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Local Approximation of Semialgebraic Sets

MASSIMO FERRAROTTI – ELISABETTA FORTUNA –

LES WILSON

Abstract. Let A be a closed semialgebraic subset of Euclidean space of codimen-
sion at least one, and containing the origin O as a non-isolated point. We prove
that, for every real s ≥ 1, there exists an algebraic set V which approximates A
to order s at O . The special case s = 1 generalizes the result of the authors that
every semialgebraic cone of codimension at least one is the tangent cone of an
algebraic set.
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Introduction

In this paper we investigate the possibility of locally approximating semi-
algebraic sets by algebraic ones. This question was already considered by
L. Bröcker (see [B1], [B2]) from a point of view somewhat different from ours.

Evidently the answer depends on what approximating means. The notion
of approximation we will use originates from combining the two following
observations. First of all, one of the main tools to get information about the
geometric behavior of a semialgebraic subset A of Rn near a singular point,
say for instance the origin O , is the tangent cone C(A) at O , i.e. the union
of limits of secant half-lines Oxm as xm ∈ A tends to O . Secondly, one
method to “measure” how near C(A) and A are is to consider the Hausdorff
distance between the sections A ∩ Sr and C(A) ∩ Sr of A and C(A) with the
sphere Sr centered at O of radius r . We will check that this distance vanishes,
as r tends to 0, of order > 1. So one can take as a “measure of proximity”
between two sets A and B the order of vanishing at 0 of the Hausdorff distance
D(A ∩ Sr , B ∩ Sr ) and call the sets A and B s-equivalent if this distance tends
to 0 more rapidly than r s .
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According to this definition, we will investigate the question whether any
closed semialgebraic subset of Rn of codimension ≥ 1 can be s-approximated
by (i.e. is s-equivalent to) an algebraic subset locally at a point, say O . For
s = 1 a positive answer can be easily obtained by remarking that any closed
semialgebraic subset is 1-equivalent to its tangent cone and by using a previous
result (see [F-F-W]) showing that any closed semialgebraic cone of codimension
≥ 1 is 1-equivalent to an algebraic set.

In this article we generalize this result and prove (Theorem 1.4) that, for
any real s ≥ 1, every closed semialgebraic subset of Rn of codimension ≥ 1
can be s-approximated by an algebraic subset of Rn .

We are grateful to the referee for his useful comments.

1. – s-equivalence and first properties

If A and B are non-empty compact subsets of Rn , let us denote by D(A, B)

the classical Hausdorff distance, i.e.

D(A, B) = inf {ε | A ⊆ Nε(B), B ⊆ Nε(A)} ,

where Nε(A) = {x ∈ Rn | d(x, A) < ε} and d(x, A) = infy∈A ‖x − y‖.
If we let δ(A, B)=supx∈B d(x, A), then D(A, B)=max{δ(A, B), δ(B, A)}.
Observe that δ(A, B) = 0 if, and only if, B ⊆ A and that, for any A, B, C

subsets of Rn , we have δ(A, B) ≤ δ(A, C) + δ(C, B).

Let A be a semialgebraic subset of Rn , O ∈ A. The tangent cone C(A)

at O can be defined as the set of points u ∈ Rn such that there exist a sequence
xm ∈ A converging to O and a sequence of real positive numbers tm such that
limm→∞ tm xm = u.

We will denote by Der(A) the set of non-isolated points of A. If O ∈
Der(A), let us estimate how much C(A) approximates A locally at O by
computing the Hausdorff distance between A ∩ Sr and C(A) ∩ Sr where Sr is
the sphere of radius r centered at the origin. We point out that, by the Curve
Selection Lemma, if O ∈ Der(A) the set A ∩ Sr is not empty for any r small
enough, which we will always implicitly assume.

Lemma 1.1. Let A be a closed semialgebraic subset of Rn with O ∈ Der(A).
Then

lim
r→0

D(A ∩ Sr , C(A) ∩ Sr )

r
= 0 .

