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Semiregularity, Obstructions and Deformations
of Hodge Classes

ZIV RAN

Abstract. We show that the deformation theory of a pair (X, tl), where X is a
compact Kahler manifold and 17 is a (p, p) class on X, is controlled by a certain
sheaf .c1] of differential graded Lie algebra on X; consequently, we show that
relative obstructions to deforming a pair (X, Y), where Y is a codimension-p
submanifold of X, relative to deforming X so that the fundamental class of Y
remains of type (p, p), (in particular, deformations of Y fixing X) lie in the kernel
of the semiregularity map 7rl : of Bloch et al. We
also give a number of extensions and applications of this result.

Mathematics Subject Classification (1991): 14D15 (primary), 14D07, 14C30
(secondary).
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To a codimension-p embedding Y c X of compact complex manifolds
one may associate at least 3 deformation problems: deforming Y, fixing X
(the local Hilbert scheme); deforming the pair (Y, X) ; deforming X so that the
cohomology class q - [Y] E H2p (X ) maintains a given Hodge p.
These problems- obviously interrelated- are all influenced by Hodge theory, via
the so-called semiregularity map (which has antecedents in Severi and was more
recently considered by Kodaira-Spencer, Mumford, Bloch ... )

normal bundle.

Roughly speaking obstructions which a priori lie in are actually in

ker(7r,). Thus, e.g. a lower bound on the rank of 7r, yields estimates on the
dimension of deformation spaces etc. The precise statement is as follows.

THEOREM 0. Let X be a compact complex manifold and Y C X a connected
submanifold of codimension p, with normal bundle N, and fundamental class 1] =

[Y] E Let 7r, : : be the semi-regularity map
(reviewed below). Then

Pervenuto alla Redazione il 2 luglio 1998 e in forma definitiva il 24 settembre 1999.
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(i) obstructions to deforming Y in X lie in ker 7ri;
(ii) if moreover X is Kählerian then obstructions to deforming the pair (X, Y),

relative to deforming X so that q E H2p (X ) remains of type (p, p), lie in

ker J 1.

[In more detail, (ii) means: given an artin local C-algebra (S, m), an ideal
I  S with mI = 0, a deformation a of (X, Y) over S/I, a deformation a’ of
X over S, which induces the same deformation as cx over S/I and in which
the (Gauss-Manin) flat lift of 17 has Hodge level p, obstructions to lifting a
over S lie in ker(03C01) 0 I.]’ 

Theorem 0 was in essence proven by Bloch [B] for the case of deformations
over an artin ring of the form however neither the result nor the

proof yield the general artin local case. In the present generality Theorem 0 was
first stated in [RO] where the argument was based on the notion of "canonical
element" controlling a deformation (see [R3] for a development of the theory
and required properties of canonical elements).

The main purpose of this paper is to develop some methods pertaining to
the interplay of "canonical" or "Lie-theoretic" deformation theory and Hodge
theory and apply them to a proof of Theorem 0; the proof of part (i) in particular
is short and essentially self-contained. A central role in these methods is played
by a certain differential graded Lie algebra ,C = £q which, as we prove with the
method of [R3], controls deformations of X in which a given class q maintains
a given Hodge level. Modulo this fact (which moreover is unnecessary for

part (i)), the proof of Theorem 0 is quite simple and conceptual: indeed it
boils down to constructing a Lie homomorphism : N [-1 ] ----&#x3E;Ln ("sheaf-
theoretic semiregularity") and realizing .7r, as the cohomology map induced
by jr. Following the proof we present some applications to deformations of
maps and integral curves on K3 surfaces. See [RO] for other applications.

As our foundational reference for (Lie algebra-controlled) deformation the-
ory, we shall use [R2], [R3]; however for the proof of part (i) (which is already
sufficient for most applications), essentially any reference, e.g. [GM], will do.

PROOF OF THEOREM. Let T = Tx and T’ C T be the subsheaf of vector
fields tangent to Y along Y, i.e. preserving the ideal sheaf I y. We identify the
normal sheaf N with the complex in degrees -1, 0

and endow N [ -1 ) with a structure of DGLA sheaf given by

(the 1/2 factor is needed to make i d a Lie derivation). We thus have an exact
triangle of DGLA’s 

-
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(i.e. N[-1] is a Lie ideal in T’), and these control, respectively, the deformations
of Y fixing X, of the pair (X, Y), of X (see e.g. [R2], [R3] for more details
on this).

On the other hand, to any class 11 E Hq (QP) we may associate a DGLA
,C = 12r¡ as follows:

differential = interior multiplication by 17, bracket = usual one on T, Lie deriva-
tive T x QP-1 --* S2p-1, zero otherwise.

More concretely, we may represent £° (resp. ,C-q ) by the Cech complex
of T (resp. of QP-1 shifted q places to the left). Thus we have an exact

triangle of DGLA’s 
1

with an abelian ideal in ,C.

