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Nonunique Continuation for Plane
Uniformly Elliptic Equations in Sobolev Spaces

PASQUALE BUONOCORE - PAOLO MANSELLI

Abstract. In the half plane x &#x3E; 0, a Holder continuous, non zero function u (x, y),
periodic in y is constructed: u has  p  2) second derivatives and it
satisfies a.e. a second order, non variational, uniformly elliptic equation Lu = 0;
moreover u - 0 for x large enough.

Mathematics Subject Classification (2000): 35B60 (primary), 35J 15 (secon-
dary).

1. - Introduction 
’

In dimension n = 3, for a second order, uniformly elliptic operator L, with
Lipschitz continuous coefficients in a domain S2, a unique continuation theorem
holds (i.e., if Lu = 0 in S2 and u =- 0 in an open subset of Q, then u - 0
in S2) (see e.g. H6rmander [6], [7], Miller [8]).

If the coefficients are merely H61der continuous, there are examples of non
unique continuations: the first one was constructed by Plis in [10].

A beautiful and sharp example of non unique continuation is in Miller [8]:
he constructs a solution u to a suitable elliptic equation: the solution is, for
a certain x, the harmonic function: cos N6y; for x somehow larger the
solution is the harmonic function cos(N -E- 1)6z. Putting the pieces
together, he is able to construct a C°° solution that, in a finite x-interval,
becomes == 0 and it solves an elliptic equation of the form L u = 0, without
zero order terms.

In dimension n - 2, the situation is completely different. There is a

unique continuation theorem for uniformly elliptic equation merely with bounded
measurable coefficients (see [3], [2]; more recent results are in [1], [13]).

However, a closer look shows that the unique continuation holds for so-
lutions to Lu = 0, that have L 2 second derivatives. So it is natural to ask
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whether an example of non unique continuation for solutions to uniformly el-
liptic equations with LP (1  p  2) second derivatives could be found.

We asked ourselves how could be possible to imitate K. Miller approach.
In dimension 3, K. Miller lets the solution quickly decay in x, cleverly working
on the two remaining variables y and z, but in dimension 2 there is only one
variable left.

In our case, one has, for a certain x, the function u = e-x sin y (that
in R x [-x, has one "hump" and one "valley") and one would like to

transform it, for larger x, into u = e-2x sin 2y (that has in R x [-7r, 7r ] two
"humps" and two "valleys"), keeping u a solution to an elliptic equation. The
authors’ idea was to create humps and valleys by using the uniformly elliptic
operator first introduced by Gilbarg and Serrin [5], that has tent-like solutions
of the form with LP second derivatives (here X E (0, 1),

The pieces were glued together by adapting a
technique found in the beautiful example of Safonov [12].

Final problem: How to let the constructed function be a solution to an ellip-
tic equation. The authors used a result of Pucci [ 11 ] : if u has negative Hessian,
then u is a solution to an elliptic equation; this fact has been independently,
cleverly and extensively used by Safonov in [12].

Eventually, in { (x, y) E R 2 : 0}, for every p E (1, 2), a function u, 2n
periodic in y was constructed, identically zero for x sufficiently large, Holder
continuous with LP second derivatives, satisfying a uniformly elliptic equation
and of the form e-x sin y in a neighbourhood of x = O.The main result follows.

THEOREM. Let: T - (-x, x] be the 1-dimensional torus, A := [0, -~ oo) x T,
1  p  2. There exists a uniformly elliptic equation in A :

a positive constant X and a function u E W 2~p (A), solution to the above equation,
satisfying:

(i) u = e-x sin y in a neighbourhood of x = 0,
(ii) X.

