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The Arithmetic Hyperbolic 3-Manifold of Smallest Volume

TED CHINBURG - EDUARDO FRIEDMAN -

KERRY N. JONES - ALAN W. REID

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXX (2001), pp. 1-40

Abstract. We show that the arithmetic hyperbolic 3-manifold of smallest volume
is the Weeks manifold. The next smallest one is the Meyerhoff manifold.

Mathematics Subject Classification (2000): 11F06 (primary), 57M99 (secondary).

0. - Introduction

A hyperbolic 3-manifold is a 3-manifold admitting a complete Riemannian
metric all of whose sectional curvatures are -1. The universal cover of such
a manifold can therefore be identified with the hyperbolic 3-space, that is, the
unique connected and simply connected hyperbolic 3-manifold. We denote by

the upper half space model of hyperbolic 3-space. With this convention, the
full group of orientation-preserving isometries of IHI3 is simply PGL(2, C). A
Kleinian group r is a discrete subgroup of PGL(2, C). Hence an orientable

hyperbolic 3-manifold is the quotient of IHI3 by a torsion-free Kleinian group,
since this acts properly discontinuously and freely on IHI3. If we relax the
condition that r act freely, allowing r to contain torsion elements, we obtain a
complete orientable hyperbolic 3-orbifold (cf. [Th] for further details). We will
only be concerned with the case that M = has a hyperbolic structure
of finite volume (we say r has finite covolume). Therefore in what follows,
by a hyperbolic 3-manifold or 3-orbifold we shall always mean a complete
orientable hyperbolic 3-manifold or 3-orbifold of finite volume. By the Mostow
and Prasad Rigidity Theorems [Mo] [Pr], hyperbolic volume is a topological
invariant of a hyperbolic 3-orbifold and is therefore a natural object to study.

It is known from the work of Jorgensen and Thurston [Th] [Gr] that there is
a hyperbolic 3-manifold of minimal volume Vo and that there are at most finitely
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many non-isometric hyperbolic 3-manifolds attaining this minimum. Much work
has been done in trying to identify Vo. Most recently, inspired by work of Gabai,
Meyerhoff and Thurston, [GMT], work of [Prz] has given the best current esti-
mate as Vo &#x3E; 0.28.... In addition, the program initiated by Culler and Shalen
[CSI], [CS2], together with Hersonsky [CHS], uses topological information to
help in estimating the volume. At present this work has culminated in showing
that the closed hyperbolic 3-manifold of smallest volume has b, ::5 2, where bi
is the rank of the first homology with coefficients in Q.

The hyperbolic 3-manifold conjectured to be of smallest volume is the
Weeks manifold, first defined in [We 1 ], which is obtained by (5, 1), (5, 2) Dehn
surgery on the complement of the Whitehead link in S3 (as shown below). In
particular, the Weeks manifold has bl = 0.

Fig. 1.

THEOREM 0.1. The Weeks manifold has the smallest volume among all arith-
metic hyperbolic 3-manifolds. Up to isometry, it is the unique arithmetic hyperbolic
3-manifold of that volume.

The Weeks manifold has volume 0.9427073627769... and is well-known
to be arithmetic. We shall also show that the arithmetic hyperbolic 3-manifold
having the next smallest volume is the Meyerhoff manifold, namely the manifold
obtained by (5, 1)-surgery on the figure eight knot complement (see [Ch]),
which has volume 0.9813688288922 - - - , and is again the unique arithmetic
hyperbolic 3-manifold of that volume. There are no other arithmetic hyperbolic
3-manifolds having volume less than 1. Below we recall the definition of an
arithmetic hyperbolic 3-manifold and give the arithmetic data associated to the
Weeks manifold.

We now sketch the proof of Theorem 0.1. Let M’ = H3 / r’ be an arithmetic
3-manifold of volume at most 1 and let M = be a minimal orbifold
covered by M’. Thus r’ is a torsion-free subgroup of finite index in the maximal
arithmetic Kleinian group r and
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The advantage of passing from a torsion-free r’ to a maximal, but not necessarily
torsion-free r, is that Borel [Bo] classified such r and gave a formula for the
volume of H 3/ r. With the help of this formula and results from [CF 1 ], we
first show that if r)  1, then the degree of the number field k used
to define r must satisfy [k : Q] ~ 8.

When [k : Q] is small, there are abundantly (but finitely) many arithmetic
3-orbifolds of volume smaller than 1. Hence we also look for lower bounds on
the index [r : r’] appearing in (0.1). The easiest way to do this is by finding
finite subgroups H C r and noting that the order of such an H must divide
the index [r : I"]. Here we draw on the results of [CF2] and on exhaustive
lists of number fields of small discriminant. By these purely number-theoretic
arguments we are able to narrow the list of possible r’s in (0.1 ) to just the nine
groups Gi, listed in Theorem 2.0.1. The second half of the proof is devoted
to studying these nine orbifolds, and is done using a package of computer
programs developed by the third and fourth authors for studying the geometry
of arithmetic hyperbolic 3-orbifolds (see [JR2] for more details).

For eight of these, neither volume nor finite subgroup considerations can
rule out a manifold cover of having volume less than 1. For the remain-

ing one, finite subgroup considerations do work (see [CF4]), but the number
theoretic approach becomes cumbersome. The computer packages allow us to
eliminate all but the Weeks manifold and the Meyerhoff manifold as we now
discuss. To handle the first eight groups described in Theorem 2.0.1, we use
the computer packages to generate presentations for certain of Borel’s maximal
arithmetic groups by constructing a Dirichlet polyhedron for these arithmetic
Kleinian groups. Once these presentations are obtained, it can be checked di-

rectly that these "candidate" presentations are indeed the presentations of the
required groups, by computing the faithful discrete representations involved and
applying the results of [MRl] and [Bo].

Next we use the presentations to try to either compute all torsion-free

subgroups of each Gi of the appropriate indices, or to show that such subgroups
do not exist. This we do first via the group theoretic language Cayley (or
its more recent upgrade Magma), but we then sketch a more direct method.
By inspecting the data that Cayley/Magma produced, we finally arrive at two
arithmetic 3-manifolds of volume less than 1. As these correspond to the Weeks
and Meyerhoff manifolds, we are then done with the proof.

The remaining group described in Theorem 2.0.1 is ruled out by using the
computer packages to construct a Z/2Z ED Z/2Z subgroup in the group of units
in a certain maximal order of a quatemion algebra defined over a sextic field
with one complex place and discriininant -215811 (see Section 2.5). This then
allows us to conclude there is no manifold of volume less than 1 arising in this
case.

Early attempts to construct the orbifold groups Gi used Weeks’ list of
volumes of hyperbolic 3-manifolds created by SnapPea [We2]. Although not
used in the proof, we wish to acknowledge the role this data played in helping
complete the proof.
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1. - Definitions and preliminaries

We recall some basic facts about arithmetic Kleinian groups. See [Bo], [Vi]
and [CF3] for further details on this section. Recall that a quaternion algebra
B over a field k is a 4-dimensional central simple algebra over k. When k has
characteristic different from 2, we can describe B as follows. Let a and b be
non-zero elements of k. There is a basis for B of the form { 1, i, j, i j } where
i2 = a, j2 = b and i j = - j i . B is then said to have Hilbert symbol {a, b}.

Now let k be a number field, that is, a finite extension of Q. Let v be
a place of k, and kv the completion of k at v. We let Bv - B ®k kv, which
is a quaternion algebra over k". The set of places for which Bv is a division

algebra ("B ramifies"), denoted herein by Ram(B), is finite, of even cardinality
and contains no complex place of k. Conversely, any such set R of places of
k determines a unique quaternion algebra B over k satisfying R = Ram(B).
We denote by the subset of Ram(B) consisting of all finite places in
Ram(B).

Let B be a quaternion algebra over k, where k is a number field or a

completion of such a field at a finite place, and let Ok the ring of integers of
k. An order of B is a finitely generated Ok-submodule of B which contains a
k-basis for B and which is a ring with 1. An order of B is maximal if it is
not properly contained in any other order of B.

One way to define arithmetic Kleinian groups [Bo] is to begin with a
number field k having exactly one complex place and a quaternion algebra B
over k ramified at all real places of k. We shall use the notation T to denote
an element of represented by x E B*. Let 0 be a maximal order of B
and let

Via the complex place of k we get an embedding p : B -+ M(2, C) and
hence a p : B*/k* ~ PGL(2, C). For simplicity we identify r1) with p(r1).
Then C PGL(2, C) is a Kleinian group giving rise to a hyperbolic 3-
orbifold r Ð of finite volume. The class of arithmetic Kleinian groups is
that obtained from the commensurability classes in PGL(2, C) of all such r 1).
For Kleinian groups, this definition of arithmeticity coincides with the usual
notion of arithmetic groups [Bo]. We recall that two subgroups r and r’ of
PGL(2, C) are commensurable if some conjugate r of r is such that r n r’ has
finite index in both r and r’. A hyperbolic 3-orbifold, or 3-manifold, 
is called arithmetic if r is an arithmetic Kleinian group.

