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Viscosity Solutions and Regularity of the Free
Boundary for the Limit of an Elliptic Two
Phase Singular Perturbation Problem

CLAUDIA LEDERMAN - NOEMI WOLANSKI

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVII (1998), pp. 253-288

Abstract. In this paper we are concerned with the following problem: Study the
limit as E - 0, of solutions u £ (x ) to the equation:

where E &#x3E; 0 and = 1 p (:~). Here 0 is a Lipschitz continuous function with
f3 &#x3E; 0 in (0,1 ) and 0 - 0 outside (0,1 ) and j = M.

We consider a family US of uniformly bounded solutions to Es in a domain
Q C R N and we prove that, under suitable assumptions, the limit function u is a
solution to

in a pointwise sense at "regular" free boundary points and in a viscosity sense.
Then, we prove the regularity of the free boundary.

In fact, we prove that in the absence of zero phase, if u- is nondegenerate
at xp E S2 n a {u &#x3E; 0}, then the free boundary is a surface in a neighborhood
of xo. Therefore, u is a classical solution to (E) in that neighborhood.

For the general two phase case (which includes, in particular, the one phase
case) we prove that, under nondegeneracy assumptions on u, if the free boundary
has an inward unit normal in the measure theoretic sense at a point xo n a {u &#x3E;

0}, then the free boundary is a surface in a neighborhood of xo.

Mathematics Subject Classification (1991): 35R35, 35J99, 80A25.

1. - Introduction

In this paper we are concerned with the following problem: Study the limit
as 8 -~ 0, of solutions to the equation:
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CONICET (Consejo Nacional de Investigaciones Cientificas y T6cnicas of Argentina)
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where s &#x3E; 0 and = Here f3 is a Lipschitz continuous function
with f3 &#x3E; 0 in (0,1), f3 == 0 outside (0,1) = M, where M is a
positive constant. The functions u~ (x) are defined in R , or in a subset of it.

This problem is of interest in the theory of flame propagation. It appears
in combustion, in the description of laminar flames as an asymptotic limit for
high activation energy (see for instance [3], [5], [18]).

We consider a family US of uniformly bounded solutions to Es in a domain
Q c R N and we prove that the limit function u is a solution, in an appropriate
sense, to the free boundary problem:

where M is as above, u+ = max(u, 0), u- = max(-u, 0) and v is the inward
unit normal to the free boundary S2 n 8(u &#x3E; 0} . In particular, under suitable
assumptions, we prove that the free boundary is smooth and therefore, the free
boundary condition is satisfied in the classical sense.

The approach in our paper is local, since we do not force the solutions u8
to be globally defined nor to take on prescribed boundary values. On the other
hand, we are concerned with the two phase version of problem E,, that is, our
solutions are -allowed to change sign and become negative.

First, we prove that u is a solution to E in a pointwise sense. That is, u
is harmonic in ju &#x3E; 0} U 01’ and satisfies the free boundary condition at
every "regular" free boundary point (Theorem 3.1). Namely, we prove that u
has an asymptotic development and that (u v ) 2 - (~y)~ = 2M holds at a point
xo E 8(u &#x3E; 0}, by making only assumptions on u at xo (here v is the inward
unit normal to 8(u &#x3E; 0} at xo in the measure theoretic sense).

Next, we prove that under suitable assumptions, our limit function u is
a solution to E in a viscosity sense (Theorems 4.1 and 4.2). By a viscosity
solution we mean a weak solution to the free boundary problem in the sense
introduced in [6] and [7]. In particular, we prove that u is a viscosity solution
if {u - 0}° = 0 (Corollary 4.1) or if u+ is nondegenerate on 8(u &#x3E; 0}
(Corollary 4.2).

Finally, we study the regularity of the free boundary. We want to remark
here that there are limit functions u which do not satisfy the free boundary
condition in the classical sense on any portion of a {u &#x3E; 0} (for instance,
u = axi + with 0  a  2M, see [ 11 ], Remark 5.1). Thus, extra

hypotheses have to be made in order to get regularity results.
On one hand, we prove in Theorem 5.1 that in the absence of zero phase,

if u - is nondegenerate at xo E 8(u &#x3E; 0}, then the free boundary is a 
surface in a neighborhood of xo. Therefore u is a classical solution to E in
that neighborhood. We point out that in the strictly two phase case, if the
free boundary is smooth, then u - is nondegerate on the free boundary (see
Remark 5.1). One of the corollaries to Theorem 5.1 states that in the absence
of zero phase, there is a subset of the free boundary which is locally a 
surface. This subset is open and dense in 8(u  0} (Corollary 5.1).
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On the other hand, we prove for the general two phase case that, under
nondegeneracy assumptions on u+, if xo Eo n 8(u &#x3E; 0} is such that the free

boundary has at’xo an inward unit normal in the measure theoretic sense, then
the free boundary is a Cl," surface in a neighborhood of xo (Theorem 5.2).
Then, in Corollary 5.3 we prove that, under suitable assumptions on our limit
function u, there is a subset of the free boundary which is locally a c1,a surface.
Moreover, this smooth subset is open and dense in 8 (u &#x3E; 0} and the remainder
of the free boundary has Hausdorff measure zero. We end
our work with further results for the one phase case (Theorems 5.3 and 5.4).

The parabolic version of this two phase problem was first studied in [9], [10]
and [ 11 ], where uniform estimates for uniformly bounded solutions were ob-
tained. These estimates allow the passage to the limit, as 8 ~ 0, uniformly.
Then, in [ 12] it was proved that, in the strictly two phase case, the limit function
u is a solution in D c to the free boundary problem

in a pointwise sense at regular free boundary points, and in a parabolic viscosity
sense (v is the inward unit spatial normal to the free boundary). All these results
apply, in particular, to the present elliptic situation.

A parabolic viscosity solution is a continuous function which satisfies local
parabolic comparison principles with classical supersolutions and subsolutions
to the evolutionary free boundary problem.

If both the parabolic viscosity solution and the classical subsolution or

supersolution are time independent these comparison principles give no infor-
mation.

Therefore, the notion of parabolic viscosity solution is not as appropriate
for an elliptic problem as the one we use in this paper. This is the reason why
we prove in Section 4, that limit functions are viscosity solutions in the elliptic
sense of [6] and [7]. The results of Section 4 apply, in particular, to the one
phase case.

On the other hand, we here improve, in Theorem 3.1, the pointwise result
in [12], since it now applies to the one phase case.

In addition to the intrinsic interest of the results of Sections 3 and 4, they
are used to prove the regularity results in Section 5.

A mathematical idea introduced in this paper is the use of the local parabolic
monotonicity formula ([9]) together with convexity results for eigenvalues ([4])
to derive regularity results of interfaces (see Proposition 5.1 and Theorem 5.1 ).
This new idea replaces more usual geometric measure theoretic arguments.

The use of the local parabolic monotonicity formula, instead of an elliptic
one, allows us to prove Proposition 5.1 -which is of independent interest. An
analogous result was proven in [2] for dimension N = 2 by using an elliptic
monotonicity formula (see [2], Lemma 6.6 and Remark 6.1 ).

In Section 5 we make a substantial use of the regularity results of free
boundaries of [6] and [7].
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The problem considered in this paper was first studied in the pioneer
work [3] in the one phase case and for a more general elliptic equation. The
authors proved uniform estimates and found that the limit function u satisfies

the free boundary condition u = 0, Uv = 2M when 8(u &#x3E; 0} is smooth. For
other related works see, for instance, [9], [10], [ 11 ], [12], [13], [16] and [18].