As a consequence, one can immediately construct non zero solutions with
 p  2) first derivatives to second order uniformly elliptic variational

equations (and to first order elliptic systems), that vanish in an open set.
The structure of the paper is the following. In Section 2, preliminary

results are stated: Pucci’s lemma, the gluing theorems and a suitable existence
theorem for a Gilbarg-Serrin [5] type equation. In Section 3 a solution (periodic
in y), in [0, S] x [-7r, to an elliptic equation is constructed, that starts in a
neighbourhood of x = 0 as e-x sin y and becomes ke-2x sin 2y near x = S. In

Section 4 the example is constructed and in Section 5 there are remarks and
applications.
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2. - Preliminary results .

Throughout the paper, W 2~ p (G ), GCR, will be the space of functions in
LP(G) with first and second derivatives in LP(G) (1  p  2). "u is a solution
to an elliptic equation" in G means that u E (at least) and a.e. in G
there exist all, a12, a22 E L°°(G), such that: (i) for (x, y) E G, (,, E R2,
_ ’) ,

(ii) a.e. in G:

In most of the paper, we will deal with functions of two variables x, y 27r -perio-
dic in y. Let T - (-7r, 7r] be the 1-dimensional torus. If a function 0 is
continuous on T minus a finite set of points, where it has removable singularities,
we will sometimes write relations as "~ (y)  K, y E T" without mentioning
the singularities.

I will be the space of functions u(x, y), 2n-periodic in y,
such that i

will be the open ball in Rl (or R x T) centered in (xo, yo)
with radius R.

The following lemma is a special case of a more general result by Pucci [ 11 ] .
A 3 dimensional extension is in Safonov [12].

LEMMA 2.1 (Puc_ci’s Lemma). Let G be a bounded domain in R x T (or in
R2) and let u E i (G). Let us assume that there exists a positive constant U such
that:

then, there exists in G a uniformly elliptic, second order operator,

, with bounded measurable coefficients, such that:

Next two propositions are "gluing theorems" that allow to patch different
harmonic functions in such a way that the glued function satisfies an elliptic
equation. The technique is a modification of the one in Safonov [12].
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PROPOSITION 2.1. Let: 0  ~  R, BR-3, BR+S open concentric balls and
let GCR2 be the ring BR+SBBR-8. Let us define
ro = a BR; let n be the outer normal to ro.

Assume that w+, w- are harmonic functions in G, satisfying:

Then, there exists W E solution in G to a uniformly elliptic equation, such
that: w = w+ near r+, w = w- near f -.

PROOF. Without loss of generality we can assume that BR-8 are

centered at (o, 0) and use polar coordinates p, 9.
Then: G :

As a consequence of (4), (5), there exists 81 E (0, 8), K, &#x3E; 0, such that,
in Ip - RI S1 :

Notice that shrinking 31 does not change K1.
As a consequence, we have:

in . in

as w+, w- are harmonic, we also have:

in p - R J  81.
Now let us notice that (w+)o = (w-)o on p - R; then the function

is defined in 0  ~ p - R ~ I  31 l and it can be extended to p = R
as a continuous function with value 0. By possibly shrinking 31, we may also
assume that, in p - R  81:
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Let E &#x3E; 0 so small that the set
is a compact subset of p - 7!j  81, it contains ro and it is the closure of a
connected component of the open set:

Let us define:

Notice that w E We have also:

in

in

in

so w pp is bounded and piecewise continuous in G; similar computation can be
done for wpo, thus w E CI,l(G) and it has piecewise continuous bounded
second derivatives. 

’

Clearly w is harmonic in GBD; it remains to show that w satisfies an

elliptic equation in D.
In (DBaD) fl {R  p  R + 3), we have 0  w+ - w_  E and:

thus, by (7):

and, by (8), (9) and (10): in

In we have: 0  w_ - w+  c; one can also

prove that (11) and (12) hold in 
Thus, in (DB(9D U Po)), w satisfies the elliptic equation:

The thesis follows.
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Next proposition is a gluing theorem where the derivative, normal to the
interface, changes sign. For later use one has to be precise about the dependence
of the bounds on the data.