Here we summarize the arithmetic data associated to the Weeks manifold.
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PROPOSITION 1.1. The Weeks manifold is the unique hyperbolic 3-manifold
which covers with degree 12 the orbifold where!D is any maximal order in
the quatemion algebra B defined over the cubic field k of discriminant -23, ramified
at the real place and at the prime of norm 5 of k.

Proposition 1.1 will be proved in Section 3. Explicitly, the field k in

Proposition 1.1 can be given as k = Q(O) where 0 satisfies B3 - B -f- 1 = 0.
Borel’s volume formula (see (2.1.1) below) shows that the volume of the Weeks
manifold is 

-

where ~k denotes the Dedekind zeta function of k. The numerical value of the
volume can be obtained by computing ~k (2), which is incorporated in the PARI
number theory package [Co], or from the geometric definition of the manifold.
Of course, it was this coincidence of volumes that pointed immediately to the
above characterization.

A Kleinian group r c PGL(2, C) is maximal if it is maximal, with respect
to inclusion, within its commensurability class. Borel [Bo] proved that any
maximal arithmetic Kleinian group is isomorphic to some group rs,z, which
we now define. Let 0 be a maximal order of B and S a finite (possibly
empty) set of primes of k disjoint from Rarrif (B). For each p E S choose
a local maximal order Ep C Bp such that [D. : Ep n Ðp] = Normk/Q(p),
where 0 = 0 Ook Okp. We shall say that x E B~ fixes Op (resp., Ep})
if (resp., either x fixes 0. and Ep, or Ep and

= OP). Borel’s definition is

When S is empty we find r S,’D = rz . We remark that rs,D is not necessarily
maximal if S is non-empty.

Two maximal orders 0 and 0’ of B are said to be of the same type if they
are conjugate by an element of B*. In this case is conjugate to 
Thus, to study all the up to conjugacy, it suffices to select one Ð from
each type. Types can be parametrized by the group T(B) defined as the group
of fractional ideals of k, modulo the subgroup generated by squares of ideals,
by ideals in Rany(B) and by principal ideals (a) generated by an a E k* which
is positive at all real embeddings of k. The set of types is in bijection with the
elements of T(B) [Vi] (recall that we are assuming that Ram(B) includes all
real places). The bijection is obtained [CF3] by fixing any maximal order, say
0, and mapping 0’ to the class of p(0, 0’) in T(B), where p(T, 0’) = 
the ai being ideals of C~k such that Ðj(Ð as Ok-modules.

For the reader’s convenience, we relate our notation to Borel’s. The group
Borel writes r s s, [Bo, p.9] coincides with our when our 0 is set equal to
his Ð(S’) [Bo, p. 12]. It will also be convenient (for the discussion in Section 3)
to remark upon an alternative description of Borel’s maximal groups. An Eichler
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Order of B is the intersection of two maximal orders of B. As in the case for
a maximal order above, the normalizer of an Eichler Order E projects to an
arithmetic Kleinian group. Borel’s maximal groups can be described as certain
of these images of normalizers of Eichler orders. The corresponding S and S’,
in Borel’s notation, depend on divisors of the discriminant of the relevant E
(see [MR2] and [Vi, p.99, Ex.5.4] for more details).

2. - Small arithmetic orbifolds with little torsion

2.0. - The list

We shall prove

THEOREM 2.0.1. If Mo is an arithmetic hyperbolic 3-manifold with Vol(Mo) :::
1, then Mo covers one of the nine orbifolds Gi described below, where notation
is as follows. Ram(B) always includes all real places ofk, Ð stands for any maximal
order of B in the cases 1  i  8 and Pj denotes the unique prime of k of norm j.
When i = 9, 5) is any maximal order of B not containing a primitive cube root of
unity.

Table 1
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We will show in Section 3 that orbifolds (1) and (8) are covered by the
Meyerhoff manifold and (4) is covered by the Weeks manifold. The other
orbifolds will turn out not to be covered by any manifold of volume  1.

We now sketch the proof of Theorem 2.0.1, hoping it will help guide the
reader through the next ten pages. We begin by citing Borel’s formula for the
volume of a minimal arithmetic orbifold r S,1) covered by Mo. Of course,

rS,1) is a lower bound for the volume of Mo in Theorem 2.0.1. Our
first aim is to show that &#x3E; 1 for number fields of degree larger
than 8.

The paper [CFl] is entirely devoted to the problem of obtaining lower
bounds for rS,1), but with the aim of finding which orbifolds satisfy

rS,1)  0.042, this being a bound for the smallest arithmetic orbifolds.
In Section 2.1 we simply quote inequalities verbatim from [CF 1 ] and use them
to show that rS,1) &#x3E; 1 unless [k : Q]  8 (Proposition 2.1.2).

For [k : 8, the lower bound Vol(Mo) &#x3E; rS,1) is too

crude, as there are very many orbifolds r S,1) with volume less than one.
Hence we need to get a hold of a lower bound for the covering degree
[Mo : 1HI3 / As explained in the Introduction and proved in Lemma 2.2.1
below, we bound [Mo : from below by the least common multi-

ple Icmtor(rS,1) of the order of all the torsion subgroups H of rS,1). Thus,
Vol(Mo) &#x3E; To compute Icmtor(rS,1), it suffices to
compute the orders of the p-Sylow subgroups of all finite subgroups H C rS,1).
As rS,1) C PGL(2, C), and the list of finite subgroups of PGL(2, C) is well-

known, one sees that it suffices to compute the finite cyclic subgroups and the
dihedral 2-subgroups of rS,1). In Section 2.2 we quote verbatim from [CF2] the
conditions that determine when r S,1) contains such a finite subgroup (Lemmas
2.2.3-2.2.6). Most of the work (three of the four lemmas) concerns groups of
order dividing 8. These are by far the most frequent ones among finite p-Sylow
subgroups associated to orbifolds of small volume.

In the subsequent sections Section 2.3-2.7 we start at [k : Q] = 8 and go
down degree by degree eliminating orbifolds with rS,1)lcmtor(rS,1) &#x3E;

1. The result is the list given in Table 1. More precisely, the first 8 entries in
Table 1 is a complete list of all rS,1) satisfying 1.
The last orbifold in the table is there because the computation of Icmtor(rS,1)
is quite complicated by purely number theoretical means. It is carried out in
Section 3.4 with the help of a matrix representation obtained geometrically.

2.1. - Reduction to small degrees

Let r be a minimal orbifold covered by a manifold Mo as in Theorem
2.0.1. Then, as described in Section 1, r is isomorphic to some rS,1) and
Vol(JHI3 j r S,1) ::: Vol(Mo)  1. In this subsection, which relies heavily on the
volume inequalities in [CFl], we prove that if 1, then the
number field k defining r s, 1) satisfies [k : ~]  8 and certain class number
restrictions.
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Borel proved [Bo], [CFl, Prop. 2.1]

for some integer m with 0  m  ~ Here ~k denotes the Dedekind zeta
function of k, dk is the absolute value of the discriminant of k, Ramc(B) and
S are as in Section 1, N denotes the absolute norm, and kB is the class field
defined as the maximal abelian extension of k which is unramified at all finite

places of k, whose Galois group is 2-elementary and in which all p E RaI1lf(B)
are completely decomposed. By class field theory, the Frobenius map induces an
isomorphism T (B) "-_’ Gal(kB/k), where T(B) is the group defined in Section 1
which parametrizes the types of maximal orders of B. Thus, [kB : k] equals the
type number of B. The maximal order 0 itself does not enter into the volume
formula.

REMARK. When S is empty, we clearly have m = ~S~ = 0. When S = {p}
consists of a single prime, then m = 1 if and only if p = for some
a E k* which is positive at all real places of k, some integral ideal b divisible
only by primes in Rany(B) and some fractional ideal a . This follows from
Borel’s proof [Bo, Section 5.3-5.5] on noting that if p is not as above, then
rs,z C r~ . We note that the above condition on p is equivalent to p being
completely decomposed in kB / k.

