
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. I (2002), pp. 93-109

On Dicritical Foliations and Halphen Pencils
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Abstract. The aim of this article is to provide information on the number and on
the geometrical position of singularities of holomorphic foliations of the projective
plane. As an application it is shown that certain foliations are in fact Halphen pen-
cils of elliptic curves. The results follow from Miyaoka’s semipositivity theorem,
combined with recent developments on the birational geometry of foliations.
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1. – Introduction

We consider in this paper holomorphic foliations of the complex projective
plane and study the problem of giving bounds to the number of singularities
(counted with multiplicities) in terms of the degree of the foliation.

There are different possibilities for the concept of multiplicity of a singular-
ity. For example, if we take as multiplicity the Milnor number of the singularity,
the classical Darboux’s Theorem states that the sum of Milnor numbers of all
the singularities of a foliation of degree d is equal to d2 + d + 1. When we
consider a different notion of multiplicity (cf. Definition 1), we obtain in The-
orem 1 sharper estimations for the number of special types of singularities and
information on their geometrical position in the plane, as a consequence of
Miyaoka’s Theorem ([Miy], [McQ1]).

The paper deals also with the question of finding global rational first in-
tegrals for dicritical foliations, i.e. foliations having singularities with infinite
number of local separatrices. In other words, the question of deciding when a
dicritical foliation is a pencil of algebraic curves. Of course a necessary con-
dition is that all singularities of the foliation should have local first integrals,
either holomorphic (for the non-dicritical singularities) or meromorphic (for the
dicritical ones). Now, there exist examples of analytic families of foliations
with the following properties: 1) the singularities move analytically with the
foliation, in particular their number is constant; 2) the previous condition is
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always verified. Nevertheless, there are foliations in the family with rational
first integral and foliations without rational first integral (cf. [LN]). A closer
look into these examples reveals the presence of particular algebraic invariant
curves which we call special invariant curves (cf. Definition 2). The main idea
of this paper is that when such curves are absent we can get information about
the questions we raised. Let us then proceed with the definitions and statements
of results.

The following definition is analogous to the definition of algebraic multi-
plicity of a curve at a point.

Definition 1. Let G be a foliation on the surface M induced locally by
η = 0 at the singularity p, where η is a holomorphic 1-form with an isolated
zero. Let σ be the blow up of M at p. Then we define l(p) = l(p,G) as the
vanishing order of σ ∗(η) along the exceptional curve σ−1(p).

This number can be easily computed from the vanishing order of η at the
point p ∈ M . We remark that l(p) = 1 for reduced singularities (in Seidenberg’s
sense [Se]), although the Milnor number may be arbitrarily high.

Let us consider a foliation F on CP2 and perform a sequence of blow-
up’s σ1, . . . , σk in order to have only reduced singularities for σ ∗F , where
σ = σ1 ◦ · · · ◦ σk . Starting with some singularity p0 of F0 = F , let pj be the
singularity of Fj = (σ1 ◦ · · · ◦ σj )

∗F blown up by σj+1 and l(pj ) = l(pj ,Fj ).
In this paper only non-reduced singularities are blown up (in particular we
do not blow up regular points); the reduction of singularities of the foliation
F produces a unique map σ (consequently a unique foliation σ ∗F), although
the order the blow-up’s are performed may change. We refer to σ ∗F as the
reduction of singularities of F . These remarks of course apply to locally defined
foliations (cf. [Br2], pg. 12).

We define

L(F) :=
k−1∑
j=0

(l(pj ) − 1)2 .

Given a reduced algebraic curve C ⊂ CP2, let us define also

L(F, C) :=
k−1∑
j=0

νpj · (l(pj ) − 1) ,

where νpj is the multiplicity of (the strict transform of) C at pj .
These integers will be used to obtain information on the number and on

the position of the singularities of F . We refer to Section 3 for a discussion
about both number numbers L(F) and L(F, C); in particular, we explain why
they do not depend on the order the blow-up’s are performed.

Definition 2. A curve S ⊂ M is a special invariant curve for a foliation
G when S is smooth, isomorphic to CP1, G-invariant, Sing(G) ∩ S = {q} and
there are local coordinates for which q = (0, 0) and f (x, y) = xm · y (m ∈ N)
is a local holomorphic first integral for G.
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The reduction of singularities of a plane foliation has a special invariant
curve when it is the strict transform of a rational plane curve or a curve
introduced after blow-up’s. For instance, special invariant curves appear in the
reduction of certain types of singularities, e.g. cusps d(y2 − x3) = 0.

Theorem 1. Let F be a foliation of CP2 of degree d(F) and let C ⊂ CP2 be
an algebraic curve of degree d(C). Suppose that the reduction of singularities σ ∗F
is free of special invariant curves. Then

L(F) ≤ (d(F) − 1)2

and, L(F, C) ≤ d(C) · (d(F) − 1) for d(F) ≥ 1.

