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On the Angle Condition for the Perturbation of Elliptic Systems

RÜDIGER LANDES

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXIX (2000),

Abstract. For perturbed elliptic systems with critical growth we discuss conver-
gence properties of an approximating sequence. We show the strong convergence
in the relevant Soblovespace, if a-priori bounds depending on the "angle condition"
are available for the L 00 - norm of the approximations. This condition restricts the
angle between the perturbation and the solution as vectors in the target space JRM.
Our main tools are testfunctions constructed by projections onto convex sets in
the target space. Finally, we present conditions on the inhomogeneity, providing
those bounds and consequently the existence of weak solutions.

Mathematics Subject Classification (1991): 35J60, 35A35, 49A22..

Introduction

On bounded domains Q C R N we consider weak solutions u : S2 -~ Rm
of the Dirichlet problem for elliptic systems

We are interested in the convergence properties of approximating sequences
assuming that the perturbation B(u) is of "critical" growth in the gradient, i.e.:
the growth exponent is of the same order as the integration exponent of the
relevant Sobolev Space. For two reasons these problems are of particular interest.
Firstly, the Euler-Lagrange systems of variational problems for vector valued
functions are of this type, in the cases where the functional is depending not
only on the gradient but also explicitly on the solution. Because of this relation
this growth of B(u) is often called "natural", too. Secondly, with this growth
the usual positivity conditions only provide for the perturbations
and heAce there are no compactness results from Functional Analysis available
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of Oklahoma.
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to justify the limit procedure ("lack of compactness", cf. e.g.: [E]). For the
abundance of literature on this type of systems we refer the reader to [Ga],
[Gi], [H] and the references cited therein.

In the special situation of Euler-Lagrange equations, the existence of weak
solutions can be provided by lower semicontinuity arguments, once lower bounds
for the functionals are established. But these arguments do not provide additional
information for the approximating sequence, such as pointwise convergence or
even norm convergence of the gradients. Those properties are of importance
also in order to deal with the related parabolic problems, cf. e.g.: [LM], where
we considered the heat equation for perturbations with critical growth. Since
the variational structure is not needed in our approach, we can deal with a
much larger class of systems, including systems such as

Quite often the lack of compactness requires to overcome the difficulties arising
from a possible oscillation of the gradients of a weakly convergent sequence.
Even though this is not quite trivial to deal with in our situation, the main

difficulty is that non equi-integrable singularities, like the approximation of the
Dirac 8-function, could develop in the sequence of the perturbations.

However, we are able to show the strong convergence of an approximating
sequence in the Sobolev Space and hence the existence of weak
solutions provided uniform L °° -bounds are available depending on the maximal
angle between the direction vector of the perturbation and direction vector of
the solution. The proof is based on the use of test functions introduced in [Ll].
We demonstrate firstly that non equi-integrable singularities do not develop as
long as the values of the approximations are not in certain convex sets. By a
finite induction we are able to make those sets arbitrarily small, which allows
us to establish the strong convergence of the sequence.

1. - Assumptions and Main Result

As usual we denote by the completion of the smooth function
with respect to the norm

We consider elliptic operators A (u) of the form
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with perturbations

and inhomogeneities f E ( Wo ~ p ( S2) ) * . A weak solution of the boundary value
problem (0.1) is a function u E such that the coefficient functions

u, Du), and bk (x, u, Du) are in LP’(0) and L1(Q), respectively, p’ =
, and u is satiesfying the equation

i.e.: ~

for all (vector-valued) functions 0 n 

On the operator A(u) we impose the usual growth condition, which allows
to consider A (u) as a mapping from into its dual space, further we

impose a strict monotonicity condition, a coerciveness condition and a structure
condition which for example is satisfied by systems in diagonal form. More

precisely we assume that the elliptic operator is subject to the hypothesis (A),
which specifies:

(A,i) The coefficient functions yy, ~) satisfy the Carath6odory condition
(i.e.: Ak is measurable in x for all (77, ~) E JRM x and continuous
in (q, ~) for x a.e.) and they are subject to the growth condition

(A,ii) For ~ ~ ~ we have

(A,iii) There is a number v &#x3E; 0 such that

(A,iv) For all ~ E Rm we have
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The hypothesis (B) for the perturbation consists of the growth condition
and the angle condition:

(B,i) The coefficient functions of B(u) satisfy the Carath£odory condition
and the (critical) growth condition

(B,ii) There is a number y, 0  y  2 such that

As an example we are able to deal with the operators

where T : Rm is a mapping satisfying

In Section 5 of [LI] we pointed out that (A,iv) is not much stronger than
condition (A5) of [L2]:

and our statements are valid for the examples of elliptic operators A (u ) in that
note. In particular we are able to deal with operators

satisfying the usual ellipticity condition

We refer to those operators as operators in strict diagonal form. They satisfy
the structure condition (A,iv). Both above examples are operators of this kind.
In order not to overburden the presentation with distracting technical details,
we have not incorporated "lower order" dependence in (A,iii), (B,i) and (B,ii).
This is possible in a similar manner as in [L2].