PROPOSITION 2.2. Let S2 , w2 odd and 2 x-

periodic in y, harmonic in Q and such that w I = w2 = sin y on 1. Let us assume
that there exist: a neighbourhood ~ &#x3E; ’ and positive
constants K1, K2 such that, in N’

Then, there exist two open subsets 0, 0’ of Q, such that SZ = 0 u 0’, o f1 0’ =
0 and a function W U 0’) with bounded second derivatives,
satisfying the properties:

(iii) w is harmonic in 0’;
(iv) the bounds: 

-

hold in 0, where K3, K4 depend on flo, Kl, K2 only.
As a consequence of (iii), (iv) and Pucci’s lemma, w satisfies a. e. a uniformly

elliptic equation L w = 0 in Q.

PROOF. Without loss of generality, we may assume

Let us define:

vi 1 and v2 are - 1 on rB({O} U 17r)) and can be extended as smooth functions
to N.

Moreover:

Because of the assumptions (13), (14), (15), we have, in N:
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We have also, in by Cauchy theorem, (17), (18):

The inequalities (17), (18) imply that there exists
(with ~B1 depending on flo, K2 only) such that, in i

Let us choose E Then an open connected component 0 of the
subset of { (x, y) E satisfies 0 C 01; let us define
also O’ = 

The function w patching w 1 and w2, can be defined as:

in

in

in O.

Notice that

Let us evaluate the second derivatives of w in 0: they turn out to be
piecewise continuous and bounded; in 0, we have:



738

Thus, w E w E and the second derivatives are bounded
and discontinuous only on the set of measure zero:

Let us bound the second derivatives of w in 0; we have, using (20):

as w I and W2 are harmonic, we also have, using (21):

Thus, in 0:

By using (17), (19), we have in O : - Hw &#x3E; K4 where K4 depends on Ki, K2
only.

From (18): 4 K2 in 0’; and (17), (18), (19), (22), (23), (24)
in 0, give (iv). The thesis follows. 0

PROPOSITION 2.3. Let BR CR x T be a ball with center 0 and radius R; let
I, where cp E C°° [0, R), 0 _ (p _ 1, cp =- 1 in [0, R14],

Let ïi be a smooth function on aB, M a positive number, fJ a
positive constant /3 E (0, 1 /2). Let L be the uniformly elliptic operator:
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There exists U E W2,P(BR), 1  p  2(l - P), such that:

and the (outer) normal derivatives of u satisfy:

PROOF. The problem:

has a unique solution uo E W2,2 (BR) (see e.g. [9]), smooth in the
function uo is harmonic in a neighbourhood of Let us look for radial

solutions satisfies the O.D.E.:

the equation has two independent solutions vl - 1 and v2 such that in (0, R/4):

Let us choose c &#x3E; 0, so that v2 ( R ) = 1; then: v2 ( R ) &#x3E; 0 and
Let us consider the function:

where A is chosen so big that:

It is not difficult to show that u satisfies (26), (27), (28). The thesis follows. 0
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3. - The shifting solution

The goal of this paragraph is to construct a solution to an elliptic equation
that, as x increases in a finite interval, shifts from e-x sin y to c. sin 2y.
More precisely, the following fact will be proved.

THEOREM 3.1. Let 1  p  2. There exist two constants S &#x3E; 0 and
0  Q  4 , a second order uniformly elliptic operator of the form:

with coefficients al l , a12, a22 E L°° ([o, S] x T) and a function uo E W 2~p ([o, S] x T),
solution a.e. to the equation Lu = 0 in [0, S] x T, satisfying:

~ uo = e-x sin y in a neighbourhood of x = 0;
~ uo = Qe-2(x-S) sin 2y in a neighbourhood of x = S.

The function uo, harmonic in a neighbourhood of x = 0 and x = S, is piece-
wise C2 with bounded second derivatives, except arbitrarily small neighbourhoods
of a finite set of points, where uo is Hölder continuous.