From (2.1.1) we conclude as in [CF1, p.512] that

where 0; and denote respectively the units and the totally positive units
of k and h (k, 2, B ) is the order of the (wide) ideal class group of k modulo
the square of all classes and modulo the classes corresponding to primes in
Ramf(B). In particular,

where r = r ( B ) is the number of primes in of norm 2. Lower

bounds for volumes of arithmetic orbifolds can be obtained using Odlyzko’s
lower bounds for discriminants of number fields, as follows [CF l, Lemma 3.4].
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LEMMA 2.1.1. Let KI k be a finite extension which is unramified at all finite
places. Then

where y = 0.5772156 ... is Euler’s constant, y &#x3E; 0 is arbitrary, rl (K) denotes the
number of real places of K, the sum on T is over all the prime ideals of K and

In our applications, the field K above will always be contained in the class
field kB appearing in (2.1.1 ).

PROPOSITION 2.1. 2. Assume  1. Here r S,’D is associated to a
quaternion algebra B over a number field k having exactly one complex place, as
described in Section 1. Then the following hold

It follows from Borel’s classification of minimal arithmetic orbifolds [Bo]
that the manifold Mo in Theorem 2.0.1 covers an orbifold associated
to a field k of degree at most 8 satisfying the above restrictions.

PROOF. We first deal with claim (4). When [k : Q] = 2, i. e. when k is

imaginary quadratic, genus theory shows that h (k, 2, B)  2g-1, where g is
the number of prime factors of dk. Hence h(k, 2, B) s ~/~/3. From (2.1.2),
taking into account the contribution to ~k (2) of a prime above 2, we find then
in the imaginary quadratic case that

Hence, if 1, then dk  6¡r2v’3 = 121.03 ~ ~ ~ . However, for
dk  121, genus theory again gives h (k, 2, B) :5 2 except for dk = 60. In
this case k has unique primes P2 and P3 of norm 2 and 3, respectively. Thus,
considering two Euler factors of ~k (2),
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This means dk # 60. Hence, if 1, then h(k, 2, 2. But
then (2.1.2) gives dk  56. This proves (4) in Proposition 2.1.2.

We may now assume [k : Q] ~ 3. Then k has at least one real place and
therefore -1 EOk+ and 2. A consequence of Lemma 2.1.1 and
the volume formula (2.1.1) is [CF1, Lemma 4.3]

From this, we easily deduce that

Indeed, if h(k, 2, B) &#x3E; 16 then h(k, 2, 32. Then (2.1.3) shows that

as soon as [k : Q] &#x3E; 2.
We now use the inequalities [CF1, eq. (4.6)]

Vol(HI3/ 

where K / k is any elementary abelian 2-extension unramified at the finite places
and in which all p E Ramr(B) are completely decomposed (see also the sentence
preceeding [CF l, Lemma 4.6]). We first take K c kB to be the maximal
unramified 2-elementary extension of k in which all p E Ramr(B) are completely
decomposed. Then Q] = Q] = 1 - 2 and, by class
field theory, [K : k] = h (k, 2, B). For [k : Q] ~ 3, we have by (2.1.5)

log(Vol(H 3/ r S,Ð»)

From (2.1.4) we know that h (k, 2, B) s 16 if 1. Hence (2.1.6)
yields

(2.1.7) 
If then [k : Q] ~ 14 and h (k, 2, B) ~ 2.

~~° ~°~~ 
If also [k : 6, then h (k, 2, B) = 1.

Thus we have shown (3) in Proposition 2.1.2.
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To prove (2), we need to show [kB : 2. Let 2 E := [kB : k] and
2 F := 0,]. Then 0 ~ F ~ 1 = [k : Q] - 3 ~ 11. Class
field theory shows that [kB : k] = h(k, 2, B)2 F . As 2, 2, we have
0 s E ~ [k : Q] - 2 ::: 12. Set K = kB in the first inequality in (2.1.5). Then,
dropping the term Q] as kB / k may ramify at the infinite places,

Thus E can only take the values 0, 1, 9, 10, 11 or 12. Suppose E &#x3E; 9. Then
[k : Q] &#x3E; 11 and kB / k is an extension of degree at least 29 which is unramified
at the finite places. Odlyzko’s discriminant bounds, as refined by Serre and
Poitou, give for any number field K [Po, eq. 16],

Hence

as [kB : 11 - 29. Then (2.1.2), with h(k, 2, B) s 2, gives

for [k : 14. Hence E = 0 or 1. This proves (2) in Proposition 2.1.2.
By (2.1.7), to conclude the proof of Proposition 2.1.2 we only need to rule

out fields k with degrees 9  [k : ~]  14. As [kB : k] s 2, from (2.1.1) we
find

with r as in (2.1.2). We now use the following table.
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The second line gives the lower bound for 1 log dk, coming from Lemma
2.1.1 with K = k and y as given on the last line.[k:Q] This bound does not consider
any contribution from the finite places. The third line shows the corresponding
lower bound for the main term appearing in the volume formula (2.1.1). The
fourth line gives the factor by which the previous line can be multiplied for each
prime of norm 2 in k (coming from its contribution to the lower bound for dk
in Lemma 2.1.1). It is clear from the table above that for 9  [k : ~]  14 the
contribution to the lower bound for di/2 of a prime of norm 2 greatly exceeds
the 1 lost in the estimate (2.1.8). Hence the third line of the table and (2.1.8)
complete the proof of Proposition 2.1.2. 0

2.2. - Torsion

In this step of the proof of Theorem 2.0.1, we study torsion in the groups
rs,v. We begin with a well-known result from group theory.

LEMMA 2.2.1. Suppose r is a group having a finite subgroup Her and a
torsion-free subgroup r’ C r of finite index. Then the index [r : r’] is divisible by
the order of H.

PROOF. It will suffice to show that the left multiplication action of H on
the set of left cosets of r’ in r is free. This follows from the fact that the
stabilizer in H of a left coset of r’ is conjugate in r to a finite subgroup of
r’, and r’ has no non-trivial finite subgroups by assumption. 13

The lemma leads us to define

lcmtor(r) := least common multiplelihi : Her, H a finite subgroup}.

We shall often use the following consequence of Lemma 2.2.1.

LEMMA 2.2.2. If a manifold M = H 3/ r of finite volume covers an orbifold
then Vol(M) is an integral multiple rs,o).

We shall need the following results from [CF2].
LEMMA 2.2.3. Let rs,z be associated, as above, to a number field k having

exactly one complex place and to a quatemion algebra B ramified at all real places
of k. Let I be an odd prime number and ~l a primitive 1-th root of unity in some
algebraic closure of k. If ~l E k, then contains an element of order I if and
only if B - M(2, k). Assume now Then rs,z contains an element of order
I if and only if the following four conditions hold.

(1) ~l + ~-’ 1 E k.
(2) If p E Ramf(B), then Np ~ 1 (modulo I). If p E Ramf(B) lies above I, then p

is not split in 
(3) If p E S, then Np - 1 (modulo 1).
(4) 0 contains an element y =1= 1 such that yl = 1.

Furthermore, condition (4) is implied by (1) and (2) (and so may be dropped),
except when Ramf(B) is empty and all primes of k lying above I split in k (~l ) / k.



13

Note that Ð appears only in (4) above, and that this condition can be
dropped if [k : Q] is odd, or if some prime of k above I does not split in

or if the narrow class number of k is odd. Here, and throughout the
paper, we take "narrow" in its strictest sense, taking all real places of k into
consideration.

There is a similar criterion for to contain an element of order 4 [CF2].

LEMMA 2.2.4. Let rs, ~ be as above and let i = R in some algebraic closure
of k. If i E k then contains an element of order 4 if and only B ~--- M(2, k).
Assume now that i V k. Then rs,z contains an element of order 4 if and only the
following four conditions hold.

(1) Ifp E Ramf(B), then I (modulo 4). Ifp E Ramf(B) lies above 2, then p
is not split in k (i ) / k.

(2) If p E S, then Np # - I (modulo 4).
(3) Any prime of k lying above 2, and not contained in S U Ramf(B), has an even

absolute ramification index.

(4) Ð contains an element y such that y2 = -1.

Furthermore, condition (4) is implied by (1) (and so may be dropped), except
when is empty and all primes of k lying above 2 split in k(i)/k.

Next we examine the elements of order 2 in Up to conjugacy these
elements are parametrized by a set C2 = C2(S, Ð) C which we now
define. The trivial coset k*2 is defined to be in C2 if and only if B ’-_" M(2, k).
The non-trivial cosets in C2 are those represented by some totally negative
W E k* satisfying conditions (a) through (d) below:

(a) No p E Rany(B) is split in k(,JW)/ k.
(b) Write the principal fractional ideal (w) = where a is a fractional

ideal and b is a square-free integral ideal. Then any p dividing b is in
S U Ramf(B).

(c) For every p E S not lying above 2, either p divides the ideal b in
condition (b) above or p is split in 

(d) There is an embedding over Ok of the ring of integers Ok(,Iw-) into 0.
As in Lemmas 2.2.3 and 2.2.4, condition (d) is implied by (a), and so can

be dropped, except when is empty, is unramified at all finite

places and all primes lying above 2 split in 
We again cite from [CF2]:

LEMMA 2.2.5. The group contains an element of order 2 ifand only if the
set C2 (S, Ð) defined above is non-empty.

