |w| + |z| ) | sin((α − β)/2)|.
Proof.

|w − z|2 =
(
|w| cos α − |z| cos β

)2 +
(
|w| sin α − |z| sin β

)2

= |w|2 + |z|2 − 2 |w| |z| cos (α − β)

=
(
|w| − |z|

)2
cos2 ((α − β)/2) +

(
|w| + |z|

)2
sin2((α − β)/2).

Lemma 5.4. Let z, w ∈ C \ (R− ∪ {0}) such that |w − z| < |z|. Then

| arg w| ≤ | arg z| + arcsin
|w − z|

|z| .

Proof. Put λ = w/z. Then 1 − Re λ ≤ |λ − 1| = |w−z|
|z| < 1 so that

Re λ > 0 and hence | arg λ| < π
2 . From w = λz it follows that | arg w| ≤

| arg λ + arg z| ≤ | arg z| + | arg λ|; hence in order to prove the lemma it is
enough to show that | arg λ| ≤ arcsin |λ − 1|, and since | arg λ| < π

2 , this is
equivalent to sin2 arg λ ≤ |λ − 1|2, i.e. to sin2 arg λ ≤ |λ|2 − 2 |λ| cos arg λ + 1,
that is obviously true.

When N ≥ 1 and q ≥ 0 are integers, we set �N ,q = (q+N−1
q

)
, i.e. the

number of indices α = (α1, . . . , αN ) with |α| = q.

Lemma 5.5. Let N and q be positive integers and let Q : CN → C be a
homogeneous polynomial with deg Q = q. We call M the maximum of the moduli
of the coefficients of Q. Then for arbitrary ξ, η ∈ CN

|Q(ξ + η) − Q(ξ)| ≤ 2q �N ,q M ‖η‖ max
{
‖ξ‖q−1, ‖η‖q−1

}
.

Proof. We have obviously

(ξ + η)α − ξα =
∑

β≤α,β �=α

(
α

β

)
ηα−βξβ.

If |α| = q , β ≤ α and β �= α, then |β| ≤ q − 1; in this case we have

|ηα−βξβ | ≤ ‖η‖ ‖η‖q−1−|β| ‖ξ‖|β| ≤ ‖η‖
(

max
{
‖η‖, ‖ξ‖

})q−1
.

Since
∑

β≤α

(
α

β

) = 2|α| = 2q , the assertion is proved.
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Theorem 5.6. Let θ ∈ ]ω, π [. We set ϕ =
(

22m+1 �n+1,2m L2
)−1

sin(θ − ω).

If (0, 0) �= (z, λ) ∈ (
ϕ)n × 
ϕ , then P(z, λ) ∈ Sθ and |P(z, λ)| ≥ 1
2L ‖(z, λ)‖2m.

Proof. Let (0, 0) �= (z, λ) ∈ (
ϕ)n × 
ϕ . For suitable (x, t) ∈ Rn × R

and α1, . . . , αn, β ∈ [−ϕ, ϕ] we have (z, λ) =
(

eiα1 i x1, . . . , eiαn i xn, eiβ i t
)

.
Obviously ‖(x, t)‖ = ‖(z, λ)‖.

From Lemma 5.5 we get

|P(z, λ) − P(i x, i t)|

≤ 22m �n+1,2m L‖(z, λ) − (i x, i t)‖ max
{
‖(i x, i t)‖2m−1, ‖(z, λ) − (i x, i t)‖2m−1

}
and

‖(z, λ) − (i x, i t)‖2 =
n∑

k=1

|eiαk − 1|2 x2
k + |eiβ − 1|2 t2

= 4

(
n∑

k=1

sin2(αk/2) x2
k + sin2(β/2) t2

)
≤ 4 sin2(ϕ/2) ‖(x, t)‖2 < ϕ2 ‖(x, t)‖2;

so that (as it is obvious that ϕ < 1)

|P(z, λ) − P(i x, i t)| < 22m �n+1,2m L ϕ ‖(x, t)‖2m = 1

2L
sin(θ − ω) ‖(x, t)‖2m .

On the other hand we have |P(i x, i t)| ≥ L−1 ‖(x, t)‖2m , hence

|P(z, λ) − P(i x, i t)|
|P(i x, i t)| <

1

2
sin(θ − ω) ≤ 1

2
.

Therefore

|P(z, λ)| >
1

2
|P(i x, i t)| ≥ 1

2L
‖(x, t)‖2m = 1

2L
‖(z, λ)‖2m .

Moreover from Lemma 5.4 it follows that

| arg P(z, λ)| ≤ | arg P(i x, i t)| + arcsin
|P(z, λ) − P(i x, i t)|

|P(i x, i t)|
≤ ω + arcsin

(
1
2 sin(θ − ω)

)
≤ ω + π

4
sin(θ − ω) < θ.

In the sequel we shall denote with ϕ0 the function on ]ω, π [ to ]0, π
2 [

defined by

ϕ0(θ) :=
(

22m+1 �n+1,2m L2
)−1

sin
θ − ω

2
.

Corollary 5.7. If θ ∈ ]ω, π [ , (0, 0) �= (z, λ) ∈ (
ϕ0(θ))
n × 
ϕ0(θ), then

P(z, λ) ∈ S(θ+ω)/2 and |P(z, λ)| ≥ 1
2L ‖(z, λ)‖2m.
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Proof. Immediate consequence of Theorem 5.6.

Theorem 5.8. Let θ ∈ ]ω, π [. If µ ∈ C \ Sθ and (z, λ) ∈ (
ϕ0(θ))
n × 
ϕ0(θ),

then

|µ − P(z, λ)| ≥ 1

2L
sin

θ − ω

4
( ‖(z, λ)‖2m + |µ| ).

Proof. Suppose that µ �= 0 and (z, λ) �= (0, 0), otherwise the inequality
is trivial. We set µ = |µ| eiα , with θ ≤ |α| ≤ π . Then by Lemma 5.3 and
Corollary 5.7 we have

|µ − P(z, λ)| ≥ sin
|α − arg P(z, λ)|

2

(
|µ| + |P(z, λ)|

)
≥ sin

θ − (θ + ω)/2

2

(
|µ| + (2L)−1 ‖(z, λ)‖2m

)
≥ (2L)−1 sin

θ − ω

4

(
|µ| + ‖(z, λ)‖2m

)
.

Remark 5.9. Let us fix θ ∈ ]ω, π [, α ∈ [θ −π, π −θ ], β = (β1, . . . , βn) ∈
[−ϕ0(θ), ϕ0(θ)]n . For ζ = (ζ1, . . . , ζn) ∈ Cn , λ ∈ C and ν ∈ C we set

Q(ζ, λ, ν) = (−1)m eiα ν2m + P(eiβ1ζ1, . . . , eiβn ζn, λ).

Then Q is a homogeneous polynomial of degree 2m in n+2 variables; moreover
Theorem 5.8 implies that Q does not vanish on (i R)n+2 \ {0}. Since n +2 ≥ 3,
by means of well-known arguments (see e.g. [2], Proposition 2.2), one obtains
that for (x, ξ) ∈ Rn+1\{(0, 0)} the equation (in the unknown λ) Q(i x, λ, iξ) = 0
has m roots with positive real part and m with negative real part. This means
that for (0, 0) �= (z, µ) ∈ (
ϕ0(θ))

n × (C \ Sθ ) the equation (in the unknown λ)
µ = P(z, λ) has m roots with positive real part and m with negative real part.
Then we shall write

µ − P(z, λ) = P+
z,µ(λ) P−

z,µ(λ)

where the polynomial P+
z,µ (P−

z,µ) collects the roots with positive (negative) real
part of µ − P(z, ·).

Definition 5.10. ∀(z, µ) ∈ Cn+1 we set β(z, µ) = ‖z‖ + |µ| 1
2m .

Theorem 5.11. ∀θ ∈ ]ω, π [ there exist positive constants r(L , ω, θ) and
M1(L , ω, θ) such that if µ ∈ C \ Sθ , z ∈ (
ϕ0(θ))

n, λ ∈ C and

|µ − P(z, λ)| < M1(L , ω, θ) β(z, µ)2m

then λ /∈ 
ϕ0(θ) and r(L , ω, θ)−1 β(z, µ) < |λ| < r(L , ω, θ) β(z, µ). In particular
any root λ of the polynomial µ − P(z, ·) satisfies these conditions.
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Proof. Let θ ∈ ]ω, π [, µ ∈ C \ Sθ , z ∈ (
ϕ0(θ))
n and λ ∈ C. We set

M0 := 1
22m L

sin θ−ω
4 .

(I) If λ ∈ 
ϕ0(θ) then from Theorem 5.8 it follows that

|µ − P(z, λ)| ≥ M0 β(z, µ)2m .

(II) Taking into account step (I) and Lemma 5.5 we have

|µ − P(z, λ)| ≥ |µ − P(z, 0)| − |P(z, 0) − P(z, λ)|
≥ M0 β(z, µ)2m − 22m �n+1,2m L |λ| max

{
‖z‖2m−1, |λ|2m−1

}
≥ M0 β(z, µ)2m − 22m �n+1,2m L |λ| max

{
β(z, µ)2m−1, |λ|2m−1

}
.

Therefore if C ∈ ]0, 1] and |λ| ≤ Cβ(z, µ) then we have

|µ − P(z, λ)| ≥
(

M0 − 22m �n+1,2m L C
)
β(z, µ)2m,

so that in particular for C = (22m+1 �n+1,2m L)−1 M0 we get

|µ − P(z, λ)| ≥ 1

2
M0 β(z, µ)2m .

(III) Since |c2m,0| ≥ L−1 (see Remark 5.2 (c)) we have

|µ − P(z, λ)| ≥ |c2m,0| |λ|2m − |µ| −
2m−1∑
j=0

( ∑
|α|=2m− j

|cj,α| |zα|
)

|λ| j

≥ L−1 |λ|2m − |µ| −
2m−1∑
j=0

�n,2m− j L ‖z‖2m− j |λ| j

≥ L−1 |λ|2m − |µ| − �n+1,2m L ‖z‖ max
{
‖z‖2m−1, |λ|2m−1

}
.

Therefore if |λ| ≥ β(z, µ), then we have

|µ − P(z, λ)| ≥ L−1 |λ|2m − β(z, µ)2m − �n+1,2m L β(z, µ) |λ|2m−1

= |λ|2m−1
(

L−1 |λ| − �n+1,2m L β(z, µ)
)

− β(z, µ)2m;

so that in particular for |λ| ≥ 2 �n+1,2m L2 β(z, µ) we get

|µ − P(z, λ)| ≥ (22m−1 �2m
n+1,2m L4m−1 − 1) β(z, µ)2m .
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Hence the assertion is proved, with

M1 := min
{

M0/2, 22m−1 �2m
n+1,2m L4m−1 − 1

}
= M0/2 = 1

22m+1 L
sin

θ − ω

4

and

r := max
{

22m+1 �n+1,2m L M−1
0 , 2 �n+1,2m L2

}
= 22m+1 �n+1,2m L M−1

0

= 24m+1 �n+1,2m L2

sin((θ − ω)/4)
.

If γ is a circuit parametrized by the function ψ , and c ∈ C, we denote by
cγ the circuit parametrized by cψ ; it is obvious that the length of cγ equals
|c| times the length of γ ; moreover if c �= 0 and a /∈ γ , then ca /∈ cγ and
w(cγ, ca) = w(γ, a).

Definition 5.12. Let θ ∈ ]ω, π [, and let r(L , ω, θ) have the same meaning
as in Theorem 5.11. We call γ +

θ the closed curve (oriented counterclockwise)
composed by:

(i) the arc of the circle centred at 0 with radius r(L , ω, θ), from
r(L , ω, θ) e−i( π

2 −ϕ0(θ)) to r(L , ω, θ) ei( π
2 −ϕ0(θ));

(ii) the segment from
r(L , ω, θ) ei( π

2 −ϕ0(θ)) to r(L , ω, θ)−1 ei( π
2 −ϕ0(θ));

(iii) the arc of the circle centred at 0 with radius r(L , ω, θ)−1, from
r(L , ω, θ)−1 ei( π

2 −ϕ0(θ)) to r(L , ω, θ)−1 e−i( π
2 −ϕ0(θ));

(iv) the segment from r(L , ω, θ)−1 e−i( π
2 −ϕ0(θ)) to r(L , ω, θ) e−i( π

2 −ϕ0(θ)).

