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Viscosity Solutions and Regularity of the Free
Boundary for the Limit of an Elliptic Two
Phase Singular Perturbation Problem

CLAUDIA LEDERMAN - NOEMI WOLANSKI

Abstract. In this paper we are concerned with the following problem: Study the
limit as ¢ — 0, of solutions u? (x) to the equation:

(Ee) Auf = Be(u®)

where ¢ > 0 and B;(s) = %ﬁ(%). Here B is a Lipschitz continuous function with
B > 0in (0,1) and B = 0 outside (0,1) and fﬁ(s)ds =M.

We consider a family u* of uniformly bounded solutions to E. in a domain
Q c RN and we prove that, under suitable assumptions, the limit function u is a
solution to

Au=0 in 2\ a{u > 0}
u=0, WH?-w;)?=2M onQNau> 0}

in a pointwise sense at “regular” free boundary points and in a viscosity sense.
Then, we prove the regularity of the free boundary.

In fact, we prove that in the absence of zero phase, if u~ is nondegenerate
at xg € QN d{u > 0}, then the free boundary is a C1* surface in a neighborhood
of xp. Therefore, u is a classical solution to (E) in that neighborhood.

For the general two phase case (which includes, in particular, the one phase
case) we prove that, under nondegeneracy assumptions on u, if the free boundary
has an inward unit normal in the measure theoretic sense at a point xo € QNd{u >
0}, then the free boundary is a C1-* surface in a neighborhood of xg.

(E)

Mathematics Subject Classification (1991): 35R35, 35J99, 80A25.

1. — Introduction

In this paper we are concerned with the following problem: Study the limit -
as ¢ — 0, of solutions u®(x) to the equation:

(E¢) Au® = B (uf),
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where ¢ > 0 and B.(s) = 1/¢B(s/€). Here B is a Lipschitz continuous function
with B > 0 in (0,1), B = O outside (0,1) and [ B(s)ds = M, where M is a
positive constant. The functions u®(x) are defined in R, or in a subset of it.

This problem is of interest in the theory of flame propagation. It appears
in combustion, in the description of laminar flames as an asymptotic limit for
high activation energy (see for instance [3], [5], [18]).

We consider a family #* of uniformly bounded solutions to E, in a domain
Q c RY and we prove that the limit function u is a solution, in an appropriate
sense, to the free boundary problem:

Au=20 in Q\ d{u > 0},
(E) u=0, @hH?—@;)?=2M on QNa{u> 0},
where M is as above, ut = max(u, 0), u~ = max(~u, 0) and v is the inward

unit normal to the free boundary Q2 N d{u > 0}. In particular, under suitable
assumptions, we prove that the free boundary is smooth and therefore, the free
boundary condition is satisfied in the classical sense.

The approach in our paper is local, since we do not force the solutions u°
to be globally defined nor to take on prescribed boundary values. On the other
hand, we are concerned with the two phase version of problem E,, that is, our
solutions are -allowed to change sign and become negative.

First, we prove that u is a solution to E in a pointwise sense. That is, u
is harmonic in {u > 0} U {# < 0}° and satisfies the free boundary condition at
every “regular” free boundary point (Theorem 3.1). Namely, we prove that u
has an asymptotic development and that (u;’f)2 — (u, )?> = 2M holds at a point
xo € 8{u > 0}, by making only assumptions on u at xo (here v is the inward
unit normal to d{u > 0} at x¢ in the measure theoretic sense).

Next, we prove that under suitable assumptions, our limit function u is
a solution to E in a viscosity sense (Theorems 4.1 and 4.2). By a viscosity
solution we mean a weak solution to the free boundary problem in the sense
introduced in [6] and [7]. In particular, we prove that u is a viscosity solution
if {u = 0})° = @ (Corollary 4.1) or if u* is nondegenerate on d{u > 0}
(Corollary 4.2).

Finally, we study the regularity of the free boundary. We want to remark
here that there are limit functions u# which do not satisfy the free boundary
condition in the classical sense on any portion of d{u > 0} (for instance,
u = ax1+ +ax; with 0 < o < V2M, see [11], Remark 5.1). Thus, extra
hypotheses have to be made in order to get regularity results.

On one hand, we prove in Theorem 5.1 that in the absence of zero phase,
if u~ is nondegenerate at xo € d{u > 0}, then the free boundary is a C'*
surface in a neighborhood of xy. Therefore u is a classical solution to E in
that neighborhood. We point out that in the strictly two phase case, if the
free boundary is smooth, then #~ is nondegerate on the free boundary (see
Remark 5.1). One of the corollaries to Theorem 5.1 states that in the absence
of zero phase, there is a subset of the free boundary which is locally a C La
surface. This subset is open and dense in d{u < 0} (Corollary 5.1).
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On the other hand, we prove for the general two phase case that, under
nondegeneracy assumptions on ut, if xo € Q N 3{u > 0} is such that the free
boundary has at xo an inward unit normal in the measure theoretic sense, then
the free boundary is a C'* surface in a neighborhood of xo (Theorem 5.2).
Then, in Corollary 5.3 we prove that, under suitable assumptions on our limit
function u, there is a subset of the free boundary which is locally a C*® surface.
Moreover, this smooth subset is open and dense in 3{u > 0} and the remainder
of the free boundary has (N — 1)-dimensional Hausdorff measure zero. We end
our work with further results for the one phase case (Theorems 5.3 and 5.4).

The parabolic version of this two phase problem was first studied in [9], [10]
and [11], where uniform estimates for uniformly bounded solutions were ob-
tained. These estimates allow the passage to the limit, as ¢ — 0, uniformly.
Then, in [12] it was proved that, in the strictly two phase case, the limit function
u is a solution in D C R¥*! to the free boundary problem

Au—u, =0 in D\ d{u > 0},
u=0, WH?—(@;)*»=2M  on DNd{u > 0},

in a pointwise sense at regular free boundary points, and in a parabolic viscosity
sense (v is the inward unit spatial normal to the free boundary). All these results
apply, in particular, to the present elliptic situation.

A parabolic viscosity solution is a continuous function which satisfies local
parabolic comparison principles with classical supersolutions and subsolutions
to the evolutionary free boundary problem.

If both the parabolic viscosity solution and the classical subsolution or
supersolution are time independent these comparison principles give no infor-
mation.

Therefore, the notion of parabolic viscosity solution is not as appropriate
for an elliptic problem as the one we use in this paper. This is the reason why
we prove in Section 4, that limit functions are viscosity solutions in the elliptic
sense of [6] and [7]. The results of Section 4 apply, in particular, to the one
phase case.

On the other hand, we here improve, in Theorem 3.1, the pointwise result
in [12], since it now applies to the one phase case.

In addition to the intrinsic interest of the results of Sections 3 and 4, they
are used to prove the regularity results in Section 5.

A mathematical idea introduced in this paper is the use of the local parabolic
monotonicity formula ([9]) together with convexity results for eigenvalues ([4])
to derive regularity results of interfaces (see Proposition 5.1 and Theorem 5.1).
This new idea replaces more usual geometric measure theoretic arguments.

The use of the local parabolic monotonicity formula, instead of an elliptic
one, allows us to prove Proposition 5.1 —which is of independent interest. An
analogous result was proven in [2] for dimension N = 2 by using an elliptic
monotonicity formula (see [2], Lemma 6.6 and Remark 6.1).

In Section 5 we make a substantial use of the regularity results of free
boundaries of [6] and [7].
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The problem considered in this paper was first studied in the pioneer
work [3] in the one phase case and for a more general elliptic equation. The
authors proved uniform estimates and found that the limit function u satisfies
the free boundary condition u =0, u, = V2M when d{u > 0} is smooth. For
other related works see, for instance, [9], [10], [11], [12], [13], [16] and [18].

Our paper is organized in the following way. We consider a family u®
of solutions to E. which are uniformly bounded in L* norm. In Section 2
we state some preliminary results known for such a family, and for the limit
function u (as & — 0). In Section 3 we prove that the free boundary condition
is satisfied at every “regular” free boundary point. We also show that, under
extra hypotheses, a representation formula holds. Next, we prove in Section 4
that the limit function u is a viscosity solution to the free boundary problem E.
Finally, in Section 5 we study the regularity of the free boundary.

NoTATION
Throughout the paper N will denote the spatial dimension and M = fol B(s)ds.
In addition, the following notation will be used:

|S| N-dimensional Lebesgue measure of the set S
HN-1 (N — 1)-dimensional Hausdorff measure
B,(x¢) open ball of radius r and center xg

udx

o
f Brxg) ¥ = 1B, ()l fB,(xo)

faBr(x()) = m faB,(xo) udH"!
X characteristic function of the set S
ui = max(u, 0), u~ = max(—u, 0)

(-, ) scalar product in RV,

N
I

Preliminary results

In this section we consider a family u® of solutions to E, in a domain
Q C R¥ which are uniformly bounded in L*® norm in 2 and we state —for
the sake of completeness— some results known for such a family, on uniform
estimates and passage to the limit as ¢ — 0, which will be used throughout the
paper (Propositions 2.1, 2.2 and 2.3). These results were proven in [9], [10]
and [11], for the parabolic version of this problem.

