ANNALI DELLA

Scuola Normale Superiore di Pisa Classe di Scienze

Jean René Licois

Laurent Véron

A class of nonlinear conservative elliptic equations in cylinders

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze $4{ }^{e}$ série, tome 26, n ${ }^{\circ} 2$ (1998), p. 249-283
http://www.numdam.org/item?id=ASNSP_1998_4_26_2_249_0

[^0]
A Class of Nonlinear Conservative Elliptic Equations in Cylinders

JEAN RENÉ LICOIS - LAURENT VÉRON

Abstract

Let (M, g) be a compact n-dimensional manifold without boundary and Δ_{g} the Laplace-Beltrami operator on M. This paper studies the asymptotic properties of the following conservative system $(S) u_{t t}+\Delta_{g} u+u^{q}-\lambda u=0$ on $\mathbb{R}^{+} \times M$ and their links with the homogeneous solutions of (S).

1. - Introduction

The study of asymptotics of the following class of conformally invariant Emden-Fowler equations in $\mathbb{R}^{N}-\{0\}$

$$
\begin{equation*}
-\Delta u+\left(c /|x|^{2}\right) u=u^{(N+2) /(N-2)} \tag{1.1}
\end{equation*}
$$

gives rise to the following nonlinear equation

$$
\begin{equation*}
v_{t t}+\Delta_{S^{N-1}} v-\left((N-2)^{2} / 4+c\right) v+v^{(N+2) /(N-2)}=0 \tag{1.2}
\end{equation*}
$$

in $(-\infty, \infty) \times S^{N-1}$, where $\Delta_{S^{N-1}}$ is the Laplace-Beltrami operator on the unit sphere S^{N-1} of \mathbb{R}^{N}, via the following classical change of variable

$$
\begin{equation*}
v(t, \sigma)=r^{(N-2) / 2} u(r, \sigma),(r, \sigma) \in(0, \infty) \times S^{N-1}, t=\operatorname{Ln}(r) \tag{1.3}
\end{equation*}
$$

One of the main feature of this equation is the conservation of energy (equivalent to Pohozaev's identity):

$$
\begin{equation*}
\frac{d}{d t} \int_{S^{N-1}}\left(|\nabla v|^{2}-v_{t}^{2}+\left(\frac{(N-2)^{2}}{4}+c\right) v^{2}-\frac{(N-2)}{N} v^{2 N /(N-2)}\right) d \sigma=0 \tag{1.4}
\end{equation*}
$$

As a result of the works of Obata [0b] and Caffarelli-Gidas-Spruck [CGS], the asymptotic behaviour of the solutions of (1.2) as well as the global solutions are now well understood in the case when $c=0$, but it is important to notice that this understanding mainly comes from the equation (1.1) itself and not from the study of (1.2): the main point is that the solutions behave asymptoticaly like the solutions of the associated O.D.E. It appears that when c is not 0 , nothing is known except in the radial case where the relation (1.4) plays a crucial role: in particular there may exist solutions of (1.2) under the form

$$
\begin{equation*}
v(t, \sigma)=\omega\left(e^{t A}(\sigma)\right) \tag{1.5}
\end{equation*}
$$

where A is a skew symmetric matrix.
The purpose of this paper is to extend this type of problem to a more general setting by considering the following equation

$$
\begin{equation*}
u_{t t}+\Delta_{g} u-\lambda u+|u|^{q-1} u=0 \tag{1.6}
\end{equation*}
$$

in $[0, \infty) \times M$ where (M, g) be a n-dimensional compact Riemannian manifold without boundary, Δ_{g} the Laplacian on M and q and λ are constant, $q>1$. Let us first study the stationnary equation associated to (1.6), that is

$$
\begin{equation*}
\Delta_{g} u-\lambda u+|u|^{q-1} u=0 \tag{1.7}
\end{equation*}
$$

and in particular look under what conditions all the (positive) solutions of (1.7) are constant (by a solution we always mean a $C^{2}(M)$-function). Let λ_{1} denote the first nonzero eigenvalue of $-\Delta_{g}$, then two types of results are obtained in that direction. The first one points out the role of the curvature tensor and in particular its trace, the Ricci tensor:

Theorem 2.1. Assume that the Ricci tensor Ricc $_{g}$ of g satisfies

$$
\begin{equation*}
\operatorname{Ricc}_{g} \geq R g \tag{1.8}
\end{equation*}
$$

for some nonnegative R, that λ is nonnegative and

$$
\begin{equation*}
1<q \leq(n+2) /(n-2) \tag{1.9}
\end{equation*}
$$

with

$$
\begin{equation*}
(q-1) \lambda \leq \lambda_{1}+\frac{q n(n-1)}{q+n(n+2)}\left(R-\frac{n-1}{n} \lambda_{1}\right) . \tag{1.10}
\end{equation*}
$$

Assume also that one of the two inequlities (1.9)-(1.10) is strict if (M, g) is conformally diffeomorphic to $\left(S^{n}, g_{0}\right)$, that is"g $=k g_{0}$ for some positive C^{∞} function k, then any nonnegative solution u of (1.7) is a constant.

In the above result $\left(S^{n}, g_{0}\right)$ is the unit sphere of \mathbb{R}^{n+1} with the standard metric g_{0} induced by the Euclidean structure of \mathbb{R}^{n+1}. Moreover this result is optimal on (S^{n}, g_{0}). In the second result it is proved that small enough solutions (not necessarily positive) are constant:

Theorem 2.2. Assume $\lambda \geq 0, q>1$ and that u is a solution of (1.7) which satisfies

$$
\begin{equation*}
q\|u\|_{L^{\infty}}^{q-1} \leq \lambda+\lambda_{1} \tag{1.11}
\end{equation*}
$$

then u is a constant.
Furthermore this result is extendable to a product manifold $(M, g) \times(N, h)=$ $(M \times N, g \otimes h)$. The estimate (1.11) is not easy to obtain, however, in the subcritical case, the following a priori estimate is proved:

Theorem 2.3. Assume that

$$
\begin{equation*}
1<q<(n+2) /(n-2) \tag{1.12}
\end{equation*}
$$

then there exists a positive constant $C=C(M, g)$ such that for any $\lambda \geq 0$ any nonnegative solution u of (1.7) satisfies

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C \lambda^{1 /(q-1)} \tag{1.13}
\end{equation*}
$$

For the time dependent equation (1.6), the following form of the conservation of energy is derived:

$$
\begin{equation*}
\text { 4) } \frac{d}{d t} E(u)(t)=\frac{d}{d t}(\operatorname{vol}(M))^{-1} \int_{M}\left(-|\nabla u|^{2}+u_{t}^{2}-\lambda u^{2}+\frac{2}{q+1}\left|u^{q+1}\right|\right) d v_{g}=0 . \tag{1.14}
\end{equation*}
$$

Assuming that $\sigma \mapsto X(\sigma)$ is a Killing vector field on (M, g), that is a vector field on M which is the infinitesimal generator of a group of isometries $\left(e^{t X}\right)_{t \in \mathbb{R}}$ and L_{X} the associated covariant derivative defined by $\left(L_{X} u\right)(\sigma)=$ $\left.\frac{d}{d t} u\left(e^{t X}(\sigma)\right)\right|_{t=0}$, then some L_{X} "cinetic momentum" is conserved, namely

$$
\begin{equation*}
\frac{d}{d t} \int_{M} u_{t} L_{X} u d v_{g}=0 \tag{1.15}
\end{equation*}
$$

Therefore, there may exist a solution of (1.6) under the form

$$
\begin{equation*}
u(t, \sigma)=\omega\left(e^{t X}(\sigma)\right) \tag{1.16}
\end{equation*}
$$

where ω solves some nonlinear elliptic equation on M. However, in many cases, the solution of (1.6) homogenizes when t tends to infinity. Let us consider the following ordinary differential equation whose solutions are homogeneous solutions of (1.6)

$$
\begin{equation*}
\varphi_{t t}-\lambda \varphi+|\varphi|^{q-1} \varphi=0 \tag{1.17}
\end{equation*}
$$

It is easy to check that all the orbits of (1.17) but two are closed; they are characterized by the value of the energy function E defined above (see [BVB]) and all the closed orbits correspond to periodic solutions of (1.17). The last two orbits are the two homoclinic orbits of the equilibrium (0,0). Calling γ_{σ} an orbit where $\sigma=E(u)(t)$ is the corresponding value of the energy function (for the two homoclinic orbits, $\sigma=0$), the following will be proven:

Theorem 3.1. Assume u is a solution of (1.6) on $[0, \infty) \times M$ such that

$$
\begin{equation*}
\sup _{t \geq T}\|u(t, .)\|_{L^{\infty}} \leq\left(\left(\lambda+\lambda_{1}\right) / q\right)^{1 /(q-1)} \tag{1.18}
\end{equation*}
$$

for some $T>0$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{dist}_{C^{2}}\left(u(t, .), \gamma_{\sigma}\right)=0 \tag{1.19}
\end{equation*}
$$

If it is assumed moreover that (1.18) is strict and that $\sigma \neq 0$, then there exists a solution φ in the orbit γ_{σ} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|u(t, .)-\varphi(.)\|_{C^{2}}=0 \tag{1.20}
\end{equation*}
$$

As for estimate (1.18), there is a cylindrical analogue of Theorem 2.3, namely, assuming that u is a bounded solution of (1.6) on $\mathbb{R} \times M$ and that

$$
\begin{equation*}
1<q<(n+3) /(n-1) \tag{1.21}
\end{equation*}
$$

then there exists a constant $C=C(M, g)$ such that

$$
\begin{equation*}
\|u\|_{L^{\infty}(R \times M)} \leq C \lambda^{1 /(q-1)} . \tag{1.22}
\end{equation*}
$$

For the existence of solution of (1.6) with a given initial data we have two types of results: existence from monotone operators theory and existence via perturbation methods. For example, it can be proven:

Theorem 4.1. For any $u_{0} \in C(M)$ satisfying

$$
\begin{equation*}
0 \leq u_{0}(\sigma) \leq\left(\lambda \frac{q+1}{2}\right)^{1 /(q-1)} \tag{1.23}
\end{equation*}
$$

in M, there exists a solution u of (1.6) on $[0, \infty) \times M$ such that $u \in C\left([0, \infty) ; L^{\infty}(M)\right)$ which satisfies $u(0, \sigma)=u_{0}(\sigma)$ and

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|u(t, .)\|_{L \infty}=0 \tag{1.24}
\end{equation*}
$$

As for homogeneous solutions, the application of Floquet's theory of differential equations with periodic coefficients yields the existence of solutions of (1.6) in the neighbourhood of a periodic solution y_{0} of (1.17). More precisely it can be proven that there exists an infinite dimensional subspace F_{2} of $C^{2, \alpha}(M)$ which is associated to the spectrum of the linearized form of (1.6) following y_{0}

$$
\begin{equation*}
\psi \mapsto \mathbf{L}_{y_{0}}(\psi)=\psi_{t t}+\Delta_{g} \psi+\left(q\left|y_{0}(t)\right|^{q-1}-\lambda\right) \psi \tag{1.25}
\end{equation*}
$$

with the following property:

There exists $\delta>0$ such that for any $u_{0} \in C^{2, \alpha}(M)$ satisfying

$$
\begin{equation*}
\left|u_{0}(\sigma)-y_{0}(0)\right| \leq \delta \tag{1.26}
\end{equation*}
$$

and $u_{0}(x)-y_{0}(0) \in F_{2}$, there exists a solution u of (1.6) on $[0, \infty) \times M$ such that $u \in C\left([0, \infty) ; L^{\infty}(M)\right)$, which satisfies $u(0, \sigma)=u_{0}(\sigma)$ and

$$
\begin{equation*}
\|u(t, .)-\varphi(t)\|_{L^{\infty}} \leq C e^{-\mu t} \tag{1.27}
\end{equation*}
$$

for any $t \geq 0$, where C and μ are positive constants.
The last section deals with some simple nonlocal versions of (1.6) in the particular case where $q=3$. These are

$$
\begin{align*}
& u_{t t}+\Delta_{g} u-\lambda u+\bar{u}^{3}=0 \tag{1.28}\\
& u_{t t}+\Delta_{g} u-\lambda u+u \bar{u}^{2}=0 \tag{1.29}\\
& u_{t t}+\Delta_{g} u-\lambda u+u \overline{u^{2}}=0 \tag{1.30}
\end{align*}
$$

where the general notation \bar{g} means that the average of the function g on M is taken. It is proven that all the positive and bounded solutions of these equations are asymptotically homogeneous when t tends to infinity. Again one key tool for this study is the use of Floquet's theory.