Proof. Let us set C = C(A), Ar = A ∩ Sr and Cr = C ∩ Sr .
Since Ar is compact and non-empty, there exists xr ∈ Ar such that

δ(Cr , Ar ) = d(xr , Cr ). In order to prove that limr→0
δ(Cr ,Ar )

r = 0, it is
enough to prove that, for any sequence of real positive numbers {ri } con-
verging to 0 and such that { xri

ri
} converges to a limit, say u ∈ C , we have
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limi→∞
δ(Cri ,Ari )

ri
= limi→∞

d(xri ,Cri )

ri
= 0. This follows from the fact that

ri u ∈ Cri , so that

d(xri , Cri )

ri
≤ ‖xri − ri u‖

ri
=

∥∥∥∥ xri

ri
− u

∥∥∥∥ .

Let us now prove that limr→0
δ(Ar ,Cr )

r = 0. As above, there is a yr ∈
Cr such that δ(Ar , Cr ) = d(yr , Ar ). Let ur = yr/r . For any sequence {ri }
converging to 0, consider the sequence {uri }; we can assume that {uri } converges,
say to u. There is an analytic curve γ such that γ (0) = O and γ (t) ∈ A for
t ∈ [0, ε], and the image of γ is tangent to u at O (see e.g. [K-R]). Furthermore
we can assume that γ intersects each sphere of sufficiently small radius r in
one point. Let xi be the point of intersection of γ with the sphere of radius ri .
Then

lim
i→∞

d(yri , Ari )

ri
≤ lim

i→∞
‖yri − xi‖

ri
= 0.

By the previous lemma, the Hausdorff distance between A∩Sr and C(A)∩Sr

vanishes, as r tends to 0, of order > 1. We can therefore introduce a sort of
“measure of proximity” between two sets near a common non-isolated point,
say the origin O , as follows:

Definition 1.2. Let A and B be closed semialgebraic subsets of Rn with
O ∈ Der(A) ∩ Der(B) and let s be a real number ≥ 1.

(1) We say that A ≤s B if limr→0
δ(B ∩ Sr , A ∩ Sr )

r s
= 0.

(2) We say that A and B are s-equivalent (and we will write A ∼s B) if

A ≤s B and B ≤s A, i.e. if limr→0
D(A ∩ Sr , B ∩ Sr )

r s
= 0.

It is easy to check that ≤s is transitive and that ∼s is an equivalence
relationship. Using Definition 1.2, Lemma 1.1 says that A ∼1 C(A). Moreover
we have

Proposition 1.3. Let A and B be closed semialgebraic subsets of Rn, with
O ∈ Der(A) ∩ Der(B). Then A ∼1 B if and only if C(A) = C(B).

Proof. Assume that A ∼1 B and let us prove that C(A) ⊆ C(B). Let
u ∈ C(A); without loss of generality we can suppose that ‖u‖ = 1. Let {xi } be
a sequence of points of A\{O} converging to O and such that limi→∞

xi
‖xi ‖ = u.

Denote ri = ‖xi‖, Ari = A ∩ Sri and Bri = B ∩ Sri . So xi ∈ Ari . By

the hypothesis limi→∞
δ(Bri ,Ari )

ri
= 0 and consequently limi→∞

d(xi ,Bri )

ri
= 0. For

any i big enough, there exists yi ∈ Bri such that d(xi , Bri ) = ‖xi − yi‖. So

lim
i→∞

∥∥∥∥ xi

ri
− yi

ri

∥∥∥∥ = lim
i→∞

‖xi − yi‖
ri

= 0 ,

which implies that yi
ri

→ u, i.e. u ∈ C(B). Exactly in the same way one may
check that C(B) ⊆ C(A).

The opposite implication is a trivial consequence of Lemma 1.1.
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In particular Proposition 1.3 assures that two semialgebraic cones are 1-
equivalent if and only if they are equal. Consequently any 1-equivalence class
of closed semialgebraic sets contains exactly one semialgebraic cone. Let us
recall that in [F-F-W] it is proved that every semialgebraic cone in Rn (of
codimension ≥ 1) is the tangent cone to an algebraic subset of Rn . So in any
1-equivalence class you can find an algebraic representative.

