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Semistable Quotients

PETER HEINZNER - LUCA MIGLIORINI - MARZIA POLITO

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998),

Let G be a complex reductive group, and let X be a (reduced) complex
space with a holomorphic action of G. A complex space Y together with a
holomorphic map 7r : X - Y is said to be a semistable quotient of X with
respect to the G-action if: 

_

(i) 7r is a G-invariant locally Stein map, and.
(ii) Oy = 

If a semistable quotient exists, then it is unique up to biholomorphism, and
will be denoted by XII G.

In the algebraic category quotients of this type are often called good quo-
tients and have been studied intensively. They also arise naturally in the context
of Hamiltonian group actions; more precisely, let Z be a complex space with a
holomorphic G-action, let I~ be a maximal compact subgroup of G, and assume
that there is a moment map M : Z - with respect to a K-invariant
Kahlerian structure cv on Z. Then the set X := {z E Z; G ~ 0}
of semistable points of Z with respect to A is an open G-stable subset of

Z, and the quotient XllG exists ([H-L], [S]). Moreover, in the case where Z
is a projective manifold, it can be shown that X coincides with a subset of
semistable points in the sense of geometric invariant theory, i.e., there is an

ample G-line bundle L on Z such that X is the set of semistable points with
respect to the linearization induced by L (see [H-M]).

The goal of this paper is to reduce the question of existence of a semistable
quotient to the case where G is an abelian connected Lie group; more precisely
we prove the following:

THEOREM. The semistable quotient XII G exists if and only if XII T exists for
some maximal algebraic torus T in G.

The theorem solves a problem of Bialynicki-Birula which he posed during
his stay at the Ruhr-Universitat Bochum and the University of Florence.

The result is well known in the algebraic category (see [BB-S l], [BB-S2]),
under the weaker assumption that the semistable quotient XIlTo exists for all

The research for this work was partially supported by SFB-237 of the DFG. The second author is
also supported by MURST funds.
Pervenuto alla Redazione il 5 novembre 1996 e in forma definitiva il 3 luglio 1997.



234

one-dimensional algebraic subgroups To of T. Since it is easy to construct

counterexamples in the holomorphic setting to this more general statement (see
Section 6), the above theorem is the best possible in the holomorphic framework.

One of the facts which is used in the proof of the above mentioned result
for algebraic actions is that the closure of a G-orbit in X contains a closed
orbit. The main problem which arise in the analytic category is to show that, if
the existence of XIIT is assumed, then the G-orbits do not behave too wildly,
e.g. that a G-orbit is open in its analytic Zariski-closure; we show this by using
properties of subanalytic sets.

1. - Generalities on semistable quotients

Let K be a Lie group and X a complex K-space, i.e., X is a reduced
Hausdorff complex space with countable topology and K acts on X by holo-
morphic transformations such that the action K x X 2013~ X, (k, x) -~ k ~ x, is
real analytic. Let denote the algebra of K-invariant holomorphic func-
tions on X; associated with is the equivalence relation ^~:- 
X x X ; = f(x2) for all f E Let Jr : X -~ X/ - be the quotient
map. In the case where X is assumed to be a Stein space and K is a compact
Lie group one has the following result ([H]).

The quotient XI is a Stein space such that O(Q) = for any
open subset Q of X / ^~.

Moreover, XI - is the categorical quotient of X in the category of complex
spaces, and will be denoted by XIIK.

In order to define a natural extension of this concept, let I~ be a compact
Lie group and X a complex K-space. We say that a complex space Y together
with a surjective holomorphic map : X ~ Y is a semistable quotient of X if
every y E Y has an open Stein neighborhood Q such that n -1 ( Q ) is an open
Stein subset of X, and the restriction Jr : n -1 ( Q) -~ Q induces an isomorphism
7r-’(Q)IIK - Q.

A semistable quotient Y of X is unique up to isomorphism and will be
denoted by 

Let K be a compact Lie group, and X a complex K-space such that 
exists. The following properties of the semistable quotient n : X -~ 
follow from the corresponding properties in the Stein setting.