Moreover, we set γ −
θ = −γ +

θ , and for (0, 0) �= (z, µ) ∈ Cn × C γ ±
θ (z, µ) =

β(z, µ)γ ±
θ .

It follows from Definition 5.12 that if λ ∈ γ +
θ ∪ γ −

θ , then either λ ∈

ϕ0(θ) or |λ| ∈ {r(L , ω, θ)−1, r(L , ω, θ)}. Hence the following theorem is a
straightforward consequence of Theorem 5.11 and Definition 5.12.

Theorem 5.13. Let θ ∈ ]ω, π [, (0, 0) �= (z, µ) ∈ Cn × C. Then we have:

(a) if λ ∈ γ ±
θ (z, µ), then ± Re λ ≥ M2(L , ω, θ) β(z, µ), where

M2(L , ω, θ) = r(L , ω, θ)−1 sin ϕ0(θ);
(b) γ +

θ (z, µ) and γ −
θ (z, µ) are disjoint from 
ϕ0(θ);

(c) if µ ∈ C\Sθ and z ∈ (
ϕ0(θ))
n, then any solution λ with positive (negative) real

part of the equation P(z, λ) = µ does not belong to γ +
θ (z, µ) (to γ −

θ (z, µ))
and has winding number equal to 1 with respect to γ +

θ (z, µ) (to γ −
θ (z, µ));

(d) if µ ∈ C \ Sθ , z ∈ (
ϕ0(θ))
n and λ ∈ γ +

θ (z, µ) ∪ γ −
θ (z, µ), then

|µ − P(z, λ)| ≥ M1(L , ω, θ) β(z, µ)2m .
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The boundary operators relative to the differential operator P(Dx , Dt ) will
be expressed through m homogeneous polynomials B1, . . . , Bm in n+1 variables,
with deg Bk = mk < 2m. We assume that these polynomials satisfy an “ω-
complementing condition”, that is:

(5.14)

 if (0, 0) �= (x, µ) ∈ Rn × ((C \ Sω) ∪ {0}) then the polynomials

B1(i x, ·), . . . , Bm(i x, ·) are linearly independent modulo P−
i x,µ.

Here one could make a remark similar to 5.2 (a) concerning the fact that (5.14)
is satisfied for some ω ∈ ]0, π [ provided that it holds for µ ∈ R− ∪ {0}. What
we actually need, however, is a similar condition with i x replaced by z ∈ (
α)n

for some α > 0, and so in the last part of this section we are going to deduce
it from (5.14).

For the sequel of this section we fix θ ∈ ]ω, π [.
Assume that (0, 0) �= (z, µ) ∈ (
ϕ0(θ))

n × (C \ Sθ ). For j, k ∈ {1, . . . , m}
we set

(5.15) gk, j (z, µ) = 1

2π i

∫
γ−
θ

(z,µ)

λ j−1 Bk(z, λ)

µ − P(z, λ)
dλ

and we call G(z, µ) the m × m matrix with entries gk, j (z, µ).

Lemma 5.16. Let (0, 0) �= (z, µ) ∈ (
ϕ0(θ))
n × (C \ Sθ ), τ ∈ R+. Then

det G(τ z, τ 2mµ) = τ
((m−3m2)/2)+

∑m
k=1 mk det G(z, µ).

Proof. det G(z, µ) is a sum of m! addenda, each one of which is

±
m∏

k=1
gk,σ (k)(z, µ), where σ is a permutation of {1, . . . , m}. Since, for τ ∈ R+

gk, j (τ z, τ 2mµ) = 1

2π i

∫
γ−
θ

(τ z,τ2mµ)

λ j−1 Bk(τ z, λ)

τ 2mµ − P(τ z, λ)
dλ = τ j+mk−2m gk, j (z, µ)

an easy computation concludes the proof.

Lemma 5.17. ∃ L0(θ) ∈ R+ such that for (0, 0) �= (x, µ) ∈ Rn × (C \ Sθ )

| det G(i x, µ)| ≥ L0(θ) β(i x, µ)
((m−3m2)/2)+

∑m
k=1 mk .

Proof. The complementing condition (5.14) and Lemma 3.4 imply that
det G(i x, µ) �= 0 when (0, 0) �= (x, µ) ∈ Rn × (C \ Sθ ). Since the set

Vθ := {(i x, µ) ∈ (i R)n × (C \ Sθ ); β(i x, µ) = 1}
is compact, the result follows from Lemma 5.16 with L0(θ)=min

Vθ

| det G|.
In the sequel L0 will denote the function on ]ω, π [ introduced in Lemma

5.17. We denote with L1 the maximum of the moduli of the coefficients of the
polynomials B1, . . . , Bm .
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Theorem 5.18. There exists ϕ ∈ ]0, ϕ0(θ)] (depending on L, L1, ω, θ , L0(θ))

such that if (0, 0) �= (z, µ) ∈ (
ϕ)n × (C \ Sθ ) then

| det G(z, µ)| ≥ L0(θ)

2
β(z, µ)

((m−3m2)/2)+
∑m

k=1 mk .

Proof. Let ϕ ∈ ]0, ϕ0(θ)] and (0, 0) �= (z, µ) ∈ (
ϕ)n × (C \ Sθ ). For
suitable x ∈ Rn and α1, . . . , αn ∈ [−ϕ, ϕ] we have z = (eiα1 i x1, . . . , eiαn i xn).
Because of Lemma 5.17, the theorem will be proved if we show that when ϕ

is suitably small

| det G(z, µ) − det G(i x, µ)| ≤ L0(θ)

2
β(z, µ)

((m−3m2)/2)+
∑m

k=1 mk .

To this end we remark that det G(z, µ) − det G(i x, µ) can be expressed as the
sum of m! addenda, each one of the type

m∏
k=1

gk,σ (k)(z, µ) −
m∏

k=1

gk,σ (k)(i x, µ)

=
m∑

h=1

(
h−1∏
k=1

gk,σ (k)(i x, µ)
(

gh,σ (h)(z, µ) − gh,σ (h)(i x, µ)
) m∏

k=h+1

gk,σ (k)(z, µ)

)

where σ describes the set of the permutations of {1, . . . , m}. Therefore we are
going to prove the following estimates:

(5.19) |gk, j (z, µ)| ≤ C(L , L1, ω, θ) β(z, µ)mk+ j−2m

(and likewise for gk, j (i x, µ), noticing that β(i x, µ) = β(z, µ)) and

(5.20) |gk, j (z, µ) − gk, j (i x, µ)| ≤ C(L , L1, ω, θ) ϕ β(z, µ)mk+ j−2m .

Once we have obtained these estimates, it follows that

∣∣∣ m∏
k=1

gk,σ (k)(z, µ) −
m∏

k=1

gk,σ (k)(i x, µ)
∣∣∣ ≤ C ϕ β(z, µ)

∑m
k=1(mk+σ(k)−2m)

= C ϕ β(z, µ)
((m−3m2)/2)+

∑m
k=1 mk ,

so that for a sufficiently small ϕ we get the result.
Let us prove (5.19). We have

(5.21) |Bk(z, λ)| ≤ L1 �n+1,mk ‖(z, λ)‖mk ;
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moreover the length of γ −
θ (z, µ) is ≤ 2(1 + π) r β(z, µ) and on γ −

θ (z, µ)

|µ − P(z, λ)| ≥ M1 β(z, µ)2m (see Theorem 5.13 (d)) and |λ| ≤ r β(z, µ).
Therefore

|gk, j (z, µ)| ≤ 1

2π

∫
γ−
θ

(z,µ)

|λ| j−1 |Bk(z, λ)|
|µ − P(z, λ)| d|λ|

≤ 1

2π

∫
γ−
θ

(z,µ)

|λ| j−1 L1 �n+1,mk ‖(z, λ)‖mk

M1 β(z, µ)2m
d|λ| ≤ C β(z, µ)mk+ j−2m .

Let us prove (5.20). Since β(i x, µ) = β(z, µ), we have γ −
θ (i x, µ) = γ −

θ (z, µ);
hence

|gk, j (z, µ) − gk, j (i x, µ)| = 1

2π

∣∣∣∣ ∫
γ−
θ

(i x,µ)

λ j−1 (Bk(z, λ) − Bk(i x, λ))

µ − P(z, λ)
dλ

+
∫

γ−
θ

(i x,µ)

(
λ j−1 Bk(i x, λ)

µ − P(z, λ)
− λ j−1 Bk(i x, λ)

µ − P(i x, λ)

)
dλ

∣∣∣∣
≤ 1

2π

(∫
γ−
θ

(i x,µ)

|λ| j−1 |Bk(z, λ) − Bk(i x, λ)|
|µ − P(z, λ)| d|λ|

+
∫

γ−
θ

(i x,µ)

|λ| j−1|Bk(i x,λ)||P(z,λ)−P(i x,λ)|
|µ − P(i x, λ)| |µ − P(z, λ)| d|λ|

)
.

As in the proof of Theorem 5.6, we have ‖(z, λ) − (i x, λ)‖ ≤ ϕ ‖z‖; therefore
from Lemma 5.5 we get

|Bk(z, λ) − Bk(i x, λ)|
≤ 2mk �n+1,mk L1 ‖(z, λ) − (i x, λ)‖(max{‖(i x, λ)‖, ‖(z, λ) − (i x, λ)‖})mk−1

≤ 2mk �n+1,mk L1 ϕ ‖z‖ ‖(i x, λ)‖mk−1 ≤ 2mk �n+1,mk L1 ϕ ‖(z, λ)‖mk .

Analogously

|P(z, λ) − P(i x, λ)|
≤ 22m�n+1,2m L ‖(z, λ) − (i x, λ)‖(max{‖(i x, λ)‖, ‖(z, λ) − (i x, λ)‖})2m−1

≤ 22m�n+1,2m L ϕ ‖z‖ ‖(i x, λ)‖2m−1 ≤ 22m�n+1,2m L ϕ ‖(z, λ)‖2m .
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Therefore

|gk, j (z, µ) − gk, j (i x, µ)|

≤ 1

2π

(∫
γ−
θ

(i x,µ)

|λ| j−1 2mk �n+1,mk L1 ϕ ‖(z, λ)‖mk

M1 β(z, µ)2m
d|λ|

+
∫

γ−
θ

(i x,µ)

|λ| j−1 L1�n+1,mk ‖(z, λ)‖mk 22m�n+1,2m L ϕ ‖(z, λ)‖2m

M2
1 β(z, µ)4m

d|λ|
)

≤ C ϕ β(z, µ)mk+ j−2m .

In the sequel we shall use the function θ �→ ϕ(θ), from ]ω, π [ to ]0, π
2 [

implicitly defined in the statement of Theorem 5.18.

6. – The ordinary differential operators Az

In this section, as well as in the next ones, we fix p ∈ ]1, ∞[, and denote
by p′ the exponent conjugate to p. The polynomials P and B1, . . . , Bm are
the same as in Section 5.

∀z ∈ Cn we consider the operator Az defined by

D(Az) = {u ∈ W 2m,p(R+); (Bk(z, D)u)(0) = 0 for 1 ≤ k ≤ m}
Azu = P(z, D)u ∀u ∈ D(Az).

Concerning the definition of Az , we recall that a function v ∈ W 1,p(R+) is
almost everywhere equal to a continuous function on [0, +∞[, so that when
u ∈ W 2m,p(R+) the value at t = 0 of Bk(z, D)u is well defined. Since it is
obvious that both the domain and the range of Az are subspaces of L p(R+),
we look at Az as an unbounded operator in the Banach space L p(R+).

6.1. – The operators Az are sectorial

The aim of this subsection is to prove the following result.

Theorem 6.1. Let θ ∈ ]ω, π [ and z ∈ (
ϕ(θ))
n. Then Az is a sectorial operator

with spectral angle θ .

Actually, what we shall prove is

Lemma 6.2. Let θ ∈ ]ω,π [ and assume that (0,0) �=(z,µ)∈(
ϕ(θ))
n×(C \ Sθ ).

Then µ ∈ ρ(Az) and

(6.3) ‖(µ − Az)
−1‖L(L p(R+)) ≤ C(L , L1, ω, θ, L0(θ))

‖z‖2m + |µ| .
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Once proved Lemma 6.2, going back to Theorem 6.1 we remark that

(i) the domain of Az is dense in L p(R+) as it contains C∞
0 (R+);

(ii) when z �= 0 Lemma 6.2 implies that 0 ∈ ρ(Az), so that Az is boundedly
invertible, and in particular R(Az) = L p(R+);

(iii) A0 is the restriction to D(A0) of c2m,0 D2m (where D is the derivative
operator in L p(R+)), and hence it is injective, because such is D: this
implies that R(A0) is dense in L p(R+) since this is a reflexive space;

(iv) for µ ∈ C \ Sθ the inequality (6.3) yields

‖µ(µ − Az)
−1‖L(L p(R+)) ≤ C(L , L1, ω, θ, L0(θ)).