We also state some results from [11] on the behavior of certain limit

functions.

' We remark here that if u® € L% (2) is a solution to E, in the distributional
sense, then u® is a classical solution to E.. Therefore, when referring to a
solution to E,., we will always mean a classical solution.

The following result was proven in [3] for the one phase case, i.e., under
the assumption that u#® > 0. For the two phase case, the result is due to
Caffarelli; he proved it for the parabolic version of the problem.
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ProposiTION 2.1 ([9], Theorem 3 or [10], Corollary 2). Let u® be a family of
solutions to E, in a domain Q C RN such that ||u® || o) < Afor some A > 0. Let
K C Q2 be a compact set and let T > 0 be such that B, (xo) C 2, for every xo € K.
Then, there exists a constant L = L(t, A), such that

|Vu®(x)| < L forx e K.

The following result was proven in [3] for the one phase elliptic problem
and in [11] for the two phase parabolic problem by using ideas which are
similar to those in [3].

ProposiTiON 2.2 ([11], Lemma 3.1 and [11], Proposition 3.1). Let u® be a
family of solutions to E, in a domain Q C RN. Let us assume that ||u®|| Lo <A
for some A > 0. Forevery g, — O there exist a subsequence ¢, — 0 and a function

u, which is locally Lipschitz continuous in 2, such that
i) u®s' — wu uniformly on compact subsets of 2,

i) Vun' — Vuin L% (Q),

iii) Au’r’ — Au locally as measures in 2,

iv) Au>0in <,
v) Au=0inQ\ a{u > 0}.

Next, we state a result proven in [11] in the parabolic case.

ProPOSITION 2.3 ([11], Lemma 3.2). Let u®i be a family of solutions to E,
in a domain Q@ C RY such that u® — u uniformly on compact subsets of Q and
g = 0. Let A, > O and x, € QN 3{u > 0} be sequences such that », — 0
and x, — x9 € QNo{u > 0l asn — oo. Letu,,(x) = iu(x,, + Anx) and
W), (x) = iuaf (Xn + Anx). Assume that u;, — U as n — 0o uniformly on
compact sets of RN. Then, there exists j(n) — o0 such that for every j, > j(n),
there holds that %’:— — 0 and

1) (uin),, — U uniformly on compact sets of RY,
2) V(ubin);, — VU in L} (RV).

Also, there holds that
3) Vu,, — VU in L (RM).

Finally, we state two results on the behavior of certain limit functions, that
were proven in [11] in the parabolic case.
PrOPOSITION 2.4 ([11], Proposition 5.3). Letu®/ be solutions to Egj inadomain

Q C RV. Let xy € Q and assume that u’j converge to a(x — xo)fr +@(x — x0);
uniformly on compact subsets of 2, with « and @ positive and €j — 0. Then

a=0<~N2M.

ProposITION 2.5 ([11], Theorem 6.2). Let u®i be a solution to E,; in a domain

Q; C RY such that Qj C Qj11 and UQ; = RN. Let us assume that u®j converge
to a function U uniformly on compact sets of RN and ¢; — 0. Assume, in addition,
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that |VU| < L in RY for some L > 0 and 3{U > 0} # @. If y > 0 is such that

IVU™| <y inR" then,
IVU*| <\/2M +y2 inRM.

3. — Asymptotic development at regular free boundary points

In this section we consider ¥ = limu® (as ¢ — 0) and we show that the
free boundary condition (uj)2 — (uy, )2 = 2M is satisfied in a pointwise sense
at every “regular” free boundary point, this is, at every free boundary point
xo where there is an inward unit normal v in the measure theoretic sense. (If

liminf,_, ¢ ”"Tg}rrgz)("‘ ) — 0 we make, in addition, a nondegeneracy assumption

on u" at the point). In fact, we show that u has an asymptotic development
at any such point, which implies that there exist both u; and u; and that the
free boundary condition is satisfied (Theorem 3.1).

This asymptotic development, on the other hand, will be frequently used
in the next sections.

In Theorem 3.2 we find (via the application of results in [1]) a representation
formula for u, which holds when u™ is locally uniformly nondegenerate on
d{u > 0}. In particular, in this case the free boundary has locally finite (N — 1)-
dimensional Hausdorff measure.

We start this section with some definitions.

DEFINITION 3.1. Let v > 0 be a continuous function in a domain Q c RY.
We say that v is nondegenerate at a point xo € QN {v = 0} if there exist ¢ > 0
and rp > 0 such that one of the following conditions holds:

3.1 ][ v>cr for 0 <r <r,
9By (xp)

(3.2) ][ v>cr forO<r<ry.
Br(xg)

We say that v is uniformly nondegenerate on I' C QN {v = 0} in the sense
of (3.1) (resp. (3.2)), if there exist ¢ > 0 and ry > 0 such that (3.1) (resp. (3.2))
holds for every xp € I

REMARK 3.1. It is easy to see that (3.1) implies (3.2). On the other hand,
if v > 0 is locally Lipschitz continuous in a domain € C R" and harmonic
in {v > 0} (which will be our case), there holds that if v is nondegenerate at
x0 € N {v = 0} in the sense of (3.2) then, v is nondegenerate at xp in the
sense of (3.1). Analogously, under the assumptions above, if ' CC € and v
is uniformly nondegenerate on I' C ' N {v = 0} in the sense of (3.2) then, v
is uniformly nondegenerate on I' in the sense of (3.1).
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Let us prove this last assertion (the pointwise result follows similarly). In
fact, if the result were not true, there would exist a sequence x, € I' such that

1 .

][ v<-r, withr,—0.
0By, (xn) n

Let v, (x) := %v(x,, + r,x). Then, there exists a subsequence, that we still

call v,,, such that v,, — vp uniformly on compact sets of RY, where vy > 0
is Lipschitz continuous in RY and harmonic in {vo > 0}.
By rescaling, we deduce that {, B©) Vrn = % and therefore,

][ Vo = 0.
3B1(0)

Since vg is globally subharmonic, it follows that vg = 0 in B;(0). On the other
hand, by hypothesis we have 0 < ¢ < f B, Yrn and thus,

c S][ Vo,
B1(0)

which is a contradiction and proves the result.

DEeFINITION 3.2. Let u be a continuous function in a domain  C R¥ and
let xo € 2N d{u > 0}. We say that a unit vector v is the inward unit normal
to a{u > 0} at xp in the measure theoretic sense if (see for instance [14])

(3.3) lim | Xtu>0}y — X(x / (x—xg.v)>0)| dx = 0.
r—>0 Br (xg)

First we prove the following lemma

LEMMA 3.1. Let u®i be solutions to E; in a domain Q C RY such that u®i
converge to a function u uniformly on compact subsets of Q2 and ¢; — 0. Let
x0 € QN u > 0} and, for A > 0, let uy(x) = %u(xo + Ax). Let A, > 0 and
An — O be such that

r, > U =axi —yxy +o(x]),
uz, = U =axi —yxi +o(x)),

uniformly on compact sets of RN, witha, @, y, 7 > 0.
Then oy = ay.

Proor. By Lemma 3.1 in [12] there exists a constant § (independent of the
sequence A,) such that

— 1 0 +2 0 -2
34 S:t—z </—t/]RN IVU™| G(x,—s)dxds) (/—:/RN VU™ |G (x, —s)dxds)

1x2

for every t > 0, where G(x,t) = —Lye % .
()2
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Let Uy(x) = %U(Ax). Then U, — Uy = axf—yxl_ uniformly on compact
sets of RV, as A — 0. Let us take any sequence converging to 0, for instance A,,
and let us rescale (3.4). We get, for ¢t > 0,

1 0 0
33 o= (/_,/RN VU *G(x, —s)dxds> (/—t/IRN IVU;, PG (x, —s)dxds).

We want to pass to the limit in (3.5) as n — oo. To this end we first see

that, by Proposition 2.3, there exists a sequence j, — oo with §, = i’—: -0

such that (u%n); —> U uniformly on compact sets of RY. It is easy to see that
(u®in),, is a solution to E ¢j, - Therefore, there exists a sequence u®n of solutions

n

to Es, such that u® — U uniformly on compact sets of RV and 8, — 0.

Thus, we may apply Proposition 2.3 again, now to the functions U and U,
to conclude VU,,, — VUj in leoc (RM). So that by taking a subsequence, that we
still call A,, we may assume that the convergence takes place almost everywhere
in RY. Since U is Lipschitz in RY, |VUj,| are bounded in RY uniformly in n.
Therefore we can pass to the limit in (3.5) to conclude that

Repeating the argument with the sequence ,, we see that

5 2)72
2

[=3}

Therefore, ay = ay.
Let us prove our first theorem.