Outline of the proof of Theorem 3.1

The proof will be carried on in several steps. The solution will be con-
structed as sum of two terms u 1 and u 2 .

Most of the proof will be done in [0, b + 1 /2] x T, where b &#x3E; 5 is a

parameter that will be large and it will be fixed later.
Let us denote:

In what follows the calligraphic constants will be positive constants not
depending on b.

Let us outline the strategy used.

STEP 1. A preliminary construction of u 1 is done. The function u 1 is
defined odd and n-periodic in the y variable, harmonic in [0, b + 1 /2] x T,
except four poles where it has a logarithmic singularity; 0 on 0 and its
derivatives ( of order  3 ) are  Le-b there; u 1 = sin 2y on r; moreover,
u 1 / sin 2y and its derivatives ( of order  3 ) can be extended as functions
bounded (uniformly with respect to b) in (b - 3, b + 3) x T (3 not depending
on b) and there.

STEP 2. The function ul, defined in step 1, is changed in a neighbour-
hood O1 of r and extended to [0, + oo) x T. This is done by gluing, around
x = b, u 1 (as defined in Step 1) with e-2(x-b) sin 2y, using Proposition 2.2.
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The resulting function, again called u 1, is harmonic (with poles), except in O 1.
In O1 U [b, b + 1] x T: ID2uII :::: D and W &#x3E; 0. The
constants D and W do not depend on b. By Pucci’s lemma, u 1 (outside of the
poles) satisfies an elliptic equation in [0, + oo) x T.

STEP 3. The construction of u2 is done.

If b is large enough, a function u2 can be defined in (- oo, b] x T, C 1’ with
piecewise continuous bounded second derivatives, harmonic in ((- oo, -Jr -1)U
(0, b)) x T, satisfying an elliptic equation in (- oo, b)) x T and:

in

in

on

on

STEP 4. Our goal will be to sum up u I and u 2 : as they are defined in
different sets, one may define u I in x  0 and u2 in x &#x3E; b, so that:

in

in

(the constants F, ,C do not depend on b).
The function u3 := u + u2 equals e-x sin y in (- oo, -x - 1 ] x T and

e2(x-b) sin 2y in x &#x3E; b + 1 and it is solution to an elliptic equation in E1 I :=
(- oo, -1 x T U ([0, b] x T B Oi) U [b -f- 1, + oo] x T (poles excluded).

Let us look at u 3 in R x T B E 1. To let u 3 be solution to an elliptic equation
in [-1, 0] x T, let us notice that, in that set, Hu2  -1, ~ F2 £,2e-2b,
and D2u2 ~  12, ID2uII :::: then, if b &#x3E; b2, HUI+U2  0 in [-1, O] x T,
and u 3 is a solution to an elliptic equation there.

Similar procedure is done in O1 and in [b, b+ 11 x TB O1, namely, choosing
b sufficiently large , one can let u 1 -~- U2 solve an elliptic equation there.

Then u 3 (outside of the poles) is 1 (with piecewise bounded second
derivatives) and has negative Hessian in R x TBE1; then, it is a solution to an

elliptic equation there, by Pucci’s lemma.

STEP 5. In this step one takes care of the poles (using the first gluing
theorem) by changing the solution, in a small ball around them, to a 

tent-like solution of a Gilbarg-Serrin type equation.
We get a function u 3 in R x T, solution to an elliptic equation, with the

properties: U3 = e-x sin y for x   0, and U3 = for x &#x3E; &#x3E; 1,
u3 E c] x T, - oo  a  c  + oo, 1  p  2. Using this function,
the theorem is easily proved.