Our paper is organized in the following way. We consider a family u’
of solutions to E, which are uniformly bounded in L°° norm. In Section 2
we state some preliminary results known for such a family, and for the limit
function u (as s -~ 0). In Section 3 we prove that the free boundary condition
is satisfied at every "regular" free boundary point. We also show that, under
extra hypotheses, a representation formula holds. Next, we prove in Section 4
that the limit function u is a viscosity solution to the free boundary problem E.
Finally, in Section 5 we study the regularity of the free boundary.
NOTATION

Throughout the paper N will denote the spatial dimension and M = fo 
In addition, the following notation will be used:

~ S ~ N-dimensional Lebesgue measure of the set S
~ (N - I)-dimensional Hausdorff measure
. Br (xo) open ball of radius r and center xo
~ dx

I

. x characteristic function of the set S

. u’ = max(u, 0), u- - max(-u, 0)
e (’, ’) scalar product in 

2. - Preliminary results

In this section we consider a family u£ of solutions to E, in a domain
S2 c which are uniformly bounded in L °° norm in Q and we state -for
the sake of completeness- some results known for such a family, on uniform
estimates and passage to the limit as E - 0, which will be used throughout the
paper (Propositions 2.1, 2.2 and 2.3). These results were proven in [9], [10]
and [ 11 ], for the parabolic version of this problem.

We also state some results from [11] on the behavior of certain limit
functions.

’ 

We remark here that if u£ E is a solution to E£ in the distributional
sense, then u’ is a classical solution to E,. Therefore, when referring to a
solution to E,, we will always mean a classical solution.

The following result was proven in [3] for the one phase case, i.e., under
the assumption that 0. For the two phase case, the result is due to

Caffarelli; he proved it for the parabolic version of the problem.
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PROPOSITION 2.1 ([9], Theorem 3 or [10], Corollary 2). Let u’ be a family of
solutions to E, in a domain Q C R N such that lIuê ~~  Afor some A &#x3E; 0. Let
K C S2 be a compact set and let T &#x3E; 0 be such that Br (xo) C Q, for every Xo E K.
Then, there exists a constant L = L (r, A), such that

The following result was proven in [3] for the one phase elliptic problem
and in [ 11 ] for the two phase parabolic problem by using ideas which are
similar to those in [3].

PROPOSITION 2.2 ( [ 11 ], Lemma 3.1 and [ 11 ], Proposition 3 .1 ) . Let u ~ be a
family of solutions to E, in a domain S2 C Let us assume that  ,A

for some A &#x3E; 0. For every 8n ~ 0 there exist a subsequence 8n’ - 0 and a function
u, which is locally Lipschitz continuous in Q, such that

i) uên’ ~ u uniformly on compact subsets of Q,
ii) in 

iii) ~ Au locally as measures in Q,
iv) 0 in Q,
v) Au = 0 in Q B 8 (u &#x3E; OJ.

Next, we state a result proven in [ 11 ] in the parabolic case.

PROPOSITION 2.3 ([11], Lemma 3.2). Let uêj be a family of solutions to 
in a domain S2 C RN such that uêj ~ u uniformly on compact subsets of S2 and
8j ~ 0. Let Àn &#x3E; 0 and Xn E r2 n a {u &#x3E; 01 be sequences such that Àn ~ 0
and Xn - Xo E S2 n a ju &#x3E; 01 as n ~ oo. Let (x ) = + and

(uêj)Àn (x) = À1n uêj (xn + ~,nx). Assume that uÀn ~ U as n - oo uniformly on
compact sets Then, there exists j (n) ~ -t-oo such that for every jn &#x3E; j (n),
there holds that8in -* 0 andn

1) (uêjn )Àn - U uniformly on compact sets 
2) - VU in L lo 2c (RN).

Also, there holds that
3) V’uÀn - VU in 

Finally, we state two results on the behavior of certain limit functions, that
were proven in [ 11 ] in the parabolic case.

PROPOSITION 2.4 ([11], Proposition 5.3). Let u’j be solutions to in a domain

Q C RN. Let Xo E S2 and assume that u’j converge to a (x - xo) 1 -f- a (x - xo)-
uniformly on compact subsets ofr2, with a and a positive and 8j ~ 0. Then

PROPOSITION 2.5 ([11], Theorem 6.2). Let u£j be a solution to in a domain

S2~ C RN such that Qj C Qj+1 and = R N. Let us assume that u’j converge
to a function U uniformly on compact sets and 8j - 0. Assume, in addition,
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that [  L in R N for some L &#x3E; 0 and a { U &#x3E; 01 :A 0. If y &#x3E; 0 is such that
 y in R N then,

3. - Asymptotic development at regular free boundary points

In this section we consider u = lim u’ (as E -~ 0) and we show that the
free boundary condition (uv )2 - (uv )2 = 2M is satisfied in a pointwise sense
at every "regular" free boundary point, this is, at every free boundary point
xo where there is an inward unit normal v in the measure theoretic sense. (If
lim inf,,o = 0 we make, in addition, a nondegeneracy assumptionI r (xo) I
on u + at the point). In fact, we show that u has an asymptotic development
at any such point, which implies that there exist both ut and My and that the
free boundary condition is satisfied (Theorem 3.1).

This asymptotic development, on the other hand, will be frequently used
in the next sections.

In Theorem 3.2 we find (via the application of results in [1]) a representation
formula for u, which holds when u+ is locally uniformly nondegenerate on
a {u &#x3E; 01. In particular, in this case the free boundary has locally finite (N -1 )-
dimensional Hausdorff measure.

We start this section with some definitions.

DEFINITION 3.1. Let v &#x3E; 0 be a continuous function in a domain S2 c 
We say that v is nondegenerate at a point xo E S2 n { v = 0} if there exist c &#x3E; 0
and ro &#x3E; 0 such that one of the following conditions holds:

We say that v is uniformly nondegenerate on r c Q n { v = 0} in the sense
of (3.1 ) (resp. (3.2)), if there exist c &#x3E; 0 and ro &#x3E; 0 such that (3.1 ) (resp. (3.2))
holds for every xo E r.

REMARK 3.1. It is easy to see that (3.1 ) implies (3.2). On the other hand,
if v &#x3E; 0 is locally Lipschitz continuous in a domain Q C R N and harmonic
in { v &#x3E; 0} (which will be our case), there holds that if v is nondegenerate at
xo e Q n { v = 0} in the sense of (3.2) then, v is nondegenerate at xo in the
sense of (3.1). Analogously, under the assumptions above, if Q’ cc Q and v
is uniformly nondegenerate on r n { v = 0} in the sense of (3.2) then, v
is uniformly nondegenerate on r in the sense of (3.1).
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Let us prove this last assertion (the pointwise result follows similarly). In

fact, if the result were not true, there would exist a sequence xn E r such that

Let := + rn x ) . Then, there exists a subsequence, that we still

call vrn’ such that vrn ~ vo uniformly on compact sets of where 0
is Lipschitz continuous in and harmonic in (vo &#x3E; 0}.

By rescaling, we deduce that (0) 
and therefore,

Since vo is globally subharmonic, it follows that vo = 0 in Bl (0). On the other
hand, by hypothesis we have 0  c  (0) 

and thus,

which is a contradiction and proves the result.

