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An Eigenvalue Problem Related to Hardy’s Lp Inequality

MOSHE MARCUS - ITAI SHAFRIR

Abstract. Let S2 be a smooth bounded domain in R’~. We study the relation
between the value of the best constant for Hardy’s LP inequality in Q, denoted by
J1p(Q), and the existence of positive eigenfunctions in W6’ (Q), for an associated
singular eigenvalue problem (EL) for the p-Laplacian. It is known that, in smooth

cp = ( 1 - and cp is the value of the best constant in
the one-dimensional case. In the first part of the paper, we show that, for arbitrary
p &#x3E; 1, J1p (Q) = cp if and only if (EL) has no positive eigenfunction and discuss
the behaviour of the positive eigenfunction of (EL) when J1p(Q)  cp. This
extends a result of [18] for p = 2. In the second part of the paper, we discuss a
family of related variational problems as in [5], and extend the results obtained
there for p = 2, to arbitrary p &#x3E; 1.

Mathematics Subject Classification (2000): 49R05 (primary), 35J70 (secondary).

1. - Introduction

Let S2 be a proper subdomain of R’ and p E (I, cxJ). We shall say that
Hardy’s LP inequality holds in S2 if there exists a positive constant cH = 
such that,

where

In the one dimensional case this inequality was discovered by Hardy [13], [14]
who also showed that the best constant in (1.1) is independent of the domain
and is given by

Pervenuto alla Redazione il 23 settembre 1999.
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In addition he showed that the best constant is not attained. Necas (see [20],
[21]) proved that (1.1) holds for bounded domains with Lipschitz boundary in
R" and Kufner [15, Theorem 8.4] extended the result to bounded domains with
Holder boundary. Further extensions were obtained by many authors, see e.g.,
Ancona [2], [3], Lewis [17], Wannebo [26] and Hajlasz [12]. In particular,
if p &#x3E; n then ( 1.1 ) holds for every proper subdomain of R’ (see Section 5
in [17]).

Let

i sz

If n &#x3E; 1 the constant tip (0) depends on the domain. However if the domain
is smooth then cp. Actually this inequality is valid for any domain
Q which possesses a tangent hyperplane at least at one point of its boundary,
(see [8], [18]). Note that if Hardy’s inequality ( 1.1 ) does not hold in some
domain S2, then = 0.

Recently it was observed (see [18]) that a relation exists between the value
of the best constant Ap(0) and the existence of a minimizer of problem (1.3).
More precisely, the following result was established.

THEOREM [ 18] . Assume that Q is a bounded domain of class C2. Then:
(a) If, for some p E (1, oo), problem (1.3) has no minimizer, then = cp.
(b) In the case p = 2, if = C2, then problem ( 1.3) has no minimizer

The question if, for p ; 2, the condition = cp implies that (1.3)
has no minimizer, remained open. An affirmative answer to this question is

provided in Theorem 1.1 below.
Note that u is a minimizer of (1.3) if and only if u is an eigenfunction of

the problem

where

By the results of Serrin [22], if u E is a solution of the equation
in (1.4) then u is Holder continuous in every compact subset K of Q. The
Holder exponent depends only on n, p and dist(K, 8Q). Combining this fact
with the regularity results of Tolksdorf [24] or Di Benedetto [9], we conclude
that, for every bounded open set D such that D c Q, there exists y &#x3E; 0

depending only on n, p and dist(D, such that u E If, in addition,
u is non-negative, then by the Harnack inequality of [22], either u - 0 or

u &#x3E; 0 everywhere in S2. Clearly, if u is a minimizer of (1.3), then lul is also
a minimizer. Therefore if u is a solution of (1.4), then lul I is positive in S2.

Our first main result is the following.
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THEOREM 1.1. Let Q be a bounded domain of class C2. Then, for every
p E (1, (0):
(i) If = cp then problem ( 1.4) has no solution.

(ii) If itp (0)  cp, then ,u p is a simple eigenvalue, i. e. the family of solutions of ( 1.4)
is one-dimensional. If u is a solution of ( 1.4), then there exists a constant C &#x3E; 0
such that

where a is the unique root of

(iii) = cp, then there exists a non-trivial solution u E of the
equation in ( 1.4) such that u &#x3E; 0. If u is such a solution then there exists a constant
C &#x3E; 0 such that

REMARKS. 1. By [18], [19], if Q is a convex domain then itp(Q) = cp.
Consequently, if Q is a bounded, convex domain of class C2, then problem (1.3)
has no minimizer.