Let us proceed to the detailed proof.
STEP 1. Preliminary construction of u 1 in 0  x J b + 1/2.
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LEMMA 3.1. For every b &#x3E; 5, in [0, b + 1 /2] x T, there exists a function u 1
with the properties:
(i) u 1 is odd, 7r-pefiodic in y, harmonic in

k1f/2), k = 0, 1, 2, 3), and; w 0, ui lr = sin2y. ’
(ii) There exist constants 0  3  1 /4, JC &#x3E; 0 (both not depending on b), such

that, in Oo := (b - 3, b + ð) x T, u 1 / sin Zy and its derivatives with respect
to x, y can be extended as continuous functions, satisfying:

(iii) There exists ,C &#x3E; 0 (not depending on b) such that:

(iv) Near k = 0, l, 2, 3 the function u 1 is of the form:

where A &#x3E; 0 does not depend on b, "1 1 is harmonic in a neighbourhood of

PROOF. As u 1 is odd and x-periodic in y, it is sufficient to define it in

Eo := [0, b + 1/2] x [0, 7rl2]BI(b - 1, 7rl4).
Let us look for u 1 of the form:

where is a positive constant that it will be chosen later (not depending on b)
and g is defined, for a moment, as follows: on Fo := [0, b] x [0, Tr/2], ~ is the
Green function, with pole (b- 1, 7r/4), to the problem Au = 0 in Fo, = 0.

Notice that g can be extended as an harmonic double periodic function,
with periods 2b in x and x in y, odd with respect to x and y, to all the plane,
except a countable grid of points; g can be written as - log If (z) 1, where f is a
meromorphic, double periodic, elliptic function on the complex plane (Courant-
Hilbert [4], Vol. 1). The function u I is then defined in Eo and satisfies (i)
and (iv).

It remains to prove (ii) and (iii).



743

The proof of (ii) will be carried on in four remarks.
Checking g(x, y) against the Green function for the half plane x  b, and

the Green function for the rectangle [b - 4, b] x [0, x/2] with pole in the same
point as g(x, y), the remarks below can be proved.

REMARK 3.1. g and its derivatives of order  4 are bounded, in [b - 4 1 , b +
4 ] x T, by a constant not depending on b.

REMARK 3.2. There exists a constant lCo, not depending on b, for which:

From Remark 3.1, next remark follows.

REMARK 3.3. The following inequalities hold in I

the constant ~C1 is positive and does not depend on b.

REMARK 3.4. Proof of (ii), Lemma 3.1.
We have, in [0, b + 1/2] x T:

and on r :

Let us choose such that:

The first of the bound in (ii) follows. The remaining inequalites are con-
sequences of the bounds (35) and the representation (36). The bounds (ii) are
proved. C7
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The proof of (iii) will be carried on with two remarks.

REMARK 3.5. Let 0  y  n/2; then:

(where £i 1 is a positive constant not depending on b)
PROOF. Let G(x, y) be the Green function for the ball centered in (b -

1, jr/4) and radius the distance of the point from the left comers of Fo. Clearly
g (x, y) ::5 G (x, y) in Fo. As b &#x3E; 5 and:

Remark 3.5 follows.

REMARK 3.6 Proof of (iii).
In [o, b/2] x [o, ~/2], u I is of the form:

where:

As a consequence of previous remark:

(the constants on the right-hand side do not depend on b). Last inequality
and (38), give (32). 0

STEP 2. Construction of u i in 0  x  -~ oo.

LEMMA 3.2. There exists in [0, -I- oo] x T a function (again called) u 1, with
the properties:
(i) u 1 is odd, 1f-periodic in y;
(ii) u 1 is harmonic in [0, -f- oo] x T minus a neighbourhood 01 off and the points

in

(iii) u 1 has piecewise continuous, bounded second derivatives
and: 

- -- -

where the positive constants D, W do not depend on b.
(iv) u I satisfies (iii), (iv) of Lemma 3.1.
(v) u 1 (outside of the poles) is a solution to an elliptic equation in [0, -I- oo] x T.
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PROOF. Let u I be the function constructed in Step 1 (in [0, b + 1/2] x T);
let us make the change of variables x’ = 2x, y’ = 2y and let us define:

w 1 is harmonic in odd in y’, 27T-periodic,
sin y’, and the bounds (31 ) give us in