This paper is organized as follows:
1- Introduction
2- Equations on compact manifold
3- Equations in cylinders
4- Existence of solutions
5- Partially homogenized equations
6- References

2. - Equations on compact manifolds

In this section it is assumed that (M, g) is a compact n-dimensional Riemannian manifold without boundary. Let Δ_{g} be the be the Laplacian on M and λ_{1} the first nonzero eigenvalue of $-\Delta_{g}$ in $W^{1,2}(M)$. Considering the following equation on M

$$
\begin{equation*}
\Delta_{g} u-\lambda u+|u|^{q-1} u=0 \tag{2.1}
\end{equation*}
$$

where q is larger than 1 , it is clear that the condition $\lambda>0$ is a necessary condition in order to have positive solutions; it is also a sufficient condition as it implies, if it is fulfilled, the existence of a constant solution, namely

$$
\begin{equation*}
u_{\lambda}=\lambda^{1 /(q-1)} \tag{2.2}
\end{equation*}
$$

If (2.1) is linearized at the value $u=u_{\lambda}$, the following operator is obtained

$$
\begin{equation*}
\mathbf{L}=\Delta_{g}+(q-1) \lambda I \tag{2.3}
\end{equation*}
$$

and \mathbf{L} is singular if $(q-1) \lambda=\lambda_{1}$. Therefore, this particular value of λ is generically a bifurcation value and for $\lambda>\lambda_{1} /(q-1)$ there exist nonconstant positive solutions of (2.1). Let $\operatorname{Ricc}_{g}=\left(R_{i j}\right)$ be the Ricci 2-tensor of g, that is the contraction of the Riemann curvature 4-tensor $\operatorname{Riem}_{g}=\left(R_{j k l}^{i}\right)$, then the following result shows how local and global properties of the metric g may interfere in order to prove uniqueness result for positive solutions of (2.1):

Theorem 2.1. Assume that

$$
\begin{equation*}
\operatorname{Ricc}_{g} \geq R g \tag{2.4}
\end{equation*}
$$

for some nonnegative R, that $\lambda \geq 0$ and

$$
\begin{equation*}
1<q \leq(n+2) /(n-2) \tag{2.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
(q-1) \lambda \leq \lambda_{1}+\frac{q n(n-1)}{q+n(n+2)}\left(R-\frac{n-1}{n} \lambda_{1}\right) . \tag{2.6}
\end{equation*}
$$

Assume also that one of the two inequalities (2.5)-(2.6) is strict if (M, g) is conformally diffeomorphic to $\left(S^{n}, g_{0}\right)$, that is $g=k g_{0}$ for some positive C^{∞} function k, then any nonnegative solution u of (2-1) is a constant.

Proof. It is essentially an algebraic computation based upon the classical Bochner-Weitzenböck formula which introduces naturally the Ricci tensor (see [BGM])

$$
\begin{equation*}
\frac{1}{2} \Delta_{g}\left|\nabla_{g} v\right|^{2}=|\operatorname{Hess} v|^{2}+\left\langle\nabla_{g}\left(\Delta_{g} v\right), \nabla_{g} v\right\rangle+\operatorname{Ricc}\left(\nabla_{g} v, \nabla_{g} v\right) \tag{2.7}
\end{equation*}
$$

Setting $u=v^{-\beta}$ where $\beta \in \mathbb{R}^{*}$, then v satisfies

$$
\begin{equation*}
-\Delta_{g} v+(\beta+1) \frac{\left|\nabla_{g} v\right|^{2}}{v}+\frac{1}{\beta}\left(v^{1+\beta-\beta q}-\lambda v\right)=0 \tag{2.8}
\end{equation*}
$$

on M. The key-stone of the proof lies in the following identities:

Proposition 2.1. For any $\gamma \neq-2$ and $\beta \in \mathbb{R}^{*}$, the following identity is verified

$$
\begin{align*}
& A \int_{M} v^{\gamma-2}\left|\nabla_{g} v\right|^{4} d v_{g}=\frac{\beta q}{\gamma} \int_{M}\left(v^{\gamma} J+v^{\gamma} \operatorname{Ricc}\left(\nabla_{g} v, \nabla_{g} v\right)\right) d v_{g} \tag{2.9}\\
& +\frac{n+2}{2 n} \lambda(q-1) \int_{M} v^{\gamma}\left|\nabla_{g} v\right|^{2} d v_{g}-B \int_{M}\left(\Delta_{g}\left(v^{(\gamma+2) / 2}\right)\right)^{2} d v_{g}
\end{align*}
$$

where

$$
\begin{equation*}
A=\frac{n+2}{2 n}\left(\left(\beta+1+\frac{\gamma}{4}\right)(\beta q-\gamma)-(\beta+1)^{2}\right)+\frac{\beta q(\gamma-4)}{8} \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
B=\frac{2}{n(\gamma+2)^{2}}\left(n+2+2 \frac{\beta q}{\gamma}(n-1)\right) \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
J=\left(|\operatorname{Hess}(v)|^{2}-\frac{1}{n}\left(\Delta_{g} v\right)^{2}\right) \tag{2.12}
\end{equation*}
$$

Moreover, in the case where $\gamma=-2$, the preceding relation becomes

$$
\begin{gather*}
A \int_{M}\left|\nabla_{g}(\ln v)\right|^{4} d v_{g}=-\frac{\beta q}{2} \int_{M}\left(v^{-2} J+v^{-2} \operatorname{Ricc}\left(\nabla_{g} v, \nabla_{g} v\right)\right) d v_{g} \tag{2.13}\\
\quad+\frac{n+2}{2 n} \lambda(q-1) \int_{M}\left|\nabla_{g}(\ln v)\right|^{2} d v_{g}-B \int_{M}\left(\Delta_{g}(\ln v)\right)^{2} d v_{g}
\end{gather*}
$$

where

$$
\begin{align*}
& A=\frac{n+2}{2 n}\left(\left(\beta+\frac{1}{2}\right)(\beta q+2)-(\beta+1)^{2}\right)-\frac{3 \beta q}{4} \tag{2.14}\\
& B=\frac{1}{2 n}(n+2-\beta q(n-1))
\end{align*}
$$

Proof of Proposition 2.1. Multiplying (2.8) by $v^{\gamma-1}\left|\nabla_{g} v\right|^{2}$ and $v^{\gamma} \Delta_{g} v$ successively and integrating over M result in

$$
\left.\begin{array}{rl}
\int_{M} v^{\gamma-1} \Delta v\left|\nabla_{g} v\right|^{2} d v_{g}= & (\beta+1) \int_{M} v^{\gamma-2}\left|\nabla_{g} v\right|^{4} d v_{g} \\
& +\frac{1}{\beta} \int_{M}\left(v^{\beta-\beta q+\gamma}-\lambda v^{\gamma}\right)\left|\nabla_{g} v\right|^{2} d v_{g}
\end{array}\right\} \begin{aligned}
& \int_{M} v^{\gamma}\left(\Delta_{g} v\right)^{2} d v_{g}=(\beta+1) \int_{M} v^{\gamma-1} \Delta_{g} v\left|\nabla_{g} v\right|^{2} d v_{g} \tag{2.16}\\
& \quad-\frac{1}{\beta} \int_{M}(1+\beta-\beta q+\gamma)\left(v^{\beta-\beta q+\gamma}-\lambda(\gamma+1) v^{\gamma}\right)\left|\nabla_{g} v\right|^{2} d v_{g}
\end{aligned}
$$

By a linear combination between (2.16) and (2.17) the term $\int_{M} v^{\beta-\beta q+\gamma}\left|\nabla_{g} v\right|^{2} d v_{g}$ can be eliminated and therefore

$$
\begin{align*}
(\gamma-\beta q) & \int_{M} v^{\gamma-1} \Delta_{g} v\left|\nabla_{g} v\right|^{2} d v_{g}+\int_{M} v^{\gamma}\left(\Delta_{g} v\right)^{2} d v_{g} \\
& +(\beta+1)(\beta q-\gamma-\beta-1) \int_{M} v^{\gamma-2}\left|\nabla_{g} v\right|^{4} d v_{g} \tag{2.18}\\
= & \lambda(q-1) \int_{M} v^{\gamma}\left|\nabla_{g} v\right|^{2} d v_{g}
\end{align*}
$$

Multiplying (2.7) by v^{γ}, integrating on M and replacing the term $|\operatorname{Hess} v|^{2}$ by $J+\frac{1}{n}\left(\Delta_{g} v\right)^{2}$ (where J defined by (2.12) is nonnegative from the Schwarz inequality) imply the following identity:

$$
\begin{align*}
\frac{3 \gamma}{2} \int_{M} v^{\gamma-1} \Delta_{g} v\left|\nabla_{g} v\right|^{2} d v_{g} & +\frac{1}{2} \gamma(\gamma-1) \int_{M} v^{\gamma-2}\left|\nabla_{g} v\right|^{4} d v_{g} \\
& +\frac{n-1}{n} \int_{M} v^{\gamma}\left(\Delta_{g} v\right)^{2} d v_{g} \tag{2.19}\\
= & \int_{M} J v^{\gamma} d v_{g}+\int_{M} v^{\gamma} \operatorname{Ricc}(\nabla v, \nabla v) d v_{g}
\end{align*}
$$

If $\gamma \neq-2$, there holds

$$
\begin{align*}
v^{\gamma-1}\left|\nabla_{g} v\right|^{2} \Delta_{g} v= & \frac{4}{\gamma(\gamma+2)^{2}}\left(\Delta_{g}\left(v^{(\gamma+2) / 2}\right)\right)^{2} \\
& -\frac{\gamma}{4} v^{\gamma-2}\left|\nabla_{g} v\right|^{4}-\frac{1}{\gamma} v^{\gamma}\left(\Delta_{g} v\right)^{2} \tag{2.20}
\end{align*}
$$

and if $\gamma=-2$, (2.20) reads

$$
\begin{equation*}
v^{-3}\left|\nabla_{g} v\right|^{2} \Delta_{g} v=-\frac{1}{2}\left(\Delta_{g}(\log v)\right)^{2}+\frac{1}{2} v^{-4}\left|\nabla_{g} v\right|+\frac{1}{2} v^{-2}\left(\Delta_{g} v\right)^{2} \tag{2.21}
\end{equation*}
$$

If, in (2.18)-(2.19), the term $\int_{M} v^{\gamma-1} \Delta_{g} v\left|\nabla_{g} v\right|^{2} d v_{g}$ is replaced by the right-hand side of (2.20) or (2.21), this gives

$$
\begin{align*}
& \frac{\beta q}{\gamma} \int_{M} v^{\gamma}\left(\Delta_{g} v\right)^{2} d v_{g} \\
& \quad+\left[\left(\beta+1+\frac{\gamma}{4}\right)(\beta q-\gamma)-(\beta+1)^{2}\right] \int_{M}\left|\nabla_{g} v\right|^{4} v^{\gamma-2} d v_{g} \tag{2.22}\\
& \quad-\frac{4(\beta q-\gamma)}{\gamma(\gamma+2)^{2}} \int_{M}\left(\Delta_{g} v^{(\gamma+2) / 2}\right)^{2} d v_{g}=\lambda(q-1) \int_{M} v^{\gamma}\left|\nabla_{g} v\right|^{2} d v_{g}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{6}{(\gamma+2)^{2}} \int_{M}\left(\Delta_{g} v^{(\gamma+2) / 2}\right)^{2} d v_{g}+\frac{\gamma(\gamma-4)}{8} \int_{M} v^{\gamma-2}\left|\nabla_{g} v\right|^{4} d v_{g} \\
& \quad-\frac{n+2}{2 n} \int_{M} v^{\gamma}\left(\nabla_{g} v\right)^{2} d v_{g} \tag{2.23}\\
& =\int_{M} v^{\gamma} J d v_{g}+\int_{M} v^{\gamma} \operatorname{Ricc}_{g}\left(\nabla_{g} v, \nabla_{g} v\right) d v_{g}
\end{align*}
$$

if $\gamma \neq-2$, with an easy modification in the case $\gamma=-2$. In those two identities the terms $\int_{M}\left(\Delta_{g}(v)^{(\gamma+2) / 2}\right)^{2} d v_{g}$ and $\int_{M} v^{\gamma}\left(\Delta_{g} v\right)^{2} d v_{g}$ are nonnegative but give no estimate; should one of them be eliminated between (2.22) and (2.23), for example, $\int_{M} v^{\gamma}\left(\Delta_{g} v\right)^{2} d v_{g}$, the result is (2.9). Formula (2.13) is obtained in the same way.

End of the proof of Theorem 2.1. From the nonnegativity of J, Proposition 2.1 and the classical relation (from Fourier analysis)

$$
\begin{equation*}
\int_{M}\left(\Delta_{g} v^{(\gamma+2) / 2}\right)^{2} d v_{g} \geq \frac{(\gamma+2)^{2}}{4} \lambda_{1} \int_{M} v^{\gamma}\left|\nabla_{g} v\right|^{2} d v_{g} \tag{2.24}
\end{equation*}
$$

if $\gamma \neq-2$, with an immediate modification if $\gamma=-2$, it suffices to find a couple (β, γ) such that

$$
\begin{equation*}
A \geq 0, B \geq 0 \text { et } \frac{\beta}{\gamma} \leq 0 \tag{2.25}
\end{equation*}
$$

In fact, if such a couple exists, it can be deduced from the previous relations that

$$
\begin{align*}
& A \int_{M} v^{\gamma-2}\left|\nabla_{g} v\right|^{4} d v_{g} \leq \frac{\beta q}{\gamma} \int_{M} v^{\gamma} J d v_{g} \\
& \quad+\left[\frac{n+2}{2 n}\left(\lambda(q-1)-\lambda_{1}\right)+\frac{\beta q}{\gamma}\left(R-\lambda_{1} \frac{n-1}{n}\right)\right] \int_{M} v^{\gamma}\left|\nabla_{g} v\right|^{2} d v_{g} \tag{2.26}
\end{align*}
$$

We set

$$
\begin{equation*}
X=\frac{\beta}{\gamma}, \quad \delta=\frac{1}{\gamma}+\frac{1}{2} \text { and } \tilde{A}=\frac{2 n}{(n+2) \gamma^{2}} A \tag{2.27}
\end{equation*}
$$

and the problem is reduced to maximise X in $[-(n+2) /(2 q(n-1)), 0]$ under the constraint

$$
\tilde{A}=-\delta^{2}+2 \frac{q-(n+2)}{n+2} \delta X+(q-1) X^{2}+\frac{q(n-1)}{2(n+2)} X \geq 0
$$

Computing the derivative of \tilde{A} with respect to δ results in:

$$
\frac{d \tilde{A}}{d \delta}=-2\left[\delta-\frac{q-(n+2)}{n+2}\right]
$$

Therefore the maximum of \tilde{A} is achieved for $\delta=\delta_{0}=\frac{q-(n+2)}{n+2}$, which gives

$$
\begin{equation*}
\tilde{A}\left(\delta_{0}, X\right)=X^{2}\left[q-1+\left(\frac{q-(n+2)}{n+2}\right)^{2}\right]+\frac{q(n-1)}{2(n+2)} X \tag{2.30}
\end{equation*}
$$

If X_{0} is the negative root of the above polynomial in X, then

$$
\begin{equation*}
X_{0}=-\frac{(n+2)(n-1)}{2(q+n(n+2))} \tag{2.31}
\end{equation*}
$$

and the condition

$$
\begin{equation*}
X_{0} \geq-\frac{n+2}{2 q(n-1)} \tag{2.32}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
q \leq(n+2) /(n-2) \tag{2.33}
\end{equation*}
$$

For this specific value of $X=X_{0}$ there holds

$$
\begin{align*}
& {\left[\frac{n+2}{2 n}\left(\lambda(q-1)-\lambda_{1}\right)+\frac{\beta q}{\gamma}\left(R-\lambda_{1} \frac{n-1}{n}\right)\right]} \tag{2.34}\\
& =\frac{n+2}{2 n}\left[\lambda(q-1)-\lambda_{1}-\frac{q n(n-1)}{q+n(n+2)}\left(R-\lambda_{1} \frac{n-1}{n}\right)\right] .
\end{align*}
$$

Therefore, assuming that (2.33) is fulfilled and that

$$
\begin{equation*}
\lambda(q-1) \leq \lambda_{1}+\frac{q n(n-1)}{q+n(n+2)}\left(R-\lambda_{1} \frac{n-1}{n}\right) \tag{2.35}
\end{equation*}
$$

there are two possibilities:
i) either (M, g) is not conformally diffeomorphic to (S^{n}, g_{0}) and there exist no nonconstant positive solutions to the equation $J=0$ (see [Ob], [OY]), or
ii) (M, g) is conformally diffeomorphic to $\left(S^{n}, g_{0}\right)$ and, unless $v^{(\gamma+2) / 2}$ is an eigenfunction of the Laplacian, the relation (2.24) is strict and B is positive if $q<(n+2) /(n-2)$. In that case v has also to be constant if (2.35) is fulfilled.