2. More information about the existence problem in the case = cp can be
found in [23] where it is shown, among other things, that there exists a positive
solution to the equation in (1.4) which belongs to every E [1, p).
A related result is presented in Theorem 1.2(iv) below.

For p = 2 Theorem 1.1 was established in [18]. As in that paper, our

proof is based on the construction of an appropriate family of sub and super
solutions (see Section 4). However since, for 2, the problem is nonlinear,
new techniques are required. One of the main ingredients of our study is a

comparison principle (see Section 3) which may be of interest in its own right.
Its proof uses a convexity argument due to Anane [1] and Diaz and Saa [10]
which extends, to the p-Laplacian, an argument due to Brezis and Oswald [7].
Another key ingredient of our proof is a local, integral a-priori estimate for
non-negative solutions of the equation in (1.4) (see Section 2).

The problem of the simplicity of the first eigenvalue for the weighted
p-Laplacian, was studied by several authors. Anane [1] established the sim-
plicity result for regular problems in smooth bounded domains. This result was
extended by Lindquist [16] and Allegretto and Huang [4] to arbitrary bounded
domains. The method of [4] can also be applied to singular problems. In par-
ticular, the simplicity result of Theorem 1.1 (ii) can be proved in the same way
as [4, Theorem 2.1], whose proof is based on an extension of Picone’s identity.
The result holds in any domain S2 in which Hardy’s inequality is valid.
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Recently Brezis and Marcus [5] studied a family of Hardy type inequalities
in L2 and established existence and non-existence results (as in (i) and (ii) above)
for a larger class of singular eigenvalue problems. In Section 6 we extend this
study to the case p # 2 considering the quantity

for all X E R, under the assumption

As before, we observe that u is a minimizer of (1.8) if and only if it is an

eigenfunction of the problem

As before, by the results of Serrin [22] and Tolksdorf [24], if u E 
is a solution of the equation in (1.10) then u E and Vu is Holder
continuous in every compact subset of S2. If, in addition, u &#x3E; 0 and u # 0
then u &#x3E; 0 everywhere in S2. Finally, if u is a minimizer of (1.8), then lul is

positive in Q.
The following result provides an extension to general p of Theorem I of [5],

and a partial extension of Theorem 2 of [6].

THEOREM 1.2. Let Q be a bounded domain of class C2 and assume that 77
satisfies ( 1.9). Then

(i) There exists a real = ~.* (S2) such that

The infimum in ( 1.8) is achieved if À &#x3E; À * and is not achieved if À  À *.

(ii) If À &#x3E; ~,*, the minimizer of (1.8) is unique up to a multiplicative constant.
Furthermore, every minimizing sequence {un }, such that un &#x3E; 0 and fQ(un/8)P = 1,
converges in W6’ (Q) to a minimizer of the problem.
(iii) Suppose that q satisfies the additional assumption

If ~. = À *, then the infimum in (1.8) is not achieved.
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(iv) Assume further that, for some y &#x3E; 0, 1] = O(8Y), as 8 --+ 0. For À &#x3E; X* let

UÀ be the positive minimizer of ( 1.8) normalized by lIuÀIILP(Q) = 1. Then every
sequence converging to k* strictly from above, possesses a subsequence, say

such that

The limiting function u * is a solution of the equation in ( 1.10) with À = X *, i. e.,

and there exists a constant C &#x3E; 0 such that

The proof of Theorem 1.2 follows basically the strategy of [5], [18] for

parts (i)-(iii) and of [6] for part (iv), complemented by the nonlinear techniques
mentioned before with regard to Theorem I, I.

ACKNOWLEDGMENTS. We wish to thank Yehuda Pinchover for very inter-

esting discussions on the subject, and in particular for bringing to our attention
reference [4]. The research of M. M. was supported by the fund for the pro-
motion of research at the Technion and the research of I. S. was supported by
E. and J. Bishop Research Fund.

2. - A local a-priori estimate

In this section we derive a local, integral a-priori estimate for supersolutions
i.e., for u E such that

PROPOSITION 2. l. Let Q be a domain in possibly unbounded. Suppose that
u E (Q) is positive and satisfies (2.1). Then the following statements hold.

(i) There exists a positive constant co such that, for every x E Q,

where Br (x ) denotes the ball of radius r centered at x.