THEOREM 3.1. Let u/ be solutions to E,; in a domain Q C RY such that u®i
converge to a function u uniformly on compact subsets of Q and ¢; — 0. Let
xo € QN d{u > 0} be such that 0{u > 0} has at xy an inward unit normal v in the

measure theoretic sense (this is, (3.3) above holds). Ifliminf,_, lu Tg}rrx;’)(lx I — o,

we assume, in addition, that u* is nondegenerate at x in the sense of (3.2).
Then, there exist @ > 0 and y > 0, such that

yF—yix —x0,v)” +o(lx — xol)

u(_x) = cx(x — X0, V
with
o? — yz =2M.

ProoF. Let xg be as in the statement of the theorem. We may assume
without loss of generality that xo =0 and v = e;.
We will consider two cases.
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Cast 1. limsup,_, %%w =0.

In this case, the limit actually exists and it is equal to 0. This is the case
considered in Theorem 3.1 in [12] for the parabolic version of this problem.
Since [12], Theorem 3.1 applies to our present situation, the theorem is proved
in this case.

Case IL limsup,_, =308 0L > 0,

Let us define for each A > O the function u; (x) = %u(kx). Since u(0) =0
and u is locally Lipschitz continuous, given a sequence A, — 0, there exist a
subsequence, that we will still call A,, and a function U, which is Lipschitz
continuous in RY, such that u,, — U uniformly on compact sets of RV,

STEP I. Let us see that there exist «, ¥ > 0 such that

U(x) =ax{ +o(x]) in {x; >0},
(3.6)
Ux)=—yx; in {x; <O0}.

In fact, by our assumption that e¢; is the inward unit normal to d{u > 0}
at 0 in the measure theoretic sense, we have, as A — O,

in L} (RY),
in L} (RY).

Xy >0 7 X(xy>0)

3.7

Ky <0) 7 Xixy<0)

By (3.7), U is nonnegative in {x; > 0} and harmonic where positive; and
harmonic and nonpositive in {x; < 0}. In fact, if U~ # 0, then it is harmonic
in the set where it is positive and therefore, it is subharmonic in RY. On the
other hand, since u is globally subharmonic, U~ is superharmonic in {x; < O}.
Therefore U™ (x) = yx; in RY with y > 0.

On the other hand, by Lemma Al in [7], there exists ¢ > O such that
U(x) = ax{ +o(]x]) in {x; > 0}. So that (3.6) is verified.

Step II. Let us see that o > 0.
Indeed, if there holds that
.. . |[fu <0} B, (0)]
lim inf =0,
0 [B,(0)]

then, u™ satisfies (3.2) at O by hypothesis. Thus, rescaling (3.2) we get, for
every r > 0 and n large,

1
][ u;fn = —][ ut >cr,
By (0) AnJ By, (0)

][ Ut>cr,
Br(0)

for every r > 0. This would not be possible if Ut(x) = o(|x|). Therefore,
a > 0.

so that
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If, instead, there holds that

| <0y n B(©)
lim inf >0,
>0 [B0)]

we may apply Theorem 6.3 in [11], since there is an inward unit normal at
0 € QNa{u > 0} in the measure theoretic sense. Therefore, there exists C > 0
such that

sup u>Cr,

Br(0)

for every r > 0 small. Rescaling and passing to the limit, we get, for r > 0,

sup U>Cr,
Br(0)

which implies that a > 0.

SteP II1. Let us now see that y = 0. To this end we will apply Lemma 3.1.

In fact, since in this case we have limsup,_,, ”—"W > 0, there exists a

sequence A, — O such that

=010 B;, )] _

lim 2% > 0.
n—00 len (0)|
We then have
(3.8) s, =0INBIO|
[B1(0)] =

for n sufficiently large. _
Reasonigg as in Step I, we get for a subsequence, that we still call A,,

that u; — U where

(_7(x) = &x{" + o(|x|) in {x; > 0},
Ux) = —px; in {x; <0},

uniformly on compact sets of RY, with &,y > 0.
Let us see that ¥ = 0. Since e; is the inward unit normal to d{u > 0} at
the origin in the measure theoretic sense we have that

. tu <0} N {x; > 0} N B,(0)
lim =
r—0 |Br(0)|

So that
ltuz, =0} N (x> 0}N B (0)]

lim
n—>00 |Bl 0) |
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Therefore, by (3.8)
{U = 0}n {x; < 0} N B1(0)] o
| B1(0)] -

Since U(x) = —yx{ in {x; < 0} with 7 > 0, we deduce that necessarily 7 = 0.
We can now apply Lemma 3.1 to conclude that y = 0, since > 0 and
ay =ay =0.
Step IV. Now we will prove that o = +/2M. .
By Proposition 2.3, there exists a sequence j, — oo with §, = %nﬂ -0

such that (u%n),, — U uniformly on compact sets of RY. It is easy to see
that (u%n),, is a solution to EE].’l /in- Therefore, there exists a sequence udn

of solutions to Es, such that u’» — U uniformly on compact sets of RV and
8n — 0.

Let Uy(x) = %U (Ax). Then U; — Uy = (xx1+ uniformly on compact sets
of RY, as A — 0. Therefore, we may apply Proposition 2.3 again, now to
the functions U and Uj to conglude that there exist a sequence 4§, — O and
solutions 4 to E; such that u*» — Uy uniformly on compact sets of R¥ and
Vubr > VU, in L (RV).

Let ¥ € C°(R"). Let us multiply equation E; by (u’"),, ¥ and integrate
by parts. We have ‘

L[ 8 C A
3 [igmtvut+ [, vubvy = [ By ay,
where B; (s) = [y B;,(t) d. Therefore,

1 n n N ~
6o [19u P+ [ B = @, vairey.

We want to pass to the limit in (3.9) for n — oo.
Let us see that

on iF . 1 N
B; (u™) — MthO} + MX(x1<01 in L. (RY),

for some constant 0 < M < M. In fact,

ua"

Bs, i) = [ p(s)ds.
0

Therefore, B; (ug") =M in every U CC {x; > 0}, if n is large.
Let us see that there exists a function M(x) such that B; wlr) — M(x)
in Llloc({xl <0p.
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To this end, we will first show that B (u’) — M(x) in Li.({x) < 0)).
In fact, let & CC {x; < 0}, then

[ 1vB, @i = [ g atvit<c [ gy >0 0o
u 1Z u

since, by Proposition 2.2, B; (usn) = Aubr — AUy locally as measures.
Therefore, fu |VB3n (u’§")| < CU) for every U CC {x; < 0}. So that for a
subsequence and a function M(x) we have B (u*) - M(x) in Ly, ({x; < O}).
In particular, we may assume that the convergence takes place almost
everywhere in {x; < 0} and, since 0 < Bgn(us") < M, we conclude that
B; (™) — M(x) in L ({x; < 0)).
Thus, we actually have

B, (") = MX, o+ MX) X, o 10 Ligc®Y).
On the other hand, since fu |VBgn (u‘§")| — 0 as n — oo, for every U CC
{x1 <0}, we deduce that M(x) is constant, i.e. M(x) =M, with 0 <M < M.

Let us next see that necessarily M =0 or M = M.
In fact, let €;,6, > 0 and K CC {x; < 0}. There exists 0 < n < 1 such

that (with ,3,7 = inf[nyl_,,] B >0)
ubn
{xeK/n< 3 <1—n}

lx € K/e1 < By (™) < M — g3} <

n

=

{x € K/ B;, (u™) = %(> B, > 0)}‘ —0 (as n — 00)

since B, () — 0 in L'(K). Therefore, the fact that B;, (u®) — M in L'(K)
implies that

|{x€K/el <—M<M—82}]=0 for every €1,6, > 0, K CC {x; <0},

sothat M =0or M =M.
Let us now pass to the limit in (3.9). We find

a2 —
%1 =M fol +M 1//x1 .

2 {x1>0}) {x1>0} {x1 <0}

Integrating, we obtain

012 —
—_— =M - M
v v /[x.=o, v

2 Jix=0) (x1=0)
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o =1/2(M - M).

From the fact that M = M or M =0, and « > 0 we find

a=+2M.

Since v is arbitrary

SteP V. Conclusion.
We have proved that

(3.10) U(x) = vV2Mx; + o(|x|) in {x; > 0}
and
@3.11) U=0 in {x; < 0}.

Since U > 0 then, by Proposition 2.5, |[VU| < V2M. Therefore,
Ux) < V2Mx; in {x; > 0}.
By (3.10) and Hopf’s Principle we deduce that
(3.12) Ux) =+2Mx; in {x; > 0}.

By (3.11) and (3.12), there holds that the limit U does not depend on the
sequence A, and

ulx) = «/2Mx1+ +o(]x]) in Q.
So that the theorem is proved also in Case II.

REMARK 3.2. Let u be a continuous function in a domain € c RV. If
we have HVN~1(Q2 N d{u > 0}) < oo, then {u > 0} is a set of finite perimeter
in © (see [14]). In this situation we will call, as usual, reduced boundary (and
denote Og{u > 0}), the subset of points in d{u > 0} which have an inward
unit normal in the measure theoretic sense (see Definition 3.2).

We will next prove a representation formula for # which holds when u™
is locally uniformly nondegenerate. We will denote by HN~!| d{u > 0} the
measure HV~! restricted to the set d{u > 0}.