We will also need to know when rs,z contains a dihedral group of order
4 or 8. In general, this may depend on 0 in a complicated way. We state here
a simple case which will suffice here.
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LEMMA 2.2.6. Assume that kB = k, where kB is as in the volume formula
(2.1.1). Then r S,’D contains a subgroup isomorphic to (D if and only if
there exists c and d E k* satisfying ( 1 ), (2) and (3) below:

(1) The algebra B has Hilbert symbol {c, d).
(2) Ramf (B) I ordp(c) or ordp(d) is an odd integer} C S. Here ordp(a)

denotes the exponent of p in the prime ideal factorization of the principal ideal
(a).

(3) S C ip 0 Ramf (B) I ordp(c) or ordp(d) is an odd integer, divides 2}.

contains a subgroup isomorphic to a dihedral group of order 8 if and only
contains an element of order 4 and {c, d} above can be taken as {-1, d}.

REMARK. In Lemma 2.2.6 it suffices to assume, instead of kB = k, that
Gal(kB / k) is generated by the image under the Frobenius map of the primes
in S and of the primes lying above 2 [CF2].

Let the manifold Mo in Theorem 2.0.1 cover some minimal orbifold 
By Lemma 2.2.2, we have 1 &#x3E; Vol(Mo) &#x3E; rS,Z). We
therefore assume, throughout the rest of Section 2, that

We proceed to make a complete list of all orbifold groups satisfying (2.2).
The resulting orbifolds are the first eight given in Theorem 2.0.1. The ninth one
is on the list because in this section we only prove that lcmtor(r*) is even and
that r~ ) = 0.2783 .... In a later section, we shall show by geometric
means that lcmtor(r* ) = 4, so that it too can be excluded as it violates (2.2).

By Proposition 2.1.2, the field k defining satisfies 2  [k : 8
and [kB : k]  2.

2.3. - Degree 8

For [k : Q] = 8 and ri(k) = 6, Lemma 2.1.1 with y = 1.1 and K = k
gives the lower bound dk &#x3E; 8.974 8. Hence (cf. (2.1.1))

Moreover, any p E Ramf(B) allows us to gain a factor of

on the lower bound for (see formula (2.1.1 ) and Lemma 2.1.1 ).
For any p E this improves (2.3.1) by a factor of at least 4.864, using
y = 1.1 in (2.3.2). contributes even more, as the NP2-1 is replaced by
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Np+l Therefore S and Ranif(B) must be empty. We now use Lemmas 2.2.2
and 2.2.3. If [kB : k] = 1 and Rany(B) is empty, then the narrow class number
is odd. We find then that 3 divides lcmtor(rm), as must ramify at
some prime above 3. This gives Vol(JHI3 / rm ) &#x3E; 2.736, considering
(2.3.1 ).

The case [kB : k] = 2 is more difficult. First we prove the existence of
2-torsion in r~ .

LEMMA 2.3. Suppose [kB : k] = 2, h(k, 2, B) = 1 and that is empty.
Then ro has two-torsion. The same holds for if the product of the primes in S
has trivial image in the narrow class group of k.

PROOF. Let hk and h+ denote, respectively, the wide and narrow class
number of k. From the hypotheses, hi / hk = 2. A short calculation then shows
[C~k,+ ’ (C~k,+)2] = 4. It follows that there is a totally positive unit 8 such that
k(Fi)/ k is a quadratic extension which is not contained in the narrow Hilbert
class field of k. Hence -s E C2(0, Z) and, by Lemma 2.2.5, r~ has 2-torsion
for every Z. To prove the last statement, replace 8 above by a totally positive
generator of the product of the primes in S. 0

Although Lemmas 2.2.2 and 2.3 show that

the lower bound dk &#x3E; 8.974 8 only yields 0.912. Fortunately,
M. Atria [At] has recently succeeded in improving Poitou’s bound to dk &#x3E; 9.05 .
This yields 1,M) &#x3E; 1.009. Hence we can rule out the case [k : Q] = 8.

2.4. - Degree 7

In this case the lower bound is dk &#x3E; 7.76 , corresponding to y = 1.35 and
K = k, which yields

As Ram(B) includes all five real places and has even cardinality, there must
be a p G Ramr(B). Any such prime contributes a factor of at least 4.23 to
(2.4). Thus, Rwiif (B) has exactly one prime p, S is empty and [kB : k] = 2 (as
4.23 . 0.28 &#x3E; 1). We now use:

LEMMA 2.4. Suppose K/ k is a quadratic extension unramified at all finite
places and that rl (k) is odd. Then rl (K) &#x3E; 2.

PROOF. Considering the image under the reciprocity map to of
the global idele -1 E k*, we find
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Therefore at least one real place of k splits in K / k.
We return to degree 7 fields. Thus [kB : Q] = 14, 2 and

P E Ramf(B) is split to kB (by definition of kB). Then Lemma 2.1.1, with
y = 0.8 and K = kB gives dk &#x3E; 8.97~. As p contributes a factor, as in (2.3.2),
of at least 5.95, we’ conclude [k : Q]  7.

2.5. - Degree 6

If [kB : k] = 2, then dk &#x3E; 7.416. This follows from Lemma 2.1.1 with

y = 1. l, K = kB and taking the worst possible value of r¡(kB) (which is always
0 [Ma], [Po]). Thus,

Any prime in Rany(B) (which necessarily splits to kB), contributes a factor
of at least 4.86. As Ram(B) has even cardinality, it follows that Ramf(B) is
empty. A prime in S split to kB yields a factor of 7.51. Hence S is empty
or contains only primes inert to kB. A prime in S inert to kB contributes at
least a factor of 2.855, except for a prime of norm 3 which contributes only
2.767. Hence S contains at most one prime, which must be inert to kB. By
the Remark following (2.1.1), if S is nonempty then is properly contained
in r1), and so can be dismissed in the proof of Theorem 2.0.1. We conclude
that S is empty. Therefore, by Lemma 2.3, r 1) has 2-torsion. Also, if the
narrow Hilbert class field k( 3), then ri) has 3-torsion (Lemma 2.2.3),
which suffices to rule out such orbifolds. This leaves us to check only the
list of sextic fields with exactly one complex place such that k( 3)/k is
unramified above 3 and with dk  332572. A check of the complete lists of
sextic fields of this signature (see [BMO], [01-2] and the tables available by
FTP from megrez.math.u-bordeaux.fr) with dk  332572, dk divisible by 3, and
with the prime(s) above 3 having an even absolute ramification index, yields
the following three fields:

Using PARI [Co] we find that the place above 3 splits in k( 3) /k only
in case a). Hence, in cases b) and c), any r1) has 2- and 3-torsion. This
suffices to rule out these two fields.

However, in case a) above, we do not have 3-torsion in all r 1) ’s. It
follows from the discussion at the end of Section 1 that there are two types of
maximal orders in B. Let 0 and 0’ be maximal orders of different types. Since
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each of the groups r1) and r1)I has 2-torsion. Exactly one of
these, say r 1)1, also has 3-torsion [CF2]. Since = Vol(H / 
0.27833973 ..., this suffices to rule out r 1)1. The last group in Theorem 2.0.1
is the group rz.

If [kB : k] = 1, we only have the lower bound dk &#x3E; 6.52~, corresponding
to y = 1.7 and K = k in Lemma 2.1.1. This yields

Also, any prime in Raa(B) (respectively, in S) contributes at least a factor of
3.6 (respectively, 5.7). It follows that Ramr(B) is empty and that S is either

empty or contains exactly one prime. Since Raa(B) is empty and [kB : k] = 1,
k has odd narrow class number. We now need a result which we will also use

frequently for smaller degrees.
LEMMA 2.5. Suppose the narrow class number h+ is odd. Then rS,1) has

2-torsion for any S and 1).

PROOF. Let S’ = S U Raa(B) and a = I1PES’ p. Then we can find a totally
* h+ +ipositive c E k* such that a k = (c). As h+ is odd, -c represents an elementk

of C2(S, 0) for any 0, notation being as in Lemma 2.2.5. Here we must take
a little care with condition (d) in the definition of C2(S, 2). It can be dropped,
as remarked there, if ramifies at some finite place. This must be the
case since ht is odd, except possibly in the case that -c is a square. This can
only happen if S’ is empty and [k : Q] = 2, as c is totally positive. But then
B = M(2, k), in which case (by definition) C2(S, 0) always contains the trivial
coset. We conclude that C2(S, 0) is non empty, and so rS,1) has 2-torsion, by
Lemma 2.2.5. D

By the lemma, r S,1) has 2-torsion . Hence S is empty. But then we also
have 3-torsion. This leads to dk  100720. However, for the two fields in this
discriminant range, the prime 2 is inert from Q, which means that B has Hilbert
symbol 1-1, -11. This shows, by Lemma 2.2.6, that 12 divides Icmtor(r1»
for these fields. Hence we conclude that [k : Q]  6.