Our main existence result is the following



257

THEOREM l.1. Suppose that the hypotheses (A) and (B) are satisfied, then there
is a weak solution of (0.1 ) provided the approximating sequence defined in the next
section is subject to the bound I I U n II 00  M  v (a exp(-y cot y) sin y)-1.

If p &#x3E; 2 then for f E Lq, q &#x3E; P this bound can be established if || f 11 q is
- 

p
small enough and the elliptic operator A(u) is of the kind (1.2). Indeed

suffices, where Co is the best Sobolev constant such that for all u E with

|| u || N _ C II Du ||p and e Ilull Np P N ( -1).
N-p 

q P

REMARKS.

i) Note that the bound becomes less than § as y raises to 2 and tends
to infinity as y falls to zero. Fig. 1 shows the "Mathematica" rendered

graph of h ( y ) = sin y exp ( - y cot y ) .

ii) In [L3] we pointed out that L°°-a-priori bounds for systems in diagonal
form of type (1.2) can be obtained if p &#x3E; 2, cf.: Section 5, too. But for
p  2 those bounds seem not to be available, (yet?).

2. - Convergence properties of an approximating sequence

For each approximation step in our arguments below we need the full test
space and uniform L°°- bounds, hence our choices for approximation
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schemes are limited. In particular we do not know how to obtain the result
using Galerkin approximations. Here we work with the solutions of the system
with truncated perturbations, i.e. we define the sequence of approximations {un }
as weak solutions of the problem

where the perturbation operator is defined by

It is straight forward to check that A (u ) + Bn (u ) defines a bounded, coercive,
pseudomonotone operator from into (Wol, P (0)) *. Hence the weak
solutions un exist. As in [L2] (cf.: [Z] also) we establish the following conver-
gence properties of this sequence of approximations (or possibly a subsequence
thereof):

There is a function u E such that

Here and thereafter all pointwise statements are to be understood to hold
a.e. with respect to the Lebesgue measure of S2.

Because of these properties of }un } we have

for all 0 E Since the pointwise convergence of bn (x, un, Dun)
to b(x, u, Du) follows from 3), the existence result is established, once we are
able to provide the equi-integrability of this sequence.

3. - Equi-integrability of bn (x , Un, 

Because of the growth condition (B,ii) we obtain the required property from
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THEOREM 3.1. Suppose that the differential operators satisfy (A) and (B),
respectively. Let {un } C be a sequence such that

and

then IDunlP - L 1 (0). (We use the symbol for a sequence tending
to zero as n tends to 00.)

To prove this result we need to construct several different test functions by
projections onto convex sets. We shall employ rotational symmetric sets with
boundary of class C2 such as:

(Sl) Balls B(x, R) of radius R and center at x.

(S2) Sets Ke (x) with cross-sections Q, described in the Xl, X2- plane, say, as
follows:

i) Q, contains the curve with the properties that is symmetric to
the xl-axis and consists above the xl-axis of two connected curves £i 1
and ,C2 . £1 1 is part of a logarithmic spiral given by

7r
= e-t cot Y (cos t, sin t), for 0  t  ’- y , and

2

,C2 is the vertical line connecting the point

with

ii) 2  dist}x,  E, for all X E ,C.

iii) 8 Qe is of class C2, the minimal principal curvature of 8 Qe is strictly
positive and the angle between the position vector of a point of a Q,
and its outer normal is less or equal to 2 - y .

(S3) Sets Sa to be specified later.
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REMARKS.
The angle between the position vector of a point on ,C and its outer normal

is less or equal to 2 - y by the definition of the curve. The value h(y) is the
maximal x2-value of the curve ,C. Fig. 2 depicts ,C for y = !1l’.

The size and position of these sets in the target space will depend on the
weak limit u. For convex sets K we define the sets K (u (x ) ) as follows:

where is a matrix of rotation, mapping the first standard basic vector

e 1 onto and leaving the vectors orthogonal to u (x ) and ei 1 unchanged.
Then we introduce modified functions for the sequence of weak
solutions by

where P (u n (x ) ) is the projection in Rm of un(x) onto K(u(x)).
For the projection P as mapping from Rm x (un, u) -

P (u n ) we cannot determine the derivatives in a straightforward manner. In [Ll]
however, we showed, that for convex sets K of class C2 the first derivatives can
be determined in terms of P(un) and the principal curvatures at P(un).
(Note, usually we do not write the second argument of P explicitly.)