Let us extend w 1, by gluing it to w2 : across

in Q. Notice that w 1 and W2 satisfy the hypothesis of Proposition 2.2, with
constants not depending on b; to show this fact, it is sufficient to compute, in

(as 0  3  1/4). 
_

By Proposition 2.2, there exist OCCO, 0’ = and w E
E U O’)(with bounded second derivatives), such that w = wi I
 2b} and W = W2 in O’ n {x’ &#x3E; 2b}. In 0:

where the positive constants D, W do not depend on b.
Let us change the variables back to x = x’/2, y = y’/2. Let 01 = {(x, y) :

(2x, 2y) E Ol, 0’ = {(x, y) : (2x, 2y) E 0’).
Let us call again u I the new function, defined in [0, +00) x T as:

in

in

in

The new function u I satisfies (i) and (ii) of the present lemma and (iii), (iv)
of Lemma 3.1 ; in O 1:

with D, W positive constants not depending on b. In

so, by possibly changing D, W, one can
assume that (40) holds true in [b, b + 1 ] x T U O1. Thus, u I satisfies (v). D

STEP 3. Construction of u2 in - oo  x  b.
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LEMMA 3.3. There exists 5, such that, if b &#x3E; bi, a function U2 can be
defined in (- oo, b] x T, with the properties:
(i) U2 E C1,1 1 with piecewise continuous bounded second derivatives, U2 is har-

monic in ((- oo, -7r - 1) U (0, b)) x T, and it satisfies an elliptic equation in
(- oo, b) x T;

(ii) the following facts hold:

PROOF. Given b &#x3E; 5, let us define, for a moment, u2 in x E [-1, b] as
follows:

notice that:

so the last of (ii) holds.
On the other hand:

so u2 E across O, u E C2 in [-1, b] x TB8, with piecewise continuous
and bounded second derivatives, u2 is harmonic in [0, b] x T, u2 satisfies the
elliptic equation:

As b &#x3E; 5, 1  cv  1.0002 is "almost 1", so u2 is "almost" harmonic and:

in [-1, O] x T.
Now, let us define u 2 in x  -1. Let:
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the function u2 can be defined, in x  0, as:

Notice that:

so the new definition matches with the previous one and (ii) is proved.
We have: = 0, or(0) = 1, = cv; then:

is continuous in x  0. Thus U2 E with piecewise continuous bounded
second derivatives and it satisfies the second order partial differential equation:

Let us assume:

H 1: 1 St CONDITION ON b. Let 5 so large that, for every b &#x3E; bl, m is
so close to 1, that:

If we assume HI, then the partial differential equation (43) becomes elliptic
and U2 satisfies an elliptic equation (43), in x  0: (i) is proved. 11

The lemma is proved.

STEP 4. (Putting the pieces together)

LEMMA 3.4. There esists a constant bs such that, if b &#x3E; b5, a fiinction U3 can
be constructed, with the properties:

(i) outside of arbitrarily small balls centered in four points, I
k1f /2), k = 0, 1, 2, 3, u3 is into the balls u is of the
form given by (iv) of Lemma 3. l;

(ii) u3 = e-x sin y in (- oo, -x - 2] x T;
(iii) u3 = e-2(x-b) sin 2y in (b + 1, -I- 00] x T
(iv) u3 is a solution to a elliptic equation in [-7r - 2, b + 2] x T and U3 is harmonic

in a neighbourhood of x = -7r - 1 and x = b + 2.
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PROOF. Our goal will be to define u3 as u + u2, but first we have to
define u 2 in x  0 and u 1 in x &#x3E; b.