(ii) If, in addition, Q is a bounded domain ofclass C2, then there exists a positive
constant c¡ such that, for every r &#x3E; 0,

where
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PROOF. We introduce a cut-off function 0 E with the following
properties:

For every Testing (2.1 ) against this
function we obtain

Therefore

and hence, by (2.4) and H61der’s inequality,

where C, C’ are constants independent of E. Letting E -~ 0 we obtain (2.2).
In order to prove (ii) it is sufficient to show that (2.3) holds for all r E

(0, ro), for some positive ro. Let x E S2 and 0  r  8 (x). By H61der’s
inequality,

Hence, by (2.2),

The set Dr can be covered by a finite number of balls belonging to the family
IB,13(X) : 8(x) = 3r/4}. Let N(r) be the minimal number of balls needed
for such a cover. It is easy to see that N(r)  crl-n, , where c is a constant

depending on the geometry of SZ. This fact and (2.5) imply (2.3). 0
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3. - A comparison principle and a uniqueness result

Let a E and put

In this section we establish a comparison result for positive sub and super
solutions of the operator IL~ in neighborhoods of the boundary. Its proof is
based on a convexity argument of Anane [1]. In addition we present a result
on the uniqueness (up to a multiplicative constant) of positive solutions of ILa
in Its proof follows closely the proof of Theorem 2.1 of Allegretto
and Huang [4].

Let Q C R" be a domain with nonempty boundary. For any f3 &#x3E; 0 put

PROPOSITION 3.1. Let Q C JRn be a domain with compact boundary. Suppose
that u 1, u2 are two positive functions in C(Q) n Wi~ (S2). Let a E L - (Q) and
suppose that, for some fJ &#x3E; 0 such that Eo 0 0,

In addition, suppose that

where , J Under these assumptions, if

then

PROOF. We first prove the result under the stronger assumption

Let h E C be a function such that,

For every r &#x3E; 0, let be the function given by = h (8 (x) / r) for every
x E Q. Then 1/1, is Lipschitz in SZ and
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Put

where XQp denotes the characteristic function of r2f3. Since uj ( j = 1, 2) is

positive and belongs to it follows that up belongs to the same
space. Therefore, in view of (3.5), W n (Q) and

Note that, in view of (3.7), w = 0 in a neighborhood of £p . Hence E

W6’ Testing the inequality Lau2 &#x3E; 0 against this test function we obtain,

Similarly, testing the inequality 0 against the test function we

obtain,

Subtracting the two inequalities yields,

Now suppose that (3.6) does not hold. Then

has positive measure. Put

By (3.14) we have
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In view of (3.9) and (3.10),

Consequently, by (3.4),

On the other hand, we claim that

Indeed h (r) can be written in the form,

where the function H is defined by

It was proved by Anane [1] that 0 for all such
Therefore (3.19) holds.

Since h (r) is nondecreasing, (3.19) implies that either

or there exist ro E (0, fl) and yo &#x3E; 0 such that

Clearly (3.22) does not hold because (3.17) and (3.18) imply that lim 
h (r ) &#x3E; 0. On the other hand, if (3.21) holds, then

By Anane [1] (see his proof of Lemma 1) (3.23) implies that = 0
a.e. in E. Hence u 2 /u 1 is constant in every connected component of the open
set E. However if E’ is such a component then a E’ 0. Clearly if

~ E then U2 Since u2/ui I is constant in E’ it follows that

u 1 - u2 in E’, contradicting the definition of E. This contradiction shows that
E cannot have positive measure. Since it is an open set, it follows that E is

empty. This proves (3.6) under the additional assumption (3.7).
In the general case, assuming only (3.5), we apply the above result to the

functions u I and ( 1-f- E ) u 2 where E &#x3E; 0. It follows that ( 1 + IC)U2 &#x3E;- u 1 on Qf3.
Since this inequality holds for arbitrary E &#x3E; 0 we obtain (3.6). D
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Next we present a uniqueness result which implies the uniqueness statements
in Theorems I,I and 1.2.

PROPOSITION 3.2. Let S2 be a proper subdomain of Rn for which Hardy’s
inequality ( 1.1 ) holds. Suppose that vl , V2 E are nonnegative nontrivial
solutions of the equation

where a E L 00 (Q). Then, there exists a constant y &#x3E; 0 such that V2 = Y vl in Q.