Let us give a simple example where the bound given by Theorem 1 fails
due to the presence of special invariant curves. Consider the pencil of rational
curves generated by two smooth conics which cross each other transversely
in 4 points a, b, c, d; there are 4 radial points (exactly a, b, c, d), that is,
singularities locally induced by η(x, y) = xdy − ydx + h.o.t. = 0, which are
the base points of the pencil, and 3 reduced singularities. Let us consider the
straight line S joining a to b; it crosses the straight line joining c to d at
a reduced singularity q which locally has a holomorphic first integral of the
type d(x · y) = 0. When we blow up at the base points the pencil becomes
a reduced foliation and the strict transform of S becomes a special invariant
curve (with one singularity q). Theorem 1 when applied to a foliation of degree
d whose singular set is composed by a) k radial singularities and b) reduced
singularities, yields k ≤ (d − 1)2, since an easy computation shows that for
radial points l(q) = 2. But in the example, k = 4 and d = 2.

We consider again the problem of deciding when a foliation (without special
invariant curves) is in fact a pencil of algebraic curves once its singularities have
local first integrals. Let us fix the number of singularities and their local analytic
type; since Theorem 1 gives only a lower bound for the degree of the foliation,
we could in fact have too many possibilities. We then add another information
to our problem, namely, a relation between the degree of the foliation and
the data coming from the singularities. In order to have a guess about the
possible relations, we may use particular examples which have first integrals.
The relation depends on the type of pencil we use; in this paper we work with
(“generic”) pencils of elliptic curves; the reason is that we use the well known
theory of elliptic surfaces.

Any pencil of elliptic plane curves gives rise to an elliptic fibration on
the rational surface obtained from the projective plane after reduction of the
base points. Conversely, any elliptic rational surface is birationally equivalent
to the projective plane and its fibration comes from a pencil of elliptic curves;
this implies that a pencil of elliptic curves is in fact equivalent to a Halphen
pencil. Recall that a Halphen pencil of index l − 1 (l ∈ N, l ≥ 2) is a pencil
of elliptic curves of degree 3(l − 1) with 9 base points (possibly infinitely
near). A most interesting property is that when l − 1 ≥ 2, the pencil contains a
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unique (reduced) cubic curve, which is the support of a non-reduced curve of
the pencil of multiplicity l − 1. This property corresponds to the fact that any
elliptic rational surface has at most one multiple fiber (see e.g. [C-D], pg. 348
and [Mir], pg. 10).

To construct examples of Halphen pencils, we fix a smooth cubic given
by a polynomial P = 0. Given an integer 3(l − 1), there exists an irreducible
curve Q = 0 with degree 3(l −1) which intersects P = 0 in 9 differents points;
we may choose Q = 0 as to have l − 1 branches through each of these points
intersecting each other and also P = 0 transversely. From the genus formula it
follows that Q = 0 is an elliptic curve; a Halphen pencil is defined by the level
sets of the rational function Pl−1/Q. For more details see [Mir], pg. 10. This
pencil, seen as a foliation, has degree 3l − 2; any base point pi has l(pi ) = l,
for i = 1, . . . , 9.

In order to state Theorem 2, we need to restrict the type of dicritical
singularities we allow. The simplest dicritical singularity allowed is the radial
one; in general we will consider the following singularities:

Definition 3. A dicritical singularity is removable by one blow up if the
exceptional divisor introduced by blowing it up is not invariant for the trans-
formed foliation and contains only singularities which admit local holomorphic
first integral.

It is not strictly true that these singularities have meromorphic first integrals
a priori (see [K] and [Su]); this is not relevant to us because of the next theorem.

Theorem 2. Let l ≥ 2. Consider a foliation F of CP2 whose reduction of
singularities is free of special invariant curves. Suppose also that the singular set
of F is composed by singularities p1, . . . , pk which are removable by one blow up
and singularities which have local holomorphic first integral. If d(F) = 3l − 2 and
l(pi ) = l for all 1 ≤ i ≤ k, then F is a Halphen pencil of index l − 1.

Along the proof of Theorem 2, it will become clear that the hypotheses
lead to generic Halphen pencils, in the sense that there are 9 distinct base points
and the singular fibers of the elliptic fibration associated to the pencil are cycles
of rational curves.

We think it to be a very interesting problem to prove similar results using
relations suggested by other kinds of pencils.

The first author thanks Ivan Pan for useful conversations. He also thanks
the support of the “Instituto de Matemática Pura e Aplicada-IMPA” and the
“Pontifı́cia Universidade Católica do Rio de Janeiro-PUC”, where he started
working on the present paper.
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2. – Preliminaries

We will collect some facts involving line bundles associated to foliations
(see [Br1] and [Br2] for more information).

Let S be an irreducible compact curve and G a foliation of a compact
complex surface M .

If S is not invariant by G, then

T ∗
G · S = tang(G, S) − S · S ,

where T ∗
G is the cotangent bundle of G, tang(G, S) ≥ 0 is the sum of the orders

of tangencies between the foliation and the curve and S ·S is the self-intersection
number of S.