Thus Theorem 6.1 will be proved.
However in Section 8 we’ll need something more, and so instead of (6.3)

we are going to prove that

(6.4) ‖D�(µ − Az)
−1‖L(L p(R+)) ≤ C(L , L1, ω, θ, L0(θ)) β(z, µ)�−2m

(for � ≤ 2m) of which (6.3) is a particular case, since β(z, µ)2m ≥ ‖z‖2m +|µ|.
* * *

Solving in D(Az) the equation

µ u − Azu = f

with f ∈ L p(R+), is the same as solving the problem

(6.5)


u ∈ W 2m,p(R+)

µ u(t) − P(z, D)u(t) = f (t) t ∈ R+

(Bk(z, D)u)(0) = 0 1 ≤ k ≤ m.

From the ω-complementing condition and Theorems 3.8 and 5.18 we get
that the homogeneous equation with arbitrary initial data has a unique solution:
this proves that problem (6.5) has at most one solution; in order to prove the
existence of the solution of (6.5) we only need prove the existence in W 2m,p(R+)

of a solution of the equation µ u − P(z, D)u = f : after that it is enough to
sum this solution v with the solution w of the homogeneous equation with such
initial conditions that annihilate the initial data of v.

As usual, we need some preliminary results.

Lemma 6.6. Let Q ∈ P with deg Q = r ≥ 1, Q(λ) = ∑r
k=0 ak λk . Let

γ ∈ �1(Q). Then

1

2π i

∫
γ

λ j

Q(λ)
dλ =

{
0 if 0 ≤ j < r − 1

a−1
r if j = r − 1.

Proof. Since the integral does not depend on γ ∈ �1(Q), it is not restric-
tive to assume that γ be a circle centred at 0, with large radius ρ, oriented
counterclockwise. Since the integral does not depend on ρ, the result can be
easily obtained by letting ρ → +∞.
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Definition 6.7. Let θ ∈ ]ω, π [, and (0, 0) �= (z, µ) ∈ (
ϕ(θ))
n × (C \ Sθ ).

We set

Hz,µ(x) =


1

2π i

∫
γ−
θ

(z,µ)

eλx

µ − P(z, λ)
dλ if x ≥ 0

− 1

2π i

∫
γ+
θ

(z,µ)

eλx

µ − P(z, λ)
dλ if x ≤ 0.

Remark 6.8. It follows from Theorem 5.13 (a), (c) that

γ +
θ (z, µ) ∪ γ −

θ (z, µ) ∈ �1(µ − P(z, ·)).

Since deg(µ − P(z, ·)) = 2m ≥ 2, we get from Lemma 6.6 that∫
γ+
θ

(z,µ)

1

µ − P(z, λ)
dλ +

∫
γ−
θ

(z,µ)

1

µ − P(z, λ)
dλ = 0

and that ensures that Hz,µ is correctly defined at x = 0. The independence of
Hz,µ from θ , and more generally the independence from θ of any integral of
the type ∫

γ±
θ

(z,µ)

Q(z, λ) eλx

µ − P(z, λ)
dλ

where Q is a polynomial, is an obvious consequence of Cauchy’s theorem.

Remark 6.9. Let us deduce some properties of the functions Hz,µ. It is
understood that θ ∈ ]ω, π [ and (0, 0) �= (z, µ) ∈ (
ϕ(θ))

n × (C \ Sθ ).

(a) It is obvious that Hz,µ ∈ C∞(R \ {0}), with

H ( j)
z,µ(x) =


1

2π i

∫
γ−
θ

(z,µ)

λ j eλx

µ − P(z, λ)
dλ if x > 0

− 1

2π i

∫
γ+
θ

(z,µ)

λ j eλx

µ − P(z, λ)
dλ if x < 0.

In particular the limits H ( j)
z,µ(0+) and H ( j)

z,µ(0−) exist; by Lemma 6.6 we
get

H ( j)
z,µ(0+) − H ( j)

z,µ(0−) = 0 if 0 ≤ j ≤ 2m − 2

H (2m−1)
z,µ (0+) − H (2m−1)

z,µ (0−) = −c−1
2m,0

(see the representation of P given in Remark 5.2). In particular Hz,µ ∈
C2m−2(R).
Here, as always in the following, we have denoted by H ( j)

z,µ the j-th deriva-
tive of Hz,µ on R \ {0}; the symbol D j Hz,µ will always denote its j-th
distributional derivative on R.
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(b) Taking into account the estimates of Theorem 5.13 (a), (d), for x ∈ R± we
obtain from (a)

|H ( j)
z,µ(x)| ≤ 1

2π

∫
γ∓
θ

(z,µ)

|λ| j

M1 β(z, µ)2m
d|λ| e−M2β(z,µ)|x |

= C β(z, µ) j+1−2m e−M2β(z,µ)|x |.

Then we get that H ( j)
z,µ ∈ L1(R) ∩ L∞(R) and ∀q ∈ [1, ∞]

‖H ( j)
z,µ‖Lq (R) ≤ C(q) β(z, µ) j−2m+1−(1/q).

(c) Let D0 denote the distributional derivative on R \ {0}. By (a), we get
D j Hz,µ = D j

0 Hz,µ for 0 ≤ j ≤ 2m−1, while D2m Hz,µ = D2m
0 Hz,µ−c−1

2m,0 δ0
(where δ0 is Dirac’s measure at 0).
Let f ∈ L p(R+), and let us extend f to R by setting f (x) = 0 for x < 0.
Then Hz,µ ∗ f ∈ L p(R), and

D�(Hz,µ ∗ f ) =
{ D�

0 Hz,µ ∗ f if � < 2m

D2m
0 Hz,µ ∗ f − c−1

2m,0 f if � = 2m

so that

(µ − P(z, D))(Hz,µ ∗ f ) =
(
(µ − P(z, D0)) Hz,µ

)
∗ f + f.

Since for x ∈ R±(
(µ − P(z, D0)) Hz,µ

)
(x) = ±1

2π i

∫
γ∓
θ

(z,µ)

eλx dλ = 0

we have (µ − P(z, D))(Hz,µ ∗ f ) = f .

As we have seen in Remark 6.9 (c), ∀ f ∈ L p(R+) Hz,µ ∗ f (or more
precisely the restriction to R+ of the convolution between Hz,µ and the natural
extension of f to R) is a solution of the inhomogeneous equation. As we
noticed above, as a consequence of Theorem 3.8, this fact implies that problem
(6.5) has a unique solution, so that µ − Az is proved to be a bijective operator
from D(Az) onto L p(R+). We shall write this solution in the form

(µ − Az)
−1 f = Hz,µ ∗ f + wz,µ( f ).

where wz,µ( f ) is the solution of the homogeneous equation that annihilates
the initial values of Hz,µ ∗ f . For 0 ≤ � ≤ 2m, we have, by Remark 6.9 (b),
‖H(�)

z,µ‖L1(R) ≤Cβ(z,µ)�−2m ; therefore Young’s inequality and Remark 6.9 (c) yield

(6.10) ‖D�(Hz,µ ∗ f )‖L p(R+) ≤ C β(z, µ)�−2m ‖ f ‖L p(R+)

whenever θ ∈ ]ω, π [, and (0, 0) �= (z, µ) ∈ (
ϕ(θ))
n × (C \ Sθ ).
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Now we turn to study wz,µ( f ). As deg Bk < 2m, Remark 6.9 (c) yields
also(

Bk(z, D)(Hz,µ ∗ f )
)
(0) =

(
(Bk(z, D)Hz,µ) ∗ f

)
(0)

=
∫ ∞

0
(Bk(z, D)Hz,µ)(−s) f (s) ds

= − 1

2π i

∫ ∞

0

∫
γ+
θ

(z,µ)

Bk(z, λ) e−λs

µ − P(z, λ)
dλ f (s) ds

= −
∫ ∞

0
hk,z,µ(s) f (s) ds

where we have set

(6.11) hk,z,µ(s) = 1

2π i

∫
γ+
θ

(z,µ)

Bk(z, λ) e−λs

µ − P(z, λ)
dλ.

Then wz,µ( f ) is the solution of the problem

(6.12)


w ∈ W 2m,p(R+)

µ w(t) − P(z, D)w(t) = 0 t ∈ R+

(Bk(z, D)w)(0) = ∫∞
0 hk,z,µ(s) f (s) ds 1 ≤ k ≤ m.

Lemma 6.13. Let (b1, . . . , bm) ∈ Cm, and let (0, 0) �= (z, µ) ∈ (
ϕ(θ))
n ×

(C \ Sθ ) for some θ ∈ ]ω, π [. The problem

(6.14)


w ∈ W 2m,p(R+)

µ w(t) − P(z, D)w(t) = 0 t ∈ R+

(Bk(z, D)w)(0) = bk 1 ≤ k ≤ m.

has a unique solution wz,µ of the form
∑m

j,k=1 δj,k(z, µ) bk uj,z,µ where δj,k(z, µ) ∈
C, u j,z,µ ∈ L p(R+) and they satisfy the estimates

|δj,k(z, µ)| ≤ C(L , L1, ω, θ, L0(θ)) β(z, µ)2m−mk− j

‖uj,z,µ‖L p(R+) ≤ C(L , ω, θ) β(z, µ) j−2m−(1/p).

Moreover the inequality

‖D�wz,µ‖L p(R+) ≤ C(L , L1, ω, θ, L0(θ))

m∑
k=1

β(z, µ)�−mk−(1/p)|bk |

holds for � ≤ 2m.
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Proof. The existence and uniqueness of the solution of problem (6.14) are
direct consequences of Theorem 3.8, since det G(z, µ) �= 0 by Theorem 5.18.
We set (for 1 ≤ j ≤ m and t > 0)

(6.15) uj,z,µ(t) = H ( j−1)
z,µ (t) = 1

2π i

∫
γ−
θ

(z,µ)

λ j−1 eλt

µ − P(z, λ)
dλ.

Then, according to Theorem 3.5 (b), {u1,z,µ, . . .,um,z,µ} is a basis of ker P−
z,µ(D),

so that by Theorem 3.7, wz,µ is a linear combination of u1,z,µ, . . . , um,z,µ:

wz,µ =
m∑

j=1

cj (z, µ) uj,z,µ

for some coefficients cj (z, µ) ∈ C. Therefore

(6.16) D�wz,µ =
m∑

j=1

cj (z, µ) u(�)
j,z,µ.

We know from Remark 6.9 (b) that

(6.17) ‖u(�)
j,z,µ‖L p(R+) = ‖H (�+ j−1)

z,µ ‖L p(R+) ≤ C β(z, µ)�+ j−2m−(1/p).

As for the coefficients cj (z, µ), they have to satisfy the equalities

bk = (Bk(z, D)wz,µ)(0) =
m∑

j=1

cj (z, µ) (Bk(z, D)uj,z,µ)(0)

=
m∑

j=1

cj (z, µ)

2π i

∫
γ−
θ

(z,µ)

λ j−1 Bk(z, λ)

µ − P(z, λ)
dλ =

m∑
j=1

gk, j (z, µ)cj (z, µ)

(see (5.15)). Let us call δj,k(z, µ) the coefficients of G−1(z, µ); then

(6.18) δj,k(z, µ) = (−1) j+k det Gkj (z, µ)

det G(z, µ)

where Gkj (z, µ) is the matrix obtained from G(z, µ) by deleting the k-th
row and the j-th column. Each addendum of det Gkj (z,µ) is of the type
±∏

h �=k gh,σ (h)(z,µ), where σ is a bijective function of {1, . . . ,k−1, k+1, . . . ,m}
onto {1, . . . , j − 1, j + 1, . . . , m}. Therefore, by applying the estimate of The-
orem 5.18 for det G(z, µ) and formula (5.19) for gk, j (z, µ), we obtain

(6.19) |δj,k(z, µ)| ≤ C β(z, µ)2m−mk− j ,
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where C = C(L , L1, ω, θ, L0(θ)). Finally, from

(6.20) cj (z, µ) =
m∑

k=1

δj,k(z, µ) bk

we get the desired expression of the solution wz,µ. Moreover we have

|cj (z, µ)| ≤ C
m∑

k=1

β(z, µ)2m−mk− j |bk |

and (6.16), (6.17) yield

‖D�wz,µ‖L p(R+) ≤
m∑

j=1

|cj (z, µ)| ‖u(�)
j,z,µ‖L p(R+)

≤ C
m∑

j,k=1

β(z, µ)2m−mk− j |bk | β(z, µ)�+ j−2m−(1/p)

= m C
m∑

k=1

β(z, µ)�−mk−(1/p) |bk |.

