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A Class of Nonlinear Conservative

Elliptic Equations in Cylinders

JEAN RENÉ LICOIS - LAURENT VÉRON

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998),

Abstract. Let (M, g) be a compact n-dimensional manifold without boundary
and Ag the Laplace-Beltrami operator on M. This paper studies the asymptotic
properties of the following conservative system (S)utt + Ogu + uq - Àu = 0 on
R+ x M and their links with the homogeneous solutions of (S).

1. - Introduction

The study of asymptotics of the following class of conformally invariant
Emden-Fowler equations in JRN - 101

gives rise to the following nonlinear equation

in (201300, oo) x SN-1, where OSN-1 is the Laplace-Beltrami operator on the unit
sphere SN-1 of JRN, via the following classical change of variable

One of the main feature of this equation is the conservation of energy (equivalent
to Pohozaev’s identity):

Pervenuto alla Redazione il 8 novembre 1996 e in forma definitiva il 2 luglio 1997..
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As a result of the works of Obata [0b] and Caffarelli-Gidas-Spruck [CGS], the
asymptotic behaviour of the solutions of (1.2) as well as the global solutions are
now well understood in the case when c = 0, but it is important to notice that
this understanding mainly comes from the equation (1.1) itself and not from the
study of (1.2): the main point is that the solutions behave asymptoticaly like
the solutions of the associated O.D.E. It appears that when c is not 0, nothing
is known except in the radial case where the relation (1.4) plays a crucial role:
in particular there may exist solutions of (1.2) under the form

where A is a skew symmetric matrix.
The purpose of this paper is to extend this type of problem to a more

general setting by considering the following equation

in [0,00) x M where (M, g) be a n-dimensional compact Riemannian manifold
without boundary, Ag the Laplacian on M and q and k are constant, q &#x3E; 1.
Let us first study the stationnary equation associated to (1.6), that is

and in particular look under what conditions all the (positive) solutions of (1.7)
are constant (by a solution we always mean a C2 (M)-function). Let À1 denote
the first nonzero eigenvalue of -Ag, then two types of results are obtained in
that direction. The first one points out the role of the curvature tensor and in
particular its trace, the Ricci tensor:

THEOREM 2.1. Assume that the Ricci tensor Riccg of g satisfies

for some nonnegative R, that ~, is nonnegative and

with

Assume also that one of the two inequlities ( 1.9)-( 1.10) is strict if (M, g) is confor-
mally diffeomorphic to (S", go), that istg = kgo for some positive C°° function k,
then any nonnegative solution u of ( 1.~7) is a constant.
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In the above result (S", go) is the unit sphere of R’+’ with the standard
metric go induced by the Euclidean structure of Moreover this result
is optimal on (sn, go). In the second result it is proved that small enough
solutions (not necessarily positive) are constant:

THEOREM 2. 2. Assume ~, &#x3E; 0, q &#x3E; 1 and that u is a solution of (1.7) which
satisfies

then u is a constant.

Furthermore this result is extendable to a product manifold (M, g) x (N, h) =
(M x N, g ® h). The estimate ( 1.11 ) is not easy to obtain, however, in the
subcritical case, the following a priori estimate is proved:

THEOREM 2.3. Assume that

then there exists a positive constant C = C (M, g) such that for any ~. &#x3E; 0 any
nonnegative solution u of (1.7) satisfies

For the time dependent equation (1.6), the following form of the conser-
vation of energy is derived:

Assuming that cr H X (a) is a Killing vector field on (M, g), that is a vec-
tor field on M which is the infinitesimal generator of a group of isometries

and Lx the associated covariant derivative defined by =

then some Lx "cinetic momentum" is conserved, namely

Therefore, there may exist a solution of (1.6) under the form

where w solves some nonlinear elliptic equation on M. However, in many cases,
the solution of (1.6) homogenizes when t tends to infinity. Let us consider
the following ordinary differential equation whose solutions are homogeneous
solutions of (1.6)

It is easy to check that all the orbits of (1.17) but two are closed; they are
characterized by the value of the energy function E defined above (see [BVB])
and all the closed orbits correspond to periodic solutions of (1.17). The last

two orbits are the two homoclinic orbits of the equilibrium (0,0). Calling y,
an orbit where or = E (u) (t) is the corresponding value of the energy function
(for the two homoclinic orbits, cr = 0), the following will be proven:
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THEOREM 3.1. Assume u is a solution of ( 1.6) on [0, oo) x M such that

for some T &#x3E; 0, then

If it is assumed moreover that ( 1.18) is strict and that a =A 0, then there exists a
solution cp in the orbit Ya such that

As for estimate (1.18), there is a cylindrical analogue of Theorem 2.3,
namely, assuming that u is a bounded solution of (1.6) on R x M and that

then there exists a constant C = C(M, g) such that

For the existence of solution of (1.6) with a given initial data we have two
types of results: existence from monotone operators theory and existence via
perturbation methods. For example, it can be proven:

THEOREM 4.1. For any Uo E C (M) satisfying

in M, there exists a solution u of ( 1.6) on [0, oo)xM such that u E C ([0, oo); L°° (M))
which satisfies u (0, a) = uo(a) and

As for homogeneous solutions, the application of Floquet’s theory of dif-
ferential equations with periodic coefficients yields the existence of solutions
of (1.6) in the neighbourhood of a periodic solution yo of (1.17). More pre-
cisely it can be proven that there exists an infinite dimensional subspace F2 of
C2~" (M) which is associated to the spectrum of the linearized form of (1.6)
following yo

with the following property:
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There exists 8 &#x3E; 0 such that for any Uo (M) satisfying

and uo (x ) - yo (0) E F2, there exists a solution u of ( 1.6) on [0, 00) x M such that
u E C ([0, oo); Loo(M)), which satisfies u (0, a) = uo (a) and

for any t &#x3E; 0, where C and it are positive constants.
The last section deals with some simple nonlocal versions of (1.6) in the

particular case where q = 3. These are

where the general notation g means that the average of the function g on M is
taken. It is proven that all the positive and bounded solutions of these equations
are asymptotically homogeneous when t tends to infinity. Again one key tool
for this study is the use of Floquet’s theory.

This paper is organized as follows:
1- Introduction
2- Equations on compact manifold
3- Equations in cylinders
4- Existence of solutions
5- Partially homogenized equations
6- References

2. - Equations on compact manifolds

In this section it is assumed that (M, g) is a compact n-dimensional Rie-
mannian manifold without boundary. Let Ag be the be the Laplacian on M and
~,1 the first nonzero eigenvalue of -Ag in W 1 ° 2 ( M ) . Considering the following
equation on M

where q is larger than 1, it is clear that the condition k &#x3E; 0 is a necessary
condition in order to have positive solutions; it is also a sufficient condition as
it implies, if it is fulfilled, the existence of a constant solution, namely
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If (2.1 ) is linearized at the value u = ux, the following operator is obtained

and L is singular if (q - = Therefore, this particular value of h is

generically a bifurcation value and for k &#x3E; 1) there exist nonconstant
positive solutions of (2.1). Let Riccg = be the Ricci 2-tensor of g, that

is the contraction of the Riemann curvature 4-tensor Riemg = (Rjkl)’ then the
following result shows how local and global properties of the metric g may
interfere in order to prove uniqueness result for positive solutions of (2.1):

THEOREM 2.1. Assume that

for some nonnegative R, that ~, &#x3E; 0 and

and that

Assume also that one of the two inequalities (2.5)-(2.6) is strict if (M, g) is confor-
mally diffeomorphic to go), that is g = kgo for some positive Coo function k,
then any nonnegative solution u of (2-1 ) is a constant.

PROOF. It is essentially an algebraic computation based upon the classi-
cal Bochner- Weitzenböck formula which introduces naturally the Ricci tensor
(see [BGM])

Setting u = v-0 where ~6 E then v satisfies

on M. The key-stone of the proof lies in the following identities:
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PROPOSITION 2.1. Foranyy =1= -2andf3 E R*, the following identity is verified

where

Moreover, in the case where y = -2, the preceding relation becomes

where

PROOF OF PROPOSITION 2.1. Multiplying (2.8) by vY-IIVgvI2 and vYOgv
successively and integrating over M result in
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By a linear combination between (2.16) and (2.17) the 
can be eliminated and therefore

Multiplying (2.7) by vY, integrating on M and replacing the term I Hess vl2
by J (where J defined by (2.12) is nonnegative from the Schwarz
inequality) imply the following identity:

If y # -2, there holds

and if y = -2, (2.20) reads

If, in (2.18)-(2.19), the term fM is replaced by the right-hand
side of (2.20) or (2.21), this gives
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and

-2, with an easy modification in the case y = -2. In those two identities
the terms fM and fM vY are nonnegative but give
no estimate; should one of them be eliminated between (2.22) and (2.23), for

example, fM vY the result is (2.9). Formula (2.13) is obtained in
the same way.