The aim of this paper is to prove, generalizing the result of [F-F-W],
that any s-equivalence class of closed semialgebraic sets contains an algebraic
representative, precisely:

Theorem 1.4 (Approximation Theorem). For any real number s ≥ 1 and for
any closed semialgebraic set A ⊂ Rn of codimension ≥ 1 with O ∈ Der(A), there
exists an algebraic subset V of Rn such that A ∼s V .

Example 1.5. (i) Let A = {(x, y) ∈ R2 | x3 − y2 = 0, y ≥ 0}. It is easy
to check that, if n is an odd integer greater than (4/3)s + 2, s ≥ 1, then the
algebraic set V = {(x, y) ∈ R2 | (x3 − y2)2 − yn = 0} is s-equivalent to A.
(i i) Let A = {x ≥ 0, y ≥ 0, z = 0} ⊂ R3. Fix s ≥ 1. Let V = { f = 0},
where f (x, y, z) = (z2 − xn)2 − ym . If m and n are odd integers, n > 2s and
m > 2ns, then A ∼s V . To see this, first note that (1) : V ⊂ {y ≥ 0}. Now
suppose (x, y, z) ∈ V . Then z2 = xn ± ym/2. Since n > 2s and m > 4s, we
have (2) : |z| = o(‖(x, y)‖)s). Finally, either xn = z2 + ym/2 or xn = z2 − ym/2.
In the first case, x ≥ 0. In the second case, x ≥ −ym/2n . Thus, in both cases
we have (3) : x ≥ −ym/2n , and m/2n > s. Together, (1), (2) and (3) imply
that A ∼s V .

The proof of Theorem 1.4 will be achieved in Section 3.

2. – Some technical tools

Let us collect in this section the main ingredients which will be used in the
proof of the Approximation Theorem. An essential tool will be �Lojasiewicz’
inequality, which we will use in the following slightly modified version:

Lemma 2.1. Let A be a compact semialgebraic subset of Rn. Assume f and g
are semialgebraic functions defined on A such that f is continuous, V ( f ) ⊆ V (g),
g continuous at the points of V (g) and such that |g| < 1 on A. Then there exists a
positive constant N such that |g|N ≤ | f | on A and |g|N < | f | on A \ V ( f ) .

Proof. In the classical �Lojasiewicz’ inequality one assumes that g is con-

tinuous on A in order to get that the function gN

f , extended to 0 on V ( f ),
is continuous on A. Following the proof given in [B-C-R] (Proposition 2.6.4
and Theorem 2.6.6), one realizes that our hypotheses are sufficient to get the

boundedness of gN

f on A. Increasing N if necessary, we can further obtain that

| gN

f | < 1 on A \ V ( f ).
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For notational simplicity, we will often denote by Wr the intersection of
a set W with the sphere Sr of radius r centered at the origin. Moreover, for
every x ∈ Rn and every r > 0, we will denote by B(x, r) the open ball in Rn

of radius r centered at x .
One of the most important properties of semialgebraic sets is their local

conical structure (see, for instance [B-C-R], Theorem 9.3.5), which guarantees
that, if X ⊂ Rn is a closed semialgebraic set and O ∈ Der(X), then there exists
a constant RX > 0 such that for any R < RX there exists a semialgebraic
homeomorphism φ : B(O, R) → B(O, R) such that φ(X ∩ B(O, R)) is the
cone with vertex at O over X ∩ SR and ‖φ(x)‖ = ‖x‖ for all x ∈ B(O, R).

Lemma 2.2. Let A, B be closed semialgebraic subsets of Rn with O ∈ Der(A)∩
Der(B). Then there exists R > 0 such that the function

ρ(r) =
{

δ(Ar , Br ) if r ∈ (0, R)

0 if r = 0

is continuous on [0, R).