THEOREM 3.2. Let u®i be solutions to E; in a domain Q C RN such that u®i
converge to a function u uniformly on compact subsets of Q2 and ; — 0. Let us
assume that u™ is locally uniformly nondegenerate on Q N 3{u > 0} in the sense
of (3.1). Then,

32.D)HN Y@ Na{u > 0}) < oo, for every Q' CC L.
3.2.2) There exist borelian functions q; and q; defined on Q N d{u > 0} such that

Aut =q:HN—1|_8{u > 0},
Au~ =q; HY 1 8{u > 0}.
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3.2.3) Forevery Q' CC Q there exist C > 0,c > 0 and ry > 0 such that
crV 1 < HN-L (B (x0) N 3{u > 0}) < crv-1

for every xog € Q' N d{u > 0},0 < r < ry and, in addition,

32)0 <c<qf <C and 0<q, <C in Q' N3{u >0}, g, =0 in
do{u > 0} \ o{u < 0}.

3.2.5) u has the following asymptotic development at HN~'-almost every point xo
in dpeq{u > O} (this is, at HY~-almost every point xq such that 3{u > 0} has an
inward unit normal v in the measure theoretic sense)

u(x) = g (xo){x — x0, V)" — g (x0)(x — x0, V)™ +0(|x — x0l) .

ReMARK 3.3. Under the assumptions of Theorem 3.2, we have that The-
orem 3.1 applies at every point xo in the reduced boundary. Therefore, the
constants & and y in Theorem 3.1 verify that @ = g (xo) and y = g, (x0)
where ¢ and g, are the borelian functions in 3.2.2).

ProoF OF THEOREM 3.2. In order to prove the theorem we will make use
of some results in [1]. In fact, u™ is harmonic in {# > 0} and locally uniformly
nondegenerate on 2N d{u > 0} in the sense of (3.1). On the other hand, since u
is locally Lipschitz, for every Q' CC € there exist C > 0 and r; > 0 such that

][ ut <Cr
8By (xp)

for xoe Q' NAfu>0},0<r <r.
Under these conditions it was proved in [1], 4.5 that 3.2.1) holds and there
exists a borelian function g, defined on N d{u > 0} such that

Aut = gfHV ! 9{u > 0}.

Also 3.2.3) holds by the results of [1].

Moreover, it follows from [1], 4.5 that the local uniform nondegeneracy
of ut on QN 3{u > 0} in the sense of (3.1) implies that g} > ¢ > 0.

On the other hand, ¥~ is a nonnegative harmonic function in QN {u < 0}.

Since u is Lipschitz,
][ u <Cr
3By (xg)

for every xo € ' Nd{u < 0}, 0 < r < r;. On the other hand, since u is
harmonic in Q N {u < 0}° then d{u < 0} C d{u > 0}. Therefore, by 3.2.1)
and [1], Remark 4.6, there exists a borelian function g, defined on 2Nd{u < 0}
such that

Au~ =q;HN M d{u < 0}.
Thus, if we define g, =0 in d{u > 0} \ 9{u < O} there holds that g, > 0 and
Au~ =q; HN ' 8{u > 0}.
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Therefore 3.2.2) is proved.
It also follows that

gf <C inQ'Nd{u>0}, g <C in Q' Ndfu> 0}

so 3.2.4) is true.
Finally, by [1], 4.8 and 4.9

ut(x) = g} (xo)(x — x0, V)t + 0(Ix — x0l)

for HN~!-almost every xq in d.q{u > 0}. Proceeding as in [1], 4.8 we can also
deduce that

U™ (x) = g, (x0)(x — x0, V)™ + o(|x — xol)

for HN~!-almost every xp in dq{u > 0} and 3.2.5) follows.
So that the theorem is proved.

4. — Viscosity solutions to the free boundary problem E

In this section we prove that the limit function u is a viscosity solution to
the free boundary problem

(E) Au=0 in Q\ da{u > 0},
u=0, whH?—w;)>=2M  on QNafu > 0},
where u™ = max(u, 0), ¥~ = max(—wu, 0), and v is the inward unit normal to

the free boundary € N d{u > 0}. This notion of weak solution was introduced
by Caffarelli in [6], [7].

We start the section with some definitions and we then prove our main
results in Theorems 4.1 and 4.2. We also include some corollaries at the end
of the section (Corollaries 4.1, 4.2 and Proposition 4.1).

DEFINITION 4.1. Let € be a domain in RY. Let u be a continuous function
in Q. Then u is called a viscosity supersolution in €2 if

i) Au<0in QT :=QN{u > 0}.
(i) Au<0in Q™ :=QN{u <0}°.
(iii) Along F = Q2N a{u > 0}, u satisfies the condition
@hH? — @) <2M

in the following weak sense. If xo € F, F has a tangent ball at xo from
Q% (ie, there is a B,(y) C Q*, such that xo € dB,(y)), and, in B,(y)

u(x) = alx — xo, V)" +o(lx — xol),
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for « > 0 (v given by the inward unit radial direction of the ball at x),
then
ux) < —y{x —xp,v)” +o(lx — xol)

in B, ()¢ for any y > 0 such that o® — y% > 2M.

DEFINITION 4.2. Let u be a continuous function in 2. Then u is called a
viscosity subsolution in  if

1) Au>0in QT :=QN{u > 0}.
(i) Au>0in Q™ :=QN{u <O0}°.
(iii) Along F = QN a{u > 0}, u satisfies the condition

W)? — (uy)* > 2M

in the following weak sense. If xo € F, F has a tangent ball at xy from
Q™ (i.e, there is a B,(y) C 7, such that xo € dB,(y)), and, in B,(y)

u(x) < —y{x —x0,v)~ +o(lx — xol),

for y > 0 (v given by the outward unit radial direction of the ball at x),
then
u(x) > a{x —xp, v)* + o(|x — xol)

in B,(y)° for any o > 0 such that o — y? < 2M.

DEFINITION 4.3. We say that u is a viscosity solution in €2 if it is both a
viscosity subsolution and a viscosity supersolution.

DEFINITION 4.4. Let u be a continuous function in a domain  C RV, We
say that a point xo € 2 N d{u > 0} is a regular point from the positive side
if there is a tangent ball at xo from {u > 0} (i.e, there is a B,(y) C {u > 0},
such that xo € 9B, (y)).

Analogously, we say that a point xo € Nd{u > 0} is a regular point from
the nonpositive side if there is a tangent ball at xo from {u < 0}° (i.e, there is
a B,(y) C {u < 0}°, such that xo € dB,(y)).

We will use throughout this section the following auxiliary lemma on the
asymptotic behavior of nonnegative subharmonic functions at boundary points
which are regular from the nonpositive side.

LEmMMA 4.1. Let U be a Lipschitz function in some ball B centered at the
origin. Assume that U is nonnegative and subharmonic in B, U(0) = 0. Assume,
in addition, that U = 0 in some ball B,(y) C {x; <0}, B,(y) CC B,0 € dB,(y).

Then, near the origin, U has the asymptotic development

U(x) = ax;i +o(x]) inf{x >0},

with e > 0.
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Proor. Let o' > p be such that By (y) cC B. Since U is Lipschitz
continuous, there exists a constant A > 0 such that U < A on 8Bpr('y). Let
v be the harmonic function in B = B, (y) \§p(y) such that v =0 on 9B,(y)

and v = A on 3B, (y). Clearly, v is positive in B and smooth in B and it
vanishes at 0 € dB. Therefore,

4.1 v(x) = 8x{ +o(lx]) in {x; >0},

for some § > 0. On the other hand, the function w = v — U is superharmonic
and positive in B and, in particular, it is so in the subset BN{x, > 0}. Therefore,
we can use Lemma Al in [7] (which applies to superharmonic functions even
though it is stated for harmonic functions) to deduce that

w(x) =8x{ +o(lx|) in {x; > 0},
for some § > 0, which implies, by (4.1),
Ux) =ax; +o(x]) in {x; > 0},
with o > 0.
Now we will prove our main results in the section.

THEOREM 4.1. Let u®l be solutions to E; in a domain Q C RN such that

u®l — u uniformly on compact subsets of 2 and ¢; — 0. Then u is a viscosity
supersolution in S2.

Proor. Clearly, u satisfies (i) and (ii) in Definition 4.1 (see for instance
Proposition 2.2). We will show that (iii) also holds. Let B,(y) C {u > 0} be
a ball touching d{u > 0} at a point xg, and assume that, for some « > 0,

4.2 u(x) > a{x —xo, V)" + o(jx — xo|)

in B,(y) (v given by the inward unit radial direction of the ball at xo).
If «®> < 2M there is nothing to prove. Otherwise, let ¥ > 0 be such that
o —y? > 2M. We will show that

u(x) < —y{x —xo, V)~ + o(|lx — xol)

in By(y)°.