The following lemma, combined with (6.10), concludes the proof of Lemma
6.2 and of the inequality (6.4).

Lemma 6.21. Let (0, 0) �= (z, µ) ∈ (
ϕ(θ))
n × (C \ Sθ ) for some θ ∈ ]ω, π [.

∀ f ∈ L p(R+) the solution of problem (6.12) is given by

wz,µ( f ) =
m∑

j,k=1

δj,k(z, µ)

∫ ∞

0
hk,z,µ(s) f (s) ds uj,z,µ

and
‖D�(wz,µ( f ))‖L p(R+) ≤ C β(z, µ)�−2m ‖ f ‖L p(R+).

Proof. The expression of wz,µ( f ) is given by Lemma 6.13. By the same
lemma we have

(6.22) ‖D�(wz,µ( f ))‖L p(R+) ≤ C
m∑

k=1

β(z, µ)�−mk−(1/p)
∣∣∣ ∫ ∞

0
hk,z,µ(s) f (s) ds

∣∣∣.
By the definition of hk,z,µ (see (6.11)) and Theorem 5.13, we have

|hk,z,µ(t)| ≤ 1

2π

∫
γ+
θ

(z,µ)

|Bk(z, λ)| e−t Reλ

|µ − P(z, λ)| d|λ|

≤ 1

2π

∫
γ+
θ

(z,µ)

|Bk(z, λ)| d|λ| e−t M2β(z,µ)

M1 β(z, µ)2m
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and from (5.21), we get

(6.23) |hk,z,µ(t)| ≤ C β(z, µ)mk+1−2m e−t M2β(z,µ)

where C = C(L , L1, ω, θ), and so

‖hk,z,µ‖
L p′

(R+)
≤ C β(z, µ)mk−2m+(1/p).

Now Hölder’s inequality gives

(6.24)
∣∣∣ ∫ ∞

0
hk,z,µ(s) f (s) ds

∣∣∣ ≤ C β(z, µ)mk−2m+(1/p) ‖ f ‖L p(R+).

and by inserting this inequality in (6.22) we get the result.

Summing up we have proved that for � ≤ 2m D�(µ − Az)
−1 is a bounded

operator on L p(R+), and that

(6.25) D�(µ − Az)
−1 f = D�(Hz,µ ∗ f ) +

∫ ∞

0
D�

t Kz,µ(·, s) f (s) ds

where we have set

Kz,µ(t, s) =
m∑

j,k=1

δj,k(z, µ) hk,z,µ(s) uj,z,µ(t).

6.2. – Analyticity with respect to z

In this subsection we prove that ∀� ∈ N with � ≤ 2m the function z �→
D� (µ − Az)

−1 is analytic.

Lemma 6.26. Let (M, ν) be a σ -finite measure space, let q ∈ [1, ∞[, and let �
be an open subset of Cr . We are given a function F : M × � → C, and we assume
that:

(a) ∀z ∈ � the function t �→ F(t, z) is measurable;
(b) for every compact subset W of � there exists a non-negative function FW ∈

Lq(ν) such that |F(t, z)| ≤ FW (t) ∀(t, z) ∈ M × W ;
(c) ∀t ∈ M the function z �→ F(t, z) is holomorphic on �.

Then F(·, z) ∈ Lq(ν) ∀z ∈ � and the function z �→ F(·, z) is holomorphic from �

to Lq(ν).
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Proof. We have obviously∫
M

|F(t, z)|q dν(t) ≤
∫

M
F{z}(t)q dν(t) < +∞

and so F(·, z) ∈ Lq(ν) ∀z ∈ �. Next, if z0 ∈ �, and z belongs to a compact
neighbourhood W ⊂ � of z0, ∀t ∈ M we have F(t, z) − F(t, z0) →

z→z0
0 and

|F(t, z) − F(t, z0)|q ≤ 2q FW (t)q , so that the dominated convergence theorem
yields the continuity of z �→ F(·, z) as a function from � to Lq(ν).

In order to prove that the same function is holomorphic with respect to
z = (z1, . . . , zn) it is sufficient to show that it is holomorphic with respect to
each variable zk . That amounts to show that

∫
γ F(·, z) dzk = 0 whenever γ is

a small circle which embraces a disk contained in the zk-section of the open
set �, and the integral on γ is understood in the sense of Lq(ν). Now, by
([9], Theorem III.11.17), this integral, as an element of Lq(ν), is the function
t �→ ∫

γ F(t, z) dzk , and this integral is constantly 0 by assumption (c).

Lemma 6.27. Let θ ∈ ]ω, π [, and µ ∈ C \ Sθ . Then the following functions
are holomorphic on (
ϕ(θ))

n:

z �→ δj,k(z, µ)

z �→ H (�)
z,µ (� ≤ 2m) with respect to the norm of L1(R)

z �→ u(�)
j,z,µ (� ≤ 2m) with respect to the norm of L p(R+)

z �→ hk,z,µ with respect to the norm of L p′
(R+)

where Hz,µ was defined in 6.7, hk,z,µ was defined in (6.11), u j,z,µ was defined in
(6.15) and δj,k(z, µ) was introduced in the proof of Lemma 6.13.

Proof. The coefficients δj,k(z, µ) are the entries of the inverse of the matrix
G(z, µ), whose entries gk, j (z, µ) were defined in (5.15); therefore the analyticity
of δj,k(z, µ) follows from the analyticity of gk, j (z, µ). Now we remark that
gk, j (z, µ), hk,z,µ(s) (when s ∈ R+), u(�)

j,z,µ(t) (when t ∈ R+) and H (�)
z,µ(t) (when

t ∈ R \ {0}) are defined as integrals of the type∫
γ±
θ

(z,µ)

f (z, λ)

µ − P(z, λ)
dλ

where f is a holomorphic function on Cn+1. However it is obvious that if
z0 ∈ (
ϕ(θ))

n and z belongs to a suitable neighbourhood of z0, then∫
γ±
θ

(z,µ)

f (z, λ)

µ − P(z, λ)
dλ =

∫
γ±
θ

(z0,µ)

f (z, λ)

µ − P(z, λ)
dλ,

and this proves the analyticity of all these complex valued functions of z.
Next, with the aim of applying Lemma 6.26 (in order to obtain the ana-

lyticity in the sense of Lq ) we remark that the measurable dependence on the
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variables s and t is obvious, and so we only have to prove that H (�)
z,µ, hk,z,µ and

u(�)
j,z,µ satisfy condition (b) of that lemma, with q = 1, q = p′, q = p, respec-

tively. This follows at once from formula (6.23) (for hk,z,µ) and the pointwise
estimates of Hz,µ and its derivatives (which include uj,z,µ and their derivatives)
given in Remark 6.9 (b).

Theorem 6.28. Let � be a non-negative integer, � ≤ 2m. Assume that θ ∈
]ω, π [, and µ ∈ C \ Sθ . Then the function z �→ D� (µ− Az)

−1 is holomorphic from
(
ϕ(θ))

n to L(L p(R+)).

Proof. We recall that the operator valued function z �→ D� (µ − Az)
−1 is

holomorphic if and only if ∀ f ∈ L p(R+) the function z �→ D�(µ − Az)
−1 f is

holomorphic. Therefore we fix f ∈ L p(R+). From (6.25) we know that

D�(µ − Az)
−1 f = D�(Hz,µ ∗ f ) +

m∑
j,k=1

δj,k(z, µ)

∫ ∞

0
hk,z,µ(s) f (s) ds u(�)

j,z,µ.

Now we recall that D�(Hz,µ ∗ f ) = H (�)
z,µ ∗ f if � < 2m and D2m(Hz,µ ∗ f ) =

H (2m)
z,µ ∗ f − c−1

2m,0 f . Since the convolution by f is a bounded linear operator
from L1 to L p, and since we already know (Lemma 6.27) that z �→ H (�)

z,µ is
holomorphic as a function from (
ϕ(θ))

n to L1(R), we get immediately that
z �→ H (�)

z,µ ∗ f is holomorphic with respect to the norm of L p(R+).
The same argument works for the second summand, since the functional

g �→
∫ ∞

0
g(s) f (s) ds

is bounded on L p′
(R+).

6.3. – R-boundedness

Now we prove the R-boundedness of the function z �→ zα D� (µ − Az)
−1

when |α|+� ≤ 2m. In order to apply a suitable version of the Mihlin multiplier
theorem, we need the following lemma.

Lemma 6.29. Let β1, . . . , βN ∈ ]0, π [, and let g ∈ H∞
(∏N

k=1 Sβk

)
. Then

∀α ∈ NN and ∀τ ∈ (R+)N we have

|τα Dαg(τ )| ≤ α!
N∏

k=1

(sin βk)
−αk ‖g‖∞.

Proof. We take δk ∈ ]0, sin βk[, so that ∀τ ∈ (R+)N it is
∏N

k=1 B(τk, δk τk) ⊆∏N
k=1 Sβk . If we fix τ ∈ (R+)N and call γk the boundary of B(τk, δk τk) oriented

counterclockwise, then

Dαg(τ ) = α!

(2π i)N

∫∏N
k=1γk

g(z)∏n
k=1(zk − τk)

αk+1
dz.
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Hence

|τα Dαg(τ )| ≤ α! τα

(2π)N

N∏
k=1

(2π δk τk)

N∏
k=1

(δk τk)
−αk−1 ‖g‖∞ = α!

n∏
k=1

δ
−αk
k ‖g‖∞.

Now we let δk tend to sin βk ∀k, and the proof is ended.

Lemma 6.30. Let θ ∈ ]ω, π [ and (0, 0) �= (z, µ) ∈ (
ϕ(θ))
n × (C \ Sθ ). Then

∀ξ ∈ R

FHz,µ(ξ) = 1

µ − P(z, iξ)
.

Proof. In the definition of Hz,µ(x) when, say, x ≥ 0, the circuit γ −
θ (z, µ)

can be replaced by the segment [−i R, i R] oriented upwards and followed by
the semicircle [π/2, 3π/2] � α �→ R eiα if R is large enough. For the integral
on the semicircle we have∣∣∣∣ ∫ 3π/2

π/2

eR x eiα

µ − P(z, Reiα)
i Reiα dα

∣∣∣∣ ≤ π sup
|λ|=R

R

|µ − P(z, λ)| →
R→+∞

0

so that

Hz,µ(x) = 1

2π i

∫ +i∞

−i∞
eλx

µ − P(z, λ)
dλ = 1

2π

∫
R

eixξ

µ − P(z, iξ)
dξ.

When x ≤ 0 a similar argument gives the same equality for Hz,µ(x). This proves
that x �→ 2π Hz,µ(−x) is the Fourier transform of the function ξ �→ 1

µ−P(z,iξ)
,

whence the assertion of the lemma follows immediately.

Theorem 6.31. Let � be a non-negative integer, α an n-tuple of non negative
integers, and suppose that |α| + � ≤ 2m. Assume that θ ∈ ]ω, π [. Then for
0 �= µ ∈ C \ Sθ the function

(
ϕ(θ))
n � z �→ zα D� (µ − Az)

−1 ∈ L(L p(R+))

has R-bounded range, and its Rp-bound is ≤ C(L , L1, ω, θ, L0(θ)) |µ| �+|α|
2m −1.

Proof. Because of Lemma 4.2 it is sufficient to prove the R-boundedness
of the sets {Sz,µ; z ∈ (
ϕ(θ))

n} and {Tz,µ; z ∈ (
ϕ(θ))
n}, where

Sz,µ f = zα D�(Hz,µ ∗ f )

and

Tz,µ f = zα D�wz,µ( f ) = zα
m∑

j,k=1

δj,k(z, µ)

∫ ∞

0
hk,z,µ(s) f (s) ds u(�)

j,z,µ(t)

= zα

∫ ∞

0
D�

t Kz,µ(t, s) f (s) ds.
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Here we have set

Kz,µ(t, s) =
m∑

j,k=1

δj,k(z, µ) hk,z,µ(s) uj,z,µ(t).