Let w odd, (fJ’ (0) = 1 and let

Let us define u I in x  0 as:

notice that u 1, u 1y are continuous across

Therefore, uix is continuous across 0. In -1  x  0, we have:

and

Let us define u2 in x &#x3E; b, as:

Again u2, u2y are continuous across r; moreover sin y in x &#x3E; b
matches with u 2x in x  b. Thus u 2 is C"’, and in

Let us define now:

Let us show that, for a suitable choice of b, U3 is the function we are looking
for. Let us make four more assumptions.

(H2): Znd CONDITION ON b. Let b2 &#x3E; bl so large that, for every b &#x3E; b2:

(H3): 3nd CONDITION ON b. Let b3 &#x3E; b2 so large that, for every b &#x3E; b3:

(H4): 4nd CONDITION ON b. Let b4 a b3 so large that, for every b &#x3E; b4:
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(H5): 50d CONDITION ON b. Let bs t b4 so large that, for every b &#x3E; bs :

Now let us fix b &#x3E; b5 and let us check the properties of U3-
(a) if x  -1, we have U3 = u 2, U3 is a solution of an elliptic equation there
and in x :::: -1f - 1.
(f3) in [-1,0] x T u3 = UI +M2 E C2 ([- l, 0) x T); let us compute HU3: we
have, by (ii) of Lemma 3.3, (45) and condition H2:

therefore, by Pucci’s lemma, u3 is solution to a uniformly elliptic equation in
[-1, 0] x T.
(y) in [0, b] x TBO1, u3 is harmonic (but for the four poles, that will be fixed
later).
(8) In u3 E 

1 and has piecewise continuous bounded
second derivatives; let us compute Hu3: we have by (iii) of Lemma 3.2 and
(H3):

thus, by Pucci’s lemma, u3 is a solution to a uniformly elliptic equation in that
set.

(E ) in O 1 fl [b, b + 11 x T, U3 E 1 and has piecewise continuous bounded
second derivatives; by (iii) of Lemma 3.2, (46) and (H4):  -N4  0;
again, by Pucci’s lemma, u3 is solution to a uniformly elliptic equation in that
region.
(~ ) in [b, b + 1] x T B O 1, u3 E 

1 and has piecewise continuous bounded
second derivatives; by (46), (ii) of Lemma 3.3 and (H5): H U3  -NS  0, so
u3 is solution to an elliptic equation in that region.
(q) in sin 2y is harmonic.

STEP 5. Smoothing of u3 and proof of Theorem 3.1.

The function u3 constructed in Step 4 has all the properties we were looking
for, except that it is discontinuous at x = b - 1, y = ~~c/4, ±(3/4)7r where it
has poles. Let us change u3 in a neighbourhood of these points to make it a
W2,p function ( p arbitrary, 1  p  2). It suffices to do this for x = b - 1,
y = 7r/4.

Let us recall that, in a small neighbourhood of (b - l, ~z/4), u3 is of the
form: 

- -

where A &#x3E; 0 and u3 (x, y) is harmonic.



750

Let BR the ball of center (b - 1,.7r/4) and radius 0  R  1/8. We have
on a BR : 

I ’" II . ,

(n outer normal to 8BR). Let us choose R so small that  0 and U3nn &#x3E; 0
on 8BR and B2R C Fo.

Now let us use Proposition 2.3. In BR there exists w_, solution to Lw- = 0
in BR (where L, w_ satisfy (25), (26), (27), (28) with {3 E (0, 1 - p/2)) such

- - -1

that , min~ and As the

difference w_ - u3 is harmonic in BR B B3R/4 and vanishes on 8BR, it can
extended harmonic to 

Now Proposition 2.1 can be used with 0  8  R18 and the extended w-
can be glued with w+ = u3 

From now on let us call U3 this new glued function. U3 E and is
the same as old U3 outside of a small ball around (&#x26;2013 1, jr/4). Doing the same
with the other poles we get a function, again called u3, with the properties:

sin y in
sin 2y in

u3 is
u3 is a solution to a elliptic equation in (- oo, + oo) x T and u3 is harmonic
in a neighbourhood of x = -1f - 1 and x = b + 2.