We will assume without loss of generality that v = e; and x¢ = 0.
We claim that u(x) = &xfr —yx; +o(x|) with &,y > 0.
In fact, by Lemma 4.1,

4.3) u=(x) =yx{ +o(|x|) in {x; <0},

for some ¥ > 0. Let us consider, for A > 0,

1
u,(x) = Xu()»x).
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Since u is locally Lipschitz continuous and u(0) = O then, for every se-
quence A, — 0, there exists a subsequence, that we still call A,, such that
uy, — uo uniformly on compact sets of RY, where uo is Lipschitz in RY.
By (4.2) and (4.3) we know that

uy (x) =yx; in RY
and
up > 0 and harmonic in {x; > 0}.

(Let us recall at this moment our assumption that ¢ > +/2M > 0).
We will consider two cases.

Casel. y > 0.
In this case, up < 0 in {x; < 0}. Therefore ugo = 0 on {x; = 0} and
since ug is Lipschitz, we have

ud(x) =ax;  in RV,
for some @ > 0. Thus, we deduce that

4.4) uo(x) = ax; —yxy, a,7>0.

.

Case II. y =0.
In this case, ug > 0 in RY. Since ug > 0 and harmonic in {x; > 0}, then
by Lemma Al in [7], there exists @ > 0 such that

(4.5) uo(x) =axi +o(lx])  in {x; > 0}.
Necessarily
4.6) o>a>A2M.

Let us consider, for A > 0,
1
(uo)a(x) = X"O(M)'

Since ug is Lipschitz continuous and u¢(0) = 0, we deduce that there exists a
sequence A, — 0 such that (“O)X,, — ugo uniformly on compact sets of RV,

where ug is a Lipschitz continuous function in RY. By (4.5),

ugp(x) = Exf in {x; > 0}.

Also, ugp > 0 in RV and harmonic in the set where it is positive. Since
ugo = 0 in {x; = 0}, then the application of Lemma A1l in [7] yields

ugo(x) = axy +o(|x|) in {x; <0},
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for some @ > 0. Let us finally consider for A > 0

1
(ugo)y(x) = Xuoo(lx).

As before, we see that there exist a sequence A, — 0 and a Lipschitz function
upoo in RV, such that u; i, = uooo uniformly on compact sets of RN From our
computations above we deduce that

uooo(x)=ozx1 +axy, >0,a>0.

Applying Proposition 2.3 we see that there exist a sequence §, — 0 and
solutions u® to Es, such that

@7 uln - Uy

uniformly on compact sets of RY. Applying Proposition 2.3 two more times,
we see that there exist a sequence 5,, — 0 and solutions %" to Egn such that

u®" — uggo uniformly on compact sets of RV,
It follows that ugg is under the hypotheses of Theorem 3.1 or Proposi-

tion 2.4. In either case,
a<V2M <«

which contradicts (4.6).

Thus we get a contradiction. So that Case II is not possible and (4.4)
holds.

By (4.7), we see that we may apply Theorem 3.1 to the function ug to
conclude that

(4.8) @ -yr=2M.
By Lemma 3.1, there exists § independent of the sequence A, such that
4.9) ay =34.

By (4.8) and (4.9) we see that the limit function uy does not depend on
the sequence A,. So that we have

Uy —> Uo
uniformly on compact sets of RV (as A — 0). Therefore,

u(x) =ax; —yx; +o(lxl).

In particular,

4.10) u(x) = —yx; +o(lx|) in B,(y)°.
By (4.8), we have

(4.11) y=vVa@—-2M>Ve2-2M > y.

So that by (4.10) and (4.11), we deduce that
u(x) < —yx; +o(lx)  in B,(»)°,

and the theorem is proved.
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THEOREM 4.2. Let u®i be solutions to Esj in a domain Q C RN such that
u®i — u uniformly on compact subsets of Q and e; — 0. Assume, in addition, that
at every regular point from the nonpositive side xo € Q N d{u > 0} (this is, such
that there exists a ball B,(y) C {u < 0} with xo € 0B,(y)), u satisfies one of the
Jollowing hypotheses:

H1) u™ is nondegenerate at x in the sense of (3.2) or else
H2) u < 0in B,(y).
Then u is a viscosity subsolution in 2.
Proor. Clearly, u satisfies (i) and (ii) in Definition 4.2 (see for instance

Proposition 2.2). We will show that (iii) also holds. Let B,(y) C {u < 0}° be
a ball touching d{u > 0} at a point xo, and assume that for some y > 0

(4.12) u(x) < —y{x —xo,v)” +o(lx — xol)

in B,(y), (v given by the outward unit radial direction of the ball at xp).
Let a > 0 be such that a? — y? < 2M. We will show that

u(x) > a{x —xo, v)" + o(jx — xo|)

in By(y)°.
We will assume without loss of generality that v =e; and xo = 0.
By Lemma 4.1 we know that there exists @ > 0 such that

4.13) ut(x) =axf +o(lx|) in {x; > 0}.

Let us consider, for A > 0, u, as in Theorem 4.1. For every sequence
An — O there exist a subsequence, that we still call A,, and uy Lipschitz
continuous in RY such that u;, — uy uniformly on compact sets of RV,
Then, by (4.13) we have

ug(x) = Exfr in {x; > 0}.

On the other hand, since B,(y) C {u < 0}, 0 € 9B,(y) and e; is the
outward unit radial direction to B,(y) at the origin, then ug <0 in {x; < 0}.
Since u is harmonic in the set {u < 0}°, we can actually have only one of the
following situations:

i) u =0 in B,(y), in which case
4.14) up=0 in {x; <0}.

ii) u <0 in B,(y). In this case, by Hopf’s Principle there exists § > 0 such
that u(x) < —0x; + o(Jx]) in B,(y) and therefore,

“4.15) ug <0 in {x; < 0}.



VISCOSITY SOLUTIONS AND REGULARITY OF THE FREE BOUNDARY 273

We will consider two cases (independently on whether (4.14) or (4.15)
holds).

Case I. @ > 0. Then we have ug =uy in {x; > 0}. Since up < 0 in
{x1 < 0}, we deduce that uy = 0 in {x; = 0}. Thus, uo is Lipschitz in R,
nonnegative and harmonic in {x; < 0} and vanishes on {x; = 0}. We conclude
that there exists ¥ > 0 such that

uo(x) = —yx; in {x; <O0}.
Therefore,

(4.16) uo(x) =ax; —yxy  in RV.

Case II. @ = 0. In this case we must have u < 0 in B,(y). In fact, if
not, by H1) u™ must satisfy (3.2) at the origin. Rescaling (3.2) we get that

][ ul >cr
>
Br(0)

for every small r > 0. So that

][ uif >cr
B/ (0)

which is not possible if @ = 0.

Therefore u < 0 in B,(y) and thus, up < 0 in {x; < 0} (see ii) above).

On the other hand, since uf{ = 0, we have that uy < 0 in RV. By the
arguments in Theorem 4.1 we know that there exist a sequence 3, N\, 0 and
solutions u®» of Ejs, such that u®* — ug uniformly on compact sets of RV,
Therefore, ug is harmonic in R¥ since any such limit is harmonic in the interior
of the set where it is nonnegative (see Proposition 2.2).

From the fact that uo(0) = 0 we deduce that we must have uo = 0 in RV
which we have just seen that is not possible.

So that Case II is not possible and we have (4.16) with @ > 0 and ¥ > 0.

As in Theorem 4.1 we see that we may apply Theorem 3.1 to the func-
tion ug to deduce that @, 7 satisfy the free boundary condition (4.8).

As in Theorem 4.1, by the application of Lemma 3.1, we see that the limit
function uy does not depend on the sequence A, — 0 and therefore,

u(x) =ax; —yx; +o(lx|).
In particular,
u(x) =ax; +o(lx])  in B,(y)°.
By (4.12) we see that necessarily ¥ > y. Thus,

a= \/2M+72 > \/2M+y2 >a.
So that

u(x) > axf +o(|x|) in B,(y)°
and the theorem is proved.
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In particular we obtain the following corollaries.

COROLLARY 4.1. Let u®i be solutions to Ee]- in a domain Q C RY such that

u®i — u uniformly on compact subsets of 2 and ¢; — 0. Assume, in addition, that
{u = 0}° = (. Then u is a viscosity solution in 2.

COROLLARY 4.2. Let u’l be solutions to E; in a domain Q C RY such that

u®l — u uniformly on compact subsets of 2 and ¢j — 0. Assume, in addition, that
ut is nondegenerate at every point xo € 2 N d{u > 0} in the sense of (3.2). Then
u is a viscosity solution in Q.

As a corollary to the proof of Theorem 4.2 we have the following propo-
sition which is of the type of Theorem 3.1. This is a result of a pointwise
nature.

PROPOSITION 4.1. Let u® be solutions to Eej in a domain Q C RY such that
u®i — u uniformly on compact subsets of Q and €j — 0. Let xop € Q N 3{u > 0}
be a regular point from the nonpositive side (this is, such that there exists a ball
B,(y) C {u <0} withxo € 0B,(y)). Ifu = 0in B,(y) we assume in addition that
ut is nondegenerate at x in the sense of (3.2). Then u has the following asymptotic
development

u(x) =a{x —xo, V)" —y{x —xp,v)” +0(|x — xol)

witha > 0,y > 0and a®> — y? = 2M.