Remark 2.1. It is interesting to notice that in estimate (2.6), the term $R-\lambda_{1} \frac{n-1}{n}$ is always nonpositive from Lichnerowicz well known result [Li].

Moreover, it vanishes if and only if (M, g) is isometric to (S^{n}, g_{0}), the standard n-sphere with radius 1 [Ob]. The formula (2.6) has to be compared with the previous one from [BVV] which only says that, if

$$
\begin{equation*}
(q-1) \lambda \leq \frac{n}{n-1} R \tag{2.36}
\end{equation*}
$$

any positive solution of (2.1) is a constant, provided (2.5) is fulfilled, with a strict inequality when (M, g) is conformally diffeomorphic to (S^{n}, g_{0}). In the case where (M, g) is isometric to ($\left.S^{n}, g_{0}\right)$, the two results are the same. However, if (M, g) is flat $(R=0)$, for example in the flat torus case $(M, g)=\left(T^{n}, g_{0}\right)$, the [BVV] result gave no real information, but formula (2.6) reads as

$$
\begin{equation*}
(q-1) \lambda \leq \lambda_{1} \frac{n(n+2-q(n-2))}{q+n(n+2)} \tag{2.37}
\end{equation*}
$$

remark 2.2. There is numerical evidence that in the case where $(M, g)=$ (S^{3}, g_{0}) and $q>5$, there exist positive solutions of (2.1) for any $\lambda>0$; the smallest is λ, the highest is the maximum of the numerical solution.

As a consequence of this result new estimates are obtained for the infimum of the following quotient

$$
\begin{equation*}
Q_{\lambda, q}(u)=\frac{\int_{M}\left(\left|\nabla_{g} u\right|^{2}+\lambda u^{2}\right) d v_{g}}{\left(\int_{M}|u|^{q+1} d v_{g}\right)^{2 /(q+1)}} \tag{2.38}
\end{equation*}
$$

Corollary 2.1. Suppose that the Ricci curvature of g satisfies (2.4), and that (2.5) and (2.6) hold, then

$$
\begin{equation*}
S_{\lambda, q}=\inf \left\{Q_{\lambda, q}(u): u \in W^{1,2}(M)-\{0\}\right\}=\lambda(\operatorname{vol} M)^{(q-1) /(q+1)} \tag{2.39}
\end{equation*}
$$

The proof is the same as the one of [BVV, Cor 6.2], by using directly the equation in the case, $1<q<(n+2) /(n-2)$, and the left upper semi-continuity of $q \mapsto S_{\lambda, q}$ at $q=(n+2) /(n-2)$ as in Trudinger's article [Tr].

Remark 2.3. As quoted in Remark 2.1, the result of Theorem 2.1 is optimal if $(M, g)=\left(S^{n}, g_{0}\right)$. It has been noticed by H. Hamza [Ha] that, if $q=(n+2) /(n-2)$, there exist non constant positive solutions of (2.1) on (M, g) whenever $\lambda=\lambda_{1} /(q-1)=(n-2) \lambda_{1} / 4$ and

$$
\begin{equation*}
\lambda_{1}>n\left(\frac{\operatorname{vol} S^{n}}{\operatorname{vol} M}\right)^{2 / n} \tag{2.40}
\end{equation*}
$$

In fact, it is known from Aubin's results [Au], that

$$
\begin{equation*}
4 \frac{n-1}{n-2} S_{\lambda,(n+2) /(n-2)} \leq n(n-1)\left(\operatorname{vol} S^{n}\right)^{2 / n} \tag{2.41}
\end{equation*}
$$

for any λ. If the only positive solutions of (2.1) were constant, it would imply that

$$
\begin{equation*}
\lambda_{1}(n-1)(\operatorname{vol} M)^{2 / n} \leq n(n-1)\left(\operatorname{vol} S^{n}\right)^{2 / n} \tag{2.42}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\lambda_{1} \leq n\left(\frac{\operatorname{vol} S^{n}}{\operatorname{vol} M}\right)^{2 / n} \tag{2.43}
\end{equation*}
$$

Taking $(M, g)=\left(\mathbf{P}_{n}(\mathbb{R}), g_{0}\right)$, the n-dimensional real projective space, then (see [BGM])

$$
\begin{equation*}
\operatorname{vol} M=1 / 2 \operatorname{vol} S^{n} \text { and } \lambda_{1}=2(n+1) \tag{2.44}
\end{equation*}
$$

it is clear that (2.43) means $2(n+1) \leq n 2^{2 / n}$, which is never true for $n>1$.
More generally, if $q=(n+2) /(n-2)$, the fact that (2.1) admits only constant for positive solutions implies that

$$
\begin{equation*}
\lambda \leq \frac{n(n-2)}{4}\left(\frac{\operatorname{vol} S^{n}}{\operatorname{vol} M}\right)^{2 / n} \tag{2.45}
\end{equation*}
$$

which in turn implies that there exists a positive non constant solution of (2.1) whenever $\lambda>\frac{n(n-2)}{4}\left(\frac{\operatorname{vol} S^{n}}{\operatorname{vol} M}\right)=\lambda(M)$. Moreover, from the upper semi-continuity of $(\lambda, q) \mapsto S_{\lambda, q}$ on the left at $q=2^{*}-1=(n+2) /(n-2)$, it can be concluded that this result still holds in a neighborhood of $(\lambda(M),(n+2) /(n-2))$. In the particular case of the flat torus $(M, g)=\left(T^{n}, g_{0}\right)$, the condition reads as

$$
\begin{equation*}
\lambda(M)=\frac{n(n-2)}{\pi^{2}}\left(\operatorname{vol} S^{n}\right)^{2 / n} \tag{2.46}
\end{equation*}
$$

Another interesting application deals with the uniqueness of Einstein metric with constant positive scalar curvature.

Definition 2.1. A metric g on a n-dimensional differentiable manifold M is said to be Einstein if there exists a real number k such that

$$
\begin{equation*}
\operatorname{Ricc}_{g}=k g \tag{2.47}
\end{equation*}
$$

Since the scalar curvature is the trace of the Ricci tensor, it satisfies

$$
\begin{equation*}
\mathrm{Scal}_{g}=n k \tag{2.48}
\end{equation*}
$$

Let us recall some well known facts concerning the conformal change of metrics: if g is some metric on M, the metric g^{\prime} is said to be conformal to g if $g^{\prime}=v(x) g$ for some $C^{\infty}(M)$, positive function v. Writing $v=u^{4 /(n-2)}$ $(n \geq 3)$ and $g_{u}=g^{\prime}=u^{4 /(n-2)} g$, then (see [LP]) u satisfies

$$
\begin{equation*}
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{Scal}_{g} u-\operatorname{Scal}_{g_{u}} u^{(n+2) /(n-2)}=0 \tag{2.49}
\end{equation*}
$$

All the metrics g^{\prime} on M which are conformal to g are said to belong to the conformal class of g. Another proof of Obata's uniqueness result [Ob] is given below.

Corollary 2.2. Let (M, g) be a compact Einstein manifold different from (S^{n}, g_{0}). Then g is the unique metric in its conformal class to have constant scalar curvature and fixed volume.

Proof. If g is Einstein, (2.49) reads as

$$
\begin{equation*}
-4 \frac{n-1}{n-2} \Delta_{g} u+n k u-\operatorname{Scal}_{g_{u}} u^{(n+2) /(n-2)}=0 \tag{2.50}
\end{equation*}
$$

When, Scal $_{g_{u}}<0$, then $k<0$ and the only positive solution of (2.50) is a constant from the maximum principle. If $\mathrm{Scal}_{g_{u}}=0$, there exists non positive solution of (2.50), whatever is k. Therefore the remaining case is the one where $\operatorname{Scal}_{g_{u}}>0$ and necessarily $k>0$ by integrating (2.50) on M. Up to change u into θu, for some $\theta>0$, (2.43) reduces to

$$
\begin{equation*}
\Delta_{g} u-\frac{n(n-2) k}{4(n-1)} u+u^{(n+2) /(n-2)}=0 \tag{2.51}
\end{equation*}
$$

Since Ricc $_{g} \geq k g$, the Lichnerowicz theorem implies that $\lambda_{1} \geq n k /(n-1)$, and the condition (2.6) reads as

$$
\begin{equation*}
\frac{4 n(n-2) k}{4(n-2)(n-1)} \leq \frac{n}{n-1} k \tag{2.52}
\end{equation*}
$$

which is obviously satisfied with equality. Therefore u is constant.
The remaining part of this section is devoted to similar types of results under an a priori estimate on u.

Theorem 2.2. Assume $\lambda \geq 0, q>1$ and that u is solution of (2.1) which satisfies

$$
\begin{equation*}
q\|u\|_{L^{\infty}}^{q-1} \leq \lambda+\lambda_{1} \tag{2.53}
\end{equation*}
$$

then u is a constant.
Proof. If u satisfies (2.1), let \bar{u} be the average value of u on $M ; \bar{u}$ satisfies

$$
\begin{equation*}
\Delta_{g} \bar{u}-\lambda \bar{u}+\overline{|u|^{q-1} u}=0 \tag{2.54}
\end{equation*}
$$

and from classical Fourier analysis,

$$
\begin{equation*}
-\int_{M}(u-\bar{u}) \Delta_{g}(u-\bar{u}) d v_{g} \geq \lambda_{1} \int_{M}(u-\bar{u})^{2} d v_{g} \tag{2.55}
\end{equation*}
$$

with equality if and only if $u-\bar{u}$ belongs to the eigenspace associated to λ_{1}. By the mean value theorem there holds

$$
\begin{equation*}
\int_{M}(u-\bar{u})\left(u|u|^{q-1}-\overline{u|u|^{q-1}}\right) d v_{g} \leq q\|u\|_{L}^{q-1} \int_{M}(u-\bar{u})^{2} d v_{g} \tag{2.56}
\end{equation*}
$$

with equality only if u is a constant. Therefore

$$
\begin{equation*}
\left(\lambda+\lambda_{1}-q\|u\|_{L}^{q-1}\right) \int_{M}(u-\bar{u})^{2} d v_{g} \leq 0 \tag{2.57}
\end{equation*}
$$

which implies that $u=\bar{u}$ if (2.53) holds.

This result can be extended to a finite product of compact manifolds without boundary. In the particular case of two elements where $(M, g) \times(N, h)=$ ($M \times N, g \otimes h$) the Laplacian on the product manifold is computed by the following formula

$$
\begin{equation*}
\left(\Delta_{g \otimes h}\right)_{(\sigma, \tau)} f=\left(\Delta_{g}\right)_{\sigma} f+\left(\Delta_{h}\right)_{\tau} f, \quad \sigma \in(M, g), \quad \tau \in(N, h) \tag{2.58}
\end{equation*}
$$

Corollary 2.3. Assume $\lambda \geq 0, q>1$ and that u is solution of

$$
\begin{equation*}
\Delta_{g \otimes h} u-\lambda u+|u|^{q-1} u=0 \tag{2.59}
\end{equation*}
$$

on $M \times N$. Let $\lambda_{1, M}$ (respectively $\lambda_{1, N}$) be the first nonzero eigenvalue of $-\Delta_{g}$ (respectively $-\Delta_{h}$) in $W^{1,2}(M)$ (respectively $W^{1,2}(N)$) and let $\sigma \in M, \tau \in N$ be the variables. Then
(i) - If $q\|u\|_{L}^{q-1} \leq \lambda+\lambda_{1, M}, u$ is independent of $\sigma \in M$,
(ii) - If $q\|u\|_{L \infty}^{q-1} \leq \lambda+\lambda_{1, N}, u$ is independent of $\tau \in N$,
(iii) - If $q\|u\|_{L^{\infty}}^{q-1} \leq \lambda+\min \left(\lambda_{1, M}, \lambda_{1, N}\right), u$ is constant.