PROOF OF THEOREM 3.1. Define

in [0, S] x T. Then uo it is a solution to an elliptic equation
in [0, S] x T, uo = e-x sin y in a neighbourhood of : .-
in a neighbourhood of x = S. Moreover, 4 Q  1.

4. - The existence theorem

THEOREM 4.1. Let A := [0, -!- oo) x T, 1  p  2. There exists a uniformly
elliptic equation in A:

a positive constant X and a function u solution to (47), satisfying:
(i) u = e-x sin y in a neighbourhood of x = 0,
(ii) u - 4 for x &#x3E; X.
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PROOF. Let uo be the function introduced in Theorem 3.1 and defined in

[0, S] x T; let 0  Q  1/4, S &#x3E; 0 be the constants defined in that theorem.
Let us define:

Let x E (Sk_ 1, Sk] (k &#x3E; 1); y E T; let:

let us define u in [Sk_ 1, sk ] x T, k = 1, 2, ..., as:

in [0, sl] : u = uo.
It is not difficult to see that u is defined in [o, 2S) x T, and harmonic in

a neighbourhood of x = sk (k = 1, 2,... ).
But for a countable set of points, u E C1~«0, 2 S) x T) ; let us prove that u

is solution to an elliptic equation.
Let uo be solution to:

in [0, S] x T. Then, in [Sk_ 1, Sk] x T :

where are given by (48). Then, in [Sk-1, Sk] x T, u satisfies the elliptic
equation:

where:

From (49):

then u is continuous in [o, 2S] x T and u --~ 0 uniformly as x - 2S.
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Let us prove that u E W~([0,25’] x T) ( 1  p  2). We have:

To prove that u can be extended as - 0 in x &#x3E; X = 2S, it is sufficient to
show that ux has trace a.e. zero on x = 2S. We have:

and 0 as , I then:

therefore, u can be extended to zero in [2S, + oo) x T and the extended function
is in W2, p ([0, + 00) x T). 0

5. - Applications

Let us make comments on the counterexample constructed.
Let us note ’that the summability exponent p can be chosen as close to 2 as

one wants. Infact, the function constructed is "almost" C 1, I, but for a countable
set of points. In small balls around these points, the choice of ~8 in the Gilbarg-
Serrin type operator depends upon the summability exponent p ; if p / 2, then
~6 ~ 0; that means that, to get close to p = 2, one has to make the ellipticity
constant small.

It is reasonable that, if one fixes po E (1, 2), then there could exist a(po),
such that, if L is of the form (30), with ellipticity constant &#x3E; a ( po), then there
could be unique continuation for solutions W 2 ~ p to L u = 0, (po  p  2).

Easy consequences of Theorem 4.1 are the following facts.

THEOREM 5. l. The unique continuation property does not hold for solutions to
elliptic systems that are 1  p  2.
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PROOF. Let us use the notations and the results of previous section. Let u
be the function, defined in A, introduced in Theorem 4.1. Let v : := ux, w :=

-uy, Z := v + iw. Then: (i) Z E (ii) Z - 0 in x &#x3E; X; (iii) Z
satisfies the elliptic system:

Then Z is a counterexample to the unique continuation property (thm. p. 261
in [2] ). El

THEOREM 5.2. Let A as in Theorem 4.1; there exist: a variational, second order,
uniformly elliptic operator L 1, a positive number X and a function W E 
satisfying L 1 w = 0 and w = 0 in x &#x3E; X.

PROOF. Let us use the notations and the results of previous section. Let
u be the function, defined in A, introduced in Theorem 4.1. E COO(A),
~ (o, y) = 0, y E T. Then:

then:

i.e. w E 1  p  2 and it satisfies the second order, uniformly
elliptic, variational equation:

andw=Oinx&#x3E;X.
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