DEFINITION 3.2. Let u be a continuous function in a domain S2 and
let xo e Q n 8(u &#x3E; 0}. We say that a unit vector v is the inward unit normal
to 8(u &#x3E; 0} at xo in the measure theoretic sense if (see for instance [14])

First we prove the following lemma

LEMMA 3.1. Let uSj be solutions to E-li in a domain S2 C such that u’j

converge to a function u uniformly on compact subsets of S2 and Sj - 0. Let

n a I u &#x3E; 0 1 and, for À &#x3E; 0, let + Let Àn - 0 and

~,n - 0 be such that

uniformly on compact sets with a, a, y, y &#x3E;: 0.
Then a y = aji.
PROOF. By Lemma 3.1 in [12] there exists a constant 8 (independent of the

sequence Àn) such that

for every t &#x3E; 0, where
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Let _ ~ U (~,x ) . Then Uo = uniformly on compact
sets of as h - 0. Let us take any sequence converging to 0, for instance Àn,
and let us rescale (3.4). We get, for t &#x3E; 0,

We want to pass to the limit in (3.5) as n ~ oo. To this end we first see
that, by Proposition 2.3, there exists a sequence jn -~ oo with 8n - ~n ~ 0
such that (u8jn )Àn ~ U uniformly on compact sets of It is easy to see that

(u8jn ) Àn is a solution to Therefore, there exists a sequence usn of solutions
T;¡

to Esn such that uSn ~ U uniformly on compact sets of R N and Sn -~ 0.
Thus, we may apply Proposition 2.3 again, now to the functions U and Uo,

to conclude in So that by taking a subsequence, that we
still call ~-n, we may assume that the convergence takes place almost everywhere
in Since U is Lipschitz in R , I are bounded in uniformly in n.
Therefore we can pass to the limit in (3.5) to conclude that

Repeating the argument with the sequence Ån, we see that

Therefore, a y = a y .
Let us prove our first theorem.

THEOREM 3.1. Let u’j be solutions to E£. J in a domain Q C R N such that u’j
converge to a function u uniformly on compact subsets of S2 and 8j ~ 0. Let

Xo e Q n a {u &#x3E; 01 be such that a {u &#x3E; 01 has at xo an inward unit normal v in the
measure theoretic sense (this is, (3.3) above holds). If lim infr_o = 0,I r (xo) I
we assume, in addition, that u+ is nondegenerate at xo in the sense of (3.2).

Then, there exist a &#x3E; 0 and y &#x3E; 0, such that

with

PROOF. Let xo be as in the statement of the theorem. We may assume
without loss of generality that xo = 0 and v = el.

We will consider two cases.
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CASE I limsup O.~A~l. - 

"

In this case, the limit actually exists and it is equal to 0. This is the case
considered in Theorem 3.1 in [12] for the parabolic version of this problem.
Since [12], Theorem 3.1 applies to our present situation, the theorem is proved
in this case.

CASE II lim sup &#x3E; 0
1 

&#x3E; 0.

Let us define for each k &#x3E; 0 the function u ~, (x ) Since u (o) = 0
and u is locally Lipschitz continuous, given a sequence X, 2013~ 0, there exist a
subsequence, that we will still call Àn, and a function U, which is Lipschitz
continuous in R , such that -~ U uniformly on compact sets of R

STEP I. Let us see that there exist a, y &#x3E; 0 such that

In fact, by our assumption that el is the inward unit normal to 8(u &#x3E; 0}
at 0 in the measure theoretic sense, we have, as h - 0,

By (3.7), U is nonnegative in {jci &#x3E; 0} and harmonic where positive; and
harmonic and nonpositive in ix,  01. In fact, if 0, then it is harmonic
in the set where it is positive and therefore, it is subharmonic in On the
other hand, since u is globally subharmonic, U- is superharmonic in {xl  01.
Therefore U - (x ) = in with y &#x3E; 0.

On the other hand, by Lemma Al in [7], there exists a &#x3E; 0 such that

U(x) = axi + o (I x 1) in {xl &#x3E; 0}. So that (3.6) is verified.

STEP II. Let us see that a &#x3E; 0.

Indeed, if there holds that

then, u+ satisfies (3.2) at 0 by hypothesis. Thus, rescaling (3.2) we get, for

every r &#x3E; 0 and n large,

so that

for every r &#x3E; 0. This would not be possible if U+(x) = Therefore,
a &#x3E; 0.
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If, instead, there holds that

we may apply Theorem 6.3 in [II], since there is an inward unit normal at
0 &#x3E; ol in the measure theoretic sense. Therefore, there exists C &#x3E; 0
such that

for every r &#x3E; 0 small. Rescaling and passing to the limit, we get, for r &#x3E; 0,

which implies that a &#x3E; 0.

STEP III. Let us now see that y = 0. To this end we will apply Lemma 3.1.
In fact, since in this case we have lim sup there exists a, r-+U ’

sequence in 0 such that 

We then have

for n sufficiently large.
Reasoning as in Step I, we get for a subsequence, that we still call in,

that U Àn ~ U where

uniformly on compact sets of R N, with 0.

Let us see that y - 0. Since el is the inward unit normal to 8(u &#x3E; 0} at

the origin in the measure theoretic sense we have that

So that
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Therefore, by (3.8)

Since U (x ) in (x 1  0} with y &#x3E; 0, we deduce that necessarily y = 0.
We can now apply Lemma 3.1 to conclude that y = 0, since a &#x3E; 0 and

ay =ay =0.

STEP IV. Now we will prove that a = 2M.
By Proposition 2.3, there exists a sequence jn ~ oo with 8n = 1:; ~ 0

such that (uSjn )Àn -~ U uniformly on compact sets of R . It is easy to see
that (uSjn )Àn is a solution to Eso in Therefore, there exists a sequence u~n
of solutions to Esn such that uSn --~ U uniformly on compact sets of R N and
8n - 0.

Let = fU(Àx). Then UÀ Uo = uniformly on compact sets
of R N , as h - 0. Therefore, we may apply Proposition 2.3 again, now to
the functions U and Uo to conclude that there exist a sequence 8n ~ 0 and
solutions uSn to Esn such that u~n - Uo uniformly on compact sets of R N and
Vu8n -~ VUO in 

Let * E Let us multiply equation Esn by and integrate
by parts. We have 

’ 

= Therefore,

We want to pass to the limit in (3.9) for n - oo.
Let us see that

for some constant 0  M  M. In fact,

Therefore, - M in every U C C f xl &#x3E; 0}, if n is large.
Let us see that there exists a function M (x ) such that - M(jc)

in 0}).
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To this end, we will first show that Bsn - M (x ) in 1  0} ) .
In fact, let U C C (xj  0}, then 

since, by Proposition 2.2, /38n = llu8n --+ A Uo locally as measures.
Therefore, (u s~ ) (  C(U) for every Ll C C ix, 1  0} . So that for a

subsequence and a function M(x) we have Bsn (usn) -~ M(x) in  0}).
In particular, we may assume that the convergence takes place almost

everywhere in {xl  0} and, since M, we conclude that

- M(x) in 0}).
~ 

Thus, we actually have

On the other hand, since ~ 0 as n -~ 00, for every U C C

fxl 1  0}, we deduce that M(x) is constant, i.e. M(x) n M, with 0  M  M.
Let us next see that necessarily M = 0 or M = M.
In fact, let 81,82 &#x3E; 0 and K cc ix, 1  0} . There exists 0  q  1 such

that (with fJrJ = &#x3E; 0)

since f38n -~ 0 in L 1 (K). Therefore, the fact that Bsn -~ M in 

implies that 

so that M = 0 or M = M.
Let us now pass to the limit in (3.9). We find

Integrating, we obtain
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Since 1/1 is arbitrary

From the fact that M = M or M = 0, and a &#x3E; 0 we find

STEP V. Conclusion.
We have proved that

and

Since U &#x3E; 0 then, by Proposition 2M. Therefore,

By (3.10) and Hopf’s Principle we deduce that

By (3.11) and (3.12), there holds that the limit U does not depend on the
sequence k, and 

-

So that the theorem is proved also in Case II.