END OF THE PROOF OF THEOREM 2.1. From the nonnegativity of J, Propo-
sition 2.1 and the classical relation (from Fourier analysis)

if y # -2, with an immediate modification if y = -2, it suffices to find a

couple such that

In fact, if such a couple exists, it can be deduced from the previous relations
that

We set

and the problem is reduced to maximise X in [- (n -~ 2) / (2q (n - 1)), 0] under
the constraint



258

Computing the derivative of i with respect to 3 results in:

Therefore the maximum of A is achieved for 3 = 80 = ri~, which gives

If Xo is the negative root of the above polynomial in X, then

and the condition

is equivalent to

For this specific value of X = Xo there holds

Therefore, assuming that (2.33) is fulfilled and that

there are two possibilities:
i) either (M, g) is not conformally diffeomorphic to go) and there exist

no nonconstant positive solutions to the equation J = 0 (see [Ob], [OY]), or
ii) (M, g) is conformally diffeomorphic to (S’, go) and, unless v (y+2)/2 is

an eigenfunction of the Laplacian, the relation (2.24) is strict and B is positive
if q  (n + 2)/(n - 2). In that case v has also to be constant if (2.35) is
fulfilled.

REMARK 2.1. It is interesting to notice that in estimate (2.6), the term
R - is always nonpositive from Lichnerowicz well known result [Li].
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Moreover, it vanishes if and only if (M, g) is isometric to (Sn, go), the standard
n-sphere with radius 1 [Ob]. The formula (2.6) has to be compared with the
previous one from [BVV] which only says that, if

any positive solution of (2.1) is a constant, provided (2.5) is fulfilled, with a strict
inequality when (M, g) is conformally diffeomorphic to (Sn, go). In the case
where (M, g) is isometric to (SI, go), the two results are the same. However,
if (M, g) is flat (R = 0), for example in the flat torus case (M, g) = (Tn, go),
the [BVV] result gave no real information, but formula (2.6) reads as

REMARK 2.2. There is numerical evidence that in the case where (M, g) =
(S3, go) and q &#x3E; 5, there exist positive solutions of (2.1 ) for any À &#x3E; 0; the
smallest is X, the highest is the maximum of the numerical solution.

As a consequence of this result new estimates are obtained for the infimum
of the following quotient

COROLLARY 2.1. Suppose that the Ricci curvature of g satisfies (2.4), and
that (2.5) and (2.6) hold, then

The proof is the same as the one of [BVV, Cor 6.2], by using directly the
equation in the case, 1  q  (n -f- 2) / (n - 2), and the left upper semi-continuity
of q H SX,q at q = (n + 2)/(~ - 2) as in Trudinger’s article [Tr].

REMARK 2.3. As quoted in Remark 2.1, the result of Theorem 2.1 is

optimal if (M, g) = (Sn, go). It has been noticed by H. Hamza [Ha] that, if

q = (n + 2)/(n - 2), there exist non constant positive solutions of (2.1) on
(M, g) whenever k = ~,1 / (q - 1) = (n - 2)~,1 /4 and

In fact, it is known from Aubin’s results [Au], that
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for any A. If the only positive solutions of (2.1 ) were constant, it would imply
that

and consequently

Taking (M, g) = go), the n-dimensional real projective space, then

(see [BGM])

it is clear that (2.43) means 2(n + 1)  ~2~", which is never true for n &#x3E; 1.

More generally, if q = (n + 2)/(n - 2), the fact that (2.1 ) admits only
constant for positive solutions implies that

which in turn implies that there exists a positive non constant solution of (2.1 )
whenever X &#x3E; n~n-2) Moreover, from the upper semi-continuity
of (~, , q ) H S~, , q on the left at q = 2* -1 = (n -~ 2) / (n - 2) , it can be concluded
that this result still holds in a neighborhood of (,k(M), (n + 2)/(n - 2)). In the

particular case of the flat torus (M, g) = (Tn, go), the condition reads as

Another interesting application deals with the uniqueness of Einstein metric
with constant positive scalar curvature.

DEFINITION 2.1. A metric g on a n-dimensional differentiable manifold M
is said to be Einstein if there exists a real number k such that

Since the scalar curvature is the trace of the Ricci tensor, it satisfies

Let us recall some well known facts concerning the conformal change of
metrics: if g is some metric on M, the metric g’ is said to be conformal to

g if g’ = v(x)g for some C°°(M), positive function v. Writing v = u 4/(n-2)
(n &#x3E; 3) and gu = g’ - l,l4On-2)g, then (see [LP]) u satisfies

All the metrics g’ on M which are conformal to g are said to belong to the
conformal class of g. Another proof of Obata’s uniqueness result [Ob] is given
below.
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COROLLARY 2.2. Let (M, g) be a compact Einstein manifold different from
(Sn’ go). Then g is the unique metric in its conformal class to have constant scalar
curvature and fixed volume.

PROOF. If g is Einstein, (2.49) reads as

When, Scalgu  0, then k  0 and the only positive solution of (2.50) is a
constant from the maximum principle. If Scalgu = 0, there exists non positive
solution of (2.50), whatever is k. Therefore the remaining case is the one where
Scalgu &#x3E; 0 and necessarily k &#x3E; 0 by integrating (2.50) on M. Up to change u
into 9 u, for some 0 &#x3E; 0, (2.43) reduces to

Since Riccg &#x3E; kg, the Lichnerowicz theorem implies that nk/ (n - 1), and
the condition (2.6) reads as

which is obviously satisfied with equality. Therefore u is constant.
The remaining part of this section is devoted to similar types of results

under an a priori estimate on u.