We have zα D�(Hz,µ ∗ f ) = (D�(zα Hz,µ)) ∗ f , and from Lemma 6.30 we get

F(D�(zα Hz,µ))(ξ) = zα (iξ)�

µ − P(z, iξ)
.

Therefore Theorem 5.8 yields

|F(D�(zα Hz,µ))(ξ)| ≤ C(L , ω, θ)
‖z‖|α| |ξ |�

‖z‖2m + |ξ |2m + |µ| ≤ C(L , ω, θ) |µ| �+|α|
2m −1

.

Again by Theorem 5.8, if ξ ∈ i 
ϕ(θ), then P(z, iξ) �= µ, so that F(D�(zα Hz,µ))

can be extended holomorphically to i 
ϕ(θ) (which is a double-sector containing
R \ {0}) and satisfies there the same estimate. Hence Lemma 6.29 implies that
we have also

sup
z∈(
ϕ(θ))

n , ξ∈R\{0}

∣∣∣∣ξ d

dξ
F(D�(zα Hz,µ))(ξ)

∣∣∣∣ ≤ C(L , ω, θ) |µ| �+|α|
2m −1

.

Now we can apply Theorem 4.4, and get the R-boundedness of the set of
operators {Sz,µ; z ∈ (
ϕ(θ))

n}.
We turn to the operators Tz,µ. From the inequality (6.23), Lemma 6.13,

and Remark 6.9(b) we know that

|hk,z,µ(s)| ≤ C β(z, µ)mk+1−2m e−s M2β(z,µ)

|δj,k(z, µ)| ≤ C β(z, µ)2m−mk− j

|u(�)
j,z,µ(t)| = |H (�+ j−1)

z,µ (t)| ≤ C β(z, µ) j+�−2m e−t M2β(z,µ)

so that, taking into account the elementary equality sup
r∈R+

r e−r = e−1, we get

(6.32)

|zα D�
t Kz,µ(t, s)| ≤ C ‖z‖|α| β(z, µ)�−2m+1 e−(t+s)M2β(z,µ)

≤ C

e M2

β(z, µ)�+|α|−2m

t + s
≤ C

e M2

|µ| �+|α|
2m −1

t + s
.

Now an application of Theorem 4.5 concludes the proof.
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6.4. – H∞ functional calculus

In this subsection we prove that the operators Az have a bounded H∞ func-
tional calculus, and that for any bounded holomorphic function h the operator
valued function z �→ h(Az) is R-bounded and holomorphic.

Lemma 6.33. Let θ ∈ ]ω, π [, δ ∈ ]0, π − θ [ . Then ∀h ∈ H∞
0 (Sθ+δ) the set

{h(Az); z ∈(
ϕ(θ))
n} is R-bounded, and its Rp-bound is≤C(L ,L1,ω,θ,L0(θ))‖h‖∞.

Proof. Let h ∈ H∞
0 (Sθ+δ). We have

h(Az) = 1

2π i

∫
γ

h(µ) (µ − Az)
−1 dµ

where γ is the curve parametrized by R \ {0} � t �→ |t | e−iθ sgn t , oriented
according to the increasing values of t . Now we take f ∈ L p(R+), and recall
that

(µ − Az)
−1 f = Hz,µ ∗ f +

∫ ∞

0
Kz,µ(·, s) f (s) ds

(see (6.25)). Since |h(µ)| ≤ C min
{
|µ|s, |µ|−s

}
for some s ∈ R+ and

‖Hz,µ ∗ f ‖L p(R+) ≤ C

‖z‖2m + |µ| ‖ f ‖L p(R+)

(see (6.10)) the integral
∫
γ h(µ) (Hz,µ ∗ f ) dµ exists in the norm of L p(R+) and

f �→ ∫
γ h(µ) (Hz,µ ∗ f ) dµ is a bounded linear operator on L p(R+) to itself.

Moreover from

(6.34)

∫
γ

∫
R

|h(µ)| |Hz,µ(x)| dx d |µ|

=
∫

γ

|h(µ)| ‖Hz,µ‖L1(R) d |µ|

≤ C
∫

γ

min{|µ|s, |µ|−s} (|µ| + ‖z‖2m)−1 d |µ| < ∞

it follows that the function

x �→ Wz,h(x) := 1

2π i

∫
γ

h(µ) Hz,µ(x) dµ

is well defined and summable on R. We want to show that ∀ f ∈ L p(R+)

(6.35) Wz,h ∗ f = 1

2π i

∫
γ

h(µ) (Hz,µ ∗ f ) dµ
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and it is not restrictive to assume that f ∈ L p(R+) ∩ L∞(R+), since we
know that both sides of (6.35) define bounded operators on L p(R+). Then
(6.35) follows immediately from an exchange of order of integration, which is
allowed by inequality (6.34), since f is bounded.

Now we compute the Fourier transform of Wz,h . By means of the usual
exchange of order of integration we obtain, by Lemma 6.30,

(FWz,h)(ξ) = 1

2π i

∫
γ

h(µ) (FHz,µ)(ξ) dµ

= 1

2π i

∫
γ

h(µ)

µ − P(z, iξ)
dµ = h(P(z, iξ))

as it follows from the residue theorem, since P(z, iξ) ∈ Sθ (at least when ξ �= 0,
see Theorem 5.6). More generally 5.6 implies that the function λ �→ h(P(z, iλ))

is defined and hence holomorphic on i 
ϕ(θ); therefore from Lemma 6.29 we
get

sup
z∈(
ϕ(θ))

n
max

{
sup

0�=ξ∈R

|(FWz,h)(ξ)|, sup
0�=ξ∈R

∣∣∣∣ξ d

dξ
(FWz,h)(ξ)

∣∣∣∣} ≤ C ‖h‖∞.

By Theorem 4.4, it follows that
{

f �→ Wz,h ∗ f ; z ∈ (
ϕ(θ))
n
}

is a R-bounded

subset of L(L p(R+)), with Rp-bound ≤ C ‖h‖∞.
Concerning the kernel Kz,µ, the inequality (6.32) yields

|Kz,µ(t, s)| ≤ C |µ| 1
2m −1 e−(t+s) M2 |µ|

1
2m

so that

(6.36)

∫
γ

|h(µ)| |Kz,µ(t, s)| dµ ≤ C ‖h‖∞
∫

γ

|µ| 1
2m −1 e−(t+s) M2 |µ|

1
2m d |µ|

= 4m C ‖h‖∞
∫ ∞

0
e−(t+s) M2 r dr

= 4m C

M2 (t + s)
‖h‖∞.

Therefore ∀ f ∈ L p(R+) and ∀t ∈ R+∫
γ

∫ ∞

0
|h(µ)| |Kz,µ(t, s)| | f (s)| ds d |µ| ≤ C ‖h‖∞

∫ ∞

0

| f (s)|
t + s

ds

≤ C t−1/p ‖h‖∞ ‖ f ‖L p(R+).

This allows us to perform the following exchange of order of integration∫
γ

h(µ)

∫ ∞

0
Kz,µ(t, s) f (s) ds dµ =

∫ ∞

0

∫
γ

h(µ) Kz,µ(t, s) dµ f (s) ds
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and since, by (6.36), the kernels (t, s) �→ ∫
γ h(µ) Kz,µ(t, s) dµ satisfy the as-

sumptions of Theorem 4.5, we obtain the R-boundedness of the set of operators{
f �→ 1

2π i

∫
γ

h(µ)

∫ ∞

0
Kz,µ(·, s) f (s) ds dµ; z ∈ (
ϕ(θ))

n
}

with Rp-bound ≤ C ‖h‖∞. Now we put together the results concerning the two

addenda, using Lemma 4.2, and we obtain that the set
{

h(Az); z ∈ (
ϕ(θ))
n
}

is R-bounded, with Rp-bound ≤ C ‖h‖∞.

Theorem 6.37. Let θ ∈ ]ω, π [, δ ∈ ]0, π − θ [. Then ∀z ∈ (
ϕ(θ))
n the

sectorial operator Az has a bounded H∞(Sθ+δ) functional calculus. Moreover

∀h ∈ H∞(Sθ+δ) the set
{

h(Az); z ∈ (
ϕ(θ))
n
}

is R-bounded, and its Rp-bound is

≤ C(L , L1, ω, θ, L0(θ), δ) ‖h‖∞.

Proof. Let z ∈ (
ϕ(θ))
n be fixed. The result of Lemma 6.33 implies that

∀h ∈ H∞
0 (Sθ+δ) we have ‖h(Az)‖ ≤ C ‖h‖∞. By Lemma 4.17 this proves

that Az has a bounded H∞(Sθ+δ) functional calculus. In order to prove the R-

boundedness of
{

h(Az); z ∈ (
ϕ(θ))
n
}

and to estimate its Rp-bound we use the
sequence (�k)k∈N of functions introduced in Definition 4.10 (with N = 1). It is
easy to prove (see [8]) that sup

µ∈Sθ+δ

|�k(µ)| ≤ cos−2((θ +δ)/2). Now, by Remark

4.15 and Lemma 6.33, if z(1), . . . , z(N ) ∈ (
ϕ(θ))
n and f1, . . . , fN ∈ L p(R+),

we have ∑
ε∈{−1,1}N

∥∥∥ N∑
r=1

εr h(Az(r) ) fr

∥∥∥p

L p(R+)

1/p

= lim
k→∞

( ∑
ε∈{−1,1}N

∥∥∥ N∑
r=1

εr (�k h)(Az(r) ) fr

∥∥∥p

L p(R+)

)1/p

≤ C cos−2((θ + δ)/2) ‖h‖∞

 ∑
ε∈{−1,1}N

∥∥∥ N∑
r=1

εr fr

∥∥∥p

L p(R+)

1/p

.

This proves that
{

h(Az); z ∈ (
ϕ(θ))
n
}

is R-bounded, and gives the required
estimate of its Rp-bound.

Theorem 6.38. Let θ ∈ ]ω, π [, δ ∈ ]0, π − θ [, h ∈ H∞(Sθ+δ). Then the
function z �→ h(Az) is holomorphic on (
ϕ(θ))

n.

Proof. We first assume that h ∈ H∞
0 (Sθ+δ). Then

h(Az) = 1

2π i

∫
γ

h(µ) (µ − Az)
−1 dµ
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where for µ ∈ γ and a suitable s > 0

‖h(µ) (µ − Az)
−1‖ ≤ C max

{
|µ|s, |µ|−s

}
|µ|−1

which is a summable function on γ . Since z �→ (µ − Az)
−1 is continuous

on (
ϕ(θ))
n (Theorem 6.28), the dominated convergence theorem yields the

continuity of z �→ h(Az). Moreover for k ∈ {1, . . . , n}, if σ is a small circle
that embraces a disk contained in the zk-section of (
ϕ(θ))

n , we have, by
Theorem 6.28,∫

σ

h(Az) dzk =
∫

γ

h(µ)

∫
σ

(µ − Az)
−1 dzk dµ = 0

and this proves that z �→ h(Az) is holomorphic.
Next, we take h ∈ H∞(Sθ+δ). Then (�k h)k∈N is a sequence in H∞

0 (Sθ+δ)

such that (�k h)(Az) f →
k→∞

h(Az) f ∀z ∈ (
ϕ(θ))
n (see Remark 4.15), and in

particular ∀z the set {(�kh)(Az) f ; k ∈ N} is relatively compact in L p(R+).
Since we also have

‖(�kh)(Az)‖ ≤ C cos−2((θ + δ)/2) ‖h‖∞,

by Lemma 6.29 the functions z �→ (�kh)(Az) f are locally equicontinuous
on (
ϕ(θ))

n; therefore by Ascoli’s theorem we can extract a subsequence that
converges uniformly on compacta, and hence z �→ h(Az) f is holomorphic
∀ f ∈ L p(R+). As it is well known, this yields that z �→ h(Az) is holomorphic
with values in L(L p(R+)).

7. – The operators D1, . . . , Dn in L p(Rn × R+)

In this section we work in the Banach space L p(Rn × R+) (with 1 < p <

∞, as usual), and we are concerned with the derivative operators D1, . . . , Dn

with respect to the “tangential” variables x1, . . . , xn . Dj is considered as an
unbounded operator in L p(Rn × R+), with domain {u ∈ L p(Rn × R+); Dj u ∈
L p(Rn × R+)}. We will denote by Dx the n-tuple of operators (D1, . . . , Dn).

We quote, without proofs, some folk results on the spectral properties of
the operators Dj .