(i) If Aj, j = 1, 2, are closed K-stable complex subspaces of X, then

n n(A2) _ 7r(Al n A2).
(ii) For a closed K -stable complex subspace Z of X, the image is a closed

analytic subspace of XIIK, the semistable quotient exists and the em-

bedding Z - X induces an isomorphism Jr(Z).
(iii) If Y is a locally closed analytic subspace of XIIK, then the embedding

Jr-l (Y) ~ X induces an isomorphism Y - 7r - (Y)//K.
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Let K be a compact Lie group, and let G := K~ be the complexification
of K, i.e., G is a complex reductive group with maximal compact subgroup
K. Since the Lie algebra ,Cie G of G is the complexification of the Lie algebra
Lie K of K, and since K intersects every connected component of G, we have

= for every holomorphic G-space X, i.e., for every complex
G-space X such that the action G x X X is holomorphic. Moreover, for the
same reasoning, every K-stable closed analytic subset of X is G-stable.

A holomorphic G-space X may be considered as a complex K-space. If in
this case a semistable quotient exists, then we set X // G := XIIK; this
makes sense since XIIG does not depend on the choice of a maximal compact
subgroup K of G and n : X - XII G satisfies the conditions (i) and (ii) in the
definition of a semistable quotient.

REMARK 1. If X // G exists, then we claim that n (A) is closed in XIIG for
any G-stable closed subset A of X. Here A is not assumed to be analytic as in
(ii). In order to see this, one may assume that X is a Stein space; furthermore
there is a moment map it on X such that the embedding ~ X induces
a homeomorphism Since the claim
follows. Moreover, this also implies that XIIG is the categorical quotient of X
with respect to G in the category of topological Hausdorff spaces. For more
details see e.g. [H-H-K].

Now let G be a complex reductive group, and X a holomorphic G-space
such that the semistable quotient exists. In the definition of a semistable quotient
the map n : X -~ XII G is only required to be a locally Stein map; the following
result shows that this is also globally the case.

THEOREM. If XII G is a Stein space, then X is a Stein space.

For the proof of the Theorem we need the following:

LEMMA. Let n : X - be a semistable quotient. For every q E XIIG
there exist an open neighborhood Q of q, a G-representation W, and a G-equivariant
holomorphic map 0 : X ~ W such embeds as a closed analytic
subset of nyyl ( P ), where P is a suitable open subset of Wll G and Jrw : W --~ W // G
denotes the quotient map.

PROOF. If X is a Stein space, then the lemma is proved in [H] Section 6
(see also [Sn]). Thus, in general, there exist an open Stein neighborhood Q
of q and a G-equivariant holomorphic map Ou from U : := into a G-

representation space W such that q5u : U - is a closed embedding,
where P is an open subset of W// G.

On Y := XIIG we have the sheaf of germs of G-equivariant holomor-
phic maps into W, i.e., 7~(6) == { f ; f : - W is a G-equivariant
holomorphic map} for Q C Y open; it is a coherent sheaf of Oy-modules ([R]),
and OU Let Iq denote the ideal sheaf of the point q ; then Ou defines
a global section Oq of the quotient sheaf Since Y is assumed to be a

Stein space, the natural map r : ~-l (Y) -~ (H/12H)(y) is surjective. Therefore
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there exists a G-equivariant holomorphic map 0 : X - W such that r(q§) = Oq.
The is a holomorphic map from U into W with vanishing order
two on thus X -~ W is a G-equivariant holomorphic map such
that:

is a closed embedding, and
(ii) 0 is an immersion at every point in 
This implies that, after shrinking Q, the map 0 has the desired properties ([H],
Section 6, see also Section 5, Proposition 1 for a more general statement). D

PROOF OF THE THEOREM. It follows directly from the lemma that X is

holomorphically separable. We have to prove that X is holomorphically convex,
i.e., for a sequence (xn ) in X such that oo, we have to show that

lim f(xn) = oo for a subsequence of (xn ) and some holomorphic function

f : X C. Since XII G is a Stein space, we may assume that converges

to q E XII G; therefore we may assume that xn E ~ -1 ( Q) for all n, where

Q is an open neighborhood of q with the properties as stated in the lemma:
it follows that (~ (xn ) ) is a discrete sequence in W. If g : W - C is a

holomorphic function on W such that = oo, then f : :== g has

the desired properties. D

REMARK 2. If X is a holomorphic principal bundle with complex structure
group G over a Stein space Y = XI G, then X is a Stein space if and only if
the complex manifold G is Stein ([M-M]).