If the set K contains the origin, and if the principal curvatures of its

boundary have a strictly positive lower bound, then we have E 

provided un and u are in this space. Considering (A(v), we get fromp n

[L 1] Sections 2, 3 and 4:

where the function ,~4 depends on the values of un and u in the following
manner:

If u (x) =,A 0 and u n (x ) ~ K (u (x)) then

if u (x ) ~ ~ and u n (x ) E K (u (x)) then

and ,,4.(x) = 0, if u(x) = 0.
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Here i = l, 2 denote the (M x M)-Jacobi-matrices with respect to
the first, respectively, the second vector variable of the mapping P : (un, u) -

from x into 
From [L 1 ], c.f.: (3.2) below, too, we invoke the following pointwise esti-

mate

where it is the minimal principal curvature at the point P (v) of the boundary
of the convex set. Note that the function a (t) = 1+t is an increasing function
on [0, oo).

The following Lemma shows that this constructions fits well with the main
elliptic operator A(u):

LEMMA 3.1. Suppose that the open and convex set K contains the origin, further
suppose that its boundary is of class C2 and its principal curvatures have a strictly
positive lower bound. If a sequence Vn is bounded in and v E WJ’P(Q)
then we have

provided = w (n); where the set Qn = f x E Q K (v (x)) } and X (on)
is its characteristic function.

PROOF. Because I Qn I = w (n) it remains to verify that the sequence of the
integrands is equi-integrable. This follows from the facts that the functions

l 
are in LP(Q) and the sequences vn, are bounded

in LP’ (Q). Note in [Ll] we have pointed out that the matrix D2 P consists
of bounded functions, provided there is a strictly positive lower bound for the
principal curvatures on the boundary of the set K.

Step by step, we now are verifying the equi-integrability of the sequence
provided the values of Un are in certain increasing subsets of 

Actually our first two results hold for the general positivity condition and without
the L°°-bounds.

LEMMA 3.2. If the inhomogeneity f is in ( W 1 ~ p (S2) ) * and Un is the sequence
of approximations, then for 3 &#x3E; 0 there is a a &#x3E; 0 such that:

where
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PROOF. Suppose that 3 &#x3E; 0 is given and let = Since ~ u,

for 8 - oo, there is a 8o such that f (un - = v 2 -~ c~(n), for 80.
With the estimate (3.1 ), we get

From which the result follows with a = 20.

LEMMA 3.3. For the sequence of approximations Un we have for all 3 &#x3E; 0 the
estimate 

-

where 03 n = {x E I &#x3E; I u I ( 1 + 6)).

PROOF. As the convex sets for projection we now choose balls Bp centered
at the origin with radius p = ( 1+ 2. 8) For = 

&#x3E; 
we get Un-UP-02 n n n

and

using the estimate (3.1 ) and Lemma 3.1.
Combining the results from the last two Lemmas we also have

COROLLARY 3.1. The sequence is equi-integrable for all a &#x3E; 0,
where

For the next result we need the angle condition. _

LEMMA 3.4. If K is any convex open set containing the closure of at least
one of the sets described in (S2), say KEo’ then the sequence X (Qn) I Dun I P is equi-
integrable, where

PROOF. We are testing with un - for E = 4Eo, and get

where = {jc E Q I p = and 03B4
is the minimal principal curvature of the boundary of 
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Note that p6 = 80 &#x3E; 0 for x E S2n and that (B(un), un -
0. To verify this last inequality observe that is a convex

set containing the origin and that (un - has normal direction at

E The angle between + 
and (u n - is increasing with decreasing h. Consequently, the angle
between un and (un - is less than 2 - y. .

Obviously Qn c hence the result.
For the next step we first introduce sets Z(r, a). A set Z(r, a) consists of

a cylinder with a half ball of the same radius r attached to one of its faces.
The axis is coinciding with the xl-axis from a to 2 + r, and the half ball is
attached to the face intersecting the xi-axis at a. Also let ao be the minimal
xi-value of the curve £, i.e. : ao = + + y )  0. With
these notations our results so far imply

COROLLARY 3. 2. Let N = exp (- y cot y ) sin y and E = 4 ( a~ - N). If the
sequence un also satisfies the L°°-bound form Theorem 3.1, then for all a with
a  ao + N + 2E and all r &#x3E; N we have that the sequence 
equi-integrable, where = {x Z(r, a)(M(~))}.

We intend to show that the above statement is true for all a  1 +.V+26.
The sets Z(r, a), however, are not suited for the construction of test functions.
Consequently we choose sets Sa which are bounded, convex sets of class C2
such that the minimal principal curvature is strictly positive. Furthermore, a set
Sa contains Z(N + 2E, a) in such a manner that their boundaries coincide at
the half ball as long as the distance of the points to the axis of Z(N + 2E, a)
is less than or equal to N + 6. We also denote with Q the infinite cylinder
with radius N + E and axis coinciding with the xl-axis of I1~M, then we get

LEMMA 3.5. For p E R let Q~ = {x E Sp (u (x)) n 6(M(jc))}
and let 0  ~8  E. Then equi-integrable sequence for
a  ao + N + 26.