Proof. Setting \bar{u}^{M} (respectively \bar{u}^{N}) the average of u with respect to the M-variable (respectively the N-variable) then

$$
\begin{equation*}
\Delta_{h} \bar{u}^{M}+\Delta_{g} \bar{u}^{M}-\lambda \bar{u}^{M}+{\overline{|u|^{q-1}}}^{M}=0 \tag{2.60}
\end{equation*}
$$

Substracting (2.60) to (2.59), multiplying the result by $u-\bar{u}^{M}$ and integrating over M and N yields

$$
\begin{align*}
& \int_{N} \int_{M}\left(u-\bar{u}^{M}\right) \Delta_{g}\left(u-\bar{u}^{M}\right) d v_{g} d v_{h} \\
& \quad+\int_{M} \int_{N}\left(u-\bar{u}^{M}\right) \Delta_{h}\left(u-\bar{u}^{M}\right) d v_{h} d v_{g} \\
& \quad-\lambda \int_{N} \int_{M}\left(u-\bar{u}^{M}\right)^{2} d v_{g} d v_{h} \tag{2.61}\\
& \quad+\int_{N} \int_{M}\left(u-\bar{u}^{M}\right)\left(u|u|^{q-1}-\overline{u|u|^{q-1}}{ }^{M}\right) d v_{g} d v_{h}=0 .
\end{align*}
$$

But

$$
\begin{equation*}
-\int_{M}\left(u-\bar{u}^{M}\right) \Delta_{g}\left(u-\bar{u}^{M}\right) d v_{g} \geq \lambda_{1, M} \int_{M}\left(u-\bar{u}^{M}\right)^{2} d v_{g} \tag{2.62}
\end{equation*}
$$

and

$$
\begin{equation*}
-\int_{N}\left(u-\bar{u}^{M}\right) \Delta_{h}\left(u-\bar{u}^{M}\right) d v_{h}=\int_{N}\left|\nabla_{h}\left(u-\bar{u}^{M}\right)\right|^{2} d v_{h} \tag{2.63}
\end{equation*}
$$

Therefore it can be deduced from (2.56), as above,

$$
\begin{equation*}
\left(\lambda+\lambda_{1, M}-q\|u\|_{L}^{q-1}\right) \int_{N} \int_{M}\left(u-\bar{u}^{M}\right)^{2} d v_{g} d v_{h} \leq 0 \tag{2.64}
\end{equation*}
$$

which implies (i) or (ii) equivalently, as for (iii) it is a consequence of (i) and (ii).
The last result of this section is an a priori estimate for any positive solution of (2.1) in a subcritical case.

Theorem 2.3. Assume that

$$
\begin{equation*}
1<q<(n+2) /(n-2) \tag{2.65}
\end{equation*}
$$

then there exists a positive constant $C=C(M, g)$ such that for any $\lambda \geq 0$ any nonnegative solution u of (1.1) satisfies

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C \lambda^{1 /(q-1)} \tag{2.66}
\end{equation*}
$$

Proof. Let us suppose that (2.66) does not hold. Then there exist four sequences $\left\{\lambda_{m}\right\},\left\{C_{m}\right\}$, and $\left\{\sigma_{m}\right\}$, such that $\lambda_{m}>0, u_{m}$ is a positive solution of

$$
\begin{equation*}
\Delta_{g} u_{m}-\lambda_{m} u_{m}+u_{m}^{q}=0 \tag{2.67}
\end{equation*}
$$

in M with the following properties

$$
\begin{align*}
\lim _{m \rightarrow \infty} C_{m} & =\infty \tag{2.68}\\
u_{m}\left(\sigma_{m}\right) & =\left\|u_{m}\right\|_{L^{\infty}}=C_{m} \lambda_{m}^{1 /(q-1)} \tag{2.69}\\
\lim _{m \rightarrow \infty} \sigma_{m} & =\sigma_{0} \tag{2.70}
\end{align*}
$$

There are three possibilities:
Case 1: $\left\|u_{m}\right\|_{L} \infty$ tends to some nonzero limit c when m tends to infinity. From (2.68) (2.69), λ_{m} tends to 0 . Setting $w_{m}=u_{m} /\left\|u_{m}\right\|_{L^{\infty}}$, then

$$
\begin{equation*}
\Delta_{g} w_{m}-\lambda_{m} w_{m}+\left\|u_{m}\right\|_{L^{\infty}}^{q-1} w_{m}^{q}=0 \tag{2.71}
\end{equation*}
$$

As $\left\|w_{m}\right\|_{L^{\infty}}=1,\left\|u_{m}\right\|_{L^{\infty}}$ is bounded and λ_{m} tends to 0 , it can be deduced from classical estimates in elliptic equations theory that w_{m} converges in the $C^{2}-M$ topology to some w which solves

$$
\begin{equation*}
\Delta_{g} w+c^{q-1} w^{q}=0 \tag{2.72}
\end{equation*}
$$

on M and

$$
\begin{equation*}
w\left(\sigma_{0}\right)=1 \tag{2.73}
\end{equation*}
$$

which is impossible.
Case 2: $\left\|u_{m}\right\|_{L^{\infty}}$ tends to zero when m tends to infinity. Then there exists some m_{0} such that $\left\|u_{m}\right\|_{L^{\infty}} \leq \lambda_{1}^{1 /(q-1)}$ for $m \geq m_{0}$. From Theorem $1.2, u_{m}$ is constant with obvious tralue $\lambda_{m}^{1 /(q-1)}$, which contradicts (2.68)-(2.69).

Case 3: $\left\|u_{m}\right\|_{L^{\infty}}$ tends to infinity when m tends to infinity. The formula (2.67) can be written in local coordinates (x^{i}) near σ_{0}

$$
\begin{equation*}
\frac{1}{\sqrt{|g|}} \sum_{i, j}^{冫} \underset{\partial x^{j}}{\substack{\text { mitur. }}}\left(\sqrt{|g|} g^{i j} \frac{\partial u_{m}}{\partial x^{i}}\right)-\lambda_{m} u_{m}+u_{m}^{q}=0 \tag{2.74}
\end{equation*}
$$

where $g=\left(g_{i j}\right)$ is the metric tensor and $|g|=\operatorname{det}\left(g_{i j}\right)$. Without any loss of generality, it can be assumed that (2.74) holds in the n-ball of center x_{0} and radius d. Let us introduce the following scaling

$$
\begin{equation*}
\tilde{x}=\frac{x-x_{0}}{\alpha_{m}}, v_{m}(\tilde{x})=\alpha_{m}^{2 /(q-1)} u_{m}(x) \tag{2.75}
\end{equation*}
$$

where α_{m} is defined by

$$
\begin{equation*}
\alpha_{m}^{2 /(q-1)}\left\|u_{m}\right\|_{L^{\infty}}=1 \tag{2.76}
\end{equation*}
$$

For m large enough, $v_{m}(\tilde{x})$ is defined in the ball $B_{d / \alpha_{m}}(0)$ of center 0 and radius d / α_{n} where it satisfies $\left\|v_{m}\right\|_{L^{\infty}}=v_{m}(0)=1$ and

$$
\begin{equation*}
\frac{1}{\sqrt{\left|g_{m}\right|}} \sum_{i, j} \frac{\partial}{\partial x^{j}}\left(\sqrt{\left|g_{m}\right|} g_{m}^{i j} \frac{\partial v_{m}}{\partial x^{i}}\right)-\lambda_{m} \alpha_{m}^{2} v_{m}+v_{m}^{q}=0 \tag{2.77}
\end{equation*}
$$

where $g_{m}=\left(g_{m i j}(\tilde{x})\right)=\left(g_{i j}\left(\alpha_{m} \tilde{x}+x_{0}\right)\right)$. As in [GS2] it can be noticed that the coefficients and the ellipticity constant of (2.77) remain bounded and bounded below respectively. From the Agmon-Douglis-Nirenberg estimates (see [GT]) for any R and any $p>1$ there exist some integer m_{R} and a positive constant M_{R} such that

$$
\begin{equation*}
\left\|v_{m}\right\|_{W^{2, p}\left(B_{R}(0)\right)} \leq M_{R} \tag{2.78}
\end{equation*}
$$

for $m \geq m_{R}$. From Morrey imbedding theorem there exists \tilde{M}_{R} such that

$$
\begin{equation*}
\left\|v_{m}\right\|_{C^{1, \beta}\left(B_{R}(0)\right)} \leq \tilde{M}_{R} \tag{2.79}
\end{equation*}
$$

for some $\beta \in(0,1)$. Therefore, since

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(g_{m i j}(\tilde{x})\right)=\lim _{m \rightarrow \infty}\left(g_{i j}\left(\alpha_{m} \tilde{x}+x_{0}\right)\right)=\left(g_{i j}\left(x_{0}\right)\right) \tag{2.80}
\end{equation*}
$$

it can be deduced that there exists a subsequence $\left\{v_{m_{k}}\right\}$ and a nonnegative function v defined in whole \mathbb{R}^{n} such that $v_{m_{k}}$ converges to v in the $C_{\text {loc }}^{1, \beta}$ topology, and v solves

$$
\begin{gather*}
\sum_{i, j} \frac{\partial}{\partial x^{j}}\left(g^{i j}\left(x_{0}\right) \frac{\partial v}{\partial x^{i}}\right)+v^{q}=0 \tag{2.81}\\
v(0)=1 \tag{2.82}
\end{gather*}
$$

which is impossible from [GS1] since $q<(n+2) /(n-2)$.

3. - Equations in cylinders

In this Section, (M, g) is still a compact n-dimensional Riemannian manifold without boundary and the following time-dependent equation is studied

$$
\begin{equation*}
u_{t t}+\Delta_{g} u-\lambda u+|u|^{q-1} u=0 \tag{3.1}
\end{equation*}
$$

where the variable (t, σ) belongs to $I \times M, I$ being either \mathbb{R} or \mathbb{R}^{+}. Since M is compact without boundary, an important class of solutions of (3.1) consists in the class of homogeneous solutions which are the solutions of the ordinary differential equation

$$
\begin{equation*}
\varphi_{t t}-\lambda \varphi+|\varphi|^{q-1} \varphi=0 \tag{3.2}
\end{equation*}
$$

The solutions of (3.2) are classified by the value of the energy

$$
\begin{equation*}
E(\varphi)=\frac{1}{2} \varphi_{t}^{2}-\frac{\lambda}{2} \varphi^{2}+\frac{1}{q+1}|\varphi|^{q+1} \tag{3.3}
\end{equation*}
$$

which is independent of t. All the orbits of (3.2) are closed and correspond to periodic solutions with the exception of the two homoclinic orbits consisting of the solutions $\varphi_{0}^{ \pm}$which satisfy $E\left(\varphi_{0}^{ \pm}\right)=0$ and

$$
\begin{align*}
& \varphi_{0}^{+}>0, \lim _{t \rightarrow-\infty} \varphi_{0}^{+}(t)=0^{+}, \lim _{t \rightarrow \infty} \varphi_{0}^{+}(t)=0^{+} \tag{3.4}\\
& \varphi_{0}^{-}<0, \lim _{t \rightarrow-\infty} \varphi_{0}^{-}(t)=0^{-}, \lim _{t \rightarrow \infty} \varphi_{0}^{-}(t)=0^{-} \tag{3.5}
\end{align*}
$$

Concerning (3.1) the first observation is the conservative aspect as the following quantity is independent of t :

$$
\begin{equation*}
E(u)=(\operatorname{vol}(M))^{-1} \int_{M}\left[\frac{1}{2} u_{t}^{2}-\frac{1}{2}\left|\nabla_{g} u\right|^{2}+\frac{\lambda}{2} u^{2}-\frac{1}{q+1}|u|^{q+1}\right] d v_{g} . \tag{3.6}
\end{equation*}
$$

Other invariants for (3.1) can be defined if M admits a Killing vector field X, that is a vector field $\sigma \mapsto X(\sigma)$ such that the group of diffeomormisms associated $\tau \mapsto e^{\tau X}$ is a group of isometries of (M, g). To this vector field can be associated the Lie derivative L_{X} defined by

$$
\begin{equation*}
\left(L_{X} u\right)(\sigma)=\left.\frac{d}{d t} u\left(e^{t X}(\sigma)\right)\right|_{t=0} \tag{3.7}
\end{equation*}
$$

Proposition 3.1. For any solution of (3.1), there holds

$$
\begin{equation*}
\int_{M} u_{t} L_{X} u d v_{g}=C s t \tag{3.8}
\end{equation*}
$$

Proof. Multiplying (3.1) by $L_{X} u$ and integrating over M

$$
\begin{equation*}
\int_{M} u_{t t} L_{X} u d v_{g}+\int_{M} \Delta_{g} u L_{X} u d v_{g}+\int_{M}\left(-\lambda u+|u|^{q-1} u\right) L_{X} u d v_{g}=0 \tag{3.9}
\end{equation*}
$$

Since X is a Killing vector field, this gives

$$
\begin{equation*}
\int_{M} \Delta_{g} u L_{X} u d v_{g}=-\frac{1}{2} \int_{M} L_{X}\left(\left|\nabla_{g} u\right|^{2}\right) d v_{g}=0 \tag{3.10}
\end{equation*}
$$

and for any C^{1} function ω defined on M, there holds $\int_{M} L_{X} \omega d v_{g}=0$. In the same way

$$
\begin{equation*}
\int_{M}\left(-\lambda u+|u|^{q-1} u\right) L_{X} u d v_{g}=\int_{M} L_{X}\left(-\frac{\lambda}{2} u^{2}+\frac{1}{q+1}|u|^{q+1}\right) d v_{g}=0 \tag{3.11}
\end{equation*}
$$

and for the remaining term

$$
\begin{equation*}
\int_{M} u_{t t} L_{X} u d v_{g}=\frac{d}{d t} \int_{M} u_{t} L_{X} u d v_{g}-\int_{M} u_{t} L_{X} u_{t} d v_{g}=\frac{d}{d t} \int_{M} u_{t} L_{X} u d v_{g} \tag{3.12}
\end{equation*}
$$

from the above observation, which implies (3.8).
The main homogenization result is the following:
Theorem 3.1. Assume u is a solution of (3.1) on $[0, \infty) \times M$ such that

$$
\begin{equation*}
\sup _{t \geq T}\|u(t, .)\|_{L^{\infty}} \leq\left(\left(\lambda+\lambda_{1}\right) / q\right)^{1 /(q-1)}, \tag{3.13}
\end{equation*}
$$

for some $T>0$ and let $\sigma=E(u)(t)$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{dist}_{C^{2}}\left(u(t .,), \gamma_{\sigma}\right)=0 \tag{3.14}
\end{equation*}
$$