REMARK 3.2. Let u be a continuous function in a domain S2 c If
we have HN-1 (Q f1 a {u &#x3E; ol)  oo, then {u &#x3E; 01 is a set of finite perimeter
in Q (see [14]). In this situation we will call, as usual, reduced boundary (and
denote aredfu &#x3E; 0}), the subset of points in alu &#x3E; 0} which have an inward
unit normal in the measure theoretic sense (see Definition 3.2).

We will next prove a representation formula for u which holds when u+
is locally uniformly nondegenerate. We will denote by &#x3E; 0} the
measure 

1 restricted to the set a{u &#x3E; 01.

THEOREM 3.2. Let solutions to E Ei in a domain SZ C R N such that u’j
converge to a function u uniformly on compact subsets of S2 and 8j - 0. Let us

assume that u+ is locally uniformly nondegenerate on S2 &#x3E; 01 in the sense
of (3.1). Then,

3.2.2) There exist borelian functions qu and q - defined on S2 f1 a {u &#x3E; 01 such that
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3.2.3) For every Q’ cc S2 there exist C &#x3E; 0, c &#x3E; 0 and rl &#x3E; 0 such that

for every xo E S2’ f1 a {u &#x3E; OJ, 0  r  r1 and, in addition,

3.2.5) u has the following asymptotic development at li N -I _almost every point xo
in 8red(u &#x3E; 01 (this is, at HN-1 -almost every point xo such that a ju &#x3E; 01 has an
inward unit normal v in the measure theoretic sense)

REMARK 3.3. Under the assumptions of Theorem 3.2, we have that The-
orem 3.1 applies at every point xo in the reduced boundary. Therefore, the

constants a and y in Theorem 3.1 verify that a = and y = qj(xo)
where q+ and q- are the borelian functions in 3.2.2).

PROOF OF THEOREM 3.2. In order to prove the theorem we will make use
of some results in [1]. In fact, u+ is harmonic in fu &#x3E; 0} and locally uniformly
nondegenerate on &#x3E; 0} in the sense of (3.1 ). On the other hand, since u
is locally Lipschitz, for every S2’ C C S2 there exist C &#x3E; 0 and r1 &#x3E; 0 such that

for xo Eo, n 8 (u &#x3E; ol, 0  rl.

Under these conditions it was proved in [ 1], 4.5 that 3.2.1) holds and there
exists a borelian function q+ defined on Q n atu &#x3E; ol such that

Also 3.2.3) holds by the results of [ 1 ].
Moreover, it follows from [I], 4.5 that the local uniform nondegeneracy

of u+ on Q n atu &#x3E; 0} in the sense of (3.1) implies that c &#x3E; 0.
On the other hand, u- is a nonnegative harmonic function in Q fl f u  0}.

Since u is Lipschitz, 
A

for every Xo E Q’ n 8(u  0}, 0  r  ri. On the other hand, since u is

harmonic in S2 n (u s 0 } ° then 8(u  0 } c 8(u &#x3E; 0}. Therefore, by 3.2.1)
and [ 1 ], Remark 4.6, there exists a borelian function qu defined on  0}
such that

Thus, if we define q - = 0 in 8(u &#x3E; 0} B 8(u  0} there holds that 0 and
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Therefore 3.2.2) is proved.
It also follows that

so 3.2.4) is true.
Finally, by [I], 4.8 and 4.9

for every xo in 8red(u &#x3E; 0} . Proceeding as in [1], 4.8 we can also
deduce that

for every xo in 8red(u &#x3E; 0} and 3.2.5) follows.
So that the theorem is proved.

4. - Viscosity solutions to the free boundary problem E

In this section we prove that the limit function u is a viscosity solution to
the free boundary problem

where u+ = max(u, 0), u - = max(-u, 0), and v is the inward unit normal to
the free boundary n 8(u &#x3E; 01. This notion of weak solution was introduced
by Caffarelli in [6], [7].

We start the section with some definitions and we then prove our main
results in Theorems 4.1 and 4.2. We also include some corollaries at the end
of the section (Corollaries 4.1, 4.2 and Proposition 4.1).

DEFINITION 4.1. Let S2 be a domain in Let u be a continuous function
in S2. Then u is called a viscosity supersolution in S2 if

in the following weak sense. If xo E F, F has a tangent ball at xo from
S2+ (i.e, there is a Bp (y) C S2+, such that Xo E a Bp (y)), and, in Bp (y)



268

for a &#x3E; 0 (v given by the inward unit radial direction of the ball at xo),
then

in Bp(Y)C for any y &#x3E; 0 such that a2 - y2 &#x3E; 2M.
DEFINITION 4.2. Let u be a continuous function in Q. Then u is called a

viscosity subsolution in Q if

(iii) Along F = S2 n 8(u &#x3E; 0}, u satisfies the condition

in the following weak sense. If xo E F, F has a tangent ball at xo from
S2- (i.e, there is a Bp(y) c S2-, such that xo E and, in 

for y &#x3E; 0 (v given by the outward unit radial direction of the ball at xo),
then

in Bp (y)~ for any a &#x3E; 0 such that a2 - y2  2M.

DEFINITION 4.3. We say that u is a viscosity solution in S2 if it is both a

viscosity subsolution and a viscosity supersolution.
DEFINITION 4.4. Let u be a continuous function in a domain Q c R~. We

say that a point xo n 8(u &#x3E; 0} is a regular point from the positive side
if there is a tangent ball at xo from lu &#x3E; 0} (i.e, there is a Bp (y) C tu &#x3E; 0},
such that xo E 

Analogously, we say that a point xo E &#x3E; 0} is a regular point from
the nonpositive side if there is a tangent ball at xo from 0}° (i.e, there is
a Bp (y) C 0}°, such that xo E 

We will use throughout this section the following auxiliary lemma on the
asymptotic behavior of nonnegative subharmonic functions at boundary points
which are regular from the nonpositive side.

LEMMA 4.1. Let U be a Lipschitz function in some ball B centered at the
origin. Assume that U is nonnegative and subharmonic in B, U(0) = 0. Assume,
in addition, that U = 0 in some ball Bp (y) C {xl I  OJ, Bp (y) C C B, 0 E a Bp (y).

Then, near the origin, U has the asymptotic development

with a &#x3E; 0.
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PROOF. Let p’ &#x3E; p be such that CC B. Since U is Lipschitz
continuous, there exists a constant A &#x3E; 0 such that U  A on Let

v be the harmonic function in B = B p’ (y) B B p (y) such that v = 0 on a B p ( y )
and v = A on Clearly, v is positive in ,L~ and smooth in ,t3 and it
vanishes at 0 E a 13. Therefore,

for some S &#x3E; 0. On the other hand, the function w = v - U is superharmonic
and positive in B and, in particular, it is so in the subset 1 &#x3E; 0} . Therefore,
we can use Lemma Al in [7] (which applies to superharmonic functions even
though it is stated for harmonic functions) to deduce that

for some 8 &#x3E; 0, which implies, by (4.1),

with a &#x3E; 0.

Now we will prove our main results in the section.

THEOREM 4.1. Let u’j be solutions to E Ei in a domain S2 C R N such that
uej - u uniformly on compact subsets of S2 and Bj ~ 0. Then u is a viscosity
supersolution in Q.