COROLLARY. Let X be a holomorphic G-space such that XIIG exists. Then

the quotient map 7r : X -~ XII G is a Stein map, i.e., the inverse image of a Stein
subspace of XIIK is Stein.

PROOF. If Y is a Stein subspace of then the restriction 

7r (Y) ~ Y is the quotient map. Thus 7r (Y) is a Stein space. D

2. - Saturation

Let G be a complex reductive group and X a holomorphic G-space.
For a subset A of X let SG (A) = {x E X ; G - x n A =1= 0} be the saturation

of A with respect to G. If the ambient space X is relevant for our considerations,
we use the notation A subset A is said to be saturated if SG (A) = A.
A G-stable subset U of X is said to be G-complete if G . x n U = G . x holds
for all x E U, i.e., if the closure of a G-orbit in U coincides with its closure

in X.
Note that an open G-stable subset of X is saturated, and that a closed

G-subset is G-complete. Moreover, a G-stable subset A of X is saturated if

and only if U := X B A is G-complete.
REMARK. If the semistable quotient 7r : X - exists, then a G-stable

open subset U of X is G-complete if and only if U = i.e., if and
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only if it is saturated with respect to n (Section 1 Remark 1). More generally,
it follows from Remark 1 in Section 1 that SG (A) = for a closed
G-stable subset A of X.

If a holomorphic G-space X can be covered with G-complete open G-stable
subsets { Ua } such that exist, then the semistable quotients can be glued
together (Remark) to a possibly not Hausdorff complex space XIIG, which has
all properties of a semistable quotient except that the Hausdorff property may
fail. This observation is sufficient to show the following

PROPOSITION 1. If there exists a G-invariant locally Stein map 0 from X into a
complex space Y, then a semistable quotient XII G exists.

PROOF. There exist a covering of I’ by open Stein subsets which gives us a
covering of X by G-complete open Stein subsets, because of the G-invariance
of the map; we have to prove that XIIG is Hausdorff, i.e., that two disjoint
closed orbits G . x and G . y have disjoint G-complete open neighborhoods.
It suffices to consider the case where 0 (x) = 0 (y). Let Q be an open Stein
neighborhood of q5(x) such that U : := 0-’(Q) is Stein; since a G-complete
subset of U is already G-complete in X and UIIG is Hausdorff, the existence
of disjoint open G-complete neighborhoods follows from the same result in the
Stein setting. C1

COROLLARY. Let G be a complex reductive group, and let X be a holomorphic
G-space. If a semistable quotient XIIG exists, then XIIH exists for any complex
reductive subgroup H of G. 0

For an algebraic analog of this corollary see Proposition 2.1 in [BB-S 1 ] .
Now let T be a maximal algebraic torus in G, and assume that XII T

exists. The following result, which underlines the close connection between
the G-action and the action of T, will be used later on. It is based on an
observation of Richardson. For an algebraic analog see also [BB-S2].

PROPOSITION 2. If A is a closed G-stable subset of X, then

PROOF. Given x e X, since G = K T K, we have to show that

implies

for some k E K. 
____

Assume that foralIkE K. Then to every y 
there exist an open neighborhood Uy and a T-invariant continuous function fy
on X such that fy &#x3E; 0 on Uy and fy = 0 on A (Section 1, Remark 1); but
K . x is compact, and therefore the sum of finitely many fy gives a continuous
T -invariant function f on X such that &#x3E; 0 and f B A = 0. Thus

0
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3. - Closures of orbits

If a semistable quotient XII G exists, then the closure of a G-orbit contains
a closed G-orbit in its closure; in this section we show that this remains true
if we only assume that XIIT exists, where T is a maximal algebraic torus in
G. We show this by considering special subanalytic sets in X.

Let X be a (reduced) real analytic space. A subset A of X is said to be
subanalytic in X if for any point x E X there are an open neighborhood U,
finitely many real analytic spaces Yi, Zl , and proper analytic maps fi : Yi -~ U,
gi : Zi - U such that A n U = gi ( Zi ) ) .