If assuming moreover that (3.13) is strict and that $\sigma \neq 0$, then there exists a solution φ in the orbit γ_{σ} of (3.2) defined by $E(\varphi)=\sigma$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|u(t, .)-\varphi(.)\|_{C^{2}}=0 \tag{3.15}
\end{equation*}
$$

Proof. Recall that \bar{u} is the average of u on M. Averaging (3.1) yields

$$
\begin{equation*}
(u-\bar{u})_{t t}+\Delta_{g}(u-\bar{u})-\lambda(u-\bar{u})+|u|^{q-1} u-\overline{|u|^{q-1} u}=0 . \tag{3.16}
\end{equation*}
$$

Multiplying by $u-\bar{u}$ and integrating over M implies, as in (2.55)-(2.56),
(3.17) $\frac{1}{2} \frac{d^{2}}{d t^{2}} \int_{M}(u-\bar{u})^{2} d v_{g}-\left(\lambda+\lambda_{1}-q\|u\|_{L^{\infty}((T, \infty) \times M)}^{q-1}\right) \int_{M}(u-\bar{u})^{2} d v_{g} \geq 0$
for $t \geq T$. Setting $\left(\lambda+\lambda_{1}-q\|u\|_{L^{\infty}((T, \infty) \times M)}^{q-1}\right)=\beta \geq 0$, then (3.17) implies that the function $t \mapsto\|u(t, .)-\bar{u}(t)\|_{L^{2}}^{2}$ is convex and therefore there exists $\alpha \geq 0$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|(u-\bar{u})(t)\|_{L^{2}}=\alpha \tag{3.18}
\end{equation*}
$$

Let us prove first that $\alpha=0$. If (3.13) is strict then $\beta>0$; (3.17) and the maximum principle imply

$$
\begin{equation*}
\|u(t, .)-\bar{u}(t)\|_{L^{2}} \leq\|u(T, .)-\bar{u}(T)\|_{L^{2}} e^{-\sqrt{\beta}(t-T)} \tag{3.19}
\end{equation*}
$$

for $t \geq T$ and $\alpha=0$. Supposing that $\sup _{t \geq T}\|u(t, .)\|_{L^{\infty}}=\left(\left(\lambda+\lambda_{1}\right) / q\right)^{1 /(q-1)}$ and that $\alpha>0$ then there exists $\theta>0$ such that $\operatorname{vol} A(t) \geq \theta$ where

$$
\begin{equation*}
A(t)=\{\sigma \in M:|u(\sigma, t)-\bar{u}(t)| \geq \alpha / 2\} \tag{3.20}
\end{equation*}
$$

Therefore (3.16) yields

$$
\begin{align*}
& \frac{1}{2} \frac{d^{2}}{d t^{2}} \\
& \quad \int_{M}(u-\bar{u})^{2} d v_{g} \tag{3.21}\\
& \quad \geq \int_{M}\left(q\|u\|_{L^{\infty}((T, \infty) \times M)}^{q-1}-\frac{u|u|^{q-1}-\bar{u}|\bar{u}|^{q-1}}{u-\bar{u}}\right)(u-\bar{u})^{2} d v_{g} \\
& \quad \geq \frac{\alpha^{2}}{4} \int_{A(t)}\left(q\|u\|_{L^{\infty}((T, \infty) \times M)}^{q-1}-\frac{u|u|^{q-1}-\bar{u}|\bar{u}|^{q-1}}{u-\bar{u}}\right) d v_{g}
\end{align*}
$$

If Θ is defined by

$$
\begin{gather*}
\Theta=\min \left\{q\|u\|_{L^{\infty}}^{q-1}-\frac{|a|^{q-1} a-|b|^{q-1} b}{a-b}:|a-b| \geq \alpha / 2\right. \\
\left.\max (|a|,|b|) \leq\|u\|_{L^{\infty}}\right\} \tag{3.22}
\end{gather*}
$$

then $\Theta>0$ and

$$
\begin{equation*}
\frac{1}{2} \frac{d^{2}}{d t^{2}} \int_{M}(u-\bar{u})^{2} d v_{g} \geq \frac{\alpha^{2}}{4} \theta \Theta \tag{3.23}
\end{equation*}
$$

for $t \geq T$, which is impossible. Therefore $\alpha=0$. Consequently

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|\left(|u|^{q-1} u-\overline{|u|^{q-1} u}\right)(t)\right\|_{L^{2}}=0 \tag{3.24}
\end{equation*}
$$

From $W^{2,2}$-estimates in elliptic equations, it is deduced from (3.16)-(3.18) that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|(u-\bar{u})(t)\|_{W^{2,2}(M)}=0 \tag{3.25}
\end{equation*}
$$

Using Sobolev and Morrey imbedding theorems and the classical elliptic equations regularity theory finally yields

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(\|(u-\bar{u})(t)\|_{C^{2}}+\left\|\left(u_{t}-\bar{u}_{t}\right)(t)\right\|_{C^{1}}\right)=0 \tag{3.26}
\end{equation*}
$$

Moreover, u remains uniformly bounded in $C^{2, \gamma}([a-1, a+1] \times M)$ independently of $a \geq T+1$, for some $\gamma \in(0,1)$. Let $\left\{t_{n}\right\}$ be a sequence of real numbers tending to infinity and let us set $u_{\left\{t_{n}\right\}}(t, \sigma)=u\left(t+t_{n}, \sigma\right)$, then there exist a subsequence $\left\{t_{n_{k}}\right\}$ and a function φ such that $u_{\left\{t_{n_{k}}\right\}}$ converges to φ in the $C_{\text {loc }}^{2}$ -topology of $\mathbb{R} \times M$. It is clear that φ is a solution of (3.1), independent of $\sigma \in M$ from (3.25), and therefore a solution of (3.2). Moreover, as $E(u)$ is constant with value η, it is clear that $E(\varphi)=\eta$. As the orbit γ_{η} is uniquely determined (double orbit in the case $\eta=0$), relation (3.14) follows.

If it is assumed that (3.13) is strict then (3.19) and the standard elliptic equations theory imply an exponential rate of homogeneisation, namely

$$
\begin{equation*}
\|(u-\bar{u})(t)\|_{C^{2}}+\left\|\left(u_{t}-\bar{u}_{t}\right)(t)\right\|_{C^{1}} \leq C e^{-\sqrt{\beta}(t-T)} \tag{3.27}
\end{equation*}
$$

Therefore, \bar{u} satisfies

$$
\begin{equation*}
\bar{u}_{t t}-\lambda \bar{u}+|\bar{u}|^{q-1} \bar{u}=a(t) e^{-t \sqrt{\beta}} \tag{3.28}
\end{equation*}
$$

where a is a bounded function. From the assumption, it is assumed that the energy $E(u)=\eta$ is not zero and therefore there exist $P>0$ and a P-periodic solution φ of (3.2) such that γ_{η} is just generated by φ. As in [CGS], it can be be written

$$
\begin{equation*}
E(\bar{u})(t)=\frac{1}{2} \bar{u}_{t}^{2}-\frac{\lambda}{2} \bar{u}^{2}+\frac{1}{q+1}|\bar{u}|^{q+1}=E(\varphi)+\left(\bar{u}^{2}+\bar{u}_{t}^{2}\right) O\left(e^{-t \sqrt{\beta}}\right), \tag{3.29}
\end{equation*}
$$

which implies that $\lim _{t \rightarrow \infty}(\bar{u}(t+P)-\bar{u}(t))=0$, from the classical perturbation theory of periodic solutions of ordinary differential equations as in [CGS]. Therefore $\bar{u}(t)$, and then $u(t, \sigma)$, is asymptotic to a suitable translate of φ.

For the estimate (3.13), the following analogous of Theorem 2.3 holds:
Theorem 3.2. Assume that

$$
\begin{equation*}
1<q<(n+3) /(n-1) \tag{3.30}
\end{equation*}
$$

then there exists a positive constant $C=C(M, g)$ such that for any $\lambda \geq 0$ any nonnegative bounded solution u of (3.1) in $\mathbb{R} \times M$ satisfies

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C \lambda^{1 /(q-1)} . \tag{3.31}
\end{equation*}
$$

Proof. Let us assume that (3.31) does not hold. Then there exist five sequences $\left\{\lambda_{m}\right\},\left\{u_{m}\right\},\left\{\varepsilon_{m}\right\},\left\{C_{m}\right\}$, and $\left\{\left(t_{m}, \sigma_{m}\right)\right\}$, such that $\lambda_{m}>0, u_{m}$, is a positive solution of

$$
\begin{equation*}
\partial^{2} u_{m} / \partial t^{2}+\Delta_{g} u_{m}-\lambda_{m} u_{m}+u_{m}^{q}=0 \tag{3.32}
\end{equation*}
$$

in $\mathbb{R} \times M$ with the following properties

$$
\begin{align*}
\lim _{m \rightarrow \infty} C_{m} & =\infty, \lim _{m \rightarrow \infty} \varepsilon_{m}=0, \tag{3.33}\\
u_{m}\left(t_{m}, \sigma_{m}\right) & =\left\|u_{m}\right\|_{L^{\infty}}-\varepsilon_{m}=C_{m} \lambda_{m}^{1 /(q-1)}, \tag{3.34}\\
\lim _{m \rightarrow \infty} \sigma_{m} & =\sigma_{0} \tag{3.35}
\end{align*}
$$

as for $\left\{t_{m}\right\}$ there are two possibilities: either

$$
\begin{equation*}
\lim _{m \rightarrow \infty} t_{m}=t_{0} \tag{3.36}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{m \rightarrow \infty} t_{m}=\infty \tag{3.37}
\end{equation*}
$$

Three cases have to be considered.
Case 1: $\left\|u_{m}\right\|_{L^{\infty}}$ tends to some nonzero limit c when m tends to infinity. From (3.33) (3.34), λ_{m} tends to 0 . If we set $w_{m}=u_{m} /\left\|u_{m}\right\|_{L^{\infty}}$, then

$$
\begin{equation*}
\partial^{2} w_{m} / \partial t^{2}+\Delta_{g} w_{m}-\lambda_{m} w_{m}+\left\|u_{m}\right\|_{L \infty}^{q-1} w_{m}^{q}=0 . \tag{3.38}
\end{equation*}
$$

Since, $\left\|w_{m}\right\|_{L^{\infty}}=1,\left\|u_{m}\right\|_{L^{\infty}}$ is bounded and λ_{m} tends to 0 , it is deduced from classical estimates in elliptic equations theory that $\tilde{w}_{m}(t, \sigma)=w_{m}\left(t_{m}+t, \sigma\right)$ converges in the $C_{\mathrm{loc}}^{2}-\mathbb{R} \times M$ topology to some w which solves

$$
\begin{equation*}
\partial^{2} w / \partial t^{2}+\Delta_{g} w+c^{q-1} w^{q}=0 \tag{3.39}
\end{equation*}
$$

on $\mathbb{R} \times M$ and

$$
\begin{equation*}
w\left(0, \sigma_{0}\right)=1 \tag{3.40}
\end{equation*}
$$

Let \bar{w} be the average of w on M, then

$$
\begin{equation*}
\bar{w}_{t t}+c^{q-1} \bar{w}^{q} \leq 0 \tag{3.41}
\end{equation*}
$$

on \mathbb{R}, which is impossible.
CASE 2: $\left\|u_{m}\right\|_{L^{\infty}}$ tends to zero when m tends to infinity.

From (3.17) there holds

$$
\begin{equation*}
\frac{1}{2} \frac{d^{2}}{d t^{2}} \int_{M}\left(u_{m}-\bar{u}_{m}\right)^{2} d v_{g}+\left(\lambda+\lambda_{1}-q\left\|u_{m}\right\|_{L^{\infty}}^{q-1}\right) \int_{M}\left(u_{m}-\bar{u}_{m}\right)^{2} d v_{g} \geq 0 \tag{3.42}
\end{equation*}
$$

where \bar{u}_{m} is the average of u_{m} on M. Then there exists some integer m_{0} such that $t \mapsto \int_{M}\left(u_{m}-\bar{u}_{m}\right)^{2}(t, \sigma) d v_{g}$ is a strictly convex, positive and bounded function defined on \mathbb{R} for $m \geq m_{0}$. Therefore it is identically zero which implies that $u_{m}=\lambda_{m}^{1 /(q-1)}$ which contradicts (3.33)-(3.34).