When S is G-invariant, we get

T ∗
G · S = GSV(G, S) + 2pa(S) − 2 ,

where GSV(G, S) is the sum of the local indices defined in [G-S-V] and pa(C)

is the arithmetical genus.
Next comes the formula for the variation of the cotangent bundle T ∗

G under
a blow up π : N → M at a point p:

T ∗
π∗G = π∗(T ∗

G ) ⊗ ON (−(l(p) − 1)Ep) ,

where Ep is the exceptional divisor. We will need also to deal later with the
normal bundle NG of the foliation G; its variation under blow up’s is given by

Nπ∗G = π∗(NG) ⊗ ON (−l(p)Ep) .

Finally, given a foliation F of the projective plane CP2, there are isomor-
phisms

T ∗
F = O

CP2(d(F) − 1) and NF = O
CP2(d(F) + 2) .

Recall that a line bundle (divisor) D over a surface is nef (numerically
effective) if D · S ≥ 0 for any irreducible curve S of the surface.

We say that a line bundle (divisor) L is pseudo-effective if L ·D ≥ 0 for any
nef line bundle D. A fundamental fact in the study of holomorphic foliations is
Miyaoka’s Theorem ([Miy], [McQ1]), which can be stated for algebraic surfaces
as: if G is not a foliation by rational curves then T ∗

G is pseudo-effective.
We will need the notions of Kodaira dimension k(G) and numerical Kodaira

dimension ν(G) of a reduced foliation G. The reader may consult [Men], [McQ2]
and [Br2] for main properties.

We assign to G a non negative Kodaira dimension if h0(M, T ∗ ⊗ m
G ) ≥ 1 for

some n ∈ N; we define k(G) = k ≥ 0 if h0(M, T ∗ ⊗ n
G ) ∼ nk ; if k ≥ 1, there

are global sections s0, · · · sk of T ∗ ⊗ n
G giving rise to k algebraically independent

rational functions of M :

f1 = s1

s0
, · · · , fk = sk

s0
.
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For completeness, k(G) := − ∞ if h0(M, T ∗ ⊗ n
G ) = 0 ∀ n ≥ 1.

We recall the Zariski decomposition of a pseudo-effective divisor. Supposing
that T ∗

G is pseudo-effective, there exists a numerical decomposition

T ∗
G = P + N ,

where i) some integral multiple of P is a nef divisor; ii) N is a uniquely defined
Q+-divisor, whose support is contractible to a normal singularity of a surface
and iii) P · N = 0. This enable us to define ν(G) (without ambiguities) as

1) ν(G) = − ∞ if G is a rational fibration.

2) ν(G) = 0 if P is numerically trivial.

3) ν(G) = 1 if P is not numerically trivial but P · P = 0.

4) ν(G) = 2 if P · P > 0.

Both dimensions are invariants of reduced foliations under birational trans-
formations between smooth surfaces (cf. [Men]) or normal surfaces (cf. [McQ2]).
It follows from a Theorem of [McQ2] that, when k(G) ≥ 0 one has

k(G) = ν(G) .

3. – Proof of Theorem 1

Let us start giving an alternative description for the special invariant curves.

Lemma 1. LetG be a foliation with reduced singularities on a projective surface,
whose cotangent bundle T ∗

G is pseudo-effective. Then, an irreducible curve S is a
special invariant curve if and only if T ∗

G · S < 0.

Proof. The only if part is immediate from the intersection formula given
in the Preliminaries.

Let us suppose that T ∗
G · S < 0 and prove that S is a special invariant curve

for G. Since T ∗
G is pseudo-effective, then S · S < 0.

We claim that S is G-invariant. Otherwise we would have

T ∗
G · S = tang(G, S) − S · S

and T ∗
G · S > 0. Now we assert that S is smooth and isomorphic to CP1. One

has
T ∗
G · S = GSV(G, S) + 2pa(S) − 2 ,

and GSV(G, S) ≥ 0 because G has reduced singularities; thus pa(S) ≤ 0. Since
S is an irreducible curve, pa(S) ≥ 0, that is, pa(S) = 0 and this implies that S
is in fact a smooth curve, isomorphic to CP1 (cf. [B-P-V], pg. 68). It follows
from T ∗

G · S < 0 and pa(S) = 0 that GSV(G, S) ∈ {0, 1}. Let us remark that
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GSV(G, S) = 0 occurs only when there are no singularities of the foliation
along the smooth curve S, which is impossible in the present situation because
S · S < 0.