By the local cohomology description of q = [~’] given, e.g. in [B] it follows
directly that interior multiplication by q vanishes (in the derived category) on
T’ c T, and consequently we have a commutative diagram of exact triangles

7r, = be taken as the definition of 7Tl but it is immediate that this
definition coincides with the one given in in [B]. It may be noted that is
none other than the infinitesimal Abel-Jacobi map associated to Y. Now we shall

prove below that, for X Kahlerian, ,~ controls precisely the deformations of X
where q remains of type (p, p). Given this, the Theorem follows immediately
from ( 1 ): indeed by any general theory (e.g. [GM], [R2]), obstructions are

induced by Lie bracket and lie in H2 of the controlling Lie algebra and thus
relative obstructions as in the Theorem lie in kerH2(7T’) =ker(7r,). 0

Note that for the purpose of part (i) the interpretation of .C is irrelevant,
so this part does not require the Kahlerian hypothesis (nor for that matter any
of the rest of the paper).

It remains to establish the deformation-theoretic significance of ,C. Precisely,
we will show the ,C controls deformations X/S plus Cech cochains

where ~ = constant lift of q, modulo coboundaries (o = 8(T).
To this end we first review the universal variation of Hodge structure

associated to X, as developed in [R3], which will provide us with an explicit
representative for the GM-constant lift of a cohomology class on X. Consider
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the following double complex Jm (T, Q) on X  m &#x3E; x X in bidegrees [0,n] x
[-m, 0]:

with horizontal arrows induced by exterior derivative and vertical arrows of the
form

(i.e. Jm (T, Q) is just the standard complex for Q8 as T -module, with variables
separated.) As explained in [R3], the De Rham cohomology of
the universal m -th order deformation Xml Rm of X, together with its Hodge
filtration (i.e. the universal m-th order VHS associated to X) is obtained by
applying a pure linear algebra construction to a suitable Kunneth component

of the cohomology of Jm(T, Q), (i. e. the one mapping to

C) Q9 Hr(X) under the quasi-isomorphism C ~ S2’), so one

might as well work with the latter group directly. Thanks to Cartan’s formula
for Lie derivative, the complex Jm (T, Q8) is "split", i.e. isomorphic to the

complex with the same entries and trivial action of T on Q8, the isomorphism
in question being assembled from ± interior multiplication maps

The induced map on cohomology is the Gauss-Manin isomorphism
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The "constant lift" of a class 17 E is simply the map

given by G(. 0 1]). More explicitly on Cech cohomology,
may be described as follows. We may represent an element
(~i,... , where

b being the map induced by bracket. On the other hand X being Kahler
q E Hp~q (X ), say, may be represented by a Cech cocycle with values in the
sheaf S2p of closed p-forms (which in effect means choosing a lift of 17 to

and may be represented by

We are now in position to consider the obstruction to the constant lift (v)
having Hodge level p (in cohomology). Thus consider what hypercoboundary
would push into FPQ8), i.e. kill all terms off the p-th column.
Working from the bottom up, starting in position (p - 1, -m + 1) we require
first a cochain

Clearly the latter right-hand side is a cocycle, so the obstruction to 1

existing is in 0 Note that once exists, we
have
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so all other terms along the bottom diagonal, i.e. in position ( p - k - 1, -m +
k + 1), k = 0, ... , m - 1, can be killed too. Next, to kill off the term in

position (p - 1, -m + 2) requires a cochain

where d and L denote the horizontal and vertical differentials in the complex
Jm ( T , S2’ ) . Again it is easy to see the latter right-hand side is a cocycle.
So the obstruction to cvm-2 existing (provided does) is in S,-2 H’(T) 0
Hq+l and again once úJm-2 exists all elements in the diagonal {(a, b), a+
b = p - m -f- 1, a  p ~ may be killed too. We continue in this way up to the
0-th row where what is required is

Turning to the algebra ,C and its deformation theory, we claim that the
obstructions are the same as for keeping of level p, which it suffices
to show in the universal situation. For the first-order case this is clear: given
v E H 1 (T), the data required to lift v to is precisely a cochain WI E
eq(op-1) = i (v) (r~), same obstruction as for to be of level

p. Next we turn to the second-order case. The complex ~2(~) takes the form

Given v E the assumption Gq(u) is of level p to first order
means that writing

we have some with

To lift this data to requires precisely
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In other words, the obstruction is [L(úJl) + i (Vl)(1J)] E On
the other hand as we saw above (5) the obstruction to being of level p is

Now X being Kahler, we have = 0, so the two obstructions
coincide.