Proof. Since ρ(r) ≤ 2r , the function ρ is continuous at 0.
Let 0 < R < min{RA, RB} and let r0 ∈ (0, R). There exists y0 ∈ Br0 such

that ρ(r0) = δ(Ar0, Br0) = d(y0, Ar0). For any sequence {ri } converging to r0,
by the local conical structure of B, there exists a sequence of points yi ∈ Bri
converging to y0. Again by compactness, for any i there exists xi ∈ Ari such
that d(yi , Ari ) = ‖yi − xi‖ and we can assume that {xi } converges to x0 ∈ Ar0 .
Hence limi→∞ d(yi , Ari ) = ‖y0 − x0‖ ≥ d(y0, Ar0). So we have

d(yi , Ari ) ≤ δ(Ari , Bri ) = ρ(ri ) ≤ δ(Ari , Ar0) + δ(Ar0, Br0) + δ(Br0, Bri ) .

By the local conical structure of A, we have that A − Ar0 ∩ Sr0 = Ar0 , which
implies that limi→∞ δ(Ari , Ar0) = 0. An analogous argument shows that also
limi→∞ δ(Br0, Bri ) = 0. So from the previous inequalities we get that

lim
i→∞

ρ(ri ) = δ(Ar0, Br0) = ρ(r0)

and hence the thesis.

Note that Lemma 2.2 in particular implies that the function r → D(Ar , Br )

is continuous on an interval [0, R) for a suitable R.

In Definition 1.2 we introduced the notion of s-equivalence between two
sets by means of limits; we are now interested in finding a geometric version
of that condition, i.e. a topological tool to control if two sets are sufficiently
close one to the other near the origin. To that purpose, given a semialgebraic
subset X ⊂ Rn , O ∈ Der(X), and a real positive constant σ , let us consider
the set

U(X, σ ) = {y ∈ Rn | ∃ z ∈ X ∩ S‖y‖, ‖y − z‖ < ‖z‖σ } .

Observe that of course X\{O}⊆U(X, σ), that U(X, σ)=⋃
x∈X

(
B(x, ‖x‖σ)∩S‖x‖

)
and that U(X, σ ) is semialgebraic whenever σ is rational.
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Lemma 2.3. Let X ⊂ Rn be a closed semialgebraic set, O ∈ Der(X). Then for
any real positive σ , the set U(X, σ )∩ B(O, R) is open in Rn for every 0 < R < RX .

Proof. Let U = U(X, σ ). Let y0 be in U ∩ B(O, R) and let ρ = ‖y0‖. So
there exists x0 ∈ X such that ‖x0 − y0‖ < ‖x0‖σ and ‖x0‖ = ρ.

Let ε > 0 be such that B(x0, ε) ⊆ B(O, R) and, if x ∈ B(x0, ε) and
y ∈ B(y0, ε), then ‖x − y‖ < ‖x‖σ . The local conical structure of X assures
that there exists a real number δ with 0 < δ ≤ ε such that, for any η ≥ 0 with
|η − ρ| < δ, the set X ∩ B(x0, ε) ∩ Sη is not empty.

We prove that B(y0, δ) ⊆ U ∩ B(O, R). Clearly B(y0, δ) ⊆ B(O, R). Let
y ∈ B(y0, δ); since |‖y‖ − ρ| < δ, we have X ∩ B(x0, ε) ∩ S‖y‖ �= ∅. Then
there exists x ∈ X such that ‖x‖ = ‖y‖ and ‖x − y‖ < ‖x‖σ , which proves
that y ∈ U .

The sets U(X, σ ) can be used as a topological tool to test s-equivalence:

Proposition 2.4. Let A, B be closed semialgebraic subsets of Rn and let s ≥ 1.
If O ∈ Der(A)∩Der(B), then A ≤s B if and only if there exist real constants R > 0
and σ > s such that A ∩ B(O, R) \ {O} ⊆ U(B, σ ).