2.6. - Degree 5

Suppose first that [kB : k] = 2. Lemma 2.4, aplied to kB / k, shows that
2. Lemma 2.1.1, with y = 1.1 and K = kB, now implies that

dk &#x3E; 7.495. Hence

Any prime in Ramf(B) contributes at least a factor of 4.86. As Ramr(B) is not
empty, we conclude that [kB : k] = 1.
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If the narrow class number hi is even, which may happen even if [kB :
k] = 1, let K/ k be a quadratic extension unramified at the finite places. We
get the same lower bound dk &#x3E; 7.495. However, now the contribution of any
P E Ramc(B), which may be inert to K, is only &#x3E; 1.18 if Np = 2, and &#x3E; 1.38
if Np &#x3E; 2. Using [kB : k] = 1, (2.6) and 1.38. 2 ~ 0.372 &#x3E; 1, we conclude
that Rarnf(B) consists of a single prime of norm 2 and S is empty. But then
Lemma 2.2.3 shows that r1) has 3-torsion. Therefore h+ is odd.

Lemma 2.1.1, with y = 2.3 and K = k, gives dk &#x3E; 5.265. Hence

By Lemma 2.5, rs,D has 2-torsion. Any prime in Rany(B) (respectively, in S)
contributes a factor of at least 2.9 (respectively, 4.8). Hence Ramr(B), which
has odd cardinality, contains exactly one prime and S is empty. This allows us
to restrict ourselves to ro coming from quintic fields with dk  18070, unless
Ramf(B) consists of a prime of norm 2. But in this case, has 3-torsion,
so we get the better bound dk  11384. Examining k with dk  18070 yields
only the field of discriminant -9759 (for which ro has no 3-torsion). This

gives the seventh field in Theorem 2.0.1.

2.7. - Degrees 2, 3 and 4

When the degree [k : Q] is this small, one comes across very many
fields and orbifolds that need to be examined individually in order to com-
pute lcmtor(rs,’j) . or at least insure that it is &#x3E; 1. We give a
sample of some of these calculations.

When working through imaginary quadratic fields we need not consider
unramified (matrix) algebras B = M(2, k), as this corresponds to cusped mani-
folds. In this case, Adams [Ad] showed that the smallest volume of any cusped
manifold (arithmetic or not, orientable or not) is the volume of the regular
ideal simplex in IHI3, which is approximately 1.01.... Thus, by Proposition
2.1.2, we need only consider imaginary quadratic fields with dk  56 and with
Ramf(B) consisting of at least two primes. An interesting example corresponds
to k = Q(V~3) and B the algebra ramified at the primes of norm 3 and 4.
Then 0. 1268677 ... and ro has no 3-torsion. Lemmas 2.2.4
and 2.2.6, with {c, d } = I - 1, v/--3 1, show that ro contains a subgroup iso-
morphic to a dihedral group of order 8. As 8. Vol(H 3/ rm ) = 1.01494 - - - &#x3E; 1,
this field can be dismissed.

When [k : Q] = 4, for example, one begins by finding an upper bound for
dk by checking from (2.1.1 ) that &#x3E; 1 for dk &#x3E; 11579, even in
the case that Ranf(B) contains four primes of norm 2 and [kB : k] = 2. If

[kB : k] = 2 we proceed as follows. An examination, using PARI, of the list of
such fields of degree 4 with rl = 2 and even narrow class number h+ shows
that there are none with four primes of norm 2. Hence Rany(B) contains at
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most 3 primes of norm 2. Again from (2.1.1), and using the fact that Ranr(B)
is of even cardinality we find that &#x3E; 1 for dk &#x3E; 8170. However,
the first field k with h+ even and three primes of norm 2 has dk = 8712. Hence
Rany(B) contains at most two primes of norm 2. The corresponding bound is
now dk  6743. One now examines the six fields with h+ even and two primes
of norm 2 in this discriminant range. The conclusion in each case is that either
the orbifold volume is large enough (from the contributions of other primes in

or in S) or that is at least 2, 3 or 6, depending on the
field. Thus, there is at most one prime of norm 2 in Ramr(B). We are then
down to fields with ht even, one place of norm 2 in Ram(B) and dk  4758.
These have to be examined one by one. The case [kB : k] = 1 is handled

similarly.
Cubic fields are treated in much the same way. The one new feature in

this case is that, since there is only one real place, we always have h+ = hk.
In this way, after a laborious check of the rigorous lists of small-discriminant

number fields (available by FTP from megrez.math.u-bordeaux.fr), we arrive at
a list of seven orbifold groups such that 1
and [k : Q]  4. Together with the orbifold coming from the quintic of discrim-
inant -9759 and the sextic of discriminant -215811 discussed in Section 2.5,
this is the list appearing in Theorem 2.0.1. Volumes appearing there were cal-
culated using PARI. The covering degree restrictions come from the results on
lcmtor in subsection 2.2. This concludes the proof of Theorem 2.0.1.

REMARK. The reader will find in [CF2], [CF4] further information on finite
subgroups of arithmetic Kleinian groups, including the arithmetic construction
of the Weeks manifold and a computation of torsion in the orbifold groups
associated to quintic and sextic fields in Theorem 2.0.1.

3. - Proof of Theorem 0.1

Here we complete the proof of Theorem 0.1. The underlying idea is simply
to get presentations for the groups of the orbifolds listed in Table 1 and check
that subgroups of the appropriate index all have elements of finite order. This
is done for the groups G 1, ... Gg. G9 is handled separately.

3.1. - The groups Gi, i = 1, - - - , 8.

In this section we prove,

PROPOSITION 3.1. Presentations l’i for the groups Gi (i = 1, ... 8) in Table 1
are:
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PROOF. The presentations in this proposition were obtained by a rigorous
process involving computer calculation, which we discuss briefly. More details
of this process will be given in [JR2].

The idea is this: from the arithmetic data, we know that there exists a co-
compact Kleinian group Gi. In all of the cases at hand, Gi is the normalizer
of a certain order This is obvious for all values of i except 6 and 8 where
S is nonempty. To deal with these, recall from the discussion in Section 1
that rs,z has the description as the image of the normalizer of an Eichler
order. Hence, using only integer arithmetic, we can generate subgroups r of
Gi. This is accomplished by enumerating the elements in the order Ti, and
checking to see which order elements are in the group (by checking whether
or not a given element normalizes Using this enumeration, we then use a
particular representation of Gi into PGL(2, C) (essentially induced by splitting
the quaternion algebra at the complex place), together with floating-point interval
arithmetic, to calculate an approximate Dirichlet fundamental polyhedron. The
representation of r into PGL(2, C) is induced by a representation of Di, which
is readily determined by knowing the trace of each basis element of Pi. We
continue adding new elements to r until a volume computation tells us that
r = Gi.

The face-pairings of this approximate polyhedron are then used to generate a
group presentation for the orbifold (one generator for each face-pair, one relation
for each edge class). Note that all conjugacy classes of elements of finite order
show up as relators which are a proper power of the word represented by the
faces around an edge class, with the total dihedral angle around the edge class
used to calculate the exponent associated to each relator. Thus, torsion-free

groups are easily recognized from such a presentation.
Note that the vertices of this polyhedron are only calculated with finite

precision - that is, there is an uncertainty associated to each vertex. However,
because of the use of interval arithmetic, upper bounds on this uncertainty are
known (precisely). The true Dirichlet polyhedron of the group Gi (if it were
known precisely) could be obtained from the approximate one by adjusting
vertices within their "region of uncertainty" as well as possibly splitting ap-
proximate vertices into multiple true vertices joined by new edges lying entirely
within a region of uncertainty.
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However, if the regions of uncertainty are small compared to the injectivity
radius of the Kleinian group (suitably defined), then none of these adjustments
will affect the presentation calculated from the face-pairings of the polyhedron.
Specifically, if the largest diameter of any region of uncertainty is smaller than
the minimum of half of the length of the shortest closed geodesic and half of
the shortest ortholength between two nonintersecting elliptic axes (using in both
cases precisely known lower bounds for these lengths), then the presentation
computed from the approximate polyhedron will be isomorphic to the group Gi.

This procedure was carried out for each of the groups Gi (i = 1,... 8) in
Table 1 and the resulting presentations (after simplification) are the ones given
in the statement of this Proposition. The approximate fundamental domains are
given in Figure 2 in the Appendix. It might be noted that in these pictorial
representations, the uncertainties are sufficiently small that the true fundamental
domains would be indistinguishable from the approximate ones to the naked eye.