5. — Regularity of the free boundary

In this section we study the regularity of the free boundary. We first
want to remark that there are limit functions ¥ which do not satisfy the free
boundary condition in the classical sense on any portion of d{u >. 0} (for
instance, u = ax1+ +oax; with 0 <a < ~2M, see [11], Remark 5.1). Thus,
extra hypotheses have to be made in order to get regularity results.

On one hand, we prove in Theorem 5.1 that in the absence of zero phase,
if u~ is nondegenerate at xo € d{u > 0}, then the free boundary is a C!*
surface in a neighborhood of xy. Therefore u is a classical solution to E in
that neighborhood. We point out that in the strictly two phase case, if the
free boundary is smooth, then u~ is nondegerate on the free boundary (see
Remark 5.1). As a corollary to Theorem 5.1 we deduce that in the absence
of zero phase, there is a subset of the free boundary which is locally a C!*
surface. This subset is open and dense in d{u < 0} (Corollary 5.1). See also
Corollary 5.2.

On the other hand, we prove for the general two phase case that, under
nondegeneracy assumptions on u*, if xo € QN d{u > 0} is such that the free
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boundary has at xo an inward unit normal in the measure theoretic sense, then
the free boundary is a C Le surface in a neighborhood of x¢ (Theorem 5.2).
Then, in Corollary 5.3 we prove that, under suitable assumptions on our limit
function u, there is a subset of the free boundary which is locally a C'»® surface.
Moreover, this smooth subset is open and dense in d{# > 0} and the remainder
of the free boundary has (N — 1)-dimensional Hausdorff measure zero. We end
our work with further results for the one phase case (Theorems 5.3 and 5.4).

In order to get our regularity results we use, on one hand, the results
we have obtained in the previous sections for the limit function ¥ and the
regularity theory developed in [6], [7]. On the other hand, we use the result
of Proposition 5.1 —which replaces, in Theorem 5.1, more usual geometric
measure theoretic arguments.

We start the section with a definition and some auxiliary lemmas:

DEFINITION 5.1. Let v be a continuous function in a domain  c RY. We
say that the set {v < 0} has positive density at a point xop € QN ad{v > 0}, if
there exist ¢ > 0 and ro > O such that

[tv <0} B,(xo)| _
| B, (x0)| -

We say that the set {v < 0} has uniform positive density on I' C QNa{v > 0},
if there exist ¢ > 0 and r¢ > O such that (5.1) holds for every xo € .

.1

forO<r<ry.

LemMA 5.1. Let u be a locally Lipschitz continuous function in a domain
Q C RY, harmonic in {u > 0} U {u < 0}° and globally subharmonic. Assume that
ut is locally uniformly nondegenerate on Q N d{u > 0} in the sense of (3.2) and
that the set {u < 0} has locally uniform positive density on Q2 N d{u > 0}. Then, for
every Q' CC Q there exist C > 0 and py > 0 such that, for x € €/,

(5.2) ut(x) = Cd(x,{u <0}) ifd(x,{u<0}) < po.

Here d(x, A) is the distance from the point x to the set A.

Proor. If the result does not hold, then there exists a sequence x, in
Q' CC Q such that d(x,, {u <0}) < L and u*(x,) < Ld(x,, {u < 0}).

Let z, € 9{u > 0} be such that A, := d(x,, {u < 0}) = |x, — z,|, and let
u,x) = ﬁu(Zn + Apx). Then, A, — O and there is a function uy such that,
for a subsequence, u;, — o uniformly on compact sets of R¥. We can choose
the subsequence so that there exists

Xn — Zn

v:= lim v,, where v, := s
n—oo An

and without loss of generality we will assume that v = e;.
Then, uq is Lipschitz continuous and harmonic in {uo > 0} U {uy < 0}, and
from the fact that
Bi(va) C {3, > 0},
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we deduce that u( is harmonic and nonnegative in Bj(e;). Since ug(e;) =0, it
follows that up = 0 in Bj(e;). Now, we can apply Lemma 4.1 to uf{ and u,
to deduce that

uo(x) = axy +o(lx|) in {x; <O},

with ¢ € R. Next, we consider for A > 0, (ug)\(x) = %uo()\x). There exists a

sequence An — 0 such that (u0)3,, — uoo uniformly on compact sets of RN, It
follows that
up(x) =ax; in RM.

On the other hand, since u* is locally uniformly nondegenerate on QNd{u > 0}
in the sense of (3.2), it follows that, for r > 0,

1
Anl

][ ut >c>0, ifnlarge
B, r(zn)

and therefore,
1
—][ ugzc forr >0,
Br(0)

’
+
][ Ugy = C.
By (0)
Hence « > 0.

Using now that the set {# < 0} has locally uniform positive density on
QN a{u > 0}, we see that, for r > 0,

which gives

_ [ =01 By, (e
- IBA,,r(Zn)l

O<c if n large,

and therefore,

2w, 0N B O] _ |m, <0/ Biw) N B,©O)]
= [B,0)] |B,0)] '

Letting n — 0o, we get

‘< |[{uo < 0} N By(e1)* N B, (0)]
B |B,(0)] ’

and then, rescaling and letting » — oo again,

{(uo);, <0}YN By 5, (e1/An)" N B1(0)]

¢ <limsup 1B,(0)]
_lwoo <0} 1 {1 < 0N By(O)

- | B1(0)|

But this contradicts the fact that ugy > 0 in {x; < 0} and the lemma follows.
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LEMMA 5.2. Let u be a locally Lipschitz continuous function in a domain
Q C RY, harmonic in {u > 0} U {u < 0}° and globally subharmonic. Assume
that u™ is nondegenerate at xo € QN d{u > 0} in the sense of (3.2). Then u* is
nondegenerate at xy in the same sense.

Proor. Let us proceed by contradiction. Then, there exist a sequence
An — 0 such that

Now consider the sequence u;,(x) = II;“(XO + Anx). Since u is locally
Lipschitz continuous and u(xp) = O there exist a subsequence, that we still
call A,, and a Lipschitz continuous function uy such that u,, — uo uniformly
on' compact subsets of RY. We have

. ) 1
][ ug = lim ui = lim — ut =0.
B (0) n—>o0 J B (0) n>%0 Ap J By, (xp)

Thus, u(}L = 0 in B;(0) and then, uyp < 0 in B;(0). So that uy is a
nonpositive harmonic function in B;(0) which vanishes at the origin. We deduce
that up = 0 in B{(0). But this contradicts the fact that »~ is nondegenerate
at xo in the sense of (3.2). Indeed,

. - .1 -
0= lim u;, = lim —][ u->c>0.
n—00J B, (0) n—>00 A By, (x0)

Therefore, u™ is nondegenerate at xo in the sense of (3.2) and the proof
is complete.

PROPOSITION 5.1. Let u®i be solutions to E;ina domain Q@ C R such that
u®i — u uniformly on compact subsets of Q and ¢; — 0. Let xo € Q N 3{u > 0}
and let A, > 0 be a sequence such that A, — 0. Consider the functions u,,(x) =
x‘;u(xo + Anx) and assume that u),, — U as n — oo uniformly on compact sets of

RN. Ifu™ is nondegenerate at xy in the sense of (3.2), then
Ux) =a(x,v)" —yx,v)~ in RN,

where v is a unit vector, and a, y are positive constants satisfying a*> — y? = 2M.

Proor. Let us consider, for ¢t > 0,

Lo +2 ° -2
Jy(t) =t_2 (/—t/RN IVUT |G (x, —s)dxds> (/_t/RN |IVUT|*G(x, —s)dxds) ,

2
_ x|
where G(x,t) = 1 e 4.
@4nt) 2
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From the local parabolic monotonicity formula in [9] it is possible to deduce
that there exists § > 0 independent of the sequence A, such that

(5.3) Juy®) =6 fort > 0.
In fact, this was done by Caffarelli and the authors, for the parabolic version

of this problem (Lemma 3.1 in [12]).
Let us see that we necessarily have § > 0. In fact, assume that

o .
/ / VU™ 2G(x, —s)dxds = 0
—t RN

for some ¢t > 0. Then, U~ =0 in RY and therefore, for any r > 0,

0= lim - u"=lim ][ U,
n—>oor J (o) n—00 A,.r By,r(x0)

which contradicts the nondegeneracy of u~ at xp in the sense of (3.2). Since
also ut is nondegenerate at xo in the same sense (recall Lemma 5.2), we
proceed analogously with U™.

That is, we have shown that (5.3) holds with § > O.

We will now conclude that

U) =alx,v)T —yx,v)~ in RV,

with @« > 0, ¥y > 0 and v a unit vector.

We will show that this can be deduced from the proof of the global parabolic
monotonicity formula in Theorem 1 in [9], and from the convexity results for the
first eigenvalue of the Dirichlet problem for Gaussian measure in {4], since (5.3)
holds with § > 0.