Proof. Assume that A ≤s B. By Lemma 2.2 there exists R > 0 such that
the function ρ : [0, R] → R defined by ρ(0) = 0 and ρ(r) = δ(Br , Ar ) if r > 0
is continuous. The function ρ is semialgebraic, hence, after decreasing R if
necessary, we can assume that either ρ ≡ 0 on [0, R] or ρ > 0 on (0, R]. In
the first case, we have that A ∩ B(O, R) ⊆ B ∩ B(O, R) and then our thesis
holds trivially.

So assume that ρ is strictly positive on (0, R] and consider the semialgebraic
function µ : [0, R] → R defined by µ(0) = 0 and µ(r) = ρ(r)

rs if r > 0.
Since by our hypothesis limr→0 µ(r)= 0, the function µ(r) is continuous and
V (µ) = {0}. Hence, up to decreasing R, by Lemma 2.1 there exist α > 0
such that µ(r) < rα for all r ∈ (0, R], which yields that ρ(r) < r s+α for all
r ∈ (0, R]. Set σ = s + α > s.

Now let x ∈ A ∩ B(O, R), x �= O and let r = ‖x‖. Then d(x, Br ) ≤
δ(Br , Ar ) = ρ(r) < rσ . So there exists y ∈ Br such that ‖x − y‖ < ‖y‖σ , that
is x ∈ U(B, σ ). Hence A ∩ B(O, R) \ {O} ⊆ U(B, σ ).

Now let us prove the opposite implication. For any sufficiently small
positive r , as Ar and Br are compact and non-empty, there exist xr ∈ Ar and
yr ∈ Br such that δ(Br , Ar ) = d(xr , Br ) = ‖xr − yr‖.

By hypothesis there exist constants R > 0 and σ > s such that A ∩
B(O, R) \ {O} ⊆ U(B, σ ) = {y ∈ Rn|∃ x ∈ B ∩ S‖y‖, ‖y − x‖ < ‖x‖σ }.

If r < R, then xr ∈ A ∩ B(O, R), so there exists a point zr ∈ Br such
that ‖xr − zr‖ < ‖zr‖σ = rσ . Since ‖xr − yr‖ = inf

y∈Br
‖xr − y‖, we have

‖xr − yr‖ ≤ ‖xr − zr‖ < rσ . Hence, if r < R,

‖xr − yr‖
r s

< rσ−s ,

which implies that limr→0
δ(Br ,Ar )

rs = 0, i.e. A ≤s B.
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The second main tool in the proof of Theorem 1.4 will be obtained as a
consequence of the following:

Lemma 2.5. Let X ⊂ Y ⊆ Rn be closed semialgebraic sets with O ∈ Der(X)

and Y \ X = Y . Then there exist positive constants β, R, q ∈ R, with β < 1 and
R < 1, such that, for any r with 0 < r ≤ R, for any q ≥ q and for every x ∈ X ∩ Sr ,
we have

B
(

x, rqβ
)

∩ Y ∩ Sr �⊆
⋃

z∈X∩Sr

B
(
z, rq) ∩ Y ∩ Sr .

Proof. By local conical structure, there exists a positive real number R
such that, for any 0 < r ≤ R, we have Yr \ Xr = Yr . After taking R small
enough and anyhow R < 1/2, we can assume that the semialgebraic function
ρ : [0, R] → R, defined by ρ(r) = δ(Xr , Yr ) for any r ∈ (0, R] and ρ(0) = 0,
is smaller than 1 and, by Lemma 2.2, continuous.

Consider the closed semialgebraic set

K = {(r, t) ∈ R2 | 0 ≤ r ≤ R, 0 ≤ t ≤ ρ(r)} ;

for (r, t) ∈ K \ {(0, 0)} the sets

W (r, t) = Yr \
⋃

x∈Xr

B(x, t) = {y ∈ Yr | d(y, Xr ) ≥ t}

are non-empty and semialgebraic. Let us define the function 
 : K → R by
setting 
(0, 0) = 0 and


(r, t) = δ(W (r, t), Xr ) ∀ (r, t) �= (0, 0) .

The function 
 is semialgebraic and V (
) = [0, R]×{0}; moreover 
(r, t) ≤ 2r
for every (r, t) ∈ K , which implies both that 
 is bounded on K by 2R < 1
and that lim(r,t)→(0,0) 
(r, t) = 0.