THEOREM 2.2. Assume ~, &#x3E; 0, q &#x3E; 1 and that u is solution of (2.1 ) which
satisfies

then u is a constant.

PROOF. If u satisfies (2.1 ), let u be the average value of u on M; u satisfies

and from classical Fourier analysis,

with equality if and only if u - u belongs to the eigenspace associated to À 1.
By the mean value theorem there holds

with equality only if u is a constant. Therefore

which implies that u = u if (2.53) holds.
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This result can be extended to a finite product of compact manifolds without
boundary. In the particular case of two elements where (M, g) x (N, h) =
(M x N, g (g) h) the Laplacian on the product manifold is computed by the
following formula

COROLLARY 2.3. 0, q &#x3E; 1 and that u is solution of

on M x N. Let (respectively be the first nonzero eigenvalue of -Ag
(respectively- Ah) in (respectively W 1 ° 2 (N) ) and let a E M, TEN be
the variables. Then

(i) - If q ~1. ’+’ u is independent of a E M,

(ii) - If q  ~l. ~+ u is independent of -r E N,

(iii) - If q Â + min(Â 1, m, u is constant.

PROOF. Setting u M (respectively the average of u with respect to the
M-variable (respectively the N-variable) then

Substracting (2.60) to (2.59), multiplying the result by u - u M and integrating
over M and N yields

But

and

Therefore it can be deduced from (2.56), as above,

which implies (i) or (ii) equivalently, as for (iii) it is a consequence of (i) and (ii).
The last result of this section is an a priori estimate for any positive solution

of (2.1) in a subcritical case.
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THEOREM 2.3. Assume that

then there exists a positive constant C = C (M, g) such that for any ~, &#x3E; 0 any
nonnegative solution u of ( 1.1 ) satisfies

PROOF. Let us suppose that (2.66) does not hold. Then there exist four

sequences {~,m }, {Cm }, and (am), such that hm &#x3E; 0, um is a positive solution of

in M with the following properties

There are three possibilities:
CASE 1: tends to some nonzero limit c when m tends to infinity.

From (2.68) (2.69), Am tends to 0. Setting wm = then

As = 1, is bounded and hm tends to 0, it can be deduced
from classical estimates in elliptic equations theory that wm converges in the
C2_M topology to some w which solves

on M and

which is impossible.
CASE 2: lIum IILoo tends to zero when m tends to infinity. Then there exists

some mo such that for m &#x3E; mo. From Theorem 1.2, um is

constant with obvious ftàl.ue ,m q-l, which contradicts (2.68)-(2.69).
CASE 3: tends to infinity when m tends to infinity. The for-

mula (2.67) can be wrigen in local coordinates (xi ) near ao
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where g = is the metric tensor and Igl = Without any loss of

generality, it can be assumed that (2.74) holds in the n-ball of center xo and
radius d. Let us introduce the following scaling

where am is defined by

For m large enough, Vm (i) is defined in the ball (0) of center 0 and
radius where it satisfies = vm (0) = 1 and

where gm = = As in [GS2] it can be noticed that the
coefficients and the ellipticity constant of (2.77) remain bounded and bounded
below respectively. From the Agmon-Douglis-Nirenberg estimates (see [GT])
for any R and any p &#x3E; 1 there exist some integer m R and a positive constant
MR such that

for m &#x3E; m R . From Morrey imbedding theorem there exists MR such that

for some f3 E (0, 1). Therefore, since

it can be deduced that there exists a subsequence t vm, I and a nonnegative
function v defined in whole R’ such that vmk converges to v in the 

topology, and v solves

which is impossible from [GSI] since q  (n + 2) / (n - 2).
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3. - Equations in cylinders

In this Section, (M, g) is still a compact n-dimensional Riemannian man-
ifold without boundary and the following time-dependent equation is studied

where the variable (t, or) belongs to I x M, I being either R or R+. Since M
is compact without boundary, an important class of solutions of (3.1) consists
in the class of homogeneous solutions which are the solutions of the ordinary
differential equation -

The solutions of (3.2) are classified by the value of the energy

which is independent of t. All the orbits of (3.2) are closed and correspond to
periodic solutions with the exception of the two homoclinic orbits consisting of
the solutions w§ which satisfy E((p±) = 0 and

Concerning (3.1 ) the first observation is the conservative aspect as the

following quantity is independent of t:

Other invariants for (3.1 ) can be defined if M admits a Killing vector field
X, that is a vector field X (a) such that the group of diffeomormisms
associated t « is a group of isometries of (M, g). To this vector field can
be associated the Lie derivative LX defined by

PROPOSITION 3.1. For any solution of (3.1 ), there holds
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PROOF. Multiplying (3 .1 ) by and integrating over M

Since X is a Killing vector field, this gives

and for any C1 function to defined on M, there holds f,~ Lxcodvg = 0. In the
same way

and for the remaining term

from the above observation, which implies (3.8).