In fact, in [4] the authors consider for any domain  C RV

/ |Vo2e € gg
MQ) = jof 2 — —
K(Q) /v2e—lE| de
Q

where

K(Q) = {v/ / (v* + |Vv?) e ¥’ de < 00, v =0 on 3Q, v ;éo} .
Q

For every 0 <m < [pn e 8 lzd‘g” they prove that

inf M) = A(2,) =: Aa),
Q/fﬂe—|§|2dé=m



VISCOSITY SOLUTIONS AND REGULARITY OF THE FREE BOUNDARY 279

where Q, := {§y > a} and a is such that [, e 162 dg = m.
Also, the authors prove in [4]:

(1) A(a) is a convex function of a.

(2) If M) = A(a), with [, e“'“zd’;' =m, then Q = Q, (for a certain system
of coordinates).
Moreover, they prove that

(3) If A(a) + A(—a) = 21(0), then a = 0.
Let us also observe that, from the definition of A(S2), it follows that

Q) C Q2 implies that  A(2;) > A(£2).

On the other hand, since Jy(¢) = § for ¢t > 0, there follows that Jj;(t) =0

which is equivalent to
@) L) 2

Li(t) L) t

with o
Li(t) = / / |Vu; (x)|*G(x, —s)dx ds
—t JRN
where u; = U and up = U~. Here it is used that, since § > 0, I;(t) # 0O for

every t > 0. Now, since u; and u, satisfy the hypothesis of Theorem 1 in [9],
there holds that (see [9], or [4])

I;(t) - A({ui 2V/1E) > 0}) o Mai)
L) ~— 2t T2

. 2 2
where g; is such that f{§N>ai}e E°gg = f{u,-(2ﬁ§)>0}e I§1°d£. Therefore,

2 _ L 4 Lo A({u12v18) > 0}) + A ({u2(2V/18) > 0})

t L) L@~ 2t

- Aar) + Aaz) - A—az) + Aaz) - A(0) _ 2
- 2t - 2t -t t

since a; > —ap and A(a) is increasing and convex. In fact, since
{m@Vig) > 0} N {wa2V/18) > 0} = 0,

there follows that

2 2 2 2
/ P gt +/ g = 62 gt +/ 162 g
{(én>ay} {én<—az} {(§n>ay} {En>ap}

2 2
_ 6P gk +/ 2 gg
(41 2v76)>0) (42 2V/78)>0)

~lg1?
< /RN e dg.
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Therefore, a; > —a,.
So that, there holds that

AMaz) + AM(—a2)

3 = A(0)

and, by the results of [4] we deduce that a; = 0. But, there also holds

Aar) + A@) _ Aar) +2(0)

2 2 =20

so that A(a;) = A(0) and it follows that a; = 0.
Now, since A({u;(2+/1€) > 0}) > A(a;), it follows that

A({ui(2V18) > 0)) = AMay) .

Therefore, by the results in [4] (since a; = 0) there exists a unit vector v; (for
i = 1,2) such that

{ui2v18) > 0} = {€/ (€, v) > 0}

and thus,
{UT(x) > 0} = {x/ (x,v1) > 0}.

Analogously,
{U7(x) > 0} = {x/ (x, ) > 0}.

Since {Ut(x) > 0} N{U~(x) > 0} = @, there follows that v, = —vy.
Finally, from the fact that U is Lipschitz continuous in RY and harmonic
in {U > 0} U {U < 0}° it follows that (with v = v;)

Ux) =alx,v)t —yx,v)~

with «, y > 0.
Now Proposition 2.3 and Theorem 3.1 give a® — y2 = 2M and the proof
is complete.

Let us start with the regularity results.

THEOREM 5.1. Let u®i be solutions to Egj in a domain Q@ C RN such that
u’i — u uniformly on compact subsets of @ and £; — 0. Assume that {u = 0}° =
and that u™ is nondegenerate at xo € 2 N {u > 0} in the sense of (3.2). Then the
free boundary is a C1* surface in a neighborhood of xy.

The same result holds if we replace the assumption that {u = 0}° = @ by the
hypothesis of Theorem 4.2.
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Proor. Since u falls under the hypotheses of Corollary 4.1 it follows that u
is a viscosity solution to the free boundary problem in . (If instead of the fact
that {u = 0}° = @ there holds that u satisfies the hypothesis of Theorem 4.2,
the same conclusion follows).

We will now derive our regularity result.

Let A, > 0 be a sequence such that A, — O and such that u,,(x) =
f;u(xo + A,x) converges to a function U as n — oo, uniformly on compact
sets of RV,

From Proposition 5.1, it follows that

Ux)=a(x,v)t —yx,v)~ in RY,

with v a unit vector, and «, y positive constants satisfying o> — y? = 2M.
Therefore, given 0 < u < 1 and % < Gy < %, there exists ng such that, for
any n > ng, u,, is pw-monotone in B;(0) in any direction T of the cone

['(6p, v) = {7 : angle(r,v) <6} .

That is,
U, (x+r7) > u,(x) forany 1>r>pu.

Since u,, is a viscosity solution to problem E, it follows from Theorem 1
in [7] that u,, is fully monotone in B;,;(0) in any direction of a smaller cone.
Therefore the free boundary of u is Lipschitz in By, 2(xo).

Now Theorem 1 in [6] and the remarks in Section 1 in [7] imply that
3{u > 0} is a C1® surface in a neighborhood of xy.

REMARK 5.1. We point out that in the strictly two phase case, if the free
boundary is smooth, then u~ is nondegenerate on the free boundary. This is
the case even if we only require the free boundary to be locally Lipschitz
continuous.

In fact, if {u = 0}° = @, then u is a viscosity solution (Corollary 4.1).
Therefore, if the free boundary is locally Lipschitz continuous, we may apply
the results in [6] and [7] to conclude that it is locally a C Le gurface. Thus,
by Hopf’s principle #~ is nondegenerate on the free boundary.

When {u = 0}° = 0, the free boundary cannot be smooth in a neighborhood
of a point xo ¢ d{u < 0} C d{u > 0}. For a{u < 0} we have the following
regularity result:

COROLLARY 5.1. Let ui be solutions to E ; in a domain Q C RY such that

u®i — wu uniformly on compact subsets of Q and ¢; — 0. Assume that {u = 0}° = 0.
Then, there is a subset R of 2N 3{u > 0} which is locally a C'* surface. Moreover,
R is open and dense in Q N a{u < 0}.
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Proor. Let xo € 2Nd{u < 0} and let r > 0 small. Let y € {u < 0}NB,/2(x0)
and z € 9{u < 0} be such that d = dist(y, d{u < 0}) = |y — z|. Then, B;(y)
is tangent to d{u < O} at the point z. Moreover, u < 0 in By(y) so that u~ is
nondegenerate at z in the sense of (3.2). By Theorem 5.1 the free boundary
is a Cl® surface in a neighborhood of z. In addition, the distance from z to
Xo is at most r. The corollary is proved.

COROLLARY 5.2. Let u®i be solutions to Egj in a domain Q@ C RN such that
u®i — u uniformly on compact subsets of Q and e; — 0. Assume that there exists

a domain U C 2 such that u™ is nondegenerate at every point in U N d{u > 0} in
the sense of (3.2). ThenU N d{u > 0} is locally a C'* surface.

Proor. Since 1~ is nondegenerate at every point in Z/Nd{u > 0} in the sense
of (3.2), then by Lemma 5.2 u™ is nondegenerate at every point in Z{Nd{u > 0}
in the same sense. Therefore u satisfies the hypothesis of Theorem 4.2 and we
may apply Theorem 5.1 at every point xo € U N d{u > 0}.

For the general two phase case, we have the following result:

THEOREM 5.2. Let u® be solutions to Egj in a domain Q@ C RY such that
u®i — u uniformly on compact subsets of Q and ¢; — 0. Assume that u™ is locally
uniformly nondegenerate in the sense that (5.2) holds on every compact subset of S2.
If xo € QN 3{u > 0} is such that 3{u > 0} has at xo an inward unit normal in the
measure theoretic sense then, the free boundary is a C'* surface in a neighborhood
of xo.

Proor. We will see that u™ is locally uniformly nondegenerate on the free
boundary in the sense (3.2), so that u falls under the hypotheses of Corollary 4.2
and we deduce that u is a viscosity solution in .

In fact, under our hypotheses we can apply Lemma 7 in [8] to u™*. There-
fore, for every Q' CC Q there are positive constants ¢ and rg such that

sup ut >cr,
Br()’())

for every yp € Q' Nd{u >0} and 0 <r < rq.
Next, let yo € Q' Nafu > 0}, 0 < p < ry and consider the function %
which is harmonic in B,(yo) with boundary values u*. We clearly have

hzutoin BGo. koW =F
B (yp)
and then, by Harnack’s inequality applied to 7 we get

1
][ ut =h(yo) = - sup u">Cp.
3By (yg) B, /2(v0)

Therefore,
][ ut > Cr for every 0 <r <ryp.
Br(y0)
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This is, u™ is locally uniformly nondegenerate on €2 N d{u > 0} in the sense
of (3.2).