Since we want to apply Lemma 2.1 to the functions t and 
(r, t) on K ,
we have to prove that 
 is continuous at the points of [0, R] × {0}.

So let us check that, for any r0 ∈ (0, R], we have lim(r,t)→(r0,0) 
(r, t) = 0.
If not, then there exist ε > 0 and a sequence {(ri , ti )} of points in K

converging to (r0, 0) such that for all i ∈ N there exists xi ∈ Xri such that
d(xi , W (ri , ti )) > ε. After choosing a suitable subsequence of {xi } if necessary,
we can suppose that {xi } converges to a point x0 ∈ Xr0 .

Since Yr0 \ Xr0 = Yr0 , there exists y0 ∈ Yr0 \ Xr0 such that ‖y0 − x0‖ < ε/4.
Let t0 = d(y0, Xr0)/2 and let η < t0 be such that B(y0, η) ∩ X = ∅; in

particular η < ε/4 and d(y0, Xr0) > t0 + η.
We claim there exists a > 0 such that, if |r−r0| < a, then d(y0, Xr ) ≥ t0+η.

In fact otherwise there would exist sequences {ri } converging to r0 and {zi }, with
zi ∈ Xri , such that ‖y0 − zi‖ < t0 + η for any i ∈ N. As usual we can assume
that zi converges to a point z0 ∈ Xr0 . Hence ‖y0 − z0‖ ≤ t0 + η < d(y0, Xr0),
which is absurd.
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Now, by the local conical structure of Y and our choice of η, we may
assume that, after decreasing a if necessary, for every r ∈ (r0 − a, r0 + a) there
exists yr ∈ Yr \ Xr such that ‖y0 − yr‖ < η.

Then, for any r ∈ (r0 − a, r0 + a) and for any x ∈ Xr , we have

‖x − yr‖ ≥ | ‖x − y0‖ − ‖y0 − yr‖ | ≥ | d(y0, Xr ) − ‖y0 − yr‖ | ≥ t0 ,

which yields that yr ∈ W (r, t0) and therefore yr ∈ W (r, t) for all t ≤ t0.
Moreover ‖yr − x0‖ ≤ ‖yr − y0‖ + ‖y0 − x0‖ < η + ε/4 < ε/2.
For i sufficiently large, ti < t0, ri ∈ (r0 − a, r0 + a) and ‖xi − x0‖ < ε/2.

So
ε < d(xi , W (ri , ti )) ≤ ‖xi − yri ‖ ≤ ‖xi − x0‖ + ‖x0 − yri ‖ < ε

which is a contradiction.
As announced, we can now apply Lemma 2.1 to the functions t and 
(r, t)

on K ; so there exists a positive constant β < 1 such that


(r, t) < tβ ∀ (r, t) ∈ K , t �= 0 .

It follows from the inequality immediately above that, for any (r, t) ∈ K ,
t �= 0, and for any x ∈ Xr , the set B(x, tβ) ∩ W (r, t) is not empty, so that

(2.5.1) B(x, tβ) ∩ Yr �⊆
⋃

z∈Xr

B (z, t) ∩ Yr .

Since V (ρ) = {0}, by Lemma 2.1 we find a positive constant q such that

ρ(r) ≥ rq ∀ r ∈ [0, R] .

Therefore (r, rq) ∈ K for any q ≥ q; substituting t = rq in (2.5.1) yields the
desired result.

As a consequence of the previous result we get the possibility of finding
a closed semialgebraic subset of Y sufficiently “close” to Y , but meeting the
fixed subset X only in the origin. In fact:

Corollary 2.6. Let X ⊂ Y ⊆ Rn be closed semialgebraic sets with O ∈
Der(X) and Y \ X = Y . For any s ∈ R, s ≥ 1, there exists a positive R and a
closed semialgebraic set � ⊆ Y such that � ∩ X ∩ B(O, R) = {O} and Y ≤s �.