Theorem 7.1. ∀ j ∈ {1, . . . , n} the operator Dj is bisectorial with spectral
angle 0. More precisely:

(i) if Re λ �= 0 and g ∈ L p(Rn × R+), then

(λ − Dj )
−1g(x, t) = eλxj

∫ ∞

xj

e−λrj g(x ′, rj , t) drj
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for Re λ > 0 and

(λ − Dj )
−1g(x, t) = −eλxj

∫ xj

−∞
e−λrj g(x ′, rj , t) drj

for Re λ < 0;
(ii) if α ∈ ]0, π

2 [, and λ ∈ C \ 
α , then

‖(λ − Dj )
−1‖L(L p(Rn×R+)) ≤ 1

sin α

1

|λ| .

Theorem 7.2. If n ≥ 2, and j, k ∈ {1, . . . , n}, then ∀(λ, µ) ∈ (C \ (i R))2

(λ − Dj )
−1 commutes with (µ − Dk)

−1.

It is known from [18], Corollary 2 that each operator Dj has bounded H∞
functional calculus on 
δ ∀δ > 0. If one applies this result and [15], Theorem
4.3 one obtains the following theorem, of which we give a direct proof.

Theorem 7.3. Let β1, . . . , βn ∈ ]0, π
2 [ , and let us set � = ∏n

k=1 
βk . Then the
n-tuple of operators Dx = (D1, . . . , Dn) has a bounded joint H∞(�) functional
calculus.

Proof. We have to prove that f (Dx) ∈ L(L p(Rn ×R+)) ∀ f ∈ H∞(�). To
this end, by (the bisectorial analogous of) Lemma 4.17, it is sufficient to show
that ∃ C ∈ R+ such that ∀ f ∈ H∞

0 (�) ‖ f (Dx)‖ ≤ C ‖ f ‖∞. In order to prove
this statement we have to show that

‖ f (Dx)u‖L p(Rn×R+) ≤ C‖ f ‖∞ ‖u‖L p(Rn×R+)

when u belongs to a dense subspace of L p(Rn × R+), e.g. L p(Rn × R+) ∩
L∞(Rn × R+).

Let us take f ∈ H∞
0 (�). The first step consists in writing f (Dx) as a

convolution operator (in the variables x1, . . . , xn).
∀k ∈ {1, . . . , n} we choose γk ∈ ]π

2 , π
2 + βk[ and set �̃k := �k ∪ (−�k)

where �k is the curve parametrized by R \ {0} � τ �→ |τ | e−iγk sgn τ . We set
�̃ := ∏n

k=1 �̃k and (when ε ∈ {−1, 1}) hε : C × R → C

hε(λ, r) =
{

eλ r χR−(r) if ε = −1

−eλ r χR+(r) if ε = 1.

It follows immediately from Theorem 7.1 that

(λ − Dk)
−1u(x, t) =

∫
R

hsgn Reλ(λ, r) u(x ′, xk − r, t) dr.
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Therefore(
f (Dx)u

)
(x, t) = (2π i)−n

∫
�̃

f (z)
( n∏

k=1

(zk − Dk)
−1 u

)
(x, t) dz

=
∑

ε∈{−1,1}n
(2π i)−n

∫∏
k εk�k

f (z)
∫

Rn
Hε(z, r) u(x − r, t) dr dz

where we have set Hε(z, r) = ∏n
k=1 hεk (zk, rk). Now we notice that for z ∈ �̃

(7.4)
∫

Rn
|Hε(z, r)| dr =

n∏
k=1

∫
R

|hεk (zk, τ )| dτ =
n∏

k=1

|Re zk |−1 =
n∏

k=1

(
|zk | | cos γk |

)−1

and so ∫
Rn

|Hε(z, r) u(x − r, t)| dr ≤ ‖u‖L∞(Rn×R+)

n∏
k=1

(
|zk | | cos γk |

)−1
.

Since f ∈ H∞
0 (�), this proves that∫∏

k εk�k

| f (z)|
∫

Rn
|Hε(z, x − r) u(r, t)| dr d|z| < +∞

and hence we can exchange the order of integration, and get(
f (Dx)u

)
(x, t) =

∑
ε∈{−1,1}n

∫
Rn

(2π i)−n
∫∏

k εk�k

f (z) Hε(z, r) dz u(x − r, t) dr

= (F ∗ u(·, t))(x)

with

F(x) = (2π i)−n
∑

ε∈{−1,1}n

∫∏
kεk�k

f (z) Hε(z, x) dz .

Since f ∈ H∞
0 (�), from (7.4) and Fubini’s theorem it follows that F ∈ L1(Rn).

The next step is to show that (FF)(τ ) = f (iτ1, . . . , iτn). We have

(FF)(τ ) = (2π i)−n
∑

ε∈{−1,1}n

∫
Rn

e−i〈x,τ 〉
∫∏

k εk�k

f (z) Hε(z, x) dz dx .

Since |e−i〈x,τ 〉| = 1, by (7.4) we can exchange the order of integration, and we
obtain

(FF)(τ ) = (2π i)−n
∑

ε∈{−1,1}n

∫∏
k εk�k

f (z) (FHε(z, ·))(τ ) dz
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where

(FHε(z, ·))(τ ) =
n∏

k=1

(Fhεk (zk, ·))(τk) =
n∏

k=1

∫ 0

εk∞
e−isτk+zk s ds =

n∏
k=1

(zk − iτk)
−1.

Hence

FF(τ ) = (2π i)−n
∑

ε∈{−1,1}n

∫∏
k εk�k

f (z)
n∏

k=1

(zk − iτk)
−1 dz

= (2π i)−n
∫

�̃

f (z)
n∏

k=1

(zk − iτk)
−1 dz.

Now we break every curve �̃k = �k ∪ (−�k) in a different way, setting �̃k =
�̃+

k ∪ �̃−
k , where �̃±

k = �̃k ∩ {z ∈ C; Im z ∈ R±}. We give �̃±
k the orientation

induced by the orientation of �̃k : therefore �̃+
k is positively oriented with respect

to i R+ and �̃−
k is positively oriented with respect to i R−. Hence

FF(τ ) = (2π i)−n
∑

ε∈{−1,1}n

∫
�̃

ε1
1

· · ·
∫

�̃
εn
n

f (z)
n∏

k=1

(zk − iτk)
−1 dzn · · · dz1.

Here we have the sum of 2n integrals, and it is obvious that 2n −1 of these inte-
grals are equal to 0, namely those for which (ε1, . . . ,εn) �= (sgn τ1, . . . , sgn τn);
while the value of the remaining integral, i.e. of the one for which (ε1, . . . ,εn)=
(sgn τ1, . . . , sgn τn), is equal to f (iτ1, . . . , iτn). This proves that FF(τ ) =
f (iτ1, . . . , iτn).

Now (third step) we estimate FF and its derivatives. We have obvi-
ously sup

τ∈Rn
|FF(τ )| ≤ ‖ f ‖∞; moreover FF can be extended holomorphically to∏n

k=1(i 
βk ), and also for this extension we have sup
ζ∈
∏n

k=1(i 
βk
)

|FF(ζ )| ≤ ‖ f ‖∞.

Then it follows from Lemma 6.29 that ∀α ∈ Nn (and in particular for |α| = 1)

sup
τ∈Rn

|τα (DαFF)(τ )| ≤ C ‖ f ‖∞.

As a final step, we apply the Mihlin multiplier theorem to the already proved
equality ( f (Dx)u)(·, t) = F ∗ u(·, t) and we get

‖( f (Dx)u)(·, t)‖L p(Rn) ≤ C ‖ f ‖∞ ‖u(·, t)‖L p(Rn)

whence

‖ f (Dx)u‖L p(Rn×R+) =
( ∫

R+
‖( f (Dx)u)(·, t)‖p

L p(Rn) dt
)1/p

≤ C ‖ f ‖∞ ‖u‖L p(Rn×R+).
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Remark 7.5. In Theorem 7.3 the variable t did not play any rôle: we
have preserved it only for the sake of a more direct application of that theorem
in the next section. However we could have settled this result in the space
L p(Rn, L p(R+)), which is naturally isomorphic to L p(Rn × R+), or, more gen-
erally, in any space of the type L p(Rn, X), provided that the Banach space
X have such properties that allow to apply the Mihlin multiplier theorem to
X -valued functions of several variables, with scalar-valued multipliers: such
properties are the UMD property plus property (α) (see [29]).

8. – The elliptic operator: resolvent and functional calculus

In this section we have to deal with the trace operator at t = 0 in the
space L p(Rn × R+), that we call T0. Among the several equivalent ways to
define it, the most useful for our purposes is the following. Let us consider
the operator Dt in L p(Rn × R+): this is a closed operator whose domain is
D(Dt ) := {u ∈ L p(Rn × R+); Dt u ∈ L p(Rn × R+)}. Remark that if D(Dt ) is
endowed with the graph norm, then W 1,p(Rn ×R+) ↪→ D(Dt ) ↪→ L p(Rn ×R+)

(inclusions with continuous embeddings). While it is obvious that if f ∈
L p(Rn × R+), then f (·, t) ∈ L p(Rn) for almost every t ∈ R+, it is also easy to
see that if f ∈ D(Dt ), then as t → 0+ f (·, t) converges in L p(Rn): the limit
function is, by definition, its trace T0 f ∈ L p(Rn); T0 is a bounded linear operator
on D(Dt ) to L p(Rn). We also have, for almost every x ∈ Rn , (T0 f )(x) =
limt→0+ f (x, t) in the pointwise sense. Moreover if f ∈ W r,p(Rn × R+) then
T0 f ∈ W r−1,p(Rn), and for |α| ≤ r − 1 one has T0 Dα

x f = DαT0 f .

We shall also write f (x, 0) instead of (T0 f )(x).

Let P, B1, . . . , Bm be the polynomials introduced in Section 5, and let L ,
L1, ω, L0 have same meaning as before. We recall that P is (L , ω)-elliptic
and that the ω-complementing condition is satisfied. Since deg Bk = mk < 2m,
the trace at t = 0 of Bku(x, t) is well defined ∀u ∈ W 2m,p(Rn × R+).

Let A be the operator in L p(Rn × R+) (always with 1 < p < ∞) defined
as follows:

D(A) =
{

u ∈ W 2m,p(Rn × R+); (Bk(Dx , Dt )u)(x, 0) = 0, 1 ≤ k ≤ m
}

Au = P(Dx , Dt )u.

We want to prove the following:

Theorem 8.1. A is a sectorial operator with spectral angle ω, and ∀θ ∈ ]ω, π [
A has a bounded H∞(Sθ ) functional calculus. In particular ∀θ ∈ ]ω, π [ we have:

(i) for µ ∈ C \ Sθ , ‖(µ − A)−1‖ ≤ C(L , L1, ω, θ, L0(θ))|µ|−1;
(ii) if h ∈ H∞(Sθ ), then ‖h(A)‖ ≤ C(L , L1, ω, θ, L0(θ)) ‖h‖∞.
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The proof of Theorem 8.1 will be obtained as the conclusion of a long
series of preliminary results. The underlying idea, however, is rather simple:
in Section 6 we defined the operators Az by means of a formal replacement of
the derivative operators D1, . . . , Dn with complex parameters z1, . . . , zn; now
we are going to make the inverse replacement: we shall construct h(A) by
substituting Dx to z in h(Az). This statement actually means that h(A) will be
proved to be the operator in L(L p(Rn×R+)) that corresponds to the holomorphic
and R-bounded function z �→ h(Az) (or, more precisely, z �→ (h(Az))̂, see
Remark 4.6) in the homomorphism g �→ g(Dx). Here Theorem 4.18 plays a
crucial rôle, because it allows to avoid any type of multiplier theorem with
operator-valued multipliers.

The first goal is to show that ρ(A) ⊇ C \ Sω and to estimate ‖(µ − A)−1‖
on C \ Sω. Remark that if µ /∈ Sω, then ∃ θ ∈ ]ω, π [ such that µ /∈ Sθ .

We fix θ ∈ ]ω, π [ and µ ∈ C \ Sθ .

For the derivative operator Dt the following result holds, analogous to
Theorems 7.1 and 7.2.

Theorem 8.2. The resolvent set of the operator Dt in L p(Rn × R+) contains
the half-plane {λ ∈ C; Re λ > 0}, and for Re λ > 0 one has

(λ − Dt )
−1u(x, t) = eλt

∫ ∞

t
e−λs u(x, s) ds.

Moreover the resolvent operators of Dt commute with the resolvents of D1, . . . , Dn.