We consider finally the case GSV(G, S) = 1, that is, Sing(G) ∩ S = {q}
and the vanishing order of G along C is one. Since the leaf S \ {q} is the
complex line C, the group of holonomy of this leaf is trivial. There are only
two possibilities for the singularity q since it is a reduced singularity: either it
is a saddle-node singularity or it has two different eigenvalues whose quotient
is a negative rational number (the singularity is said to belong to the Siegel
domain). If q is a saddle-node singularity, the separatrix contained in S can not
be the strong one because such a separatrix has a non periodic local holonomy
diffeomorphism. It follows that the vanishing order of G along S is greater
than 1, contradiction. Finally, when q belongs to the Siegel domain, since the
local holonomy diffeomorphism of the separatrix contained in S is the identity
map, we may invoke [M-M] (Teorema 2, pg. 482): if the local holonomy
diffeomorphism is conjugated to a linear one (which is obviouly our case), the
foliation is locally equivalent to mydx + xdy = 0 near the singularity, so that
it admits a holomorphic first integral equivalent to f (x, y) = xm · y (m ∈ N).
Consequently, S is a special invariant curve for the foliation G.

Before proving Theorem 1, let us do a little digression to show that the
numbers L(F) and L(F, C) (cf. Introduction for notation and Definitions) are
well defined, since they could depend on the order we perform blow-up’s to
reach the reduction of singularities. We consider only L(F), the argument for
L(F, C) being analogous.

First of all, if q is the singularity of a (locally defined) foliation G, we
may take its reduction of singularities and associate L(G, q) as above. To the
singularity q we attach the number b = b(G, q) of blow-up’s needed to reach its
reduction; this number does not depend on the order the blow-up’s are applied.
We claim that the association L is well defined; we proceed by induction on b.
The claim is trivially true if b = 0; suppose it is true for singularities of foliations
such that b ≤ n. Let us take a singularity q of a foliation G with b = n +1 and
blow it up once; we get a new foliation G ′

with singularities q1, . . . , ql along
the exceptional divisor. Now L(G, q) = (l(q) − 1)2 +∑j L(G ′

, qj ), and since

b(G ′
, qj ) ≤ n, for j = 1, . . . , l, the induction hypothesis can be used to grant

that each L(G ′
, ql) independs on the order blow-up’s are applied. Therefore the

claim is also true for q.
All this can be applied to F by noticing that L(F) =∑p L(F, p), where

p is a singularity of F .
Let us then prove Theorem 1. Consider a foliation F of the projective plane

which has a reduction of singularities σ ∗F free of special invariant curves.
If d(F) = 0 then F is the pencil of lines passing by one point, which is a

radial singularity, and then the first assertion of Theorem 1 is a trivial equality.
We claim now that Miyaoka’s Theorem implies that T ∗

σ∗F is a pseudoeffec-
tive line bundle, if d(F) ≥ 1. The reason is that σ ∗F is not a rational fibration:
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in fact, the reduction of singularities of any pencil of plane rational curves F
with d(F) ≥ 1 is a rational fibration having at least one singular fiber (see
e.g. [Br1]). Now, a singular fiber of a rational fibration is a tree of rational
curves (see [B-P-V], pg. 142), so in this fiber there exists necessarily a special
invariant curve, contradicting our hypothesis on σ ∗F .

We may therefore apply Lemma 1 and conclude that T ∗
σ∗F is a nef line

bundle. Since T ∗
σ∗F is simultaneously nef and pseudo-effective divisor, we have

T ∗
σ∗F · T ∗

σ∗F ≥ 0 .

In order to compute this number from data of the foliation, we use the
line bundle isomorphism on CP2, T ∗

F = O(d(F) − 1) and the formula for the
variation of the cotangent bundle under a blow up (cf. Preliminaries). Applying
repeatedly this formula and using the definition of L(F), one gets

T ∗
σ∗F · T ∗

σ∗F = (d(F) − 1)2 − L(F) ,

so that the inequality L(F) ≤ (d(F − 1)2 follows.
Let now C := σ ∗(C)−∑j νpj Ej be the strict transform of a plane curve C

by the reduction of singularities; Ej stands for the exceptional divisor introduced
at the ( j − 1)-th step of the desingularization. We have then

T ∗
σ∗F · C = d(C) · (d(F) − 1) − L(F, C) .

Since T ∗
σ∗F is a nef divisor, we conclude that L(F, C) ≤ d(C) · (d(F) − 1).

4. – Relation to Halphen pencils

In order to prove Theorem 2, we will need some Lemmata. Let us take
once more a foliation F of the projective plane whose reduction of singularities
σ ∗F is free of special invariant curves; we assume also that its singularities are
a) dicritical singularities p1, . . . , pk removable by one blow up and b) singular
points with local holomorphic first integral.

Under these assumptions:

Lemma 2. Let l ≥ 2. The following conditions are equivalent.

i) d(F) = 3l − 2 and l(pi ) = l for 1 ≤ i ≤ k.
i i) k = 9,

∑9
i=1(l(pi ) − 1)2 = (d(F) − 1)2 and

∑9
i=1(l(pi ) − 1) = 3(d(F) − 1).