PROOF. Clearly, u satisfies (i) and (ii) in Definition 4.1 (see for instance
Proposition 2.2). We will show that (iii) also holds. Let Bp (y) C {u &#x3E; 01 be
a ball touching a {u &#x3E; 01 at a point xo, and assume that, for some a &#x3E; 0,

in B p ( y ) ( v given by the inward unit radial direction of the ball at xo).
If a2  2M there is nothing to prove. Otherwise, let y &#x3E; 0 be such that

a2 - y2 &#x3E; 2M. We will show that

in Bp (y)~.
We will assume without loss of generality that v = el and xo = 0.

We claim that u(x) = axt - + with a, y &#x3E; 0.

In fact, by Lemma 4.1,

for some y &#x3E; 0. Let us consider, for h &#x3E; 0,
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Since u is locally Lipschitz continuous and u (0) = 0 then, for every se-
quence hn - 0, there exists a subsequence, that we still call k,, such that

UO uniformly on compact sets of R N, where uo is Lipschitz in 
By (4.2) and (4.3) we know that

and

(Let us recall at this moment our assumption that a &#x3E; 2M &#x3E; 0).
We will consider two cases.

CASE I. Y &#x3E; 0.
In this case, uo  0 in {jci  01. Therefore uo - 0 on {xl - 0} and

since uo is Lipschitz, we have

for some a &#x3E; 0. Thus, we deduce that

CASE II. y = 0.
In this case, 0 in R . Since uo &#x3E; 0 and harmonic in f xl &#x3E; 0}, then

by Lemma Al in [7], there exists a &#x3E; 0 such that

Necessarily

Let us consider, for h &#x3E; 0,

Since uo is Lipschitz continuous and uo (o) = 0, we deduce that there exists a
sequence hn - 0 such that (uo)Àn -~ uoo uniformly on compact sets of 
where uoo is a Lipschitz continuous function in By (4.5),

Also, uoo &#x3E; 0 in R N and harmonic in the set where it is positive. Since

uoo = 0 in {xl - 0}, then the application of Lemma Al in [7] yields
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for some a &#x3E; 0. Let us finally consider for h &#x3E; 0

As before, we see that there exist a sequence in ~ 0 and a Lipschitz function
uooo in R N, such that U Àn ~ uooo uniformly on compact sets of From our

computations above we deduce that 
’

Applying Proposition 2.3 we see that there exist a sequence 3, ~ 0 and
solutions uSn to Esn such that

uniformly on compact sets of Applying Proposition 2.3 two more times,
we see that there exist a sequence 8n - 0 and solutions u~n to Esn such that
u8n ~ uooo uniformly on compact sets of 

It follows that uooo is under the hypotheses of Theorem 3.1 or Proposi-
tion 2.4. In either case,

which contradicts (4.6).
Thus we get a contradiction. So that Case II is not possible and (4.4)

holds.

By (4.7), we see that we may apply Theorem 3.1 to the function uo to
conclude that

By Lemma 3.1, there exists 8 independent of the sequence hn such that

By (4.8) and (4.9) we see that the limit function uo does not depend on
the sequence Ån. So that we have -

uniformly on compact sets of R N (as h - 0). Therefore,

In particular,

By (4.8), we have

So that by (4.10) and (4.11), we deduce that

and the theorem is proved.
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THEOREM 4.2. Let uêj be solutions to in a domain Q C R N such that
uêj - u uniformly on compact subsets of Q and Bj - 0. Assume, in addition, that
at every regular point from the nonpositive side Xo E S2 n a {u &#x3E; 01 (this is, such
that there exists a ball Bp (y) C {u  01 with Xo E a BP (y)), u satisfies one of the
following hypotheses:
H l ) u+ is nondegenerate at xo in the sense of (3.2) or else

H2) u  0 in Bp (y).
Then u is a viscosity subsolution in Q.

PROOF. Clearly, u satisfies (i) and (ii) in Definition 4.2 (see for instance
Proposition 2.2). We will show that (iii) also holds. Let Bp (y) C {u  01’ be
a ball touching a {u &#x3E; 01 at a point xo, and assume that for some y &#x3E; 0

in Bp(y), (v given by the outward unit radial direction of the ball at xo).
Let a &#x3E; 0 be such that a2 - y2  2M. We will show that

in Bp (y)~.
We will assume without loss of generality that v = e 1 and xo = 0.
By Lemma 4.1 we know that there exists a &#x3E; 0 such that

Let us consider, for h &#x3E; 0, ux as in Theorem 4.1. For every sequence
hn ~ 0 there exist a subsequence, that we still call Àn, and uo Lipschitz
continuous in R’ such that uÀn - uo uniformly on compact sets of R~.

Then, by (4.13) we have

On the other hand, since Bp(y) C {u  0}, 0 E and el is the
outward unit radial direction to Bp (y) at the origin, then 0 in {xl  01.
Since u is harmonic in the set 0}°, we can actually have only one of the
following situations:

i) u = 0 in Bp(y), in which case

ii) u  0 in Bp(y). In this case, by Hopf’s Principle there exists 9 &#x3E; 0 such
that u(x)  -f- o(lxl) in Bp(y) and therefore,
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We will consider two cases (independently on whether (4.14) or (4.15)
holds).

CASE I. a &#x3E; 0. Then we have u+ = uo in 01. Since 0 in

ix,  0}, we deduce that uo = 0 in {xl - 01. Thus, uo is Lipschitz in R ,
nonnegative and harmonic in Ix,  0} and vanishes on {xl - 01. We conclude
that there exists y &#x3E; 0 such that

Therefore,

CASE II. a = 0. In this case we must have u  0 in In fact, if

not, by HI) u+ must satisfy (3.2) at the origin. Rescaling (3.2) we get that

for every small r &#x3E; 0. So that

which is not possible if a = 0.
Therefore u  0 in Bp(y) and thus, uo  0 in {xl  01 (see ii) above).
On the other hand, since u+ = 0, we have that 0 in By the

arguments in Theorem 4.1 we know that there exist a sequence 3,, ~, 0 and
solutions u8n of Esn such that ubn ~ uo uniformly on compact sets of R N.
Therefore, uo is harmonic in R N since any such limit is harmonic in the interior
of the set where it is nonnegative (see Proposition 2.2).

From the fact that uo(O) = 0 we deduce that we must have u o = 0 in R N
which we have just seen that is not possible.

So that Case II is not possible and we have (4.16) with a &#x3E; 0 0.

As in Theorem 4.1 we see that we may apply Theorem 3.1 to the func-

tion uo to deduce that a, y satisfy the free boundary condition (4.8).
As in Theorem 4.1, by the application of Lemma 3.1, we see that the limit

function uo does not depend on the sequence ),n ~ 0 and therefore,

In particular,

By (4.12) we see that necessarily - &#x3E; y. Thus,

So that

and the theorem is proved.
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In particular we obtain the following corollaries.

COROLLARY 4.1. Let uBj be solutions to in a domain Q C R N such that
uEj - u uniformly on compact subsets of 0 and Sj ~ 0. Assume, in addition, that
{u = 01’ = 0. Then u is a viscosity solution in Q.

COROLLARY 4.2. Let uBj be solutions to in a domain S2 C R N such that
uEj - u uniformly on compact subsets of Q and Sj - 0. Assume, in addition, that
u+ is nondegenerate at every point Xo e Q f1 a {u &#x3E; 01 in the sense of (3.2). Then
u is a viscosity solution in Q.

As a corollary to the proof of Theorem 4.2 we have the following propo-
sition which is of the type of Theorem 3.1. This is a result of a pointwise
nature.