In Remark 4.6 we constructed a bounded linear transformation T �→
T̂ of norm ≤ 1, which in the present situation goes from L(L p(R+)) to
L(L p(Rn × R+)); and we saw (Lemma 4.7) that this transformation preserves
the R-boundedness and the Rp-bound.

In the following lemma we state some more properties of this transforma-
tion. The proofs are straightforward, and we omit them.

Lemma 8.3. Let T ∈ L(L p(R+)). Then:

(a) T̂ commutes with the resolvent operators of D1, . . . , Dn;
(b) if T ∈ L(L p(R+), W r,p(R+)), then T̂ ∈ L(L p(Rn × R+),D(Dr

t )), and

Dr
t (T̂ f ) = (Dr T )̂ f ∀ f ∈ L p(Rn × R+).

Definition 8.4. ∀z ∈ (
ϕ(θ))
n we set Rµ(z) =

(
(µ − Az)

−1
)̂

.

Lemma 8.5. The following statements hold:

(a) ∀z ∈ (
ϕ(θ))
n and ∀� ∈ {0, . . . , 2m}, D�

t Rµ(z) is a bounded operator on

L p(Rn × R+) to itself, and precisely D�
t Rµ(z) =

(
D�(µ− Az)

−1
)̂

; moreover

‖D�
t Rµ(z)‖L(L p(Rn×R+)) ≤ C(L , L1, ω, θ, L0(θ)) β(z, µ)�−2m;
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(b) if α∈Nn, �∈N and |α|+�≤2m, then the function z �→ zα D�
t Rµ(z) is holomor-

phic and R-bounded on (
ϕ(θ))
n (with respect to the norm of L p(Rn × R+))

with Rp-bound ≤ C(L , L1, ω, θ, L0(θ)) |µ| �+|α|
2m −1.

Proof. The first part of (a) is an immediate consequence of Lemma 8.3(b);
the other statements follow readily from the inequality (6.4) and Theorems 6.28
and 6.31, taking into account Lemma 4.7.

Definition 8.6. For α ∈ Nn , � ∈ N and |α| + � ≤ 2m the function

Gµ,α,� : (
ϕ(θ))
n → L(L p(Rn × R+))

is defined by Gµ,α,�(z) = zα D�
t Rµ(z).

Remark that the function Gµ,α,� is holomorphic and bounded, so that
Gµ,α,�(Dx) is defined.

Lemma 8.7. For α ∈ Nn, � ∈ N and |α| + � ≤ 2m we have

Gµ,α,�(Dx) ∈ L(L p(Rn × R+)),

and in particular ‖Rµ(Dx)‖L(L p(Rn×R+)) ≤ C(L , L1, ω, θ, L0(θ))|µ|−1.

Proof. ∀z ∈ (
ϕ(θ))
n Gµ,α,�(z) =

(
zα D�(µ − Az)

−1
)̂

commutes with
the resolvents of D1, . . . , Dn by Lemma 8.3. Moreover (D1, . . . , Dn) has a
bounded H∞ functional calculus (Theorem 7.3). Since by Lemma 8.5 (b) the

function Gµ,α,� is holomorphic and R-bounded, with Rp-bound ≤ C |µ| �+|α|
2m −1,

both assertions follow from the bisectorial analogous of Theorem 4.18.

Our next task is to show that Rµ(Dx) = (µ − A)−1.

In the sequel it is understood that �̃ is a system of curves, contained in
(
ϕ(θ))

n , of the type introduced in the proof of Theorem 7.3.

Lemma 8.8. ∀ f ∈ L p(Rn × R+) Rµ(Dx) f ∈ W 2m,p(Rn × R+) and when
|α| + � ≤ 2m, Dα

x D�
t Rµ(Dx) f = Gµ,α,�(Dx) f .

Proof. In order to prove the lemma, it is enough to show that if |α|+� < 2m
then ∀ f ∈ L p(Rn × R+)

(a) Gµ,α,�+1(Dx) f = Dt Gµ,α,�(Dx) f
(b) Gµ,α+ej ,�(Dx) f = Dj Gµ,α,�(Dx) f .

Indeed (a) and (b) imply that ∀ f ∈ L p(Rn ×R+) Gµ,α,�(Dx) f belongs to the
domain of Dt and of D1, . . . , Dn , and hence it belongs to W 1,p(Rn×R+). More-
over from (a) and (b) one obtains immediately that Rµ(Dx) f ∈ W 2m,p(Rn ×R+)

and Gµ,α,�(Dx) f = Dα
x D�

t Rµ(Dx) f .
Let us prove (a) and (b). In both equalities, the left-hand side is a bounded

operator on L p(Rn × R+), while the right-hand side is closed (because Dj and
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Dt are closed operators in L p(Rn × R+)); therefore it is enough to show that
they coincide on some dense subspace of L p(Rn × R+): e.g. on the range of
�(Dx), where �(z) = ∏n

j=1
zj

(1+zj )
2 (see Lemma 4.11).

We take g ∈ R(�(Dx)), g = �(Dx) f ; then

Gµ,α,�(Dx)g = Gµ,α,�(Dx) �(Dx) f = (� Gµ,α,�)(Dx) f

= (2π i)−n
∫

�̃

�(z) Gµ,α,�(z)
n∏

r=1

(zr − Dr )
−1 f dz.

As it is � < 2m, the range of Gµ,α,�(z) = zα D�
t Rµ(z) is contained in D(Dt )

(Lemma 8.5 (a)) and by definition Dt Gµ,α,�(z) = Gµ,α,�+1(z) which is a bounded
function of z (with values in L p(Rn × R+)) by Lemma 8.5 (b). Therefore
z �→ �(z) Dt Gµ,α,�(z)

∏n
r=1(zr − Dr )

−1 f is summable on �̃, and since Dt is
closed we get Gµ,α,�(Dx)g ∈ D(Dt ) and

Dt Gµ,α,�(Dx)g = (2π i)−n
∫

�̃

�(z) Gµ,α,�+1(z)
n∏

r=1

(zr − Dr )
−1 f dz

= (� Gµ,α,�+1)(Dx) f = Gµ,α,�+1(Dx) �(Dx) f

= Gµ,α,�+1(Dx)g.

This proves (a). To prove (b) we note that

�(z)
n∏

r=1

(zr − Dr )
−1 Gµ,α,�(z) f ∈ D(Dj )

and

�(z) Dj

n∏
r=1

(zr − Dr )
−1 Gµ,α,�(z) f

= �(z)
n∏

r=1

(zr − Dr )
−1 Gµ,α+ej ,�(z) f − �(z) z−1

j

∏
r �= j

(zr − Dr )
−1Gµ,α+ej ,�(z) f.

Here both the summands are summable on �̃ and∫
�̃

�(z) z−1
j

∏
r �= j

(zr − Dr )
−1 Gµ,α+ej ,�(z) f dz = 0

as one sees by integrating with respect to zj . Since Dj is a closed operator, it
follows that Gµ,α,�(Dx)g ∈ D(Dj ) and

Dj Gµ,α,�(Dx)g = (2π i)−n
∫

�̃

�(z)
n∏

r=1

(zr − Dr )
−1 Gµ,α+ej ,�(z) f dz

= (� Gµ,α+ej ,�)(Dx) f = Gµ,α+ej ,�(Dx) �(Dx) f

= Gµ,α+ej ,�(Dx)g.

Lemma 8.9. Let (�j )j∈N be the sequence of functions introduced in Definition
4.10, and let v ∈ D(Dt ). Then �j (Dx)v →

j→∞
v in the norm of D(Dt).
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Proof. We know from Lemma 4.14 that as j →∞ the sequence (�j (Dx))j∈N

converges to the identity in the strong topology of L(L p(Rn ×R+)). Moreover
it follows from Theorem 8.2 that �j (Dx) commutes with the resolvents of
Dt ; therefore if v ∈ D(Dt ), we have �j (Dx)v ∈ D(Dt ) and Dt�j (Dx)v =
�j (Dx)Dtv. Hence

‖�j (Dx)v − v‖D(Dt ) = ‖�j (Dx)v − v‖L p + ‖�j (Dx)Dtv − Dtv‖L p →
j→+∞

0.

We are now ready to prove that Rµ(Dx) is a right inverse of µ − A.

Lemma 8.10. ∀ f ∈ L p(Rn × R+) we have Rµ(Dx) f ∈ D(A) and f =
(µ − A) Rµ(Dx) f .

Proof. Let f ∈ L p(Rn×R+) be fixed. We first prove that Rµ(Dx) f ∈ D(A).
By Lemma 8.8 we have Rµ(Dx) f ∈ W 2m,p(Rn ×R+); hence it remains to show
that the trace at t = 0 of Bk(Dx , Dt ) Rµ(Dx) f vanishes ∀k ∈ {1, . . . , m}.

Setting

Gk(z) = Bk(z, Dt ) Rµ(z) =
(

Bk(z, D) (µ − Az)
−1
)̂

(see Lemma 8.5 (a)) we have, by Lemma 8.8, Bk(Dx , Dt ) Rµ(Dx) = Gk(Dx),
and so we have to show that Gk(Dx) f ∈ D(Dt ) and T0 Gk(Dx) f = 0. The for-
mer assertion is a consequence of Lemma 8.3 (b), since Bk(z, D) (µ− Az)

−1 ∈
L(L p(R+), W 1,p(R+)). In order to prove that T0 Gk(Dx) f = 0, we construct a
sequence in ker T0 that converges to Gk(Dx) f in the norm of D(Dt ). This se-
quence is (�j (Dx)Gk(Dx) f )j∈N. Since Gk(Dx) f ∈ D(Dt ), Lemma 8.9 implies
that �j (Dx)Gk(Dx) f →

j→∞
Gk(Dx) f in the norm of D(Dt ); moreover, writing

�j (Dx) Gk(Dx) f =(�j Gk)(Dx) f =(2π i)−n
∫

�̃

�j (z) Gk(z)
n∏

r=1

(zr − Dr )
−1 f dz

the integral converges in the norm of D(Dt ); therefore

T0�j (Dx) Gk(Dx) f = (2π i)−n
∫

�̃

�j (z) T0 Gk(z)
n∏

r=1

(zr − Dr )
−1 f dz.

Finally we have

(T0Gk(z) f )(x) = lim
t→0

Gk(z) f (x, t) = lim
t→0

(
Bk(z, D) (µ − Az)

−1 f (x, ·)
)
(t) = 0

because the function t �→ (µ − Az)
−1 f (x, t) belongs to D(Az), and hence it

satisfies the initial conditions of problem (6.5).
This proves that T0 Bk(Dx , Dt ) Rµ(Dx) f = 0, and hence Rµ(Dx) f ∈ D(A).



536 GIOVANNI DORE – ALBERTO VENNI

Now we prove that (µ − A)Rµ(Dx) = IL p(Rn×R+). ∀z ∈ (
ϕ(θ))
n we have

(µ − P(z, D))(µ − Az)
−1 = IL p(R+)

so that, by Lemma 8.5 (a)

(µ − P(z, Dt ))Rµ(z) = (IL p(R+))̂ = IL p(Rn×R+).

On the other hand, by Lemma 8.8, (µ − A)Rµ(Dx) = (µ − P(Dx , Dt ))Rµ(Dx)

is the operator that corresponds to the function z �→ (µ − P(z, Dt ))Rµ(z) in
the homomorphism g �→ g(Dx), and since that function is constantly equal to
IL p(Rn×R+), it is proved that (µ − A)Rµ(Dx) = IL p(Rn×R+) (see Lemma 4.13).

Before proving that Rµ(Dx) is a left inverse of µ − A, we need another
preliminary result (similar to Lemma 8.8). ∀r ∈ N we denote by W r,p

x (Rn ×R+)

the Banach space (with the natural norm) of the functions u ∈ L p(Rn × R+)

whose derivatives with respect to x1, . . . , xn , up to the order r , belong to
L p(Rn × R+).

Lemma 8.11. Let r ∈ N, and let g : (
ϕ(θ))
n → W r,p

x (Rn × R+) be a
holomorphic function (with respect to the norm of W r,p

x (Rn ×R+)). We assume that
for any α, β ∈ Nn such that |α|+|β| ≤ r the function z �→ zα Dβ

x (g(z)) be bounded
on (
ϕ(θ))

n with respect to the norm of L p(Rn × R+). Then for |α| ≤ r we have

∫
�̃

�(z)
n∏

k=1

(zk − Dk)
−1 Dα

x (g(z)) dz =
∫

�̃

zα�(z)
n∏

k=1

(zk − Dk)
−1g(z) dz.