Proof. Consider the positive constants β, R and q obtained by applying
Lemma 2.5 to X and Y , and choose a rational q > max{q, s+1

β
}. Let

� =
⋃
x∈X

(
B(x, ‖x‖q) ∩ Y ∩ S‖x‖

) = U(X, q) ∩ Y and � = Y \ � .

Clearly � is a closed semialgebraic set such that � ∩ X ∩ B(O, R) = {O}. Let
us prove that Y ≤s �, i.e. for all y ∈ Y ∩ B(O, R), y �= O , there exists z ∈ �

with ‖z‖ = ‖y‖ and ‖z − y‖ < ‖z‖σ for some σ > s. This is evident if y ∈ �,
so assume y ∈ � and set ‖y‖ = r . Then there exists x ∈ X ∩ Sr such that
‖y − x‖ < rq . By Lemma 2.5 there exists z ∈ B(x, rqβ) ∩ Sr ∩ Y such that
z ∈ �. Hence, if r is small enough, we get

‖y − z‖ ≤ ‖y − x‖ + ‖x − z‖ < rq + rqβ < 2rqβ < r s+1 ,

so our thesis holds with σ = s + 1.
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Let us conclude this section by remarking that s-equivalence commutes
with set unions, which will enable us to start the proof of the Approximation
Theorem by a simplifying reduction step:

Lemma 2.7. Let A, A′, B and B ′ be closed semialgebraic subsets of Rn, and
assume that O is not isolated in any of them.

(1) If A ≤s B and A′ ≤s B ′, then A ∪ A′ ≤s B ∪ B ′.
(2) If A ∼s B and A′ ∼s B ′, then A ∪ A′ ∼s B ∪ B ′.

Proof. The result is an immediate consequence of Proposition 2.4.

3. – Proof of the Approximation Theorem

This section is entirely devoted to prove Theorem 1.4.
By Lemma 2.7, it will be sufficient to prove our result for semialgebraic

subsets of Rn of the kind

A = { f = 0, h1 ≥ 0, . . . , hk ≥ 0}

with dim A < n.
Since s-equivalence depends only on the germs at O , we can omit from

the presentation of A all the inequalities hi ≥ 0 such that hi (O) > 0, i.e. we
can suppose that hi (O) = 0. We can also assume that hi |A �≡ 0 for each i .

For the same reason we are allowed to identify a semialgebraic set with a
realization of its germ at the origin in a suitable ball B(O, R) which we will
shrink without mention whenever necessary.

The proof will be done by induction on k. If k = 0, the result is trivial. So
let k > 0 and assume the theorem holds for any closed semialgebraic subset of
Rn which can be presented as above using at most k−1 polynomial inequalities.

Let us consider at first the case when k ≥ 2.
Let Z = ⋃k

i=2 V (hi ) and consider the semialgebraic set A′ = A \ Z . Since
A′ = A′ \ Z , Corollary 2.6 applied to X = A′ ∩ Z and Y = A′ shows that
there exists a closed semialgebraic subset � ⊆ A′ such that � ∩ Z = {O} and
A′ ≤s �.

Let ζ : A → R be the function defined by ζ(x) = d(x, Z) for every x ∈ A.
The function ζ is semialgebraic, continuous and V (ζ ) = A ∩ Z ; moreover, if
x ∈ A and hi (x) > 0 for each i = 2, . . . , k, then ζ(x) > 0 and hi |B(x,ζ(x)) > 0
for each i = 2, . . . , k. Since V (ζ ) ∩ � = A ∩ Z ∩ � = {O}, by Lemma 2.1
there exists a positive l ∈ Q such that ζ(x) ≥ ‖x‖l for all x ∈ �. Hence, for
each i = 2, . . . , k,

(1) hi |B(x,‖x‖l ) > 0 ∀ x ∈ � \ {O} .
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Let A1 = { f = 0, h1 ≥ 0}. Corollary 2.6, applied to X = A1 and
Y = Rn , assures that there exists a closed semialgebraic subset �1 ⊆ Rn such
that �1 ∩ A1 = {O} and Rn ≤s+l �1.