REMARK. This result is established by the same argument as in the proof of
Theorem 2.1 of [4]. For the convenience of the reader we provide the argument
below.

PROOF. Suppose that u, V E C1(Q) and u &#x3E; 0, v &#x3E; 0. Put

Then, by [4, Theorem I.I],

Recall that by the regularity results of Serrin [22] and Tolksdorf [24] we
have vi, v2 e C 1 (0) and vi, v2 &#x3E; 0 in S2. Choose a sequence of functions

C with 0, Vn, such that On - VI in and a.e.
in S2 while VOn - ovl a.e. in SZ. Then, by Fatou’s lemma,

Since q5,,Plv 2 P-1 1 E Co (Q) and V2 satisfies (3.24), we obtain

Finally, since v, satisfies (3.24), 0, - v, in W1,P(Q) and Hardy’s inequality
holds in Q, it follows that

By (3.27)-(3.29), L(vl, v2) = 0 on S2, and consequently v2/vl is a constant. 0

REMARK. Actually the convexity argument of [ 1 ] and the Picone identity
of [4] are closely related. With the same notations as above we have
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4. - A construction of sub and super solutions

In this section we shall construct sub and super solutions that will serve in

the proofs of Theorem 1.1 and Theorem 1.2. We first introduce some notations
that will be used in the sequel.

Throughout this section let SZ be a bounded domain in R" of class C2.
If f3 is sufficiently small (say f3  00), then, for every x E Qp, there exists
a unique point o- (x ) E L := 8Q such that S (x ) - ~ x - The mapping
n : Qp - (0, fl) x E defined by II (x ) = (~ (x ) , is a C 1 diffeomorphism
and 3 E see [11, Sec. 14.6]. For 0  t  f30, the mapping Ht :=

.) of E onto Et is also a C’ diffeomorphism and its Jacobian satisfies,

where c is a constant depending only on E, flo and the choice of local coor-
dinates on E. For every v E 

where do, dat denote surface elements on E, Et respectively (see e.g. [5]).
Using (4.1) and (4.2) we finally deduce that

Let f Ec [o, oo) n (0) and put v (x ) = f (8 (x ) ) for every x E Q.
Since IVSI = 1 we have lvvl = [ and consequently (by (4.2))

Suppose that f E C2 (o, 01) and f’ &#x3E; 0 in (0, If 0  p  min(,8o, Pi),
then

For every p &#x3E; 1 the function a H ( p -1 ) a p-1 ( 1- a ) attains its maximum
over [0, 1] at the point 1 - p and the maximum equals cp. This function is

strictly decreasing in the interval [ 1 - 1, 1 ] . Therefore the equationp

has precisely one root in this interval. This root will be denoted by
Observe that = 1 - p I -
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LEMMA 4.1. Let A E (0, c p ] and let TJ be a continuous function in Q such that
17 = O(8Y), as 8 --+ 0, for some y &#x3E; 0. Put a := It - TJ. Then, for every E E (0, y),
there exists f3 E (0, depending on it, E and 17, such that

and

PROOF. Let Put and
Note that,

By (4.5),

Hence

where

Since while it follows from (4.9) and (4.11) that

Further, by (4.9) and (4.10), if

where is a quantity tending to zero as 8 - 0, uniformly with respect to
a. Therefore, by (4.12), for every E E (0, y),

for all sufficiently small 8, uniformly with respect to a.
Now suppose that a = By the same computation as before,

with B as in (4.11 ). In the present case [t = it. Therefore, since r  a,

Consequently, if

for all sufficiently small 8. In the above computations we assumed, as we may,
that j6 was chosen small enough to ensure that §-1 1 &#x3E; 0 and &#x3E; 0

D
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Our next lemma is used in the proof of statement (iii) of Theorem 1.2.
It gives a construction of a subsolution for the operator ILa where this time
a = cp - 11 with 11 E satisfying ( 1.12). We shall need some notations and
preliminary computations. Let fa,s(t) = for some a, s &#x3E; 0, where

For

and consequently

Therefore, by (4.5), if 0  f3  min(l, PO), then va,s := fa,s 0 8 satisfies the

following equation in 

1 1 -

LEMMA 4.2. Let zp,s := 8 1 - P I X (8)S for some s &#x3E; 0. Suppose that 17 E C(Q)
satisfies (1.12). Put a = cp - 17. Then, there exists fJ1 E (0, flo) depending on 17 and
on s, such that

PROOF. For (

Therefore by (4.20),

Clearly there exists f31 1 &#x3E; 0 such that 0 when
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5. - Proof of Theorem 1.1

The proof is based on two lemmas. In these Q is a bounded domain of
class C~. The first lemma provides estimates from below, up to the boundary,
for positive supersolutions of a class of equations which includes in particular
the equation in (1.4). The lemma implies the estimates from below in statements
(ii) and (iii) of Theorem 1.1.