Case 3: $\left\|u_{m}\right\|_{L^{\infty}}$ tends to infinity when m tends to infinity.
Writing (3.32) in local coordinates (x^{i}) near σ_{0} gives

$$
\begin{equation*}
\frac{\partial^{2} u_{m}}{\partial t^{2}}+\frac{1}{\sqrt{|g|}} \sum_{i, j} \frac{\partial}{\partial x^{j}}\left(\sqrt{|g|} g^{i j} \frac{\partial u_{m}}{\partial x^{i}}\right)-\lambda_{m} u_{m}+u_{m}^{q}=0 \tag{3.43}
\end{equation*}
$$

where $g=\left(g_{i j}\right)$ is the metric tensor and $|g|=\operatorname{det}\left(g_{i j}\right)$. Without any loss of generality, it can be assumed that (3.43) holds in $\mathbb{R} \times B_{d}\left(x_{0}\right)$ where $B_{d}\left(x_{0}\right)$ is the $(n-1)$-ball of center x_{0} and radius $d>0$. Let us introduce the following scaling

$$
\begin{equation*}
\tilde{t}=\frac{t-t_{m}}{\alpha_{m}}, \tilde{x}=\frac{x-x_{0}}{\alpha_{m}}, v_{m}(\tilde{t}, \tilde{x})=\alpha_{m}^{2 /(q-1)} u_{m}(t, x) \tag{3.44}
\end{equation*}
$$

where α_{m} is defined by

$$
\begin{equation*}
\alpha_{m}^{2 /(q-1)}\left\|u_{m}\right\|_{L^{\infty}}=1 \tag{3.45}
\end{equation*}
$$

Therefore, proceeding as in the proof of Theorem 2.3, it follows that $u_{m_{k}}$ converges in the $C_{\text {loc }}^{2}-\mathbb{R} \times \mathbb{R}^{n+1}$-topology to some nonzero, nonnegative v which satisfies

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial t^{2}}+\sum_{i, j} \frac{\partial}{\partial x^{j}}\left(g^{i j}\left(x_{0}\right) \frac{\partial v}{\partial x^{i}}\right)+v^{q}=0 \tag{3.46}
\end{equation*}
$$

in \mathbb{R}^{n+1}, which, again, is impossible from [GS1].
An immediate consequence of Theorem 3.2 is the following
Corollary 3.1. Assume that (3.30) holds and that u is a positive and bounded solution of (3.1) on $[0, \infty) \times M$. Then

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \sup _{t \geq T}\|u(t, .)\|_{L^{\infty}} \leq C \lambda^{1 /(q-1)} \tag{3.47}
\end{equation*}
$$

where C is the constant appearing in Theorem 3.2.
Combining Theorem 3.1 and Corollary 3.1 yields

Corollary 3.2. Let (3.30) and $\lambda<\lambda_{1}\left(q C^{q-1}-1\right)^{-1}$ hold and u be a positive and bounded solution of (3.1) on $[0, \infty) \times M$. Then (3.14) holds for some $\sigma=$ $E(u)(t)$. Moreover if $\sigma \neq 0$, there exists a solution φ in the orbit γ_{σ} of (3.2) defined by $E(\varphi)=\sigma$ such that (3.15) is valid

Remark 3.1. The assumption on the boundedness of the nonnegative solutions of (3.1) is not easy to check. However, it has been proved by Bouhar and Veron [BV] that any such solution is bounded provided $1<q<(n+1) /(n-1)$.

Remark 3.2. It is clear that non constant solutions of (2.1) are nonhomogeneous solutions of (3.1). Moreover, in the case where M admits a Killing vector field X there may exist soliton solutions of (3.1) under the following form

$$
\begin{equation*}
u(t, \sigma)=\omega\left(e^{t X}(\sigma)\right) \tag{3.48}
\end{equation*}
$$

where ω solves

$$
\begin{equation*}
\Delta_{g} \omega+L_{X} L_{X} \omega-\lambda \omega+|\omega|^{q-1} \omega=0 \tag{3.49}
\end{equation*}
$$

Non trivial solutions of (3.49) can be obtained when $1<q<(n+2) /(n-2)$ by studying the critical points of the following functional

$$
\begin{equation*}
\mathcal{E}(\varphi)=\int_{M}\left(\left|\nabla_{g} \varphi\right|^{2}+\left(L_{X} \varphi\right)^{2}+\lambda \varphi^{2}-\frac{2}{q+1}|\varphi|^{q+1}\right) d v_{g} . \tag{3.50}
\end{equation*}
$$

Other nontrivial solutions, without the restriction on q, can be obtained by bifurcation from the first nonzero eigenvalue of the linearized operator

$$
\begin{equation*}
\Delta_{g}+L_{X} L_{X}+(q-1) \lambda I \tag{3.51}
\end{equation*}
$$

(see [BVV] for some particular cases).

4. - Existence of solutions

In this section the initial value problem, that is the question of the existence of solutions of

$$
\begin{equation*}
u_{t t}+\Delta_{g} u-\lambda u+|u|^{q-1} u=0 \tag{4.1}
\end{equation*}
$$

defined on $\mathbb{R}^{+} \times M$ and such that $u(0, \sigma)=u_{0}(\sigma)$, is considered. The existence of solutions tending to 0 at infinity is taken as a start.

Theorem 4.1. For any continuous function u_{0} defined on M and satisfying

$$
\begin{equation*}
0 \leq u_{0}(\sigma) \leq\left(\lambda \frac{q+1}{2}\right)^{1 /(q-1)} \tag{4.2}
\end{equation*}
$$

there exists a continuous nonnegative solution u of (4.1) defined on $\mathbb{R}^{+} \times M$ which tends to 0 at infinity and takes the value u_{0} at $t=0$.

Proof. First it can be noticed that the specific value $\left(\lambda \frac{q+1}{2}\right)^{1 /(q-1)}$ is the maximal value that can take any positive solution of the associated ordinary differential equation (3.2) and that there exists a solution (the positive homoclinic orbit) φ_{0}^{+}of (3.2) on \mathbb{R}^{+}which satisfies

$$
\begin{equation*}
\varphi_{0}^{+} \geq 0, \quad \varphi_{0}^{+}(0)=\left(\lambda \frac{q+1}{2}\right)^{1 /(q-1)}, \quad \lim _{t \rightarrow \infty} \varphi_{0}^{+}(t)=0^{+} \tag{4.3}
\end{equation*}
$$

If u_{0} is positive, then $u_{0} \geq \varphi_{0}^{+}(T)$ for T large enough and, from the classical result, there exists a solution u of (4.1) such that $u(0, \sigma)=u_{0}(\sigma)$ and

$$
\begin{equation*}
\varphi_{0}^{+}(t+T) \leq u(t, \sigma) \leq \varphi_{0}^{+}(t) \tag{4.4}
\end{equation*}
$$

for $(t, \sigma) \in \mathbb{R}^{+} \times M$.
In the general case the following iterating scheme is introduced

$$
\left\{\begin{align*}
y_{0} & =0 \tag{4.5}\\
\partial^{2} y_{m} / \partial t^{2}+\Delta_{g} y_{m}-\lambda y_{m} & =-y_{m-1}^{q} \\
y_{m}(0, \sigma) & =u_{0}(\sigma)
\end{align*}\right.
$$

Step 1. The sequence $\left\{y_{m}\right\}$ is an increasing sequence of positive bounded functions which decay exponentially when t tends to infinity.

In fact, for y_{1},

$$
\begin{equation*}
\left\|y_{1}(t, .)\right\|_{L^{2}} \leq e^{-t \sqrt{\lambda}}\left\|u_{0}(.)\right\|_{L^{2}} \tag{4.6}
\end{equation*}
$$

is obtained from explicit representation, which implies

$$
\begin{equation*}
\left\|y_{1}(t, .)\right\|_{L^{\infty}} \leq C e^{-t \sqrt{\lambda}}\left\|u_{0}(.)\right\|_{L^{\infty}} \tag{4.7}
\end{equation*}
$$

for $C=C(M)>0$. From the maximum principle

$$
\begin{equation*}
y_{1}(t, \sigma) \leq \varphi_{0}^{+}(t) \tag{4.8}
\end{equation*}
$$

From the classical linearisation technique, for any $\gamma \in(0, \sqrt{\lambda})$ there exists $C_{\gamma}>0$ such that

$$
\begin{equation*}
\varphi_{0}^{+}(t) \leq C_{\gamma} e^{-t \gamma} \tag{4.9}
\end{equation*}
$$

on \mathbb{R}^{+}. As $y_{1}^{q} \in L^{2}((0, \infty) \times M) \cap L^{1}\left(0, \infty ; L^{2}(M)\right) \cap C^{1}((0, \infty) \times M), y_{2}$ can be defined with the following formula (see [Ve] for details)

$$
\begin{equation*}
y_{2}(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) \int_{s}^{\infty} S(\tau-s) y_{1}^{q}(\tau) d \tau d s \tag{4.10}
\end{equation*}
$$

where $S(t)$ is the continuous semigoup of contractions of $L^{2}(M)$ generated by $-\left(-\Delta_{g}+\lambda I\right)^{1 / 2}$. This semigroup satisfies

$$
\begin{equation*}
\|S(t) \psi\|_{L^{\infty}} \leq C e^{-t \sqrt{\lambda}}\|\psi\|_{L^{\infty}} \tag{4.11}
\end{equation*}
$$

Therefore y_{2} is a bounded strong solution and it satisfies

$$
\begin{equation*}
y_{1}(t, \sigma) \leq y_{2}(t, \sigma) \leq \varphi_{0}^{+}(t) \tag{4.12}
\end{equation*}
$$

on $\mathbb{R}^{+} \times M$. Iterating this process with the above representation formula allows the construction of the sequence $\left\{y_{m}\right\}$ of continuous nontrivial solutions of (4.5) on $\mathbb{R}^{+} \times M$, with the order property

$$
\begin{equation*}
0 \leq y_{m-1}(t, \sigma) \leq y_{m}(t, \sigma) \leq \varphi_{0}^{+}(t) \leq C_{\gamma} e^{-t \gamma} \tag{4.13}
\end{equation*}
$$

on $\mathbb{R}^{+} \times M$.
Step 2. End of the proof. The sequence $\left\{y_{m}\right\}$ is increasing and converges to some continuous and positive solution u of (4.1) defined on $\mathbb{R}^{+} \times M$ wich takes the value u_{0} at $t=0$ and satisfies

$$
\begin{equation*}
0 \leq u(t, \sigma) \leq \varphi_{0}^{+}(t) \tag{4.14}
\end{equation*}
$$

The next question that is considered is the existence of a global solution close to some homogeneous solution and asymptotic to this homogeneous solution at infinity. By an implicit function method a local theory is constructed for such a problem. Let $\left\{\lambda_{k}\right\}_{k \geq 0}$ be the sequence eigenvalues of $-\Delta_{g}$ in $W^{1,2}(M)$, with corresponding eigenspaces H^{k} with dimension d_{k} and orthonormal basis $\left\{\Theta_{j, k}\right\}, 0 \leq j \leq d_{k}$. If $y_{0}(t)$ is a T-periodic solution of (3.2) the linearization of (4.1) around y_{0} yields the following linear equation

$$
\begin{equation*}
\psi \mapsto \mathbf{L}_{y_{0}}(\psi)=\psi_{t t}+\Delta_{g} \psi+\left(q\left|y_{0}(t)\right|^{q-1}-\lambda\right) \psi \tag{4.15}
\end{equation*}
$$

Let us write first the Fourier decomposition of any solution of $\mathbf{L}_{y_{0}}(\psi)=0$ as

$$
\begin{equation*}
\psi(t, \sigma)=\sum_{k} \sum_{0 \leq j \leq d_{k}} c_{j, k}(t) \Theta_{j, k}(\sigma) \tag{4.16}
\end{equation*}
$$

Then the $c_{k}=c_{j, k}$ satisfy

$$
\begin{equation*}
c_{k}^{\prime \prime}+\left(q\left|y_{0}\right|^{q-1}-\lambda-\lambda_{k}\right) c_{k}=0 \tag{4.17}
\end{equation*}
$$

which is a linear differential equation with periodic coefficients for which it is necessary to recall some elements of Floquet's theory.

Proposition 4.1. Consider the following differential equation

$$
\begin{equation*}
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{2}(t) y=0 \tag{4.18}
\end{equation*}
$$

where a_{1} and a_{2} are T-periodic; then there exist two linearly independent solutions of (4.18), y_{1} and y_{2}, such that
(i) either

$$
\begin{equation*}
y_{1}(t)=e^{m_{1} t} p_{1}(t), \quad y_{2}(t)=e^{m_{2} t} p_{2}(t), \tag{4.19}
\end{equation*}
$$

where m_{1} and m_{2} are constants (real or complex) and p_{1} and p_{2} are T-periodic functions,
(ii) $o r$

$$
\begin{equation*}
y_{1}(t)=e^{m t} p_{1}(t), \quad y_{2}(t)=e^{m t}\left(t p_{1}(t)+p_{2}(t)\right) \tag{4.20}
\end{equation*}
$$

where m is a constant (real or complex) and p_{1} and p_{2} are T-periodic functions.
The constants m_{j} are the characteristic exponents of the equation; if $\rho_{j}=e^{m_{j} T}$, then the ρ_{j} are the solutions of

$$
\begin{equation*}
\rho^{2}-D \rho+\exp \left(-\int_{0}^{T} a_{1}(t) d t\right)=0 \tag{4.21}
\end{equation*}
$$

where D is a constant called the discriminant of the equation. In the particular case of Hill's equation

$$
\begin{equation*}
y^{\prime \prime}(t)+(\eta+a(t)) y(t)=0 \tag{4.22}
\end{equation*}
$$

where a is a T-periodic function and η a real number, let $D(\eta)$ be the corresponding discriminant. Then Floquet's theory reads as follows

Proposition 4.2. There exist two sequences of real numbers $\left\{v_{k}\right\},\left\{\mu_{k}\right\}$ such that
(i) they appear in the following order

$$
\begin{equation*}
v_{0}<\mu_{0} \leq \mu_{1}<\nu_{1} \leq \nu_{2}<\mu_{2} \leq \mu_{3}<\nu_{3} \leq v_{4}<\ldots \tag{4.23}
\end{equation*}
$$

(ii) on the intervals $\left[\nu_{2 k}, \mu_{2 k}\right], D(\eta)$ decreases from 2 to -2 ,
(iii) on the intervals $\left[\mu_{2 k+1}, \nu_{2 k+1}\right], D(\eta)$ increases from -2 to 2 ,
(iv) on the intervals $\left(\mu_{2 k}, \mu_{2 k+1}\right), D(\eta)<-2$,
(vi) on the intervals $\left(-\infty, \nu_{0}\right)$ and $\left(\nu_{2 k+1}, \nu_{2 k+2}\right), D(\eta)>2$, moreover
(vii) if η is one of the v_{j} or μ_{j} then $|D(\eta)|=2$, (4.21) possesses a double root and the solutions are given by (4.20). As for m it takes the values 0 or $i \pi / T$ according $D(\eta)=2$ or $D(\eta)=-2$ and η belongs to a periodicity zone.
(viii) if $|D(\eta)|>2$, then η belongs to an instability zone with the solutions given by (4.19) where m_{1} and m_{2} are opposite real numbers,
(ix) if $|D(\eta)|<2$, then η belongs to a stability zone with the solutions given by (4.19) where m_{1} and m_{2} are conjugate imaginary numbers.