The main homogenization result is the following:
THEOREM 3.1. Assume u is a solution of (3 .1 ) on [0, oo) x M such that

for some T &#x3E; 0 and let a = E (u ) (t ), then

If assuming moreover that (3.13) is strict and that a =1= 0, then there exists a solution
q; in the orbit Ya of (3.2) defined by = a such that

PROOF. Recall that u is the average of u on M. Averaging (3.1 ) yields

Multiplying by u - u and integrating over M implies, as in (2.55)-(2.56),
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for t 2:: T. Setting (~. -~ ~ 1 - = f3 2:: 0, then (3.17) implies
that the function t ~ is convex and therefore there exists

0 such that

Let us prove first that a = 0. If (3.13) is strict then j8 &#x3E; 0; (3.17) and the

maximum principle imply

for t &#x3E; T and a = 0. Supposing that 
and that a &#x3E; 0 then there exists 8 &#x3E; 0 such that where

Therefore (3.16) yields

If 0 is defined by

. 

then 0 &#x3E; 0 and

for t &#x3E; T, which is impossible. Therefore a = 0. Consequently

From W2,2 -estimates in elliptic equations, it is deduced from (3.16)-(3.18) that
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Using Sobolev and Morrey imbedding theorems and the classical elliptic equa-
tions regularity theory finally yields

Moreover, u remains uniformly bounded in C2° Y ( [a -1, independently
of a &#x3E; T + 1, for some y E (0, 1). Let {tn } be a sequence of real numbers
tending to infinity and let us set a) = u (t + tn, a), then there exist a
subsequence and a function cp such that } converges to cp in the C2
-topology of R x M. It is clear that cp is a solution of (3.1 ), independent of
~ E M from (3.25), and therefore a solution of (3.2). Moreover, as E(u) is
constant with value 17, it is clear that E(cp) - 17. As the orbit yq is uniquely
determined (double orbit in the case 17 = 0), relation (3.14) follows.

If it is assumed that (3.13) is strict then (3.19) and the standard elliptic
equations theory imply an exponential rate of homogeneisation, namely

Therefore, u satisfies

where a is a bounded function. From the assumption, it is assumed that the

energy E(u) = 1] is not zero and therefore there exist P &#x3E; 0 and a P-periodic
solution cp of (3.2) such that yq is just generated by cpo As in [CGS], it can be
be written

which implies that -f- P) - ü(t)) = 0, from the classical perturbation
theory of periodic solutions of ordinary differential equations as in [CGS].
Therefore u- (t), and then u (t, ~), is asymptotic to a suitable translate of cpo

For the estimate (3.13), the following analogous of Theorem 2.3 holds:

THEOREM 3.2. Assume that

then there exists a positive constant C = C (M, g) such that for any ~, &#x3E; 0 any

nonnegative bounded solution u of (3 .1 ) in R x M satisfies
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PROOF. Let us assume that (3.31) does not hold. Then there exist five

sequences lhml, and {(tm, or,)), such that &#x3E; 0, um, is a

positive solution of

in R x M with the following properties

as for {tm } there are two possibilities: either

or

Three cases have to be considered.

CASE 1: lIum IILOO tends to some nonzero limit c when m tends to infinity.
From (3.33) (3.34), hm tends to 0. If we set wm = umlllum then

Since, = 1, II um IILoo is bounded and hm tends to 0, it is deduced from
classical estimates in elliptic equations theory that = wm (tm -t- t, a)
converges in the C2 -R x M topology to some w which solves

on R x M and

Let w be the average of w on M, then

on R, which is impossible.
CASE 2: lIum IILoo tends to zero when m tends to infinity.
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From (3.17) there holds

where um is the average of um on M. Then there exists some integer mo
such that t « a)dvg is a strictly convex, positive and bounded
function defined on R for m &#x3E; mo. Therefore it is identically zero which

implies that um = a,m~~q-1~ which contradicts (3.33)-(3.34).
CASE 3: tends to infinity when m tends to infinity.

Writing (3.32) in local coordinates (xi ) near ago gives

where g = is the metric tensor and Igl = det(gij). Without any loss of

generality, it can be assumed that (3.43) holds in R x Bd (xo) where Bd (xo) is
the (n - 1 )-ball of center xo and radius d &#x3E; 0. Let us introduce the following
scaling

where am is defined by

Therefore, proceeding as in the proof of Theorem 2.3, it follows that umk
converges in the x JRn+l-topology to some nonzero, nonnegative v which
satisfies

in which, again, is impossible from [GSl].