Note that a closed analytic subset of X is a subanalytic set in X, and that
the set of subanalytic sets in X is closed with respect to the finite set theoretical
operations of taking unions, intersections and complements. Moreover, the in-
verse image of a subanalytic set with respect to an analytic map is subanalytic.
We also need the following property of subanalytic sets ([Hi], 3.8.2; [B-M],
Theorem 0.1 ).

* Let X - Y be an analytic map and A a subanalytic set in X. If 0 1 A
A -~ Y is proper, then q5 (A) is subanalytic in Y.

Here A denotes the topological closure of A in X. In the proof of *
Hironaka uses the Desingularization Theorem; in our application we use *
only in the case where X and Y are closed analytic subsets in a real analytic
manifold: in this case the Desingularization Theorem can be replaced by the
more elementary Theorem o.1 of Bierstone and Millman in [B-M].

LEMMA. Let X be an irreducible complex space, and Z a proper closed analytic
subspace in X. Let 0 be a meromorphic map from X into a complex space Y such
that :_ ~ ~ S2, where Q := X B Z, is holomorphic. If D is a relatively compact
subanalytic set in X, then 00 (D n S2) is subanalytic in Y and OQ f1 S2)) is
subanalytic in X.

PROOF. Since q5 is meromorphic, there exist a proper modification r ~ X
such that the restriction PQ : p-l (Q) - Q, po := is biholomorphic
and a holomorphic r - Y such that q§sz = 4$ o Po. 1; since D n S2 is

subanalytic in X, the inverse image S := is subanalytic in r. Now
the topological closure S C is compact and Y is

proper; from * it follows that (D (S) 00 (D n S2) is subanalytic in Y.
In order to show that n S2)) is subanalytic in X, set E :=

p-1 (Z). Since p is proper and ~-1 (~(S)) is subanalytic in r, it follows that

p(~-1 (c~ (S)) B E) = n S2)) is subanalytic in X. D

We will now apply this lemma in the setting where an algebraic torus T
is acting holomorphically on X.

PROPOSITION. Let X be a holomorphic T -space such that the semistable quotient
7r : X - XII T exists, and let A be a subanalytic set in X such that A -~

XII T is proper Then T - A is subanalytic in X.
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PROOF. There are coverings and {C~ } of XIIT which have the fol-
lowing properties.
(i) Va is open in XllT, and is T-equivariantly biholomorphic to a

closed analytic subset of an open semi-stable set in a T-representation W«
for each a,

(ii) for every f3 there is some a such that Cp G Va,
(iii) Cp is a compact subanalytic set in XII T for every ~8, and
(iv) (Cp) is a locally finite covering of X// T .

For := and Ap := A we have A and r A =

U T - Ap. Since 7r I A : A - XII T is proper and is locally finite, A is a
compact subanalytic set in X and IT - Ap) is locally finite; thus it is sufficient
to show that T . A~ is subanalytic in X. This follows from the following

CLAIM. Let X be an affine T-variety and let D be a compact subanalytic
set in X. Then T . D is subanalytic in X.

We prove the claim by induction over the dimension of X. We may assume
that X is irreducible. By a theorem of Rosenlicht ([Ro]), there exist a T-stable
Zariski-open subset Q of X, a projective variety Y and a rational map q5 from
X into Y such that 00 is regular, U := is Zariski-open in Y and

U is the geometric quotient of Q with respect to the T-action. Thus
T . (D n Q) = n S2 ) ) is subanalytic in X (lemma). By induction,
T . (D n (X B Q)) is subanalytic in Z := X B Q. Since Z is closed, the claim
follows. a

REMARK. In general T - A is not subanalytic for a subanalytic set A. For
example, let C* act on C x C* by multiplication on the second factor; then
A := I(!, n); n E N} is analytic in C x C*, but C* . A is not subanalytic in
C x C*.
Let G be a complex reductive group and T an maximal algebraic torus in G.

COROLLARY 1. Let X be a holomorphic G-space such that the semistable
quotient XII T exists. Then G - A is subanalytic in X for every compact subanalytic
set A in X.