We apply Floquet's theory to equation (4.17) with $a(t)=q\left|y_{0}(t)\right|^{q-1}$ and $\eta=\eta_{k}=-\lambda-\lambda_{k}$: there exist an integer k_{0} and a positive real number θ_{1} such that

$$
\begin{equation*}
\forall k>k_{0}, \quad \forall t>0, \quad\left(q\left|y_{0}(t)-\lambda-\lambda_{k}\right|\right)<-\theta_{1}^{2} . \tag{4.24}
\end{equation*}
$$

For $k>k_{0}, \eta_{k}$ belongs to the first instability zone in the sense of Proposition 4.2, that is $\left(-\infty, v_{0}\right)$ and the solutions of (4.17) are of two different exponential types. For $0 \leq k \leq k_{0}$ the general form of a solution of (4.17) is determined by the fact that η_{k} belongs or does not belong to an instability zone. If η_{k} belongs to an instability zone, set m_{k}^{-}and m_{k}^{+}the corresponding characteristic exponents of the equation with $m_{k}^{-}<0<m_{k}^{+}$. Let θ be such that

$$
\begin{equation*}
0<\theta<\min \left\{\theta_{1}, \min \left\{m_{k}^{+} \mid k \leq k_{0} \text { and } \eta_{k} \text { instable }\right\}\right\} \tag{4.25}
\end{equation*}
$$

E_{1} is defined as the subspace of $L^{2}(M)$ generated by the $\Theta_{j, k}, 0 \leq j \leq d_{k}$, corresponding to the k such that η_{k} belongs to a zone of stability or periodicity in the sense of (vii) and (ix) and E_{2} as the orthogonal complement of E_{1} in $L^{2}(M) ; E_{2}$ is the Hilbertian sum of the H^{k} for which η_{k} belongs to an instability zone in the sense of (ix). Let P_{1} and P_{2} be the orthogonal projectors of $L^{2}(M)$ onto E_{1} and E_{2} respectively. It is important to notice that E_{1} is finite dimensional.

Remark 4.1. There always holds $D\left(\eta_{0}\right)=D(-\lambda)=2$ as y_{0}^{\prime} is a T-periodic solution of (4.17) with $k=0$. Moreover E_{1} is never trivial as it contains the space of constant functions.

ThEOREM 4.2. There exists $\delta>0$ such that if $u_{0}=y_{0}(0)+z_{0}$ with $z_{0} \in E_{0}$ and

$$
\begin{equation*}
\left\|z_{0}\right\|_{C^{2, \alpha}}<\delta \tag{4.26}
\end{equation*}
$$

where $\alpha \in(0,1)$, then there exists a continuous solution u of (4.1) defined on $\mathbb{R}^{+} \times M$ and such that $u(0, \sigma)=u_{0}(\sigma)$.

Before proving this result it is necessary to define some functional spaces

$$
\begin{align*}
E_{\theta}^{2, \alpha} & =\left\{v \mid e^{\theta t} v \in W^{2, \infty}((0, \infty) \times M) \cap C^{2, \alpha}([0, \infty) \times M)\right\} \tag{4.27}\\
E_{\theta}^{\alpha} & =\left\{v \mid e^{\theta t} v \in L^{\infty}((0, \infty) \times M) \cap C^{\alpha}([0, \infty) \times M)\right\} \tag{4.28}
\end{align*}
$$

with the natural corresponding norms defined on, which endow those spaces with a structure of real Banach spaces. Set $F_{2}=E_{2} \cap C^{2, \alpha}(M)$ and define \mathbf{G} from $E_{\theta}^{2, \alpha}$ into $E_{\theta}^{\alpha} \times F_{2}$ by

$$
\begin{equation*}
\mathbf{G}(v)=\left(\mathbf{L}_{y_{0}}(v), P_{2}(v(0), .)\right) \tag{4.29}
\end{equation*}
$$

then the following holds,

Proposition 4.3. G is a Banach isomorphism between $E_{\theta}^{2, \alpha}$ and $E_{\theta}^{\alpha} \times F_{2}$.
Proof. It is clear that \mathbf{G} is well defined and is a continuous linear mapping from $E_{\theta}^{2, \alpha}$ into $E_{\theta}^{\alpha} \times F_{2}$. If g belongs to E_{θ}^{α}, the following equation has to be considered

$$
\begin{equation*}
\psi_{t t}+\Delta_{g} \psi+\left(q\left|y_{0}(t)\right|^{q-1}-\lambda\right) \psi=g \tag{4.30}
\end{equation*}
$$

in $\mathbb{R}^{+} \times M$. Decomposing ψ and g as

$$
\begin{equation*}
\psi(t, \sigma)=\sum_{k \geq 0} \sum_{0 \leq j \leq d_{k}} c_{j, k}(t) \Theta_{j, k}(\sigma), \quad g(t, \sigma)=\sum_{k \geq 0} \sum_{0 \leq j \leq d_{k}} \gamma_{j, k}(t) \Theta_{j, k}(\sigma) \tag{4.31}
\end{equation*}
$$

and setting $c_{j, k}=c_{k}, \gamma_{j, k}=\gamma_{k}$ results in

$$
\begin{equation*}
c_{k}^{\prime \prime}\left(q\left|y_{0}\right|^{q-1}-\lambda-\lambda_{k}\right) c_{k}=\gamma_{k} \tag{4.32}
\end{equation*}
$$

moreover there exists a constant N_{g} such that $\left|\gamma_{k}(t)\right| \leq N_{g} e^{-t \theta}$ for $k \geq 0, t \geq 0$. Three possibilities are encountered

Case 1. η_{k} belongs to a zone of stability.
Then

$$
\begin{equation*}
c_{k}(t)=\frac{y_{1}(t)}{W} \int_{t}^{\infty} y_{2}(s) \gamma_{k}(s) d s-\frac{y_{2}(t)}{W} \int_{t}^{\infty} y_{1}(s) \gamma_{k}(s) d s \tag{4.33}
\end{equation*}
$$

where y_{1} and y_{2} are two linearly independent (and bounded) solutions of the associated homogeneous equation and W is their Wronskian determinant, which is constant in that case as there exists no term in c_{k}^{\prime}. An easy computation gives that

$$
\begin{equation*}
\left|c_{k}(t)\right| \leq C e^{-t \theta} \tag{4.34}
\end{equation*}
$$

and, from elliptic estimates, it can be deduced that

$$
\begin{equation*}
\left\|e^{t \theta} c_{k}(t)\right\|_{W^{2, \infty} \cap C^{2, \alpha}} \leq C\left\|e^{t \theta} \gamma_{k}(t)\right\|_{L^{\infty} \cap C^{\alpha}} \tag{4.35}
\end{equation*}
$$

Case 2. η_{k} belongs to a zone of periodicity. It is clear that (4.33)-(4.35) are still valid.

CaSE 3. η_{k} belongs to a zone of instability.
In that case

$$
\begin{equation*}
c_{k}(t)=C_{2} y_{2}(t)+\frac{y_{1}(t)}{W} \int_{t}^{\infty} y_{2}(s) \gamma_{k}(s) d s+\frac{y_{2}(t)}{W} \int_{0}^{t} y_{1}(s) \gamma_{k}(s) d s \tag{4.36}
\end{equation*}
$$

with $y_{1}(t)=e^{m_{k}^{+} t} p_{1}(t)$ and $y_{2}(t)=e^{m_{k}^{-} t} p_{2}(t)$ (it is important not to forget that $m_{k}^{-}<0<m_{k}^{+}$) where C_{2} is determined by $c_{k}(0)$ which are the coefficients of
$P_{2}(\psi(0))$. It is easy to check that (4.34)-(4.35) still holds with a constant C independent of k. In order to complete the existence proof let us consider the projection of (4.30) onto E_{2} by setting

$$
\begin{equation*}
\tilde{\psi}=P_{2}(\psi), \quad \tilde{g}=P_{2}(g) \tag{4.37}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\tilde{\psi}_{t t}+\Delta_{g} \tilde{\psi}+\left(q\left|y_{0}(t)\right|^{q-1}-\lambda\right) \tilde{\psi}=\tilde{g} \tag{4.38}
\end{equation*}
$$

and as θ_{1} satisfies (4.24) the result is

$$
\frac{d^{2}}{d t^{2}}\left(\|\tilde{\psi}\|_{L^{2}}\right)-\theta_{1}^{2}\|\tilde{\psi}\|_{L^{2}} \geq-\|\tilde{g}\|_{L^{2}}
$$

which implies

$$
\begin{equation*}
\|\tilde{\psi}(t)\|_{L^{2}} \leq e^{-\theta_{1} t}\|\tilde{\psi}(0)\|_{L^{2}}+\int_{0}^{t} e^{-\theta_{1}(t-s)} \int_{s}^{\infty} e^{-\theta_{1}(\tau-s)}\|\tilde{g}(\tau)\|_{L^{2}} d \tau d s \tag{4.40}
\end{equation*}
$$

But

$$
\begin{equation*}
\|\tilde{g}(t, .)\|_{L^{2}} \leq C e^{-\theta t}\|g\|_{E_{\theta}^{\alpha}} \tag{4.41}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\|\tilde{\psi}(t)\|_{L^{2}} \leq e^{-\theta_{1} t}\|\tilde{\psi}(0)\|_{L^{2}}+C^{\prime} e^{-\theta t}\|g\|_{E_{\theta}^{\alpha}} \tag{4.42}
\end{equation*}
$$

Using elliptic equations estimates yields

$$
\begin{equation*}
\|\tilde{\psi}\|_{E_{\theta}^{2+\alpha}} \leq C^{\prime}\left(\|\tilde{\psi}(0)\|_{C^{2, \alpha}}+e^{-\theta t}\|g\|_{E_{\theta}^{\alpha}}\right) \tag{4.43}
\end{equation*}
$$

Therefore \mathbf{G} is onto and the inverse mapping \mathbf{G}^{-1} is continuous from $E_{\theta}^{\alpha} \times F_{2}$ into $E_{\theta}^{2, \alpha}$. In order to end the proof it is assumed that $\mathbf{G}(\psi)=0$ for some ψ in $E_{\theta}^{2, \alpha}$, then $P_{2}(\psi(0,))=$.0 and, if the general solution of (4.17) under the form is

$$
\begin{equation*}
c_{k}(t)=a_{1} y_{1}(t)+a_{2} y_{2}(t) \tag{4.44}
\end{equation*}
$$

then necessarily $a_{1}=a_{2}=0$ if η_{k} belongs to a zone of stability or periodicity; if η_{k} belongs to a zone of instability $a_{1}=0$ as $P_{2}(\psi(0,))=$.0 and $a_{2}=0$ as y_{2} is unbounded.

Proof of Theorem 4.2. We look for a solution u of (4.1) under the form

$$
\begin{equation*}
u(t, \sigma)=y_{0}(t)+w(t, \sigma) \tag{4.45}
\end{equation*}
$$

and w satisfies

$$
\begin{equation*}
w_{t t}+\Delta_{g} w+\left(q\left|y_{0}\right|^{q-1}-\lambda\right) w+Q(w)=0 \tag{4.46}
\end{equation*}
$$

on $\mathbb{R}^{+} \times M$ with

$$
\begin{equation*}
Q(w)=\left|y_{0}+w\right|^{q-1}\left(y_{0}+w\right)-\left|y_{0}\right|^{q-1} y_{0}-q\left|y_{0}\right|^{q-1} w . \tag{4.47}
\end{equation*}
$$

If the mapping Γ from $E_{\theta}^{2, \alpha}$ into $E_{\theta}^{\alpha} \times F_{2}$ is defined by

$$
\begin{equation*}
\Gamma(w)=\left(w_{t t}+\Delta_{g} w+\left(q\left|y_{0}\right|^{q-1}-\lambda\right) w+Q(w), P_{2}(w(0, .))\right) \tag{4.48}
\end{equation*}
$$

then $\Gamma(0)=(0,0)$ and $D \Gamma(0)=\mathbf{G}$ which is an isomorphism. By the local inversion theorem, there exists $\delta>0$ such that for any $z_{0} \in F_{2}$ satisfying $\left\|z_{0}\right\|_{C^{2, \alpha}}<\delta$, there exists a solution w of $\Gamma(w)=\left(0, z_{0}\right)$, that is a solution u of (4.1) defined on $\mathbb{R}^{+} \times M$ and such that $u(0, \sigma)=u_{0}(\sigma)$, under the form (4.45) with $u_{0}(\sigma)=y_{0}(0)+z_{0}$.

5. - Partially homogenized equations

In this section a short view of some partially homogenized problems on $\mathbb{R}^{+} \times M$ with the specific exponent $q=3$ is given. The equations that are considered are the following

$$
\begin{align*}
& u_{t t}+\Delta_{g} u-\lambda u+\bar{u}^{3}=0 \tag{5.1}\\
& u_{t t}+\Delta_{g} u-\lambda u+u \bar{u}^{2}=0 \tag{5.2}\\
& u_{t t}+\Delta_{g} u-\lambda u+u \bar{u}^{2}=0 \tag{5.3}
\end{align*}
$$

where the general notation \bar{g} represents the average of g on M.
Proposition 5.1. The bounded solutions of (5.1) are asymptotically homogeneous when t tends to infinity.