Proof. Suppose that i) holds. The reduction of singularities σ : N → CP2

of F can be regarded as a composition σ = σ2 ◦ σ1, where σ1 : N ′ → CP2

denotes the composition of k blow ups at p1, · · · , pk .
According to Baum-Bott’s formula (cf. [B-B] or [Br1]):

Nσ∗
1 F · Nσ∗

1 F =
∑
q∈N ′

B B(σ ∗
1 F, q) ,
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where B B(σ ∗
1 F, q) ∈ C is the Baum-Bott index at a singularity q of σ ∗

1 F .
By the hypothesis on the singular set of F , all the singularities of σ ∗

1 F have
local holomorphic first integrals. It is known that in this case B B(σ ∗

1 F, q) is
a non-positive integer; we conclude that

Nσ∗
1 F · Nσ∗

1 F ≤ 0 .

In order to compute this number, we proceed in the same way as in the proof
of Theorem 1. One has the isomorphism

NF = O
CP2(d(F) + 2)

and the formula for the variation of the normal bundle of a foliation under a
blow up (cf. Preliminaries). Applying repeatedly this formula one gets

Nσ∗F · Nσ∗F = (d(F) + 2)2 −
k∑

i=1

l(pi )
2 ,

so that (d(F) + 2)2 −∑k
i=1 l(pi )

2 ≤ 0. Since l(pi ) = l (for i = 1, · · · , k), we
get(1):

(d(F) + 2)2 ≤ k · l2 ,

that is, 9 ≤ k, since d(F) = 3l − 2. By another side, according to Theorem 1:
k∑

i=1

(l(pi ) − 1)2 ≤ (d(F) − 1)2 ,

that is, k · (l − 1)2 ≤ (3l − 3)2 and then k ≤ 9, so that k = 9 as desired. The
other two equalities of i i) follow trivially.

Suppose now that i i) holds. Let us show that the solutions of the equations
9∑

i=1

(l(pi ) − 1)2 = (d(F) − 1)2 and
9∑

i=1

(l(pi ) − 1) = 3(d(F) − 1)

are given by d(F) = 3l − 2 and l(pi ) = l (l ≥ 2).
It is easy to show that l(pi ) ≥ 2, if pi is removable by one blow up.

Hence d(F) ≥ 4 and we may define

ri := l(pi ) − 1

d(F) − 1
and consider the equations

9∑
s=1

r2
i = 1 and

9∑
s=1

ri = 3 .

The unique real solution to this pair of equations is

(r1, · · · , r9) =
(

1

3
, · · · ,

1

3

)
.

Then i) is proved.

(1)This inequality is already found in [Po] in the particular case when F is a pencil of plane curves.
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Let us remark at this point that the equality

L(F) :=
9∑

i=1

(l(pi ) − 1)2 = (d(F) − 1)2

and Theorem 1 imply that l(q) = 1 for all the singularities of σ ∗
1 F . Since q

has a holomorphic first integral, its reduction is the same as the reduction of its
separatrix; we conclude that the only possibilities are (modulo local change of
coordinates) d(x · y) = 0, d(y2 −x2m) = 0 and d(y2 −x2m+1) = 0, where m ∈ N.
The last two cases give rise to special invariant curves, so that we are left only
with the first case, that is, all the singularities of σ ∗

1 F are of Morse type. In
particular, the reduction σ is given, up to biholomorphisms, by σ = σ1.

Lemma 3. The Kodaira dimension of F is equal to 1.

Proof. First of all let us prove that T ∗
σ∗F admits a global holomorphic

section. As remarked above, l(q) = 1 for all the singularities having local
holomorphic first integral that appear along the reduction of F ; thus, there
exists a line bundle isomorphism

T ∗
σ∗F = σ ∗(O

CP2(3(l − 1))) ⊗ ON

(
−

9∑
i=1

(l − 1)Ei

)
,

where Ei is the exceptional line introduced by the blow up of pi , 1 ≤ i ≤ 9.
Now we observe that a curve (l − 1)C , where C is a plane cubic curve (not
necessarily smooth) passing through the points p1, · · · , p9, corresponds to a
global holomorphic section of T ∗

σ∗F (more precisely, consider a section s of
T ∗

σ∗F which vanishes along the transform of a straight line with multiplicity
3(l − 1) and has poles of order (l − 1) along each Ei , 1 ≤ i ≤ 9; the global
holomorphic section we look for is s1 = (Pl−1 ◦σ)·s, where P = 0 is a reduced
affine equation for C). Hence, by definition,

k(F) ≥ 0 .

Notice at this point that thanks to the inequality

9∑
i=1

νpi (C) · (l − 1) ≤ 3(l − 1) · d(C) ,

stated in Theorem 1, any cubic curve C passing by p1 · · · p9 is reduced (that
is, Cred is not one or two straight lines) and C must be smooth at all the points
p1, · · · , p9.

Since T ∗
σ∗F is a pseudo-effective divisor which is also a non-trivial nef

divisor with T ∗
σ∗F · T ∗

σ∗F = 0, by definition the numerical Kodaira dimension is

ν(F) = 1

and we conclude (cf. Preliminaries) that k(F) = 1.
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Remark 1. As a consequence of Lemma 3 we have that h0(N , T ∗ ⊗ n
σ∗F ) ≥ 2

for some n ≥ 1. Taking independent global sections s1 = s1
n and s2 of T ∗ ⊗ n

σ∗F ,
we define the rational mapping

H′ : N → CP1 ,

H′(x) := (s1(x) : s2(x)) .