PROPOSITION 4.1. Let u’j be solutions to E Ei in a domain S2 C such that

u’j - u uniformly on compact subsets of Q and 8j - 0. Let Xo e Q f1 a {u &#x3E; ol
be a regular point from the nonpositive side (this is, such that there exists a ball

Bp (y) C {u  01 with Xo E a BP (y) ). If u =- 0 in Bp (y) we assume in addition that
u+ is nondegenerate at xo in the sense of (3.2). Then u has the following asymptotic
development

with a &#x3E; 0, y &#x3E; 0 and a2 - y2 = 2M.

5. - Regularity of the free boundary

In this section we study the regularity of the free boundary. We first
want to remark that there are limit functions u which do not satisfy the free
boundary condition in the classical sense on any portion of 8(u &#x3E;, 0} (for
instance, u = with 0  a  2M, see [ 11 ], Remark 5.1 ). Thus,
extra hypotheses have to be made in order to get regularity results.

On one hand, we prove in Theorem 5.1 that in the absence of zero phase,
if u- is nondegenerate at Xo E 8(u &#x3E; 0}, then the free boundary is a c1,a
surface in a neighborhood of xo. Therefore u is a classical solution to E in
that neighborhood. We point out that in the strictly two phase case, if the
free boundary is smooth, then u - is nondegerate on the free boundary (see
Remark 5.1). As a corollary to Theorem 5.1 we deduce that in the absence
of zero phase, there is a subset of the free boundary which is locally a c1,a
surface. This subset is open and dense in 8(u  0} (Corollary 5.1). See also

Corollary 5.2.
On the other hand, we prove for the general two phase case that, under

nondegeneracy assumptions on u+, if xo Eo n 8(u &#x3E; 0} is such that the free
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boundary has at xo an inward unit normal in the measure theoretic sense, then
the free boundary is a Cl," surface in a neighborhood of xo (Theorem 5.2).
Then, in Corollary 5.3 we prove that, under suitable assumptions on our limit
function u, there is a subset of the free boundary which is locally a Cl,’ surface.
Moreover, this smooth subset is open and dense in 8 (u &#x3E; 0} and the remainder
of the free boundary has (N - I)-dimensional Hausdorff measure zero. We end
our work with further results for the one phase case (Theorems 5.3 and 5.4).

In order to get our regularity results we use, on one hand, the results
we have obtained in the previous sections for the limit function u and the

regularity theory developed in [6], [7]. On the other hand, we use the result
of Proposition 5.1 -which replaces, in Theorem 5.1, more usual geometric
measure theoretic arguments.

We start the section with a definition and some auxiliary lemmas:

DEFINITION 5.1. Let v be a continuous function in a domain Q c We

say that the set (v s 0} has positive density at a point xo e Q n 8(v &#x3E; 0}, if
there exist c &#x3E; 0 and ro &#x3E; 0 such that

We say that the set { v  01 has uniform positive density on r c Qna I v &#x3E; ol,
if there exist c &#x3E; 0 and ro &#x3E; 0 such that (5.1 ) holds for every Xo E r.

LEMMA 5.1. Let u be a locally Lipschitz continuous function in a domain
S2 C harmonic in {u &#x3E; 01 U {u  01’ and globally subharmonic. Assume that
u+ is locally uniformly nondegenerate on S2 n a {u &#x3E; 01 in the sense of (3.2) and
that the set {u  01 has locally uniform positive density on S2 f1 a {u &#x3E; OJ. Then, for
every S2’ C C S2 there exist C &#x3E; 0 and po &#x3E; 0 such that, for x E Q’,

Here d (x, A) is the distance from the point x to the set A.

PROOF. If the result does not hold, then there exists a sequence xn in
Q’ cc S2 such that d (xn , { u  0 } )  ~ and u + (xn )  n d (xn , { u  0 } ) .

Let a {u &#x3E; 0} be such that Àn := d(xn, {u  ~0)) = znl, and let
2013~ 0 and there is a function uo such that,

for a subsequence, uÀn -~ uo uniformly on compact sets of We can choose

the subsequence so that there exists

where

and without loss of generality we will assume that v = el.
Then, uo is Lipschitz continuous and harmonic in luo &#x3E; 0} U luo  0}, and

from the fact that
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we deduce that uo is harmonic and nonnegative in Bl(el). Since uo(el) = 0, it
follows that Uo == 0 in B1 (el). Now, we can apply Lemma 4.1 to u+ and u-
to deduce that

with a Next, we consider for h &#x3E; 0, There exists a

sequence Àn - 0 such that (uo)x,, ~ uoo uniformly on compact sets of It
follows that

On the other hand, since u+ is locally uniformly nondegenerate on &#x3E; ol
in the sense of (3.2), it follows that, for r &#x3E; 0,

and therefore,

which gives

Hence a &#x3E; 0.

Using now that the set 0} has locally uniform positive density on
S2 n 8(u &#x3E; 0}, we see that, for r &#x3E; 0,

and therefore,

Letting n ~ oo, we get

and then, rescaling and letting n - oo again,

But this contradicts the fact that uoo &#x3E; 0 in  0} and the lemma follows.
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LEMMA 5.2. Let u be a locally Lipschitz continuous function in a domain
Q C harmonic in {u &#x3E; 01 U {u  01’ and globally subharmonic. Assume
that u- is nondegenerate at Xo E Q fl a {u &#x3E; 01 in the sense of (3.2). Then u+ is
nondegenerate at xo in the same sense.

PROOF. Let us proceed by contradiction. Then, there exist a sequence
hn ~ 0 such that

Now consider the sequence u~,n (x) - Since u is locally
Lipschitz continuous and u (xo) - 0 there exist a subsequence, that we still
call Àn, and a Lipschitz continuous function uo such that uÄn ~ uo uniformly
on’ compact subsets of We have

Thus, 0 in B1 (o) and then, 0 in B1 (0). So that uo is a

nonpositive harmonic function in B1 (o) which vanishes at the origin. We deduce
that uo _ 0 in Bl (0). But this contradicts the fact that u- is nondegenerate
at xo in the sense of (3.2). Indeed,

Therefore, u+ is nondegenerate at xo in the sense of (3.2) and the proof
is complete.

PROPOSITION 5.1. Let u£j be solutions to in a domain Q C such that

u£j ~ u uniformly on compact subsets of 0 and £j ~ 0. Let Xo Eon a {u &#x3E; ol
and let Àn &#x3E; 0 be a sequence such that Àn ~ 0. Consider the functions u Àn (x) =

+ Ànx) and assume that uÀn ~ U as n ~ oo uniformly on compact sets of
RN. If u- is nondegenerate at xo in the sense of (3.2), then

where v is a unit vector, and a, y are positive constants satisfying a2 - y2 = 2M.
PROOF. Let us consider, for t &#x3E; 0,

where I
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From the local parabolic monotonicity formula in [9] it is possible to deduce
that there exists 8 &#x3E; 0 independent of the sequence X, such that

In fact, this was done by Caffarelli and the authors, for the parabolic version
of this problem (Lemma 3.1 in [12]).

Let us see that we necessarily have 8 &#x3E; 0. In fact, assume that

for some t &#x3E; 0. Then, U - - 0 in R N and therefore, for any r &#x3E; 0,

which contradicts the nondegeneracy of u- at xo in the sense of (3.2). Since
also u+ is nondegenerate at xo in the same sense (recall Lemma 5.2), we
proceed analogously with U+.