PROOF. First we note that for x e (Q~+2,8 B S2n ) we have

for some 8 &#x3E; 0, r = N + 2E . Indeed

The curvature of at P (un (x ) is 1 . Testing (2.1 ) with 0 = 
we get 

riul
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Since is equi-integrable and un - on 03A903A9na +203B2 we
n q n

have 
I -- 

Utilizing the above inequalities once more we get

On the other hand for x E (S2n+~ B S2n ) there is a a &#x3E; 0 such that

providing the result.
Now we get that is equi-integrable for v  N + 2E by

a finite induction. Indeed assuming that is equi-integrable,
we test to the equation with and obtain the .. b.l. ofwe test to the equation with and obtain the equi-integrability of

Unfortunately we can not immediately deal with sets
Sv for v &#x3E; N + 2E, because these sets do not contain the origin and the
resulting testfunctions do not vanish at the boundary. Instead we test with

if&#x3E; = vn - where vn = un - u starting with some v  2013l+~V+26. Let

On = supp(vn - then ~ 0. From Lemma 3.1 we get

On the other hand (Ð1P(Vn»f = ~r-1 Ark1:rAr¡, where the row vectors Pr of
the matrix are the outer normal, respectively the principal directions

at P(vn); 1:1 = 0 and 1:r = 1 - where Ar, r = 2,..., M,
are the principal curvatures at P(vn). Hence on On we get, cf.: [L I ],
too:
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where it is the minimal principal curvature of Sv at P (vn ) . If P (vn ) is on the

part of boundary of coinciding with the half ball of Z (jV + 2E, v) we
have

where gn (x ) are functions with = and it = .

Now we can continue with the the finite induction as far as needed. To-

gether with the previous results we get
COROLLARY 3.3. &#x3E; 0 the sequence is equi-integrable,

where

Theorem 2.1 now is an immediate consequence of our last Lemma in this
section

LEMMA 3.6. The sequence I Du,, ( p is equi-integrable.
PROOF. To verify the equi-integrability, we only need to control the large

values of Hence let 0: = {x E Q I IDUnlp &#x3E; For h small and
m big we get

choosing k small enough gives the result.

4. - L °° -estimates

Of course for elliptic systems L°°-estimates are not available in general.
In [L3] however, we showed that for systems of the type (1.2) it is possible
to establish L°°-bounds, with similar arguments as those used for equations in
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[LU], provided p &#x3E; 2 and f E Lq , q &#x3E; p . However, the dependence of the
Lll- norm of the solution on the Lq-norm of f cannot be obtained directly from
these results, because the estimates are made for large value of the solution
respectively for values bigger than 1 at certain steps in the proof.

We outline some changes in the arguments which provide such a depen-
dence, thus establishing Theorem 1.1.

LEMMA 4. l. Let Pk (u) be the projection of u onto the sphere with radius k
and centered at the origin. Suppose that j’Ak lu - YIAkI1+EkCl for
Ak = {x E Q k), then

PROOF. We have fAk ’U - Pk(u)ldx = fAk (Iul - k)dx and define f (k) _
fAk(luj) Ilul Then arguing as in [LU], Capter 2, Lemma 5.1 we verify
the statement.

LEMMA 4.2. Suppose that Q C is bounded and that

Then

where Co is the best Sobolev constant for 
PROOF. We estimate

with E = 8, a = 03B2 the result follows from the previous Lemma.p p
So far we followed the proof of [LU], but now we are arguing somewhat

differently. We also do not assume that the solution is known to be bounded
a-priori, but suppose that it can be used as a test function in ( 1.1 ). A fact which
most often is provided by existence proofs using approximating sequences, as
for instance a Galerkin approximations for (2.1).
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THEOREM 4.1. Suppose (A I - A3) and (B1 ) are satisfied and a weak solution
u E W.1, P (0), p &#x3E; 2, can be used as a test function in (1. 1), where the operator
(A(u)) is of strict diagonal form (c.f.: (1.2)) then

with,e = p2q-Npwith e= p2q-Np/Nq(p1)
REMARK. The conditions of Theorem 4.1 are met by weak solutions of the

problem with truncated perturbations (2.1).

PROOF OF THE THEOREM. From [L3] for p &#x3E; 2 we invoke the inequality

where is the test function obtained by projecting onto the ball centered at
the origin and radius k. Hence

with p* = Np/N-P and 1/r = 1 - [ N-p/Np + 1/q] = Npq-q(N-p)-NP. We get firstP r P q Npq

and then

with e = p 2q-Np . From Lemma 4.2 we deduce that the solution is uniformlyNq(p-1) 
° 

"

bounded and get

c 
E

Now we can estimate yielding the result.
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