In the general m-th order case, the situation is similar: given v E H°(Jm (T))
plus data c~m _ 1, ... , wo making of level p, the data required to lift v to

consists of cochains 6~_~ ... , wb with

so again the obstructions are the same. 0

We conclude with a brief partial treatment of semiregularity for maps,
insofar as results follow from the above. Let

be a generically finite map of compact Kahler manifolds of dimensions n - p,
n, and let f c Y x X be the graph of f. Assuming, say, that

it is well known that deformations of Y x X are of the form Y’ x X’ with Y’, X’
deformations of Y, X, respectively, and it follows easily that deformations of the
triple ( f, Y, X) correspond bijectively with deformations of the pair (Y x X, Y),
hence the above results apply. Note that

while is "the same" as the pullback map

or its dual, the Gysin map

and being of type (n, n) means n~* preserves Hodge level or n* raises Hodge
level by  p, so we conclude that
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COROLLARY 2. Assuming (6), obstructions to deforming f, relative to deforming
X, Y so that ry* raises Hodge level by at ynost p, lie in

Consider next the case of deformations of f with X fixed. As is well
known [AC], these are controlled by the normal sheaf which fits in an
exact diagram (identifying = 0 

Again N f [-1 ] forms a DGLA sheaf on Y and obstructions to deforming
(Y, f ) are in and come from the bracket map N f x N f ~ Nj. [ I ].

On the other hand, x X) has as one Kunneth component

and by its definition the semiregularity map for Y factors

where is induced by interior multiplication by the component of [Y] in

Hn-p,n-p(Y)0HP,P(X) so we conclude (note this does not use assumption (6)):

COROLLARY 3. Obstructions to deforming ( f, Y), fixing X, relative to deforming
Y so that ry* raises Hodge level by  p, lie in ker,71,f.

Note that there are many cases, e.g. Y is a curve and (Ox) = 0, where
the cohomological condition on 17 is vacuous, for then ry* is simply given by
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In particular, suppose Y is a smooth connected curve of genus g and X is
a K 3 surface. Then from (7) we get a nonzero map

and the semiregularity map factors through -~ Serre dual to
= H°(Oy), which map is clearly nonzero, hence so is

Jr 1, f because - is surjective, Y being a curve. On the other
hand Ky, so X (Nf ) = g - 1. We conclude then that the deformation
space of ( f, Y) is at least g-dimensional.

Now suppose in addition that f is of degree 1 to its image Y. It is then
clear that unobstructed deformations of ( f, Y) must move Y, hence must project
injectively to and since is a subsheaf of KY with quotient
=tor (supported exactly on the ramification locus of f), its ho is  g unless

g = 0 or tor= 0; and if tor= 0, i.e. f is unramified, then Nf -- KY so is

injective and ( f, Y) is unobstructed. So putting things together we conclude

COROLLARY 4. On a K 3 surface, the locus of integral curves of geometric genus
g &#x3E; 0 is generically reduced, purely g-dimensional (or empty), and smooth at any
immersed curve.

Appendix: The semiregularity homomorphism

In the course of the proof of Part (i) of the Theorem, we implicitly alluded
to the fact that the semiregularity map 7r is a Lie homomorphism, which implies
that so is 7r’. As this may not be generally known, we include a proof for
completeness.

First we recall the local fundamental class and semi-regularity map. Take
an acyclic cover U = ( U« ) of an open subset U C X and let Y n Ua be defined
by Fa = ( fa , ... , fa ) _ (o), and set

This yields a cocycle in S2p) (S2p = for the open cover

(D¡,a = Ua - ( fa - 0)), whence a class

and these glue together to yield
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which maps to the fundamental class

(More pedantically, one computes Hp-1 (U - Y, QP) from the Cech bicom-
plex ( C ~ ~ , 81, 62) associated to the biindexed cover of U - Y. Writing on

for a suitable matrix A expressed as a product of elemetary matrices, it is easy
to see that

is a sum of terms with  p distinct fj in the denominator, so by elementary
properties of local cohomology there is an explicit ( p - 2, 1)-cochain with

and is a bicocycle representing a class in HP- 1 (U - Y, S2p ) whose
image is ryu.)

Now by a similar remark about denominators, note that rya is killed by any
function vanishing on Y n Ua; likewise, if Va E r(Ua, T’), the interior product

has vanishing cohomology class Using the Cech bicomplex above
these statements may be extended to U and hence globalised: thus the arrows

given by (interior) multiplication by q

vanish in the derived category; in particular interior multiplication by 17 descends
to a map (’sheaf-theoretic semi-regularity’)

which induced the (cohomological) semi-regularity

as well as the infinitesimal Abel-Jacobi map

Now we come to the crux of the (semi-regularity) matter:
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LEMMA 1. The composite

vanishes in the derived category; in other words, 7r is a Lie homomorphism in the
derived category.

PROOF. First a calculus obervation: if w is a closed p-form and x, y vector
fields on a manifold then (check!)

Now take sections , 1 So

note that the cohomology classes corresponding to
vanish, hence v"]) is represented

Now consider the diagram

where the top left arrow is given by a x 7r ED 7r x 9, 9:~V-~ T[1] ] the natural
map. We have just proven that the left square commutes while the right one does
obviously. Clearly the top arrows compose to zero because N --~ 7~[1] ] ~ T[l] ]
do. Hence the composite N x N ~ N [ 1 ] -~ ~’~[p+ 1] ] vanishes, as claimed.
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