The simplifications used to obtain the presentations in this Proposition from
the face-pairing presentations derived directly from the polyhedra are given in
Table 3 of the Appendix. The maximum uncertainties and the various relevant
lengths for each polyhedron are given in Table 4 of the Appendix. Note that the
uncertainties themselves are highly dependent on the numerical implementation
chosen (and on the domain generating algorithm chosen, as well as choice of
basepoint and representation) whereas the lengths are geometrically determined
and thus independent of all these factors. Another implementation of the same
procedure might well produce much more uncertainty, to the point of having an
uncertainty that is larger than the bound guaranteeing correctness of the resulting
presentation. These numbers are the results of our particular implementation
and in these cases the uncertainties are all well within the necessary limits.
The reader may notice that in all cases in Table 4 the shortest ortholength is
half the length of the shortest geodesic. This is often the case for orbifolds

generated by elliptic elements as all of the G~ i are. 0

3.2. - Trace calculations

As a further check on the presentations, we can compute the character
varieties of the rl i and verify that these do correspond to the arithmetic data on
Gi i with which we started. This allows us to rule out the possibility of an error,
either in the implementation of the procedure that calculated the face-pairing
presentations for r, i or in the simplification process that led to the presentations
above. We indicate how this was done specifically for r ¡ and r4. The others
follow similar lines and details are available from the authors.

Throughout this calculation, we will be working with SL(2, C) since it is
computationally simpler than PSL(2, C), but since we are working with orb-
ifolds, some care is required when lifting representations from PSL(2, C).

To show that r ¡ is isomorphic to G 1 we first compute a faithful discrete
representation of r 1. Note that by construction r ¡ is isomorphic to a Kleinian
group since it arises as face-pairings on a polyhedron. We find it convenient
to work with traces.
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By standard arguments (cf. [CS3] for example), the traces of a three-

generator subgroup (x, y, z), of SL(2, cC) are completely determined by the
traces of x, y, z, xy, yz, zx and xyz. Let p : r, -~ SL(2, C) be any
representation and let

Then, we compute that trp(a(bc)2b) = xy2_tvy+yZ-x, and trp (acbc) =
yz - tu + x. These seven variables are not independent: it is always true that

= 0.

Thus, the relations in the group give us the following seven equations in the
seven trace variables:

These readily simplify to yield y = fl, x == ±1/(2 2013 a), z == ±(1 2013
a) where a satisfies a4 - 7a3 + 1002 - 12a + 1 = 0. Applying the

results of [MR1] to the group generated by a2 and ha-2h-¡, we find that the
invariant trace field is and the invariant quaternion algebra has Hilbert
symbol {-3, a3 - a2 - 1 }. The invariant trace field is thus a field with one

complex place of discriminant -283 and the invariant quaternion algebra is
ramified at both of the real places. Furthermore, the algebra is not ramified
at any finite place, since the only primes dividing the entries in the Hilbert
symbol are 3 (which is inert from Q) and a prime of norm 13 (a3 - a2 -1 has
norm 13). Neither of these primes ramifies since -3 is a square modulo 13
and a 3 - a 2 -1 is a square in 3 (a ), the finite field of order 81. Furthermore,
2 is inert, so it does not ramify since the ramification set must have even

cardinality.
Thus, we see that r 1 is indeed commensurable with G 1. To see that it

is isomorphic to that group, the computer packages allow us to calculate the
volume of the approximate fundamental domain for r t and observe that it
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coincides (only a very rough approximation is necessary) with the covolume
for Gi 1 given in Table 1. However, as the algebra has only one type of maximal
order (see Section 1), the results of [Bo] show that G 1 is the unique group in its
commensurability class achieving the smallest covolume and the next covolume
is at least twice as big. Thus, r 1.

We now show G4 ~ r4. Repeating the earlier procedure, we obtain the
seven equations

which simplify to yield y = V2 - c~, x = ~ a2 -~- 1 and z = -xy where a
satisfies a3 - a -I-1 = 0 (there is also another solution x = z = 0, y = ~ which
is totally real and hence does not correspond to a discrete, faithful representation
into PSL(2, C)). Again applying [MRI], this time to the group generated by
(ba)2 and (bc)2, we find that the invariant trace field is Q(a) and the invariant
quaternion algebra has Hilbert symbol {-3, -2 - a}. Thus, the invariant trace
field is a field with one complex place of discriminant -23 and the invariant
quaternion algebra is ramified at the unique real place. The only possible finite
places in the ramification set are primes over 2, 3 and 5 (since -2 - a has
norm 5). In this field, 2 and 3 are inert, while 5 splits as a product of a prime
ideal of norm 5 and a prime ideal of norm 25. The algebra is ramified at the
prime of norm 5, but not at the prime of norm 25 since -3 is not a square in
Z/5Z but is a square in the field of order 25. The algebra does not ramify at
3 since -2 - a is a square in 3 (a), the finite field of order 81. The algebra
does not ramify at 2 since the ramification set must have even cardinality.

So, again we see that r4 is commensurable with G4. Volume considerations
then force G4 "--’ r4 as before.

The other groups, G2 to Gg, are treated similarly. Details are available
from the authors. We now relate G4 and G 1 to the Weeks and Meyerhoff
manifolds.

PROPOSITION 3.2. The orbifold covered with degree 12 by the Weeks
manifold. The orbifold H 3/ G I is covered with degree 24 by the Meyerhoff manifold.

PROOF. We first record the arithmetic nature of the Weeks manifold Mw.
Chinburg and Jorgenson stated in Section I of [Ch] that Myy is arithmetic, but
a proof was never published. A proof is in fact implicit in several places now,
e.g. in [RW]. For completeness we give details, following [RW].
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To simplify some of the calculations, it is convenient to work with a slightly
different surgery description of the Weeks manifold given in the Introduction.
Doing (5, l)-surgery on one component of the Whitehead link produces a once
punctured torus bundle X (the sister to the figure eight knot) and the man-
ifold we require can be described as (-3, l)-surgery on X with respect to
some framing of the peripheral torus (see for example the census of closed 3-
manifolds produced by SnapPea [We2]). Let Mw denote this closed manifold,
a presentation for the fundamental group is

By [Wel], this manifold is hyperbolic, and we now compute a faithful
discrete representation (which is unique up to conjugacy). We shall make use
of Mathematica in these calculations.

We begin by noting that the hyperbolic structure on Mw arises from a
faithful discrete representation of into PSL(2, C), and this can be lifted
to a representation of 1f¡ (Mw) into SL(2, C) (see [Cu]). We can conjugate a
representation p of 1f¡ (Mw) into SL(2, C) so that the images of a and b are
the matrices: 

,

respectively. As we are looking for the faithful discrete representation into
SL(2, C), x and y are always non-zero, and not roots of unity.

Write the first relation as w = 0 where w = a2b2a2 - ba-lb. This gives
the following equations.

Note from the equation for W21 we have either r = 0 or we can solve for r
in terms of x and y (which as noted above are always non-zero). Since the
faithful discrete representation will correspond to a non-elementary subgroup of
SL(2, C) we must have r ~ 0. Thus we may assume r is non-zero and from

above, is given by:
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Using this and re-working the above equations gives:

Notice that the expressions for and W22 all have the common factor

The only way we can simultaneously satisfy all the above equations is for

y) = 0.
Writing the second relation as u = a2b2 - h-2ah-1a, and solving u = 0

we deduce that

and so we must have x = y or x = 1 /y. With x = y (a similar argument
applies to y = 1 /x, which also yields the same characters), p(x, y) is simply
the polynomial in x given by:

which must solve to zero to determine a representation. Solving for z = 
yields the polynomial in z, Z3 - Z - 1 = 0. From the equation for r we see
that r = 2 - z.

To see that Mw is arithmetic, and determine the arithmetic data associated
to Mw we use [MRl]. Briefly, let r denote the faithful discrete representation
constructed above. The invariant trace-field of r is the cubic field Q(z) with
one complex place and which has discriminant -23. All traces of elements in r
are integers in Q(z) since this is true for the images of a, b and ab. The Hilbert
symbol for the invariant quaternion algebra is given by {trz(a) -4, tr([a, b]) - 2}
which on calculation gives {z2 - 4, x } where x = 3z2 - z - 5 and satisfies
x3 + 9X2 + 32x + 25 = 0 and u = z2 - 4 satisfies, u3 + 10u2 + 33u + 35 = 0

Note that the real Galois conjugate of u is approximately -2.24512, so
that z2 - 4  0, and the real Galois conjugate of x is approximately 20131.06008,
and hence the invariant quaternion algebra is ramified at the real place of Q(z).
It follows from these remarks that Mw is arithmetic.