An immediate consequence of Theorem 3.2 is the following
COROLLARY 3.1. Assume that (3.30) holds and that u is a positive and bounded

solution of (3.1 ) on [0, oc) x M. Then

where C is the constant appearing in Theorem 3.2.

Combining Theorem 3.1 and Corollary 3.1 yields
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COROLLARY 3.2. Let (3.30) and h  ~,1 (q Cq-1 -1 ) -1 hold and u be a positive
and bounded solution of (3.1 ) on [0, oo) x M. Then (3.14) holds for some a =
E (u) (t). Moreover if a :A 0, there exists a solution q; in the orbit Ya of (3.2) defined
by E (w) = cr such that (3.15) is valid

REMARK 3.1. The assumption on the boundedness of the nonnegative solu-
tions of (3.1 ) is not easy to check. However, it has been proved by Bouhar and
Veron [BV] that any such solution is bounded provided 1  q  (n -I-1 ) / (n -1 ) .

REMARK 3.2. It is clear that non constant solutions of (2.1 ) are non-

homogeneous solutions of (3.1 ). Moreover, in the case where M admits a

Killing vector field X there may exist soliton solutions of (3.1 ) under the
following form

where w solves

Non trivial solutions of (3.49) can be obtained when 1  q  (n + 2) / (n - 2)
by studying the critical points of the following functional

Other nontrivial solutions, without the restriction on q, can be obtained by
bifurcation from the first nonzero eigenvalue of the linearized operator

(see [BVV] for some particular cases).

4. - Existence of solutions

In this section the initial value problem, that is the question of the existence
of solutions of

defined on R+ x M and such that u(0, or) = is considered. The existence

of solutions tending to 0 at infinity is taken as a start.
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THEOREM 4.1. For any continuous function uo defined on M and satisfying

there exists a continuous nonnegative solution u of (4.1) defined on R+ x M which
tends to 0 at infinity and takes the value uo at t = 0.

PROOF. First it can be noticed that the specific value ~~.9 Z 1 ~ ~~~q ~~ is the
maximal value that can take any positive solution of the associated ordinary
differential equation (3.2) and that there exists a solution (the positive homoclinic
orbit) CPt of (3.2) on R+ which satisfies

If uo is positive, then for T large enough and, from the
classical result, there exists a solution u of (4.1) such that u(0, or) = uo(a) and

for (t, oar) E R+ x M.
In the general case the following iterating scheme is introduced

STEP 1. The sequence (ym ) is an increasing sequence of positive bounded
functions which decay exponentially when t tends to infinity.

In fact, for y 1,

is obtained from explicit representation, which implies

for C = C(M) &#x3E; 0. From the maximum principle

From the classical linearisation technique, for any y E (0, there exists

Cy &#x3E; 0 such that
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on R+. As yq E L2«0, oo) x M) n L 1 (o, oo; L2 (M)) n C1«0, oo) x M), Y2 can
be defined with the following formula (see [Ve] for details)

where S(t) is the continuous semigoup of contractions of L2(M) generated by
-(-Ag + XI)1/2 . This semigroup satisfies

Therefore y2 is a bounded strong solution and it satisfies

on R+ x M. Iterating this process with the above representation formula allows
the construction of the sequence (ym ) of continuous nontrivial solutions of (4.5)
on R+ x M, with the order property

on R+ x M.

STEP 2. End of the proof. The sequence (ym ) is increasing and converges
to some continuous and positive solution u of (4.1 ) defined on R+ x M wich
takes the value uo at t = 0 and satisfies

The next question that is considered is the existence of a global solu-
tion close to some homogeneous solution and asymptotic to this homogeneous
solution at infinity. By an implicit function method a local theory is con-

structed for such a problem. Let be the sequence eigenvalues 
in W 1 ~2 (M), with corresponding eigenspaces Hk with dimension dk and or-

thonormal basis { O~, k }, 0  j  dk. If yo(t) is a T-periodic solution of (3.2)
the linearization of (4.1) around yo yields the following linear equation

Let us write first the Fourier decomposition of any solution of Lyo (1/1) = 0 as

Then the ck = Cj,k satisfy

which is a linear differential equation with periodic coefficients for which it is
necessary to recall some elements of Floquet’s theory.
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PROPOSITION 4. l. Consider the following differential equation

where a 1 and a2 are T periodic; then there exist two linearly independent solutions
of (4.18), Yl and Y2, such that