This map is free of indetermination points, that is, it defines a fibration H′ :
N → CP1; the reason is that the divisors (s1)0 and (s2)0 do not intersect:

(s1)0 · (s2)0 = n2 · T ∗
σ∗F · T ∗

σ∗F = 0 .

By construction, (H′−1
(∞))red is the strict transform C̄ of C by σ (the

fact that the curve C is smooth at the points p1, · · · , p9 is crucial here), so
that it is connected and the exceptional divisors E1, · · · , E9 are multisections
to H′. Also, H′−1

(∞) has multiplicity n(l − 1) for the map H′. Using Stein
Factorization ([B-P-V]), we may change H′ by H in order to have connected
fibers (notice that (H′−1

(∞))red = (H−1(∞))red although the multiplicity may
change); a fiber H ′ of H′ becomes linearly equivalent to m H , where m ∈ N

and H is a fiber of H (in particular we have T ∗
σ∗F · H = 0).

Lemma 4. H is an elliptic fibration which is relatively minimal, that is, the
fibers of H are free from exceptional curves.

Proof. Since m H is linearly equivalent to (s1)0, the well-known formula
KN = σ ∗(K

CP2)⊗ON (
∑9

i Ei ) for the variation of canonical line bundles gives:

χ(m H) = χ((s1)0) = −T ∗ ⊗ n
σ∗F · (T ∗ ⊗ n

σ∗F ⊗ KN )

= −T ∗ ⊗ n
σ∗F · KN

= −[T ∗ ⊗ n
F · K

CP2 +
9∑

i=1

(l(pi ) − 1)n]

= −[−9n(l − 1) + 9n(l − 1)] = 0

and also χ(H) = 0. Therefore H is an elliptic fibration.
One has also that H is relatively minimal. In fact, if we suppose that there

are exceptional curves contained in fibers, after contracting all such curves
we get a rational surface N ′ with a relatively minimal elliptic fibration. The
Euler number of N ′ verifies 3 ≤ e(N ′) < 12 (the first inequality comes from
e(CP2) = 3 and the second from the fact that e(N ) = 12). But e(N ′) must be a
multiple of 12, because of a) Noether’s formula 12 ·χ(ON ′) = KN ′ .KN ′ +e(N ′),
where χ(ON ′) is the holomorphic Euler characteristic and KN ′ is the canonical
bundle of N ′ and b) KN ′ .KN ′ = 0, which is an immediate consequence of
Kodaira’s formula for the canonical bundle of an elliptic surface, cf. [F-M],
Proposition 3.21. We have then a contradiction.
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After contracting the exceptional divisors E1, · · · , E9, we conclude that
σ∗(H) is a Halphen pencil of index l ′ − 1, l ′ ≥ 2, whose base points are
p1, · · · , p9. It is worth noticing that H has at least one singular fiber, since
the Euler characteristic of N is positive.

Lemma 5. Any irreducible component of a singular fiber ofH is σ ∗F-invariant.

Proof. Let us consider an irreducible component Hj,s of a singular fiber
Hs = ∑

j n j,s Hj,s , with nj,s > 0. Kodaira’s classification of singular fibers
of a relatively minimal elliptic fibrations (see [B-P-V], pg. 150) tell us that
Hj,s · Hj,s = −2 when Hj,s is smooth; in any case, if we suppose that Hj,s is
not σ ∗F-invariant, we get

0 < tang(σ ∗F, Hj,s) − H 2
j,s = T ∗

σ∗F · Hj,s .

Since T ∗
σ∗F is a nef divisor, T ∗

σ∗F · Hj,s ≤ T ∗
σ∗F · Hs . In order to finish the

proof, we use that Tσ∗F · Hs = 0 (see Remark 1), contradiction.

Let us see how Lemma 5 restricts the possibilities for a singular fiber of H.
We use again Kodaira’s classification of singular fibers of a (relatively minimal)
elliptic fibration.

Lemma 6. H = σ ∗F (as foliations); the singular fibers are of type Ib, b > 0
(nodal rational curve or cycle of rational curves).

Proof. Let Hs be a singular fiber of H.
If Hs is of type I I , I I I , or I V , we conclude that σ ∗F has a non-reduced

singularity, a contradiction.
If Hs is of type I ∗

b , I I ∗, I I I ∗ or I V ∗, there exists a smooth component Hs0
of Hs which intersects three other components; in particular, there are at least
three singular points of σ ∗F along Hs0 . It follows that GSV(σ ∗F, Hs0) ≥ 3
and hence

T ∗
σ∗F · Hs0 = GSV(σ ∗F, Hs0) − 2 > 0 .