LEMMA 5.1. Let g = ~ - r~ where ft E (0, E C(Q) = O(8Y)for
some y &#x3E; 0. If u E f1 a positive supersolution ofLg (see (3.1))
in a boundary strip Qf31’ then there exists a constant C &#x3E; 0 such that,

where is the unique root of (4.6).
PROOF. Let v, = 801(l + 8E ) where E = y /2 and a E (ap(it), 1). Since

a &#x3E; 1 - 1, va E By Lemma 4.1, if f3 E (0, is sufficiently smallp

(depending on it, q), then

for all a as above. Fix f3  1) so that (5.2) holds and, in addition, so
&#x3E; 0 in Choose Cp &#x3E; 0 such that

This is possible because u is continuous and positive in Q and va  1 + fJE
on Ep.

We claim that the assumptions of Proposition 3.1 are satisfied in Qp, with
respect to the functions u 1 = u2 = u and a = g. Indeed, by assumption,
u2 is a positive supersolution of Lg and, by (5.2), u 1 is a positive subsolution
of Lg in Qp. Therefore it only remains to verify assumption (3.4). From the
definition of va and Proposition 2.1 applied to u we get

and

where c, c’, c" stand for various constants. In applying the a-priori estimate for
u we used the fact that JL - 17 &#x3E; 0 in Since a &#x3E; 1 - p it follows that

a + ( p - 1 ) (a - 1) = a p + 1 - p &#x3E; 0. Therefore (3.4) holds. Thus applying
Proposition 3.1 we obtain,

Since the constant Cp is independent of a E 1) we obtain (5.1 ) . D
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The second lemma provides estimates from above, up to the boundary, for
subsolutions of a class of equations as before. The lemma implies in particular
the estimate from above in statement (ii) of Theorem I.I.

LEMMA 5.2. Let g be as in Lemma 5.1. If u n C(Q) is a positive
subsolution of Lg in a boundary strip 52,~1 , then there exists a constant C’ &#x3E; 0 such
that

PROOF. Let v = where E = y /2. By Lemma 4. l, if f3 E (0, f30)
is sufficiently small (depending on it, then v &#x3E; 0 in U £p and

Fix f3  min(f31, 1) so that (5.6) holds and choose Cp &#x3E; 0 such that

We claim that the assumptions of Proposition 3.1 are satisfied in S2~ with
respect to the functions u 1 - u, u2 = Cpv and a = g. Indeed, by assumption,
u i is a positive subsolution of Lg and, by (5.6), u2 is a positive supersolution of
Lg in Qfi. Therefore it only remains to verify assumption (3.4). In the present
case 

~ -

where c is a constant independent of r. Here we used the fact that |~v|/v =
O (S -1 ) . Since u E Hardy’s inequality combined with H61der’s in-

equality yields 
..

Consequently,

Thus (3.4) holds and therefore, by Proposition 3.1,

COMPLETION OF THE PROOF OF THEOREM 1.1. If u is a solution of (1.4),
then it is locally Holder continuous and does not vanish in S2 (see the com-
ments following (1.4)). Therefore, if pp  cp, (1.5) follows immediately from
Lemmas 5.1 and 5.2.
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If u E is a non-negative solution of the equation in (1.4) and
u 0- 0, then by Serrin [22], u is locally Holder continuous and positive in S2.
Therefore (1.7) follows from Lemma 5.1.

Suppose that u is a solution of (1.4) with pp = cp. Then u is continuous
and we may assume that it is positive in S2. Consequently u must satisfy (1.7).
Since this estimate contradicts the fact that u E it follows that state-
ment (i) holds.

If JLp  cp, then by [18], problem (1.4) possesses a solution. As mentioned
above, such a solution does not vanish anywhere in SZ. Suppose that u, v are two
positive solutions. Then by Proposition 3.2 u / v is a constant. This completes
the proof of statement (ii).