To determine the finite places at which the algebra is ramified we proceed
as follows. From the description of the invariant quaternion algebra given above
the only finite places that can ramify are the unique places of norm 5, 7, 8,
and 25. As noted in the introduction, the volume of Mw is approximately
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0.9427073627769 (this approximation can be determined from SnapPea). Now
the group of isometries of Mw is known to be the dihedral group of order 12
(see [HW] or [MV]), hence in the commensurability class of Mw there is an
orbifold of volume approximately 0.078558946. Using the volume formula of
Borel discussed in Section 1 the only finite place that can ramify in the invariant
quatemion algebra is the one of norm 5. This completes the description of the
arithmetic structure associated to the Weeks manifold. The discussion above
also shows that Mw covers with degree 12, which completes the proof
of Proposition 3.2 for the Weeks manifold.

We now deal with the Meyerhoff manifold. In what follows we shall denote
the Meyerhoff manifold by M. From [Ch] M is arithmetic with invariant trace
field and quaternion algebra being as described by the first case in Theorem
2.0.1. Furthermore, as is easily deduced from [Ch], M covers the orbifold
H3 / G1 (alternatively in the language of [MR 1 ] M is derived from a quatemion
algebra as Z) = Z/5Z). From the volume comparisons we see that the
index is 24. 0

3.3. - Subgroup enumeration

The next step in the proof of Theorem 0.1 is to enumerate all the subgroups
of Gi of the appropriate index j. Namely, by Theorem 2.0.1, y must be
divisible by 12 = lcmtor(Gi ) for 1  i  4, by 4 for 5  i  8, and also
j -  1.

We now give the list of subgroups obtained using the presentations in

Proposition 3.1 and the Cayley/Magma group theory software. In the next
section we give an alternative algorithm for ruling out torsion-free subgroups.
Case 1:

From Table 1, lcmtor(G 1 ) G 1 ) = 12 - 0.04089... = 0.49068....
There is a unique subgroup r’ C r 1 of index 12, generators for which are:

This contains c which has order 2, hence has torsion.
Magma can also be used to show there is a unique torsion-free subgroup

r c rl of index 24 (there are 2 with torsion). We also find r C r’ . By
Proposition 3.2, is isometric to the Meyerhoff manifold.

Case 2:
From Table 1, lcmtor(G2) G2) = 12 . 0.05265 ... = 0.6318.... As

above, there is a unique subgroup of r2 of index 12 generated by:

Notice that from the presentation given in Proposition 3 .1, a -1 b has order 2,
hence has order 2, and therefore this subgroup contains an element of
finite order. Thus, there are no torsion-free subgroups of index 12.
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Case 3:
From Table 1, lcmtor(G3) Vol(JHI3/G3) = 12.0.06596 ... = 0.7915.... The

subgroups of r3 of index 12 are:

 a, b, cbabababcbc &#x3E;;

 a, c, bab, bcbcbcabcbcb &#x3E;;

 a, bcb, cbcbc, bababab &#x3E;;

 a, cbab, bcbcbcab &#x3E;;

 b, acbca, abababa, cbababc &#x3E;;

 b, (cba)2, abcbacbca &#x3E;;

 ca, &#x3E;;

 ca, bcab, (ba)4 &#x3E;.

Since a, b and ca all have finite order, none of the groups are torsion-free
and so there is no torsion-free subgroup of index 12.

Case 4:
From Table 1, lcmtor(G4) 12 . 0.0785589... = 0.9427....

There is a unique torsion-free subgroup r of index 12 in r4. By Proposition
3.2, r is isometric to the Weeks manifold.

Case 5:
From Table 1, lcmtor(G5) = 4.0.11783... = 0.4713.... The

subgroups of rs of index 4 are:

 a, b, cac &#x3E;;

 a, c, bab, bcacb &#x3E;;

 a, bab, cac, (cb)2 &#x3E;.

Since a has finite order, none of these give torsion-free subgroups of index
4. The index 8 subgroups in r5 are:

&#x3E;;

 b, aba, (ca)2 &#x3E;;

 c, aca, (ba)2, bcacba &#x3E;.

Again it is clear that each of these has an element of finite order, hence
no torsion-free subgroup of index 8 exists. We have checked that the minimal
index of a torsion-free subgroup of r5 is 16. This seems interesting in light of
the fact that for Fuchsian groups the minimal index of a torsion-free subgroup
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is always either the least common multiple of the orders of the elements of
finite order or twice this [EEK]. For more on this phenomenon, in particular,
for construction of co-compact Kleinian groups where lcmtor is bounded but
the minimal index of a torsion free subgroup gets arbitrarily large, see [JRl].

Case 6:
From Table 1, lcmtor(G6) = 4 - 0.15796 - - - = 0.6318.... The

subgroups of r6 of index 4 are:

 a, bab, cacb &#x3E;;

 b, aba, (ca)2 &#x3E;;

 c, acba, (ba)2 &#x3E;.

Again all these groups have elements of finite order.

Case 7:
From Table 1, lcmtor(G7) = 4.0.22804... = 0.9121 .... Sub-

groups of r7 of index 4 are listed below and again there are elements of finite
order in all of them.

 a, ba b, cac, (cb) 2 &#x3E;;

 b, aba, (ca)2, cbca &#x3E;;

 c, aca, (ba)2 &#x3E;.

Case 8:
From Table 1, lcmtor(G8) Vol(H3/ G8) = 4.0.24534 ... = 0.9813 .... There

is a unique subgroup of index 4 in rg. It is torsion-free and corresponds to
the Meyerhoff manifold. This last claim can be justified as follows. Gg is
commensurable with Gt. In fact, by results in [Bo], [Gi : Gl n Gg] = 12
and [Gg : G n G8] = 2. Thus, G 1 fl G8 = r’, the unique subgroup of G 1 of
index 12. r’, in turn, has a unique torsion-free subgroup of index 2, which
corresponds to the Meyerhoff manifold (see Case (1) above). As G8 has a
unique subgroup of index 4, the two subgroups coincide.

It should be noted that the elements of finite order alluded to above are
all nontrivial (and hence give rise to torsion) since in every case, adding that
element as a relation changes the group in one of two easily verifiable ways:
either changing ri l[ri , ri ] or making rl abelian (which is not possible for a
finite covolume Kleinian group).

3.4. - The case of G9

The one outstanding case to deal with is the case of the sextic field k
of discriminant -215811 discussed in Section 2.5. Here, the algebra B is
unramified at all finite places and there are two distinct types of maximal
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orders. We shall show for the one type not handled in Section 2.5, that r 1)
contains a copy of Z/2Z.

We first note that this algebra is isomorphic to the one with Hilbert symbol
{-1, -1 } over the sextic field k. This is because 2 is inert in this field, and
so { -1, -1 } is unramified at all finite places.

Firstly it is convenient to use the following representation of k, namely
as Q(a) where a satisfies a6 -f- 5a5 + 8a4 - 12c~ - 8a + 1 = 0 (that this is
the same field as the one described in Section 2.5 follows by uniqueness of
the discriminant -215811 for sextic fields of one complex place). Then, using
PARI, we find that Ok, the algebraic integers in k is We will construct
an explicit representation of B into M(2, C) as follows.

As is well-known (see [CS3]) a pair of matrices {a, b} generating a non-
elementary subgroup of SL(2, C) determines, and is completely determined up
to conjugacy by, a triple of numbers (tr(a), tr(b), tr(ab)). In view of this
we define the following elements of SL(2, cC): a has trace a, b has trace

c~+3c~+2c~-3c~-4a and ab has trace -c~-3c~-2c~+4~+5a-l.
Note, by construction the field generated by traces of elements of the group
 a, b &#x3E; is k. Define the k-subalgebra A of M(2, C) to be k[l, a, b, ab].
This is a quatemion algebra over k. We claim it is isomorphic to B. To this
end, let 0 = Ok[I, a, b, ab]. It is an easy exercise to see that Ok[I, a, b, ab]
always forms an order when a, b, and ab all have norm 1 and integral trace
(cf. [GMMR]) Hence 0 is an order in A. The Hilbert symbol for A can
be computed directly as {tr2 (a) - 4, tr([a, b]) - 2}. We also remark that the
discriminant of 0 is the Ok-ideal  tr([a, b]) - 2 &#x3E;. On performing this

calculation, we get {a2 - 4, -as - 3a4 - a3 + Sa2 + 3a - 4} with the Hilbert
symbol entries being units in Ok. Thus we deduce that, since 2 is inert in k,
together with the fact that both Hilbert symbol entries for A are negative at
all real places (and so ramified at all real places, and unramified at all finite
places) A is isomorphic to B, and 0 is a maximal order of A. Thus it suffices
to work with the representation A of B.