Since T ∗
σ∗F is a nef divisor, then:

T ∗
σ∗F · Hs ≥ T ∗

σ∗F · Hs0 > 0 ,

contradicting T ∗
σ∗F · Hs = 0.

We are then left only with critical fibers of type Ib, b > 0. To finish the
proof we have to show that H = σ ∗F (as foliations). The Kodaira’s functional
invariant of a fiber of type Ib, b > 0 is ∞ (cf. [B-P-V], pg. 159), meaning
in particular that the analytical type of elliptic fibers in a neighborhood of Ib

varies. Suppose by absurd that H �= σ ∗F . Then σ ∗F is transverse to H at all
points of the (generic) fiber H of H; in fact, T ∗

σ∗F · H = 0 and H · H = 0
imply that

0 = T ∗
σ∗F · H = tang(σ ∗F, H) .

The transverse foliation can be used to define holomorphic diffeomorphisms
between smooth fibers; consequently, the analytic type of the generic fibers of
H is constant, contradiction.
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We may finish now the proof of Theorem 2.
We have shown before that σ∗H a Halphen pencil of index l ′ − 1 having

9 distinct base-points in the plane; we wish to prove that l ′ = l. We know
that the generic fiber of the pencil has an ordinary singularity of multiplicity
l ′ − 1 at each base-point. Therefore, at each such a point we have a local
expression for the pencil as the family of level curves of the meromorphic
function x−(l′−1)(

∏l′−1
j=1 (y −cj x)+ . . . ), where x = 0 denotes the local (reduced)

equation of the multiple fiber and (
∏l′−1

j=1 (y − cj x) + . . . ) = 0 gives the local
expression of the generic fiber. Or, as a differential equation

d

x−(l′−1)

l′−1∏
j=1

(y − cj x) + . . .

 = 0

which is also (for A(x, y) := ∏l′−1
j=1 (y − cj x))

A(x, y){(l ′ − 1 − x
l′−1∑
j=1

cj (y − cj x)−1)dx + x
l′−1∑
j=1

(y − cj x)−1dy} + · · · = 0 ;

this equation has vanishing order l ′ − 1 at the base point, and since we have
already proven that F = σ∗H, it follows that l = l ′. This ends the proof.

It is not difficult to find examples of elliptic fibrations with the properties
we have just described, although we are not able to give explicit formulae. The
Hesse pencil in the plane is given in homogeneous coordinates by:

X3
0 + X3

1 + X3
2 + λX0 X1 X2 = 0, λ ∈ CP1 ,

produces after reduction of singularities an elliptic fibration with 4 singular
fibers of type I3; it has no multiple fibers. In order to create a multiple fiber,
we may for example select a smooth fiber of the fibration (type I0) and apply
to it a logarithmic transformation (cf. [B-P-V], pg. 164) to become a multiple
fiber with smooth reduction (type m I0). Although logarithmic transformations
are quite different from birational transformations, in our case we still end up
with a rational surface, more precisely the projective plane blown up at 9 points.

In order to see this, we use some facts from the theory of elliptic surfaces
(cf. [F-M], sections 1.3.5 and 1.3.6). Let M be a relatively minimal elliptic
surface of Euler number e(M) that fibers over CP1. Suppose there is one mul-
tiple fiber F1 of multiplicity m ∈ N. Then Kodaira’s formula for the canonical
bundle KM is

KM = π∗(K
CP1 + L) + (m − 1)F1

where π : M → CP1 is the fibration, K
CP1 is the canonical bundle of CP1

and L is a line bundle over CP1 of degree equal to χ(OM), the holomorphic
Euler characteristic of M ; in particular, KM .KM = 0, as we have used in
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Lemma 4. In the case of our construction e(M) = 12, so that by Noether’s
formula 12 · χ(OM) = KM .KM + e(M) we get χ(OM) = 1. Consequently

KM = −F + (m − 1)F1 = −m F1 + (m − 1)F1 = −F1 ,

where F is the generic fiber of the fibration. We conclude that

h0(M, K ⊗n
M ) = h0(M, −nF1) = 0

and the Kodaira dimension k(M) = − ∞. The surface M is then the projective
plane blown up at 9 points (Proposition 3.23, [F-M]).

We finish this section with some comments about this construction:

1) It may be applied to any of the critical fibers of the Hesse fibration.

2) If we introduce two multiple fibers in the construction we no longer get a
rational surface (the Kodaira dimension is no longer − ∞).

3) The same kind of ideas used in the example above allows us to show that
the Halphen pencils that appear in Theorem 2 have singular fibers of reduced
type Ib for b = 1, 2 or 3. In fact, if a singular fiber Hs is the multiple fiber of
the pencil, it comes from a cubic curve in the plane, so that the statement is
trivially true. If not, we start by turning the multiple fiber of the pencil (whose
reduction is of type Ib for 0 ≤ b ≤ 3) into a fiber without multiplicity by
means of a logarithmic transformation; the new surface is still rational. Then
we make Hs into the multiple fiber of an elliptic fibration of a rational surface,
once more using a logarithmic transformation. We are back to the initial case,
therefore the reduced type is Ib for b = 1, 2 or 3.