It remains to prove the existence part of (iii). For C E (0, 1) put

This variational problem possesses a solution and every solution is continuous
and does not vanish anywhere in S2. Choose a point Po E Q and let u, be a
solution of (5.9) such that 1. Let D be a bounded smooth domain
such that D C S2 and Po E D. By the Harnack inequality of [22], there exists
a constant C depending only on n, p and D, such that

Since C is independent of E it follows that E E (0, 1)) is bounded in D.

Further, by [22], [24], there exists y &#x3E; 0, depending on n, p and D such that
E E (0,1)} is bounded in C1°Y (D). By the theorem of Arzela-Ascoli, there

exists a sequence En B 0 such that converges in C1 (D). By a standard
procedure we obtain a subsequence such that converges locally inn n

C1 (Q) to a function u. Since u(Po) = 1, u # 0.
We claim that = cp. In fact J-tE,p is monotone increasing with

respect to c and J-tE,p &#x3E; cp. Hence lip := limE--+o J-tE,p :::: cp. On the other hand,
if { vn } is a minimizing sequence for (1.3), then

Since cp it is clear that the function u = is a (weak)
solution of the equation 

’~
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6. - Proof of Theorem 1.2

The proof of the theorem will be based on several lemmas. In all of them
it is assumed that S2 is a bounded domain of class C2 and that 77 satisfies
condition (1.9). We start with a simple lemma which is proved by an easy
modification of the argument in Section 1 of [5].

LEMMA 6.1. For allk E R we cp.

PROOF. Fix any a &#x3E; 1 - 1 / p and p E (0, flo) and define a function h(t) =
on [0, ,B] by

By a direct calculation we have

Next define

By (4.3) we have

and

Hence, by (1.8),

Passing to the limit as a - 1 - 1 / p and using (6.1 ) we obtain

Finally, letting P -~ 0 and using (1.9) we obtain
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The most delicate step in extending the result from p = 2 to general p
is the following Hardy type inequality on a boundary strip. The proof of the
corresponding result in [5] for the case p = 2 uses an improved one dimensional
Hardy inequality. Our argument for general p is different. It uses a supersolution
construction, in conjunction with the argument of [4, Theorem 2.1].

LEMMA 6.2. If f3 &#x3E; 0 is sufficiently small then,

PROOF. By Lemma 4.1 there exists 0  0  min( 1, (Jo) such that the

function v = 8 ~ -1 ~p ( 1 - 8) satisfies

Suppose that u E Co (Q). Then, by (3.26) and (6.4),

where = ~ 8 is the normal derivative of v on LfJ directed outwards
relative to This proves (6.3) for u e and hence for u e D

LEMMA 6.3. There e 1R such = cp.

PROOF. Let u E Wo ’ p ( S2) . With ~6 &#x3E; 0 as in Lemma 6.2 and 

x E S2 B we get, using (6.3),

Thus, for we have In view of Lemma 6.1 it follows that
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Clearly the function h H Jx is concave and non-increasing on R and
Jx = - oo. This fact and Lemma 6.3 imply that,

Thus Jx = cp for every À  À * and À « Jx is concave and strictly decreasing

The next two results describe the significance of the value X* with regard to
the eigenvalue problem ( I .10). The proof of the next lemma follows essentially
the argument of [ 18], but our presentation is simpler (see also [5] for the case
p = 2).

LEMMA 6.4. If À &#x3E; X* the infimum in ( 1.8) is attained and the minimizer is
unique up to a multiplicative constant. Furthermore, every minimizing sequence
{un } of non-negative functions, normalized by

converges in minimizer of ( I . 8).
REMARK. Actually it will be shown that every minimizing sequence { u n },

normalized by (6.8), has a subsequence which converges either to u or to -u,
where u is the unique normalized, positive minimizer of (1.8).

PROOF. Let {un } be a minimizing sequence for (1.8) such that

with ~n ~ 0. In particular {un ~ is bounded in By passing to a

subsequence, we may assume that

Fix p E (0, flo) sufficiently small so that (6.3) holds in In the sequel we
shall denote by a quantity which tends to 0 as fJ ~ 0 (independently of
n). By (1.9) and (6.8),

Now by (6.9), (6.11), (6.3) and (6.8) we obtain,
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Passing to the limit n -~ oo in (6.12), using (6.10), yields

Finally, letting fJ - 0 and using the definition of Jx (see (1.8)) we obtain

Since , , and (6.14) implies that

By (6.8) and (6.10), {un/8} converges to u/8 weakly in LP(Q). Therefore (6.15)
implies that (un /8) converges to u/8 strongly in LP(Q). Consequently, (6.9)
and (6.10) imply that,

In view of (6.15) we conclude that u is a minimizer. Since converges to

u/8 in LP(Q), it follows that fQ dx ~ JQ dx. Hence, by (6.10),
un ~ u in W 1’p(S2). Finally, Proposition 3.2 implies that the minimizer is

unique up to a multiplicative constant. Consequently the full minimizing se-
quence converges to u in D

The next two results are concerned with the non-existence of minimizers
for problem (1.8) k*.