That is, we have shown that (5.3) holds with b &#x3E; 0.
We will now conclude that

with a &#x3E; 0, y &#x3E; 0 and v a unit vector.
We will show that this can be deduced from the proof of the global parabolic

monotonicity formula in Theorem 1 in [9], and from the convexity results for the
first eigenvalue of the Dirichlet problem for Gaussian measure in [4], since (5.3)
holds with 8 &#x3E; 0.

In fact, in [4] the authors consider for any domain Q c R N

where
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where Qa := {~N &#x3E; a} and a is such that = m.

Also, the authors prove in [4]: 
( 1 ) is a convex function of a.

(2) If = h(a), with = m, then Q = Qa (for a certain system
of coordinates).
Moreover, they prove that

(3) If k (a) + h(-a) = 2~(0), then a = 0.
Let us also observe that, from the definition of ~,(S2), it follows that

I 

S21 C Q2 implies that X(Ql) &#x3E;- 

On the other hand, since Ju (t) --_ ~ for t &#x3E; 0, there follows that n 0
which is equivalent to

with

where u = U+ and u2 = U-. Here it is used that, since 8 &#x3E; 0, Ii (t) :0 0 for
every t &#x3E; 0. Now, since u 1 and u2 satisfy the hypothesis of Theorem 1 in [9],
there holds that (see [9], or [4])

where ai is such that Therefore,

since -a2 and k(a) is increasing and convex. In fact, since

there follows that
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Therefore, -a2.
So that, there holds that

and, by the results of [4] we deduce that a2 = 0. But, there also holds

so that À(a1) = h(0) and it follows that a = 0.

Now, since h((ui (2#§) &#x3E; 0{) &#x3E; it follows that

Therefore, by the results in [4] (since ai = 0) there exists a unit vector vi (for
i = 1, 2) such that

and thus,

Analogously,

Since {U+(x) &#x3E; 0} n {U-(x) &#x3E; 0} = 0, there follows that v2 = -Vl-
Finally, from the fact that U is Lipschitz continuous in and harmonic

in { U &#x3E; 0} U 0}° it follows that (with v = Pi)

with a, y &#x3E; 0.
Now Proposition 2.3 and Theorem 3.1 give a2 - y2 = 2M and the proof

is complete.

Let us start with the regularity results.

THEOREM 5.1. Let u’j be solutions to in a domain S2 C R N such that
u’j ~ u uniformly on compact subsets of Q and 8j - 0. Assume that {u -= O}O = 0
and that u- is nondegenerate at Xo e Q f1 a {u &#x3E; 01 in the sense of (3.2). Then the
free boundary is a surface in a neighborhood of xo.

The same result holds if we replace the assumption that {u n 01’ = 0 by the
hypothesis of Theorem 4.2.
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PROOF. Since u falls under the hypotheses of Corollary 4.1 it follows that u
is a viscosity solution to the free boundary problem in SZ. (If instead of the fact
that [u = 01’ = 0 there holds that u satisfies the hypothesis of Theorem 4.2,
the same conclusion follows).

We will now derive our regularity result.
Let hn &#x3E; 0 be a sequence such that hn - 0 and such that uÀn (x) =

£u(xo + Ànx) converges to a function U as n ~ oo, uniformly on compact
sets of 

From Proposition 5.1, it follows that

with v a unit vector, and a, y positive constants satisfying a2 - y2 = 2M.
Therefore, given 0  1 and 4  00  1-, there exists no such that, for

any n &#x3E; no, uÀn is It-monotone in B1 (o) in any direction r of the cone

That is,

Since uÀn is a viscosity solution to problem E, it follows from Theorem 1
in [7] that ux,, is fully monotone in B1~2(o) in any direction of a smaller cone.
Therefore the free boundary of u is Lipschitz in 

Now Theorem 1 in [6] and the remarks in Section 1 in [7] imply that
8(u &#x3E; 0} is a c1,a surface in a neighborhood of xo.

REMARK 5.1. We point out that in the strictly two phase case, if the free
boundary is smooth, then u- is nondegenerate on the free boundary. This is
the case even if we only require the free boundary to be locally Lipschitz
continuous.

In fact, if {u - 0)° = 0, then u is a viscosity solution (Corollary 4.1).
Therefore, if the free boundary is locally Lipschitz continuous, we may apply
the results in [6] and [7] to conclude that it is locally a surface. Thus,
by Hopf’s principle u- is nondegenerate on the free boundary.

When fu --_ 0)° = 0, the free boundary cannot be smooth in a neighborhood
of a point xo g 8(u  0} C 8(u &#x3E; 01. For 8(u  0} we have the following
regularity result: 

COROLLARY 5. l. Let u’j be solutions to Ej in a domain S2 C R N such that
u£J ~ u uniformly on compact subsets of Q and 8j - 0. Assume that (u &#x3E; O}O = 0.
Then, there is a subset R of Q f1 a {u &#x3E; 01 which is locally a C l,’ surface. Moreover,
R is open and dense in S2 n a {u  ol.



282

PROOF. Let Xo E S2 n a {u  0) and let r &#x3E; 0 small. Let y E {u  
and Z E a f U  01 be such that d = dist(y, a {u  0)) = y - z 1. Then, Bd (y)
is tangent to a { u  01 at the point z. Moreover, u  0 in Bd(y) so that u - is

nondegenerate at z in the sense of (3.2). B y Theorem 5.1 the free boundary
is a c1,a surface in a neighborhood of z. In addition, the distance from ,z to

xo is at most r. The corollary is proved.
COROLLARY 5.2. Let u’j be solutions to Eë’ J in a domain Q C RN such that

uëj - u uniformly on compact subsets of Q and 8j - 0. Assume that there exists
a domain U C S2 such that u- is nondegenerate at every point in U n a {u &#x3E; 01 in
the sense of (3.2). Then U f1 a {u &#x3E; 01 is locally a c1,a surface.

PROOF. Since u- is nondegenerate at every point in z4natu &#x3E; 01 in the sense
of (3.2), then by Lemma 5.2 u+ is nondegenerate at every point in U n 8 (u &#x3E; ol
in the same sense. Therefore u satisfies the hypothesis of Theorem 4.2 and we
may apply Theorem 5.1 at every point Xo E U n a tu &#x3E; 0} .

For the general two phase case, we have the following result:

THEOREM 5.2. Let uëj be solutions to E Ei in a domain S2 C R N such that
uëj - u uniformly on compact subsets of Q and 8j - 0. Assume that u+ is locally
uniformly nondegenerate in the sense that (5.2) holds on every compact subset of Q.
If Xo e Q n a {u &#x3E; 01 is such that a {u &#x3E; 01 has at xo an inward unit normal in the
measure theoretic sense then, the free boundary is a c1,a surface in a neighborhood
of xo.

PROOF. We will see that u+ is locally uniformly nondegenerate on the free
boundary in the sense (3.2), so that u falls under the hypotheses of Corollary 4.2
and we deduce that u is a viscosity solution in Q.

In fact, under our hypotheses we can apply Lemma 7 in [8] to u+. There-
fore, for every S2’ C C S2 there are positive constants c and ro such that

for every &#x3E;01 and 0  r  ro .
Next, let yo EQ, fl 8(u &#x3E; 0}, 0  p  ro and consider the function h

which is harmonic in Bp(yo) with boundary values u+. We clearly have

and then, by Harnack’s inequality applied to h we get

Therefore,
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This is, u+ is locally uniformly nondegenerate on S2 n 8(u &#x3E; 0} in the sense
of (3.2).