5. – Final remarks

Let us discuss a more direct approach for finding the elliptic fibration H
of the last section (cf. Lemmata 3, 4).

We take any cubic curve C that passes through the dicritical singularities
p1, · · · , p9; we know from Theorem 1 that C is reduced, so that the possibilities
are (modulo change of coordinates and leaving aside for the moment the smooth
case):

1) a cubic curve with a cusp y2 − x3 = 0;
2) a conic tangent to a straight line y · (y − x2) = 0;
3) three concurrent lines x · y · (y − x) = 0;
4) a rational curve with a node y2 = x2 · (x − 1);
5) a conic and a line meeting at two points (y − 1) · (y − x2) = 0;
6) three lines forming a triangle x · y · (x + y − 1) = 0.

Theorem 1 implies that C is smooth at the points p1, · · · , p9. Also, for
cases 2), 3), 5), 6) above, Theorem 1 implies that there are at most 3 dicritical
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singularities in components of C having degree one and at most 6 dicritical
singularities in components of C having degree two. Since the cubic C passes
by all 9 dicritical points, then there are exactly 3 dicritical points along the
components of degree 1 and exactly 6 dicritical singularities along the compo-
nents of degree 2. Let us denote a component of C by C ′ and let C ′ be the
strict transform by σ . It follows that C ′ · C ′ = −2 and if C ′ has degree one:

T ∗
σ∗F · C ′ = 3(l − 1) − 3(l − 1) = 0 ;

also if C ′ has degree two:

T ∗
σ∗F · C ′ = 6(l − 1) − 6(l − 1) = 0 ,

If C ′ were not F-invariant, we would find in both cases:

tang(σ ∗F, C ′) = −2 ,

which is impossible. Therefore all the possibilities 2), 3), 5), 6) correspond to
F-invariant cubics.

As for the cases 1) and 4), one has that T ∗
σ∗F ·C = 0 and C ·C = 0, so that

tang(σ ∗F, C) = 0 if C is not invariant, which again is impossible due to the
presence of a cusp or a node of C . Therefore we may then assume in all cases
above that (each component of) the cubic curve C is F-invariant; let us allow
the possibility of C being smooth and F-invariant. Using that the non-dicritical
singularities of F are reduced (cf. remark after the proof of Lemma 2), we
exclude cases 1), 2) and 3).

Let us look now to a global rational vector field ZF inducing F , having
isolated zeros at the singularities of F and pole of order d(F) − 1 = 3 · (l − 1)

along the line at infinity L∞ (L∞ can be supposed transverse to C). Let ZP
be a rational vector field which extends (with a pole of order one along L∞)
a polynomial vector field inducing the foliation d P = 0, where P = 0 is a
reduced affine equation of C along CP2 − L∞. The singularities p1, · · · , p9 of
F being removable by one blow up, then the restriction (ZF )| C is a rational
vector field with zeroes of multiplicity l − 1 at these points; also, the zeroes
of (ZF )| C at each branch of the singular points of C (when they exist) have
multiplicity one. By another side, the vector field (ZP)| C has zeroes with
multiplicity one at the same branches. There is a meromorphic function f over
C verifying:

(ZF )| C = f · (ZP)| C

and we observe that f has zeroes of order l − 1 at the points p1, · · · , p9 and
poles of order 3(l − 1) at the points q1, q2 and q3 of C ∩ L∞. Therefore the
divisor D =∑9

k=1 pk −∑3
j=1 qj of C has torsion: (l − 1)D = ( f ) is principal.

The same is true, although by a different reason, when C is smooth but not
F-invariant. We consider the meromorphic function f = (d P · ZF )| C along C ,
where P = 0 is a reduced affine equation of C ; we show easily that p1, · · · , p9
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are zeroes of order l − 1 (this is the vanishing order of ZF at each of these
singularities). Again if we consider the divisor D = ∑9

k=1 pk −∑3
j=1 qj , then

(l − 1)D = ( f ) is principal. It is important to notice that D is special in the
sense that its support is disjoint from the singular points of C .

Starting from the meromorphic function f and the torsion divisor D above,
there exists a well known way to move C inside a pencil of elliptic curves as
to have that C appears as the support of a (l − 1)-multiple curve. The reader
may consult [S] (Theorem 7), for a smooth support; it extends naturally to our
situation, because of the property supp(D) ∩ sing(C) = ∅.
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et du 1er degré, Rend. Circ. Mat. Palermo 5 (1891), 161-191.
[S] P. Sad, Regular foliations along curves, Ann. Fac. Sci. Toulouse 8 (1999), 661-675.



ON DICRITICAL FOLIATIONS AND HALPHEN PENCILS 109

[Se] A. Seidenberg, Reduction of singularities of the differentiable equation Adx = Bdy,
Amer. J. Math. 90 (1968), 248-269.
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