In the case k = 1, evidently Z = ∅, hence A = A′ = A1 and we just need
the second application of Corollary 2.6, where conventionally we set l = 0.

Set � = {h2 ≥ 0, . . . , hk ≥ 0} if k ≥ 2 and � = Rn if k = 1.
We want to construct a polynomial function g on Rn such that

A′ ≤s V (g) ∩ � ≤s A .

We will need to consider the open semialgebraic set U = U(A, σ ), where
σ ∈ Q and σ > s. Evidently

V ( f ) ∩ {h1 ≥ 0} ∩ �1 = A1 ∩ �1 = {O}
and

V ( f ) ∩ {h1 ≥ 0} ∩ � ∩ CU = A ∩ CU = {O} ,

where CU = Rn \ U . Therefore, if we set

W = (�1 ∪ (� ∩ CU)) ∩ {h1 ≥ 0} ,

W is a closed semialgebraic set such that V ( f ) ∩ W = {O}.
So by Lemma 2.1 there exists an odd m ∈ N such that f (x)2 ≥ |h1(x)|m

for all x ∈ W and f (x)2 > |h1(x)|m for all x ∈ W \ {O}.
Define g = f 2 − h1

m .
By construction g is strictly positive on W \ {O} and on {h1 < 0}, hence g

is strictly positive on �1 and on �∩CU . This latter fact implies that V (g)∩� ⊆
U ∪ {O} and therefore that V (g) ∩ � ≤s A.

In order to prove that A′ ≤s V (g) ∩ �, since A′ ≤s �, we need only to
prove that � ≤s V (g) ∩ �.

Let x ∈ � and set ‖x‖ = r . We assume at first that h1(x) > 0, so that
g(x) < 0. Since Rn ≤s+l �1, there exists z ∈ �1 such that ‖z‖ = r and
‖x − z‖ < rη with η > s + l.

As g is strictly positive on �1, g(z) > 0. So, by the Intermediate Value
Theorem on B (x, rη) ∩ Sr , there exists w ∈ B (x, rη) ∩ Sr such that g(w) = 0.

Moreover if k ≥ 2, as η > l, by (1) one has that hi (w) > 0 for any
i = 2, . . . , k, which means that w ∈ V (g) ∩ � ∩ Sr ; hence x ∈ U(V (g) ∩ �, η).

The same conclusion holds also if h1(x) = 0, because in this case g(x) = 0
and hence x ∈ V (g) ∩ �.

We have thus proved that � ⊆ U(V (g) ∩ �, η) and therefore, since η > s,
that � ≤s V (g) ∩ � by Proposition 2.4.

Now, if k = 1 the theorem is proved since we have A = A′ ≤s V (g) ≤s A,
i.e. A ∼s V (g).

If k ≥ 2, note that V (g)∩� is described by means of k −1 polynomial in-
equalities; so, using the inductive hypothesis, there exists a polynomial function
g′ such that V (g) ∩ � ∼s V (g′) and therefore A′ ≤s V (g′) ≤s A.
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In order to conclude the proof for A, note that A = A′ ∪ (A ∩ Z) and that
A ∩ Z = ⋃k

i=2 Bi , where

Bi = { f 2 + hi
2 = 0, h1 ≥ 0, . . . , hi−1 ≥ 0, hi+1 ≥ 0, . . . , hk ≥ 0} .

By the inductive hypothesis, for any i = 2, . . . , k there exists a polynomial
function ϕi such that Bi ∼s V (ϕi ); hence by Lemma 2.7

A ∩ Z ∼s V (ϕ) where ϕ = ϕ2 · . . . · ϕk .

Consequently

A = A′ ∪ (A ∩ Z) ≤s V (g′) ∪ V (ϕ) = V (g′ϕ) .

Conversely V (g′) ∪ V (ϕ) ≤s A ∪ (A ∩ Z) = A.

So the algebraic set V = V (g′ϕ) is s-equivalent to A.
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Verlag, 1987.
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