We will derive our regularity result from Theorem 2’ in [7]. To do so, let
us see that the free boundary is flat in a neighborhood of xo. In fact, since
the free boundary has at xo an inward unit normal v in the measure theoretic
sense we can apply Theorem 3.1 to deduce that

with a2 - y 2 = 2M, a &#x3E; 0, y &#x3E; 0.
Then, given hn 0, the sequence convergesXn

uniformly on compact sets of R N to Mo(Jc) = a (x , v ) + - y (x , )’.
It is not hard to see that for any E &#x3E; 0 small, there holds that

if n is large enough. Indeed, (5.4) follows easily and the same happens with (5.5)
in case y &#x3E; 0.

Let us derive (5.5) in case y = 0. In fact, suppose that there holds
that B1(o) n {~x, v)  -El n &#x3E; 01 =A ø, for a subsequence. Then, we
arrive at a contradiction by using that u+ is locally uniformly nondegenerate
on S2 f1 8(u &#x3E; 0} in the sense of (3.2). If, on the other hand, there holds that

&#x3E; 0 in B1(o) n {{jc, v)  -E} for a subsequence, then the contradiction
follows from the fact that u+ satisfies (5.2) in a neighborhood of xo. Thus,
(5.5) holds.

Therefore, u falls under the hypotheses of Thm. 2’ in [7] for small balls
around xo. This eventually implies that 8(u &#x3E; 0} is a surface in a neigh-
borhood of xo.

COROLLARY 5.3. Let solutions to E 8i in a domain Q C R N such that
u£~ ~ u uniformly on compact subsets of 0 and £j ~ 0. Assume, in addition, that:

i) u+ is locally uniformly nondegenerate on S2 n a {u &#x3E; 01 in the sense of (3.2).
ii) The set 0} has locally uniform positive density on Q n a {u &#x3E; ol.

Then, there is a subset R of the free boundary S2 fl a {u &#x3E; 01 (R = ared{u &#x3E; OJ)
which is locally a c1,a surface. Moreover, R is open and dense in S2 n a {u &#x3E; 01 and
the remainder of the free boundary has (N - 1)-dimensional Hausdorff measure
zero.

PROOF. Let us first observe that, since Theorem 3.2 applies (see Remark 3.1 ),
the free boundary &#x3E; 0} has locally finite (N -1 )-dimensional Hausdorff
measure and therefore, lu &#x3E; 0} has locally finite perimeter in Q.

By Lemma 5.1, u+ is locally uniformly nondegenerate in the sense that
it satisfies (5.2) on every compact set. Therefore u is under the hypothesis of



284

Theorem 5.2 for every point xo Eo n 8(u &#x3E; 0} at which the free boundary has
an inward unit normal in the measure theoretic sense, this is, at every point
Xo E 8red(u &#x3E; 01. Thus, the free boundary is a C1’a surface in a neighborhood
of any such point.

To conclude the proof we observe that under our hypotheses, we have for
every point x EQnatu &#x3E; 0}

and therefore, Lemma 1 in [15], Section 5.8, gives that 1fN-l- almost all
x &#x3E; 0} is in the reduced boundary. Finally, Theorem 3.2 (see 3.2.3))
implies that the reduced boundary is dense in &#x3E; 0}. Thus, the corollary
is proved.

We obtain the following result for the one phase case:

THEOREM 5.3. Let u and 7l be as in Corollary 5.3. Assume in addition that
u &#x3E; 0 in U C C Q. Then 7Z locally an analytic surface.

PROOF. The previous results imply that for every free boundary point xo E R
there is a neighborhood N = Nxo C Ll such that 0} is a surface.

Therefore, u satisfies

(v the inward unit normal to the free boundary) in the classical sense and then,
Theorem 2 in [ 17] implies that N n a {u &#x3E; ol is analytic.

We finally study the behavior near (not necessarily regular) free boundary
points, in the one phase case:

THEOREM 5.4. Let uêj be solutions to in a domain Q C R N such that
uêj -+ u uniformly on compact subsets of Q and Sj --+ 0. Assume that u &#x3E; 0 in
U c c Q.

Let r C U f~l a {u &#x3E; 01 denote the set of free boundary points in U which are
regular from the positive side and assume, in addition, that the set {u  01 has
uniform positive density on I. (We call this property, Property (D)). Then, for
every Xo E u f1 a {u &#x3E; 01 there holds that 

’

The same result holds if we replace Property (D) by the following property which
we call Property (L): For every point Z E r, and for every ball Bp(z) (yz) C {u &#x3E; 01
with Z E (yz), there exists a unit vector ez, with (ëz, yz - z) &#x3E; Ollyz - z 11,
such that

Here o and so are positive constants not depending on the point z.
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REMARK 5.2. In [ 11 ], Theorem 6. l, it was proved (for the parabolic version
of this problem) that if u is a limit function and limsupx-+xo y,

then limsupx-+xo VI"-2M-+ y2.
In particular, any limit function u &#x3E; 0 satisfies

On the other hand, it was shown in [II], Remark 5.1, that we cannot expect
the equality to hold in general.

In Theorem 5.4 we show, when u &#x3E; 0, that under some additional hy-
pothesis at points which are regular from the positive side (Property (D) or
Property (L)), the equality holds.

PROOF OF THEOREM 5.4. Let xo &#x3E; 0}, and set

Since u is locally Lipschitz continuous, we have 0  a  oo.

CASE I. Assume that a &#x3E; 0. We will show that in this case a = 2M.
We know that there is a sequence yn - xo with

Let dn := dist(yn, alu &#x3E; 0}). Then dn - 0. Let ,zn &#x3E; 0} be such
that dn = I yn - z, 1. We have

Let us consider the sequence Udn (x) = -~ dnx ) . There is a function uo

such that, for a subsequence, udn ~ uo uniformly on compact sets of We
can choose the subsequence so that there exists

and without loss of generality we will assume that v = el.
Then, uo is Lipschitz continuous and harmonic in luo &#x3E; 0} and there holds,

by construction, that either

Also,
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and therefore, u o &#x3E; 0 in 

Let v : - and consider the function auO, which is harmonic in
I o( 1)I a v

f uo &#x3E; 0} and satisfies

The strong maximum principle hence implies

so that necessarily c = 0 and v = el. Finally, by analytic continuation we get

Next, the application of Lemma Al in [7] to u o in fxl 1  0} yields

Let us consider for k &#x3E; 0, There exists a sequence

hn ~ 0 such that - uoo uniformly on compact sets of R~. It follows that

. 

If Property (D) holds, it is not hard to see that the set 01 has

positive density at the origin and therefore, the same property holds for uoo.
This implies that y = 0.

We get the same conclusion in case Property (L) holds instead of Prop-
erty (D).

Finally, we apply Theorem 3.1 (arguing as we did in Theorem 4.1) to

deduce that a = 2M.
CASE II. We will now assume that a = 0 and arrive at a contradiction.
In fact, given 3 &#x3E; 0 small, we have

for some p &#x3E; 0.

Let us choose a point zo E Bp(xo) n 8(u &#x3E; ol which is regular from the
positive side so that u+ is nondegenerate at zo in the sense of (3.2). Let us

consider sequences Àn, In and Àn going to zero such that, for some functions
u o, u oo and Mooo.
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Then, we have from (5.6)

On the other hand, an argument similar to the one used in Theorem 4.1, in
combination with the fact that u+ is nondegenerate at zo in the sense of (3.2)
and with Property (D) or (L), implies (via the application of Theorem 3.1) that

for some unit vector e. This is in contradiction with (5.7) and therefore, a &#x3E; 0.
Now the proof is complete.
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