(i) either

where ml and m2 are constants (real or complex) and PI and P2 are T-periodic
functions,
(ii) or

where m is a constant (real or complex) and p and P2 are T -periodic functions.
The constants mj are the characteristic exponents of the equation; if pj = emj T,

then the pj are the solutions of

where D is a constant called the discriminant of the equation. In the particular
case of Hill’s equation

where a is a T-periodic function and 1] a real number, let be the corre-

sponding discriminant. Then Floquet’s theory reads as follows

PROPOSITION 4. 2. There exist two sequences of real numbers { vk }, such that

(i) they appear in the following order

(ii) on the intervals [V2k, /12k], D(il) decreases from 2 to -2,
(iii) on the intervals [,c,c2k+1, V2k+l], D(il) increases from -2 to 2,
(iv) on the intervals y(,G2k, ~c,c?k+1 ), D(q)  -2,
(vi) on the intervals (-00, vo) and (V2k+l, V2k+2), &#x3E; 2,

moreover

(vii) is one of the vj or /1j then = 2, (4.21 ) possesses a double root
and the solutions are given by (4.20). As for m it takes the values 0 or
i n/ T according D (r~) = 2 or D (r~) = -2 and q belongs to a periodicity
zone.

(viii) if ID(q)l I &#x3E; 2, then t7 belongs to an instability zone with the solutions
given by (4.19) where m 1 and m2 are opposite real numbers,

(ix) if I  2, then r~ belongs to a stability zone with the solutions given
by (4.19) where m 1 and m2 are conjugate imaginary numbers.
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We apply Floquet’s theory to equation (4.17) with a (t ) = and
17 = 17k = -h - kk: there exist an integer ko and a positive real number 01
such that

For k &#x3E; ko, 1Jk belongs to the first instability zone in the sense of Proposition 4.2,
that is (-oo, vo) and the solutions of (4.17) are of two different exponential
types. For ko the general form of a solution of (4.17) is determined

by the fact that 1Jk belongs or does not belong to an instability zone. If 1Jk

belongs to an instability zone, set mk and mt the corresponding characteristic
exponents of the equation with mk  0  mt. Let () be such that

E1 is defined as the subspace of L2(M) generated by the 0  dk,
corresponding to the k such that rik belongs to a zone of stability or periodicity
in the sense of (vii) and (ix) and E2 as the orthogonal complement of El
in L 2(M); E2 is the Hilbertian sum of the Hk for which ?7k belongs to an
instability zone in the sense of (ix). Let P, and P2 be the orthogonal projectors
of L2 (M) onto El and E2 respectively. It is important to notice that El is

finite dimensional.

REMARK 4.1. There always holds = D (-~,) = 2 as yo is a T-periodic
solution of (4.17) with k = 0. Moreover El 1 is never trivial as it contains the

space of constant functions.

THEOREM 4.2. There exists 3 &#x3E; 0 such that if uo = yo (0) + zo with Zo E Eo and

where a E (0, 1 ), then there exists a continuous solution u of (4.1 ) defined on
R+ x M and such that u (0, a) = uo(a).

Before proving this result it is necessary to define some functional spaces

with the natural corresponding norms defined on, which endow those spaces
with a structure of real Banach spaces. Set F2 = E2 n C2’a (M) and define G
from into E’ x F2 by

then the following holds,



276

PROPOSITION 4.3. G is a Banach isomorphism between Ee’a and Ee x F2.
PROOF. It is clear that G is well defined and is a continuous linear mapping

from into Eg x F2. If g belongs to Eå, the following equation has to be
considered

in R+ x M. Decomposing 1/1’ and g as

and setting cj,k = ck, = Yk results in

moreover there exists a constant Ng such that Nge-te for k &#x3E; 0, t &#x3E; 0.
Three possibilities are encountered

CASE 1. qk belongs to a zone of stability.
Then

where y, and y2 are two linearly independent (and bounded) solutions of the
associated homogeneous equation and W is their Wronskian determinant, which
is constant in that case as there exists no term in c~. An easy computation
gives that

and, from elliptic estimates, it can be deduced that

CASE 2. ?7k belongs to a zone of periodicity.
It is clear that (4.33)-(4.35) are still valid.

CASE 3. ?7k belongs to a zone of instability.
In that case

with and y2 (t ) (it is important not to forget that
mk  0  where C2 is determined by ck(0) which are the coefficients of
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~2(~(0)). It is easy to check that (4.34)-(4.35) still holds with a constant C

independent of k. In order to complete the existence proof let us consider the
projection of (4.30) onto E2 by setting

This gives

and as 91 satisfies (4.24) the result is

which implies

But

therefore

Using elliptic equations estimates yields

Therefore G is onto and the inverse mapping G -1 is continuous from Ee x F2
into E8’". In order to end the proof it is assumed that = 0 for some 1/1’
in ~~, then P2 (1/1’ (0, .)) = 0 and, if the general solution of (4.17) under the
form is

then necessarily a 1 = a2 = 0 if 1Jk belongs to a zone of stability or periodicity;
if 1Jk belongs to a zone of instability a 1 - 0 as P2(*(O, .)) = 0 and a2 = 0
as y2 is unbounded.