LEMMA 6.5. Ifh  X*, the infimum in (1.8) is not achieved.

PROOF. Assume by contradiction that for some k  X*, the infimum in (1.8)
is attained by some function u E We assume that u is normalized so
that

Then for . 

we have,

This contradiction proves the lemma.
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The proof of non-existence in the case h = h* is considerably more delicate.
In view of the remarks concerning problem (1.8) in our introduction, it is
clear that in order to establish non-existence of minimizers for problem (1.8)
with À = k*, it is enough to show that there are no positive solutions of

problem (1.10) with k = h* and J~, = cp. This result is a special case of our
next proposition which generalizes [5, Theorem III] for arbitrary p E (I , cxJ).
Note that the proposition requires an additional assumption on 77 which was not
needed in the case h  k*.

PROPOSITION 6.6. Suppose that u is a nonnegative function in C (Q) n W¿,p (Q)
which satisfies the inequality

where r~ E C (0) satisfies ( 1.12). Then u --_ 0.

PROOF. Assume by negation that there exists a non-trivial, non-negative
solution u of (6.16) such that u E n C(Q). By Trudinger [25, Theo-
rem 1.2] u is positive in S2.

Let vs = zp,s be as in Lemma 4.2 for some fixed s E (0, p ] . By the
assumption on 17 it is clear that we may choose p E (0, fJ1) (with fil given by
Lemma 4.2) such that q  cp in Qp. Since u is positive, there exists E &#x3E; 0
such that

We claim that

Before proving this inequality we note that it contradicts the assumption that
u belongs to Indeed, if u E then E LP(Q). Therefore,
by (6.18) E LP(Q). However the last relation does not hold 
Therefore (6.18) implies the assertion of the proposition. 

For the proof of (6.18) we use again the comparison principle of Proposi-
tion 3.1. We apply it on Qp to the functions u = u 2 = u and a = cp - 77.
Indeed, by Lemma 4.2, u I is a subsolution of ILa on Qp and , by assumption,
u2 is a super solution. It remains to verify assumption (3.4). Since a &#x3E; 0 in

Qp the a-priori estimate (2.3) applies to u2 yielding

Since we also have
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for some constant c &#x3E; 0. From (f .19), (6.20) and the definition of vs we obtain

This implies (3.4) and (6.18) follows. D

COMPLETION OF PROOF OF THEOREM 1.2. Let h* be defined as in (6.7). Then
parts (i) and (ii) follow from Lemmas 6.4 and 6.5. Part (iii) is a consequence
of Proposition 6.6. It remains to prove part (iv).

Consider a sequence X,, ~ k*, and let un = uÀn denote the positive mini-
mizer of (1.8) with k normalized by

Recall that we assume that ?7 = Fix any E E (0, y). By Lemma 4.1

there exists 0 small enough such that the function v = 81- p { 1- 8E ) satisfies

By [22] (un) is bounded in In particular, there exists K &#x3E; 0 such that

By the comparison principle (Proposition 3.1) (6.23) implies that

Hence

For any fixed x E Q set r = ~ (x ) /2 and consider the function
on J9i(0). This function satisfies

By (6.25) and the regularity results of Tolksdorf,
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which, by rescaling, yields

This implies that {un } is bounded in Vq  p. Consequently there
exists a subsequence (still denoted by {un }) such that

By (6.27), un - u * strongly in LP(Q). In view of (6.21) this implies that
in Q, and by [22] u* &#x3E; 0 in S2. By (6.26), for each

Moreover, by the regularity results of Tolksdorf,

Clearly (6.28) and (6.29) imply the strong convergence
for all q  p. Obviously u * satisfies the equation (1.14).

It remains to prove the estimate (1.15). Passing to the limit in (6.25) yields,

On the other hand, the same argument as in the proof of (1.7), gives

and the result follows.
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