Proof. The function $w=u-\bar{u}$ satisfies

$$
\begin{equation*}
w_{t t}+\Delta_{g} w-\lambda w=0 \tag{5.4}
\end{equation*}
$$

on $\mathbb{R}^{+} \times M$ which implies that

$$
\begin{equation*}
\|w(t, .)\|_{L^{\infty}} \leq C e^{-t \sqrt{\lambda+\lambda_{1}}}\|w(0, .)\|_{L^{\infty}} \tag{5.5}
\end{equation*}
$$

Remark 5.1. From (5.5) the equation (5.1) is just an exponential perturbation of the differential equation that is actually satisfied by \bar{u}

$$
\begin{equation*}
\varphi_{t t}-\lambda \varphi+\varphi^{3}=0 \tag{5.6}
\end{equation*}
$$

Moreover the boundedness assumption can be replaced by a sub-exponential growth assumption like

$$
\begin{equation*}
\|u(t, .)\|_{L^{\infty}}=o\left(e^{t \sqrt{\lambda+\lambda_{1}}}\right) \tag{5.7}
\end{equation*}
$$

PROPOSITION 5.2. The bounded positive solutions of (5.2) are asymptotically homogeneous when tends to infinity.

Proof. The function $w=u-\bar{u}$ satisfies

$$
\begin{equation*}
w_{t t}+\Delta_{g} w-\lambda w+\bar{u}^{2} w=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\|w(t, .)\|_{L^{2}}^{2}+2\left(\bar{u}^{2}(t)-\lambda-\lambda_{1}\right)\|w(t, .)\|_{L^{2}}^{2} \geq 0 \tag{5.9}
\end{equation*}
$$

The Fourier decomposition of u gives

$$
\begin{equation*}
u(\sigma, t)=\bar{u}(t)+\sum_{k>0} \sum_{0 \leq j \leq d_{k}} c_{j, k}(t) \Theta_{j, k}(\sigma) \tag{5.10}
\end{equation*}
$$

and the $c_{j, k}=c_{k}$ are solutions of

$$
\begin{equation*}
c_{k}^{\prime \prime}-\left(\lambda+\lambda_{k}-\bar{u}^{2}\right) c_{k}=0 \tag{5.11}
\end{equation*}
$$

As for \bar{u} it satisfies

$$
\begin{equation*}
\bar{u}_{t t}-\lambda \bar{u}+\bar{u}^{3}=0 \tag{5.12}
\end{equation*}
$$

and either it is periodic or it tends exponentially to 0 when t tends to infinity. In the first case Floquet's theory can be applied to (5.11): as \bar{u} is a solution of

$$
\begin{equation*}
y^{\prime \prime}+\left(\bar{u}^{2}-\lambda\right) y=0 \tag{5.13}
\end{equation*}
$$

this equation possesses a periodic solution and λ is at the limit of a zone of stability in the sense of Proposition 4.2. As \bar{u} is positive, λ is on the boundary of the first stability zone and all the other equations (5.11) are in the instability domain. Therefore, for $k>0$, there only exists a unique type on bounded solutions for these equations and these solutions are exponentially decaying. In the second case, when \bar{u} is exponentially decaying, the classical exponential perturbation theory can be applied to (5.11) and conclude that all the bounded solutions of (5.11) are exponentially decaying. As a consequence w tends exponentially to 0 and Remark 5.1 still applies.

Proposition 5.3. The bounded positive solutions of (5.3) are asymptotically homogeneous when t tends to infinity.

Proof. The average \bar{u} of u satisfies

$$
\begin{equation*}
\bar{u}^{\prime \prime}-\lambda \bar{u}+\overline{u^{2}} \bar{u}=0 \tag{5.14}
\end{equation*}
$$

and the $c_{j, k}=c_{k}$ are solutions of

$$
\begin{equation*}
c_{k}^{\prime \prime}-\left(\lambda+\lambda_{k}-\overline{u^{2}}\right) c_{k}=0 \tag{5.15}
\end{equation*}
$$

Step 1. Assume that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \bar{u}(t)=0 . \tag{5.16}
\end{equation*}
$$

As u is positive and bounded, (5.16) implies that $u(t,$.$) tends to 0$ in any $L^{p}(M)$ space for $p \in[1, \infty)$ when t tends to infinity. Therefore the nonlinear term is negligible in (5.3) and

$$
\begin{equation*}
\|u(t, .)\|_{L^{\infty}} \leq K e^{-\sigma t} \tag{5.17}
\end{equation*}
$$

for some K and σ, which is the homogeneity property.
Step 2. Assume that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \bar{u}(t)>0 . \tag{5.18}
\end{equation*}
$$

Since u is given by (5.10), there holds

$$
\begin{equation*}
\overline{u^{2}}(t)=\bar{u}^{2}(t)+\sum_{k>0} \sum_{0 \leq j \leq d_{k}} c_{j, k}^{2}(t) . \tag{5.19}
\end{equation*}
$$

Replacing this value in (5.15) yields

$$
\begin{equation*}
\bar{u}^{\prime \prime}-\left(\lambda-\bar{u}^{2}(t)+\sum_{k>0} \sum_{0 \leq j \leq d_{k}} c_{j, k}^{2}(t)\right) \bar{u}=0 \tag{5.20}
\end{equation*}
$$

for $k=0$ and

$$
\begin{equation*}
\bar{c}_{k}^{\prime \prime}-\left(\lambda+\lambda_{k}-\bar{u}^{2}(t)+\sum_{k>0} \sum_{0 \leq j \leq d_{k}} c_{j, k}^{2}(t)\right) \bar{c}_{k}=0 \tag{5.21}
\end{equation*}
$$

for $k \geq 1$. From the Sturm comparison theorem, between two zeros of c_{k} there exists one zero of \bar{u}. If c_{k} as two zeros, then \bar{u} has at least one zero which contradicts the fact that u has constant sign. Therefore we can assume
that c_{k} has a constant sign for t large enough and positive without any loss of generality. Multiplying (5.20) by c_{k} and (5.21) by \bar{u} and substracting gives

$$
\begin{equation*}
c_{k} \bar{u}^{\prime \prime}-\bar{u} c_{k}^{\prime \prime}+\lambda_{k} \bar{u} c_{k}=0 \tag{5.22}
\end{equation*}
$$

If $A(t)=c_{k}^{\prime} \bar{u}-c_{k} \bar{u}^{\prime}$, then

$$
\begin{equation*}
A\left(t_{0}\right)-A(t)=\lambda_{k} \int_{t_{0}}^{t} c_{k}(\tau) \bar{u}(\tau) d \tau \tag{5.23}
\end{equation*}
$$

Let us consider $t_{0}>0$ such that $c_{k}(t)>0$ on $\left[t_{0}, \infty\right)$, then $A(t)$ is decreasing on $\left[t_{0}, \infty\right)$. There are two possibilities:

CASE 1. There exists $t_{1}>t_{0}$ such that $A(t)<0$ on $\left(t_{1}, \infty\right)$. In that case the function $c_{k}(t) / \bar{u}(t)$ is increasing and admits a finite or infinite but positive limit ℓ. If $\ell<\infty$; there exists $t_{2}>t_{1}$ such that

$$
\begin{equation*}
\left(\frac{c_{k}(t)}{\bar{u}(t)}\right)^{\prime}=\frac{\lambda_{k} \int_{t_{1}}^{t} c_{k}(\tau) \bar{u}(\tau) d \tau-A\left(t_{2}\right)}{\bar{u}^{2}(t)} \geq \lambda_{k} \frac{\int_{t_{1}}^{t} \ell \bar{u}^{2}(\tau) d \tau}{2 \bar{u}^{2}(t)} \geq \delta \tag{5.24}
\end{equation*}
$$

for some $\delta>0$. Therefore

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{c_{k}(t)}{\bar{u}(t)}=\infty \tag{5.25}
\end{equation*}
$$

As $\lim \sup _{t \rightarrow \infty} \bar{u}(t)>0$, this results in a contradiction. If $\ell=\infty$ the contradiction is the same and the other possibility is left.

CASE 2. for any $t>t_{0}, A(t)>0$.
Then $c_{k}(t) / \bar{u}(t)$ is positive and decreasing and

$$
\begin{equation*}
A\left(t_{0}\right)>\lambda_{k} \int_{t_{0}}^{t} c_{k}(\tau) \bar{u}(\tau) d \tau \tag{5.26}
\end{equation*}
$$

From the definition of $A(t)$ there holds

$$
\begin{equation*}
c_{k}(t) \bar{u}(t)=\frac{\bar{u}(t)}{c_{k}(t)} c_{k}^{2}(t)>\frac{\bar{u}\left(t_{0}\right)}{c_{k}\left(t_{0}\right)} c_{k}^{2}(t) \tag{5.27}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\int_{t_{0}}^{t} c_{k}^{2}(\tau) d \tau \leq \frac{c_{k}\left(t_{0}\right)}{\bar{u}\left(t_{0}\right)} A\left(t_{0}\right) \lambda_{k}^{-1} \tag{5.28}
\end{equation*}
$$

for any $t>t_{0}$. Letting t tend to infinity and summing over k yields

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{M}(u(t, \sigma)-\bar{u}(t))^{2} d \sigma d t=\sum_{k \geq 1} \sum_{0 \leq j \leq d_{k}} \int_{t_{0}}^{\infty} c_{j, k}^{2}(t) d t<\sum_{k \geq 1} A\left(t_{0}\right) \frac{c_{k}\left(t_{0}\right)}{\bar{u}\left(t_{0}\right)} \frac{d_{k}}{\lambda_{k}} \tag{5.29}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{c_{k}\left(t_{0}\right)}{\bar{u}\left(t_{0}\right)} A\left(t_{0}\right)=c_{k}^{2}\left(t_{0}\right) \frac{\bar{u}^{\prime}\left(t_{0}\right)}{\bar{u}\left(t_{0}\right)}-c_{k}^{\prime}\left(t_{0}\right) c_{k}\left(t_{0}\right) \tag{5.30}
\end{equation*}
$$

and this last quantity is bounded independently of k. Therefore

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{M}(u(t, \sigma)-\bar{u}(t))^{2} d \sigma d t<\infty \tag{5.31}
\end{equation*}
$$

If $w=u-\bar{u}$, then

$$
\begin{equation*}
w_{t t}+\Delta_{g} w-\lambda w+\overline{u^{2}} w=0 \tag{5.32}
\end{equation*}
$$

and from L^{p} and Schauder estimates the result is

$$
\begin{gather*}
\int_{0}^{\infty} \int_{M} u_{t}^{2}(\tau, \sigma) d \sigma d t+\int_{0}^{\infty} \int_{M} u_{t t}^{2}(\tau, \sigma) d \sigma d t<\infty \tag{5.33}\\
\|w\|_{C^{2, \alpha}((T-1, T+1) \times M)}<C \tag{5.34}
\end{gather*}
$$

independently of T. Therefore $w(t,$.$) tends to 0$ in $C^{2}(M)$ when t tends to infinity which ends the proof.

Remark 5.2. Using the same construction as the one of Section 4, it can be proved the existence of solutions u of (5.3) defined on $\mathbb{R}^{+} \times M$ such that $u(0, \sigma)=u_{0}(\sigma)$ is close enough to the initial data of a solution of the associated differential equation (5.6).

Remark 5.3. When $M=S^{1}$ the method of [BV] can be adapted to prove that all the positive solutions of (5.3) on $\mathbb{R}^{+} \times M$ are bounded.

REFERENCES

[Au] Th. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Grundlehren Math. Wiss., Springer, Berlin, 1982.
[AMR] R. Abraham - J. E. Marsden - T. Ratiu, Manifolds, Tensor Analysis and Applications, Appl. Math. Sci. Springer, Berlin, 1988.
[BGM] M. Berger - P. Gauduchon - E. Mazet, Le spectre d'une variété riemannienne, Lect. Notes Math., 94, Springer, Berlin, 1971.
[BVB] M. F. Bidaut-Véron - M. Bouhar, On characterization of solutions of some nonlinear differential equations and applications, SIAM J. Math. Anal. 25 (1994), 859-875.
[BVV] M. F. Bidaut-Véron - L. Véron, Nonlinear elliptic equations on compact riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539.
[BV] M. Bouhar - L. VÉron, Integral representation of solutions of semilinear elliptic equations and applications, Nonlinear Anal. 23 (1994), 275-296.
[CGS] L. A. Caffarelli - B. Gidas - J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.
[CL] E. A. Coddington - N. Levinson, Theory of Ordinary Differential Equations, McGrawHill Book Company, 1955.
[GS1] B. GIDAs - J. Spuck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598.
[GS2] B. Gidas - J. Spuck, A priori bound for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883-901.
[GT] D. Gilbarg - N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., Springer, Berlin, 1983.
[Ha] H. HamZa, personal communication.
[LP] J. M. Lee - T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37-91.
[Li] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, 1958.
[L1] J. R. Licois, Asymptotiques d'un système dynamique dynamique associéà une équation elliptique non linéaire, J. Analyse. Math. 66 (1995), 1-36.
[L2] J. R. Licois, Systèmes elliptiques non linéaires conservatifs dans des cylindres infinis, Thèse de Doctorat, Univ. F. Rabelais, Tours, 1994.
[LV] J. R. Licois - L. VÉron, Un théorème d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C.R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1337-1342.
[Ob] M. Овата, The conjecture on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258.
[OY] M. Оbata - K. Yano, Sur le groupe de transformation conformes d'une variété de Riemann dont le scalaire de courbure est constant, C.R. Acad. Sci. Paris Sér. I Math. 260 (1965), 2698-2700.
[Tr] N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian structure on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968), 265-274.
[Ve] L. Véron, Equations d'évolution semi-linéaires du second ordre dans L^{1}, Rev. Roumaine Math. Pures Appl. 27 (1982), 95-123.
[WW] E. T. Whittaker - G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1927.

Département de Mathématiques Faculté des Sciences et Techniques Parc de Grandmont F37200 Tours, France

[^0]: © Scuola Normale Superiore, Pisa, 1998, tous droits réservés.
 L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