PROOF OF THEOREM 4.2. We look for a solution u of (4.1 ) under the form
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and w satisfies

on R+ x M with

If the mapping r from E2,, into E’ x F2 is defined by

then r(0) = (o, 0) and Dr(0) = G which is an isomorphism. By the local
inversion theorem, there exists 6 &#x3E; 0 such that for any zo E F2 satisfying

 3, there exists a solution w of r (w) _ (0, zo), that is a solution u
of (4.1 ) defined on R+ x M and such that u (0, a) = uo a ), under the form (4.45)
with u o (a- ) = yo (0) + zo.

5. - Partially homogenized equations

In this section a short view of some partially homogenized problems on
R+ x M with the specific exponent q - 3 is given. The equations that are

considered are the following

where the general notation g represents the average of g on M.

PROPOSITION 5.1. The bounded solutions of (5 .1 ) are asymptotically homoge-
neous when t tends to infinity

PROOF. The function w = u - u satisfies

on R+ x M which implies that
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REMARK 5.1. From (5.5) the equation (5.1 ) is just an exponential perturbation
of the differential equation that is actually satisfied by u

Moreover the boundedness assumption can be replaced by a sub-exponential
growth assumption like

PROPOSITION 5.2. The bounded positive solutions of (5.2) are asymptotically
homogeneous when t tends to infznity.

PROOF. The function w = u - u satisfies

and

The Fourier decomposition of u gives

and the cj,k = ck are solutions of

As for u it satisfies

and either it is periodic or it tends exponentially to 0 when t tends to infinity.
In the first case Floquet’s theory can be applied to (5.11): as u is a solution of

this equation possesses a periodic solution and k is at the limit of a zone
of stability in the sense of Proposition 4.2. As u is positive, k is on the

boundary of the first stability zone and all the other equations (5.11) are in

the instability domain. Therefore, for k &#x3E; 0, there only exists a unique type
on bounded solutions for these equations and these solutions are exponentially
decaying. In the second case, when u is exponentially decaying, the classical
exponential perturbation theory can be applied to (5.11) and conclude that all

the bounded solutions of (5.11) are exponentially decaying. As a consequence
w tends exponentially to 0 and Remark 5.1 still applies.
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PROPOSITION 5.3. The bounded positive solutions of (5.3) are asymptotically
homogeneous when t tends to infinity.

PROOF. The average u of u satisfies

and the cj,k = ck are solutions of

STEP 1. Assume that

As u is positive and bounded, (5.16) implies that u (t, .) tends to 0 in any
LP(M) space for p E [1, 00) when t tends to infinity. Therefore the nonlinear
term is negligible in (5.3) and

for some K and a, which is the homogeneity property.
STEP 2. Assume that

Since u is given by (5.10), there holds

Replacing this value in (5.15) yields

for k = 0 and

for k &#x3E; 1. From the Sturm comparison theorem, between two zeros of ck
there exists one zero of u . If ck as two zeros, then u has at least one zero

which contradicts the fact that u has constant sign. Therefore we can assume
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that ck has a constant sign for t large enough and positive without any loss of
generality. Multiplying (5.20) by ck and (5.21) by u and substracting gives

If A (t ) = CkU’, then

Let us consider to &#x3E; 0 such that &#x3E; 0 on [to, oo), then A (t) is decreasing
on [to, oo). There are two possibilities:

CASE 1. There exists ti &#x3E; to such that A(t)  0 on (tl, oo). In that case
the function ck (t)/u (t) is increasing and admits a finite or infinite but positive
limit l. If i  oo; there exists t2 &#x3E; tl such that

for some 3 &#x3E; 0. Therefore

As lim u(t) &#x3E; 0, this results in a contradiction. If .~ = 00 the contra-

diction is the same and the other possibility is left.

CASE 2. for any t &#x3E; to, A (t ) &#x3E; 0.
Then is positive and decreasing and

From the definition of A (t) there holds

which gives

for any t &#x3E; to. Letting t tend to infinity and summing over k yields
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But

and this last quantity is bounded independently of k. Therefore

If w = u - u, then

.. and from LP and Schauder estimates the result is

independently of T. Therefore w (t, .) tends to 0 in C~(M) when t tends to
infinity which ends the proof.

REMARK 5.2. Using the same construction as the one of Section 4, it can
be proved the existence of solutions u of (5.3) defined on R+ x M such that
u (0, or) = uo(a)is close enough to the initial data of a solution of the associated
differential equation (5.6).

REMARK 5.3. When M = S 1 the method of [B V] can be adapted to prove
that all the positive solutions of (5.3) on R+ x M are bounded.
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