Now, a Z/2Z fli Z/2Z inside is generated by the image of

and

One needs merely to check that the trace of each of these elements and
the trace of their product is zero. Note that both of these elements have unit
norm, and so are in the normalizer of 0 (see [Bo]).

It remains now only to show that there is no 3-torsion in The simplest
way to see this is by using the computer package as discussed in Section 3
to show that a and b generate a Kleinian group G of co-volume equal to 8
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times the co-volume of the maximal group r~ . As discussed in the proof of
Proposition 3.1, torsion elements produced by the program are readily observed
from the presentation. In particular the group G can be seen to have no 3-
torsion (see below). Hence there cannot be any 3-torsion in the maximal group,
since the index of G in the maximal group is a power of 2.

For the sake of completeness, we indicate that the group G is determined
by the computer package to have an unsimplified presentation

In this computation, the maximum uncertainty was 3.48978 x 10-7 and the
shortest geodesic has length 0.404575. There is no ortholength between two
elliptic axes, since the group is found to be torsion free.

REMARK. In fact the group G discussed in the previous paragraphs is the
fundamental group of (1, 2)-Dehn surgery on the complement of the knot 52.
In particular G is torsion-free. This manifold (and a pair of 11-fold coverings)
seems to be the only known examples of integral homology spheres which are
arithmetic. Further details can be obtained from the authors.

3.5. - Completing the proof

PROOF OF THEOREM 0.1. We can now put together all the pieces of the proof.
By Theorem 2.0.1, an arithmetic hyperbolic 3-manifold Mo with Vol(Mo)  1
covers one of the nine orbifolds described in Table 1. Section 3.4 rules
out G9. Furthermore, Proposition 3.1 gives presentations for the groups Gi for
i = 1, ... 8 and the Cayley/Magma data given above show that only G 1, G4
and G8 have torsion-free subgroups giving rise to manifolds of volume  1.
As remarked above, the uniqueness of each of these subgroups and Proposition
3.2 allow us to conclude that Mo is isometric to the Weeks or Meyerhoff
manifolds. In particular, these are also the unique arithmetic hyperbolic 3-
manifolds attaining their respective volumes. 0

REMARK. A review of the proof shows that the main obstacle to extending
Theorem 0.1, perhaps to listing volumes  1.3, is the weak discriminant lower
bound in degree 8, namely dk &#x3E; 9.05~. The Generalized Riemann Hypothesis
implies the far better bound dk &#x3E; 9.26 8 [Ma].

4. - Ruling out torsion-free subgroups

As an independent check of the results produced by Cayley/Magma, we
decided to implement another method of ruling out the existence of torsion-free
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subgroups of ri of small index. We sketch two typical cases, one for subgroups
of index 12 and another one for index 4. Consider first the case of r 1. From
Theorem 2.0.1, the minimal index torsion-free subgroup is a multiple of 12.

LEMMA 4. l. r1 has no torsion-free subgroup of index 12.

PROOF. If there were a torsion-free subgroup r c r 1 of index 12, there
would be a map w : rl ~ S12 such that ker(cp) C r, w(a) and would
be products of 4 disjoint 3-cycles and cp(ahc), and would
be each a product of 6 disjoint 2-cycles (more generally, each element of finite
order n must map to a product of 12/n n-cycles). We will show that there is
no such map.

First, observe that cbca and a generate an A4 subgroup of r 1 (cbca has
order 3, a has order 3 and cbc has order 2). There is a unique map from A4
to Sl2 (up to conjugacy) that has the correct cycle structure. Thus, without loss
of generality, we may assume that

Next, observe that c and bca generate an S3 subgroup of r 1. Note that
the image of the product of these two was determined above. There are 27

possible ways to map S3 to S12 with the correct cycle structure and so that
a given element of order 3 has fixed image (these are enumerated below in
Table 2 - one simply lists all the products of disjoint two-cycles that conjugate
the fixed 3-cycle product to its inverse). Now, note that the complete map to
S12 is determined, since a, c and cbca form a generating set for r 1. Thus,
for each of the 27 possibilities for we can calculate and show
that in each case, it does not have the required cycle structure. The results of
this calculation are summarized in Table 2 below and complete the proof that
r 1 has no torsion-free subgroup of index 12.

Now consider the case of r7. From Theorem 2.0.1, the minimal index
torsion-free subgroup is a multiple of 4.

LEMMA 4.2. r7 has no torsion-free subgroups of index 4.

PROOF. Suppose there exists a torsion-free subgroup r of index 4. Hence
the permutation representation of 17 on r yields a map w into S4. Since r
is torsion-free, V(a), V(b) and qJ(c) must be products of two disjoint 2-cycles.
There are only three such in S4, and they lie in a Z/2ZSZ/2Z subgroup. Hence
the image of r7 under w is abelian. However, from Proposition 3.1 it is easy
to observe that the element cacababa lies in the kernel of the map induced by
abelianizing, and has order 2. Hence this contradicts r being torsion-free. 0

This method has been automated, and a computer program has been written
which produces a detailed (and rather tedious) proof, based on a case-by-case
examination of the possible representations into Sn, of the existence or nonex-
istence of torsion-free subgroups of index n, given a presentation of a group
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Table 2
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in which all conjugacy classes of elements of finite order correspond to proper
power relators in the presentation. The presentations given in Proposition 3.1
are of this type (since they are derived from the face-pairings of an orbifold
fundamental domain) and all eight presentations have been run through this

machinery, confirming the Cayley/Magma results. The proofs generated by this
method are available from the authors on request.

As an example of the sort of proof generated by the program, we present
the computer-generated proof of Lemma 4.2 above.

ALTERNATE PROOF OF LEMMA 4.2. The proof proceeds by attempting to
construct a representation V : f7 ~ S4 in which every element of order 2 maps
to a product of 2 disjoint 2-cycles. After relabelling, we may assume that w(a)
is (01) (2 3). There are then three possibilities for ~o (b) (0): 0, 1, and 2 (the
choice of 3 is conjugate to a choice of 2). 0 produces a fixed point and
is rejected. So, assume that = 1. Then, cp(b) must also be (0 1 ) (2 3).
Consider the choices now for cp(c)(O): the same three choices exist (0, 1 and 2)
and again 0 produces a fixed point for so we first assume that = 1
which leads to a contradiction with the relation 
1. So, next we assume that w(c)(0) = 2 which implies that (p (c) = (0 2) ( 13) .
Again, the relation Q(ababacbabcabacabacbab) = 1 is not satisfied. So our

assumption that ~p (b) (0) = 1 is ruled out.

Next, we proceed to the final possibility for and assume that

w(b)(0) = 2, leading to the deduction that ~p (b) - (02)(13). Now there are
four distinct choices namely 0, 1, 2 and 3. Again w(c) (0) = 0 leads
to a fixed point for q;(c), so we assume first that w(c)(0) = 1 which implies
that V (c) = (01 ) {2 3). This leads to a fixed point for which should
be a product of 2 disjoint 2-cycles. Next, assume that w(c)(0) .- 2 implying
that cp(c) = (02)(13). In this case cp(ahcahachah) has a fixed point. Our
final possibility, then, is w(c)(0) = 3 implying that V (c) = (0 3) ( 12). Here, the
relation Q(ababacbabcabacabacbab) = 1 is again not satisfied, ruling out all
possible cases. C7

While this proof would certainly not be considered elegant, it is nevertheless
effective and easy (though quite tedious in the case of the index 12 proofs) to
verify by hand.
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Appendix

Conventions for Figure 2: these polyhedra are drawn in the upper half-
space model and are oriented (approximately) so that the viewer is beneath

them, looking up.

Fig. 2. Fundamental Polyhedra
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Table 3 - Presentation Details

Conventions for Table 3: The polyhedral presentations have generators a
through I for Gi and G2, a through n for G3, a through q for G4, a through
a for Gs, a through w for G6, a through z and a2 through d2 for G7, and a
through r for Gg. The relations for the presentation of each group G are given
in the second column of Table 3. Column 3 contains successive generator elim-
ination equations which reduce each group to a 3-generator presentation. The
correspondence between these generators and the generators given in Proposition
3.1 is then given in column 4. In most cases, these eliminations are sufficient to
exactly reproduce the presentations of Proposition 3.1. G2, GS and G8 require
some slight rewriting of relations to produce the indicated presentations.
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Table 3 - Presentation Details (cont.)
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Table 4 - Numerical Data

Recall from Section 3 that the uncertainties are compared to half the length
of the shortest closed geodesic and half the shortest ortholength between non-
intersecting elliptic axes (that is the length of the perpendicular bisector). The
values in the third and fourth columns are lengths, so that the second column
should be compared to half the third and fourth columns.
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