Proof. It is sufficient to prove the result when r = 1. By assumption, the
functions z �→ zj g(z) and z �→ Dj (g(z)) are holomorphic and bounded in the
norm of L p(Rn × R+). Then∫

�̃

�(z)
n∏

k=1

(zk − Dk)
−1 Dj (g(z)) dz

=
∫

�̃

�(z)
(

zj

n∏
k=1

(zk − Dk)
−1 −

∏
k �= j

(zk − Dk)
−1
)

g(z) dz.

Now it is easy to see that∫
�̃j

�(z)
∏
k �= j

(zk − Dk)
−1 g(z) dzj = 0

and this concludes the proof.

Lemma 8.12. ∀u ∈ D(A) we have Rµ(Dx) (µ − A)u = u.
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Proof. Let u ∈ D(A). If � ∈ {0, . . . , 2m}, then D�
t u ∈ W 2m−�,p

x (Rn × R+).
We know that Rµ(z) commutes with the resolvent operators of D1, . . . , Dn

(Lemma 8.3 (a)), therefore for |β| ≤ 2m − � we have that Dβ
x Rµ(z) D�

t u =
Rµ(z) Dβ

x D�
t u. Hence for |α| + |β| ≤ 2m − � we get (by Lemma 6.2)

‖zα Dβ
x Rµ(z) D�

t u‖L p(Rn×R+) ≤ C
‖z‖|α|

‖z‖2m + |µ| ‖Dβ
x D�

t u‖L p(Rn×R+)

and this allows us to apply Lemma 8.11 obtaining∫
�̃

�(z)
n∏

r=1

(zr −Dr )
−1 Rµ(z) Dα

x D�
t u dz =

∫
�̃

�(z)
n∏

r=1

(zr −Dr )
−1zα Rµ(z) D�

t u dz

whenever |α| + � ≤ 2m. Hence∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1 Rµ(z) (µ − A)u dz

=
∫

�̃

�(z)
n∏

r=1

(zr − Dr )
−1 Rµ(z) (µ − P(z, Dt ))u dz.

The function (µ− Az)
−1 (µ− P(z, D))u(x, ·) is (for almost every x) the unique

solution of the problem
v ∈ W 2m,p(R+)

µ v(t) − P(z, D)v(t) = (µ − P(z, Dt ))u(x, t) t ∈ R+

(Bk(z, D)v)(0) = 0 1 ≤ k ≤ m

so that (µ − Az)
−1 (µ − P(z, D))u(x, ·) − u(x, ·) is the solution of

v ∈ W 2m,p(R+)

µ v(t) − P(z, D)v(t) = 0 t ∈ R+

(Bk(z, D)v)(0) = −(Bk(z, Dt )u)(x, 0) 1 ≤ k ≤ m.

By Lemma 6.13 this solution is the function

−
m∑

j,k=1

δj,k(z, µ) (Bk(z, Dt)u)(x, 0) uj,z,µ

with δj,k(z, µ) ∈ C that depends holomorphically on z and uj,z,µ ∈ L p(R+) that
depends holomorphically (in L p norm) on z (Lemma 6.27). Therefore

Rµ(Dx) (µ − A)u =�(Dx)
−1 (2π i)−n

∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1 Rµ(z) (µ − A)u dz
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(as we have seen above)

= �(Dx)
−1 (2π i)−n

∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1 Rµ(z) (µ − P(z, Dt ))u dz

= �(Dx)
−1 (2π i)−n

∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1 u dz

− �(Dx)
−1 (2π i)−n

∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1

×
m∑

j,k=1

δj,k(z, µ) (Bk(z, Dt )u)(·, 0) ⊗ uj,z,µ dz.

Here

�(Dx)
−1 (2π i)−n

∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1 u dz = �(Dx)

−1 �(Dx)u = u,

so that the lemma will be proved if we show that ∀ j, k we have∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1 δj,k(z, µ) (Bk(z, Dt )u)(·, 0) ⊗ uj,z,µ dz = 0.

Let us fix j, k ∈ {1, . . . , m} and � ∈ {0, . . . , mk}. Then we set

g(z) = δj,k(z, µ) (D�
t u)(·, 0) ⊗ uj,z,µ.

From (D�
t u)(·, 0) ∈ W 2m−�−1,p(Rn), uj,z,µ ∈ L p(R+) and the holomorphy

of δj,k(z, µ) and of uj,z,µ we obtain that g is holomorphic with values in
W 2m−�−1,p

x (Rn ×R+). Moreover it follows from Lemma 6.13 that if |α|+ |β| ≤
2m − � − 1 then

‖zα Dβ
x (g(z))‖L p(Rn×R+) = |zα| |δj,k(z, µ)| ‖uj,z,µ‖L p(R+) ‖Dβ

x D�
t u(·, 0)‖L p(Rn)

≤ C |zα| β(z, µ)−mk−(1/p) ‖Dβ
x D�

t u(·, 0)‖L p(Rn)

and this is a bounded function of z when |α| ≤ mk . Then Lemma 8.11 implies
that for |α| ≤ mk − � we have∫

�̃

�(z)
n∏

r=1

(zr − Dr )
−1 δj,k(z, µ) zα D�

t u(·, 0) ⊗ uj,z,µ dz

=
∫

�̃

�(z)
n∏

r=1

(zr − Dr )
−1 δj,k(z, µ) Dα

x D�
t u(·, 0) ⊗ uj,z,µ dz
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and hence∫
�̃

�(z)
n∏

r=1

(zr − Dr )
−1 δj,k(z, µ)(Bk(z, Dt )u)(·, 0) ⊗ uj,z,µ dz

=
∫

�̃

�(z)
n∏

r=1

(zr − Dr )
−1 δj,k(z, µ)(Bk(Dx , Dt )u)(·, 0) ⊗ uj,z,µ dz = 0

because (Bk(Dx , Dt )u)(·, 0) = 0, as u ∈ D(A).

Putting together Lemmas 8.7, 8.10, 8.12, we have proved that ρ(A)⊇ C\Sω,
and that ∀θ ∈ ]ω,π [ ∃ C >0 such that ∀µ∈C \ Sθ one has ‖(µ− A)−1‖≤ C

|µ| .

In order to prove that A is sectorial with spectral angle ω, we still have
to show that D(A) and R(A) are dense. For D(A), it is enough to remark that
D(A)⊃C∞

0 (Rn×R+). Concerning the range of A, it is known that, as L p(Rn×R+)

is a reflexive Banach space, from the inequality sup
µ∈R−

‖µ (µ − A)−1‖ < +∞
(that we have just proved) it follows that L p(Rn × R+) = ker A ⊕ R(A), as
we remarked in Subsection 4.2; therefore proving that R(A) is dense becomes
equivalent to proving that A is injective, and this we do.

Lemma 8.13. A is injective (and hence R(A) is dense in L p(Rn × R+)).

Proof. Assume that u ∈ker A. Then ∀µ∈C\Sω we have u = µ(µ−A)−1u =
µ Rµ(Dx)u. Let us take α ∈ Nn such that |α| = 2m, and an integer q ≥
max1≤ j≤n(1 + αj ). Then |zα| ≤ ‖z‖2m and hence, for z ∈ �̃,∥∥∥�(z)q Rµ(z)

n∏
r=1

(zr − Dr )
−1
∥∥∥ ≤ C

n∏
r=1

|zr |q−1

|1 + zr |2q
(|µ| + ‖z‖2m)−1

≤ C
n∏

r=1

|zr |q−1

|1 + zr |2q
‖z‖−2m ≤ C

n∏
r=1

|zr |q−1−αr

|1 + zr |2q
.

Therefore, for µ ∈ R−,

‖�(Dx)
qu‖ = ‖µ �(Dx)

q Rµ(Dx)u‖

=
∥∥∥(2π i)−n µ

∫
�̃

�(z)q Rµ(z)
n∏

r=1

(zr − Dr )
−1 u dz

∥∥∥
≤ (2π)−n C |µ|

n∏
r=1

∫
�̃r

|zr |q−1−αr

|1 + zr |2q
d |zr | ‖u‖

and as µ → 0 we get �(Dx)
qu = 0. Since �(Dx) is injective (Lemma 4.11),

it follows that u = 0.

Lemma 8.13 concludes the proof that A is sectorial, with spectral angle ω.
In particular the following a priori estimate holds.
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Theorem 8.14. There exists C > 0 such that ∀u ∈ D(A)

‖u‖W 2m,p(Rn×R+) ≤ C
(
‖Au‖L p(Rn×R+) + ‖u‖L p(Rn×R+)

)
.

Proof. Let u ∈ D(A). Then for |α| + � ≤ 2m we have, by Lemmas 8.8
and 8.12,

Dα
x D�

t u = Dα
x D�

t R−1(Dx) (−1 − A)u = G−1,α,�(Dx) (−1 − A)u.

Therefore by Lemma 8.7

‖u‖W 2m,p(Rn×R+) =
 ∑

|α|+�≤2m

‖Dα
x D�

t u‖p
L p(Rn×R+)

1/p

≤
 ∑

|α|+�≤2m

‖G−1,α,�(Dx)‖p

1/p(
‖Au‖L p(Rn×R+)+‖u‖L p(Rn×R+)

)
.

In order prove the boundedness of the H∞ functional calculus for A, we

consider the function G : (
ϕ(θ))
n → L(L p(Rn × R+)), G(z) =

(
h(Az)

)̂
.

We know that G is holomorphic and R-bounded on (
ϕ(θ))
n with Rp-bound

≤ C ‖h‖∞ (see Theorems 6.37, 6.38 and Lemma 4.7). Moreover by Lemma 8.3
(a) the operators G(z) commute with the resolvents of D1, . . . , Dn; therefore
G(Dx) ∈ L(L p(Rn ×R+)), with ‖G(Dx)‖ ≤ C ‖h‖∞ (Theorem 4.18). Therefore
the following lemma concludes the proof of Theorem 8.1.

Lemma 8.15. Let h ∈ H∞
0 (Sθ ). Then h(A) = G(Dx).

Proof. As in Subsection 6.4, we take the curve γ parametrized by R\{0} �
t �→ |t | e−iη sgn t (with ω < η < θ ). Rµ(Dx) is a bounded operator (Lemma 8.7)
and is defined by

Rµ(Dx) = �(Dx)
−1

∫
�̃

�(z)Rµ(z)
n∏

r=1

(zr − Dr )
−1 dz

so that the range of
∫
�̃
�(z)Rµ(z)

∏n
r=1(zr−Dr )

−1dz is contained in D(�(Dx)
−1).

Now for some s ∈ R+

∥∥∥�(z) h(µ) Rµ(z)
n∏

r=1

(zr − Dr )
−1‖ ≤ C

n∏
r=1

|1 + zr |−2 |µ|−1 min
{
|µ|−s, |µ|s

}
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and hence
∫
γ

∫
�̃

�(z) h(µ) Rµ(z)
∏n

r=1(zr − Dr )
−1 dz dµ converges in the op-

erator norm and equals
∫
�̃

�(z)
∫
γ h(µ) Rµ(z) dµ

∏n
r=1(zr − Dr )

−1 dz. Then

h(A) = 1

2π i

∫
γ

h(µ) Rµ(Dx) dµ

= 1

2π i

∫
γ

(2π i)−n �(Dx)
−1

∫
�̃

�(z) h(µ) Rµ(z)
n∏

r=1

(zr − Dr )
−1 dz dµ

(as �(Dx)
−1 is closed)

= 1

2π i
�(Dx)

−1
∫

γ

(2π i)−n
∫

�̃

�(z) h(µ) Rµ(z)
n∏

r=1

(zr − Dr )
−1 dz dµ

= (2π i)−n �(Dx)
−1

∫
�̃

�(z)
1

2π i

∫
γ

h(µ) Rµ(z)dµ

n∏
r=1

(zr − Dr )
−1dz

= G(Dx),

since

1

2π i

∫
γ

h(µ) Rµ(z) dµ =
(

1

2π i

∫
γ

h(µ) (µ− Az)
−1 dµ

)̂
=
(

h(Az)
)̂

= G(z).
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During the preparation of this paper the authors became aware that R. Denk,
M. Hieber and J. Prüss have obtained the L p-maximal regularity for the solution
of the Cauchy problem (1.1) when A is an elliptic operator of arbitrary order in
a domain, acting on Banach space valued functions, with minimal assumptions
on the regularity of the coefficients. In the case of constant coefficients on
a half-space they have also obtained the boundedness of the H∞ functional
calculus. However their methods are quite different from ours.
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