We will derive our regularity result from Theorem 2’ in [7]. To do so, let
us see that the free boundary is flat in a neighborhood of xg. In fact, since
the free boundary has at xo an inward unit normal v in the measure theoretic
sense we can apply Theorem 3.1 to deduce that

u(x) = a(x — xo, v)* — y(x — x0, )™ + o(Ix — x0l) »
with az—y2=2M, a>0,y>0.

Then, given A, — 0, the sequence u,,(x) = iu(xo + Anx) converges
uniformly on compact sets of RV to ug(x) = a(x, v)* — y(x,v)".

It is not hard to see that for any ¢ > 0 small, there holds that

(5.4) u, >0 in Bi(0)N{{x,v) > ¢},

n

5.5 Uy, <0 in By(0) N {{x,v) < —¢},

if n is large enough. Indeed, (5.4) follows easily and the same happens with (5.5)
in case y > 0.

Let us derive (5.5) in case y = 0. In fact, suppose that there holds
that B;(0) N {{x,v) < —e} N B{u,\nk > 0} # @, for a subsequence. Then, we
arrive at a contradiction by using that u* is locally uniformly nondegenerate
on QN a{u > 0} in the sense of (3.2). If, on the other hand, there holds that
Unp, > 0 in B;(0) N {{x,v) < —¢&} for a subsequence, then the contradiction
follows from the fact that u™ satisfies (5.2) in a neighborhood of xo. Thus,
(5.5) holds.

Therefore, u falls under the hypotheses of Thm. 2’ in [7] for small balls
around xo. This eventually implies that d{u > 0} is a C'® surface in a neigh-
borhood of xp.

COROLLARY 5.3. Let u®i be solutions to Esj in a domain Q@ C RY such that
u®l — u uniformly on compact subsets of 2 and e; — 0. Assume, in addition, that:

i) ut is locally uniformly nondegenerate on Q2 N d{u > 0} in the sense of (3.2).
i1) The set {u < 0} has locally uniform positive density on Q N d{u > O}.

Then, there is a subset R of the free boundary Q2 N 0{u > 0} (R = Orea{u > 0})
which is locally a CY® surface. Moreover, R is open and dense in QN 0{u > 0} and
the remainder of the free boundary has (N — 1)-dimensional Hausdorff measure
zero.

ProOF. Let us first observe that, since Theorem 3.2 applies (see Remark 3.1),
the free boundary 2N ad{u > 0} has locally finite (N — 1)-dimensional Hausdorff
measure and therefore, {u > 0} has locally finite perimeter in €.

By Lemma 5.1, u* is locally uniformly nondegenerate in the sense that
it satisfies (5.2) on every compact set. Therefore u is under the hypothesis of
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Theorem 5.2 for every point xo € QN 3d{u > 0} at which the free boundary has
an inward unit normal in the measure theoretic sense, this is, at every point
X0 € Orea{te > 0}. Thus, the free boundary is a C'** surface in a neighborhood
of any such point.

To conclude the proof we observe that under our hypotheses, we have for
every point x € QN af{u > 0}

i | Br ) 0 x/u@) > 0} . |B(3) N {x/u(x) < 0}
iminf - >0, liminf —
r—0 |B,(x)l . r—0 |Br(x)|

>0,

and therefore, Lemma 1 in [15], Section 5.8, gives that HN-1. almost all
x € QN a{u > 0} is in the reduced boundary. Finally, Theorem 3.2 (see 3.2.3))
implies that the reduced boundary is dense in 2N a{u > 0}. Thus, the corollary
is proved.

We obtain the following result for the one phase case:

THEOREM 5.3. Let u and R be as in Corollary 5.3. Assume in addition that
u>0inl CC Q. Then R NU is locally an analytic surface.

Proor. The previous results imply that for every free boundary point xp € R
there is a neighborhood N = Ny, C U such that N'Nd{u > 0} is a C'* surface.
Therefore, u satisfies

Au=0 in NN {u > 0},
u=0, u,=~2M on N Na{u > 0}

(v the inward unit normal to the free boundary) in the classical sense and then,
Theorem 2 in [17] implies that AN 8{u > O} is analytic.

We finally study the behavior near (not necessarily regular) free boundary
points, in the one phase case:

THEOREM 5.4. Let u®i be solutions to Egj in a domain Q@ C RN such that

u®i — u uniformly on compact subsets of Q and &; — 0. Assume that u > 0 in
Uucce.

Let ' C U N 8{u > 0} denote the set of free boundary points in U which are
regular from the positive side and assume, in addition, that the set {u < 0} has
uniform positive density on I'. (We call this property, Property (D)). Then, for
every xg € U N 3{u > 0} there holds that ’

limsup [Vu(x)| = vV2M.
u(x)>%
The same result holds if we replace Property (D) by the following property which
we call Property (L): For every point z € T', and for every ball B,;)(y,) C {u > 0}
with 7 € dB,;)(y;), there exists a unit vector €;, with (¢;,y, — z) > 0y, — zl,
such that
u(z —sé;) <0 for0<s<sp.

Here 0 and sq are positive constants not depending on the point z.
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REMARK 5.2. In [11], Theorem 6.1, it was proved (for the parabolic version
of this problem) that if u is a limit function and lim SUp, _, x, IVu=(x)| < vy,

then limsup, ,, [Vu*(x)| < /2M + y2.
In particular, any limit function u > O satisfies

limsup |Vu(x)| < v/2M.
u(x)>00
On the other hand, it was shown in [11], Remark 5.1, that we cannot expect
the equality to hold in general.
In Theorem 5.4 we show, when u > 0, that under some additional hy-

pothesis at points which are regular from the positive side (Property (D) or
Property (L)), the equality holds.

PrOOF OF THEOREM 5.4. Let xp € U N d{u > 0}, and set
a = limsup |Vu(x)|.
x—>x0
u(x)>0
Since u is locally Lipschitz continuous, we have 0 < o < oo.

Cask I. Assume that ¢ > 0. We will show that in this case o = +/2M.
We know that there is a sequence y, — xo with

u(yn) > 0, [Vu(y,)| = «a.

Let d, := dist(y,, d{u > 0}). Then d, — 0. Let z, € U N3{u > 0} be such
that d, = |y, — z.|. We have

By, (yn) C {u > 0}.

Let us consider the sequence u4, (x) = iu(Zn + dpx). There is a function ug
such that, for a subsequence, u4, — uo uniformly on compact sets of RY. We
can choose the subsequence so that there exists
. Yn—2n
v:= lim ———,
n

and without loss of generality we will assume that v = e;.

Then, ug is Lipschitz continuous and harmonic in {#o > 0} and there holds,
by construction, that either

Bi(e1) C{up >0} or up=0 in Bi(e;).

Also,
|[Vug| < in {ug > 0} and |Vug(e))| =«
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and therefore, ug > 0 in Bj(eq).
u

Let v := —v*ole) , and consider the function a—ﬂ, which is harmonic in
|Vug(er)| v

{ug > 0} and satisfies
dug ou

m <a in Bi(er), a_vo(el) =a.

The strong maximum principle hence implies

3
%(x) =a and up(x) = alx,v) +¢in Bi(er),

so that necessarily ¢ = 0 and v = e,. Finally, by analytic continuation we get
up(x) = axl’L in {x; > 0}.
Next, the application of Lemma Al in [7] to up in {x; < O} yields
up(x) = yx; +o(lx]) in {x; <0}, y=>0.

Let us consider for A > 0, (ug),(x) = %uo()\x)‘ There exists a sequence
An — 0 such that (u¢),, — oo uniformly on compact sets of RY. It follows that

ugp(x) = ax1+ +yx; in RV.

. If Property (D) holds, it is not hard to see that the set {ug < 0} has
positive density at the origin and therefore, the same property holds for wug.
This implies that y = 0.

We get the same conclusion in case Property (L) holds instead of Prop-
erty (D).

Finally, we apply Theorem 3.1 (arguing as we did in Theorem 4.1) to
deduce that @ = v2M.

Case II. We will now assume that « = 0 and arrive at a contradiction.
In fact, given & > O small, we have

(5.6) IVu(x)| <8 in By(xo),

for some p > 0.

Let us choose a point zo € By(xp) N d{u > 0} which is regular from the
positive side so that ™ is nondegenerate at zo in the sense of (3.2). Let us
consider sequences A,, A, and A, going to zero such that, for some functions
ug, uop and wuoop,

1
U, (x) = )\'—u()\'nx +20), Ux, = uo,
n

1
An
1 -

(uo0)3, (x) = i—uoo()»nx), (#00)3,, —> 4000 -

(uo)z, (x) = —up(Anx), (uo)y, — uoo,
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Then, we have from (5.6)
5.7 |Vugpo(x)] <8 in RV,

On the other hand, an argument similar to the one used in Theorem 4.1, in
combination with the fact that u™ is nondegenerate at zo in the sense of (3.2)
and with Property (D) or (L), implies (via the application of Theorem 3.1) that

uooo(x) = V2M(x,e)",

for some unit vector e. This is in contradiction with (5.7) and therefore, « > 0.
Now the proof is complete.
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