PROOF.. Let K be a maximal compact subgroup of G such that G = K T K.
Then, since K . A is a compact subanalytic set, T . K . A is a subanalytic set
in X; thus G. A = K . T . K . A is subanalytic in X. D

COROLLARY 2. Let X be a holomorphic G-space such that XII T exists. Then

for every x E X and y E G ~ x B G ~ x.
PROOF. Since G. x is subanalytic, dimy (G - x B G - x)  dimx G - x for every

y E G - x B G - x ([Hi], 4.8.1). Thus dim G - y  dim G - x follows. D

COROLLARY 3.. Let N be a holomorphic G-space such that XII T exists. Then
every G-orbit contains a closed G-orbit in its closure. 

°

PROOF. An orbit of minimal dimension in G - x is closed. El



240

4. - Proper actions

If X is a holomorphic G-space such that the semistable quotient exists,
then every closed G-orbit is affine, i.e., the isotropy group is reductive. In this
section we show that this remains true if one only assumes that the semistable
quotient with respect to a maximal algebraic torus in G exists.

Let G be a Lie group and X a complex G-space. The G-action on X is
said to be proper if the map G x X ~ X x X, (g, x) - (g - x, x), is proper.
This is the case if and only if ([P])
(i) the orbit space X / G is Hausdorff,

(ii) every x E X has a compact isotropy group Gx, and
(iii) every x E X has a slice neighborhood U, i.e., a G-stable open neighborhood

U such that, for some closed Gx-stable subset S of U, the natural map
G S - U, [g, s] - g . s, is a homeomorphism.

Here G denotes the fiber bundle associated with the Gx -principal bundle
G ~ G/Gx.

In the holomorphic framework the correct analog of a compact Lie group
is a complex reductive group. In order to construct a holomorphic slice at some
orbit, it is often useful to first consider orbits with a reductive isotropy group.

Let G be a complex Lie group, and let X be a holomorphic G-space. Let
xo E X be a point with a reductive isotropy group H := Gxo and let L be a
maximal compact subgroup of H.

LEMMA 1. There exist a holomorphic Stein H-space S, So E S and an H-
equivariant holomorphic map is S - X such that is(so) = xo and the induced
G-equivariant holomorphic map c : G x H S - X, c[g, v] = 
locally biholomorphically onto an open neighborhood of xo.

PROOF. Since H fixes xo, the tangent space is an H-representation.
Let TXOX = Txo (G ~ xo) fl3 V be an H-equivariant splitting. Using Cartan’s
Linearization lemma, one sees that an L-stable open neighborhood U of xo
can be L-equivariantly identified with an L-stable closed analytic subset A in
an L-stable ball B C TXOX. Let cA : A -~ U denote such an isomorphism
with xo. Then D :- A n V is an L-stable analytic subset of the
ball Bv := B n V. It follows that S := H ~ D is a closed analytic subset of
the open Stein subset H ~ Bv of V and that the map := tAID extends to
an H-equivariant holomorphic map is := 5’ -~ X ([H], Section 1.5 Extension
lemma and Section 6.6 Complexification theorem). Thus there is an induced

G-equivariant holomorphic map t : G x H S - X, [g, v] - g . 

CLAIM. If U is sufficiently small, then i is locally biholomorphic.

Note that the claim is obvious if xo is a smooth point. In the singular case
one can argue as follows.

We fix an L-equivariant isomorphism cAl from an L-stable locally analytic
subset A I in Txo X onto an open neighborhood Ul of xo. Then there are an open
L-stable neighborhood N of 1 E G, where L-acts on G by conjugation, and an
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open L-stable neighborhood U of xo, such that N ~ U C Ul and A := is
closed in an L-stable ball B c TXOX. The G-action on X induces a local action
on U, which gives a local action on A. In a neighborhood of 0 E A the local
action is determined by a holomorphic map q5 : N x A - Ai , (g, v) -~ ~ (g , v).

Now let N be an open L-stable Stein neighborhood of eo : = 1 . H E 
and i : N -~ G a holomorphic section such that:
(i) i(eo) = 1, i (N) C N, and
(ii) r is L-equivariant, i.e., i(h. t) = for all h E L and t E N.

Then $ : N x A --~ Txo X, ~ (t, v) = q5 (-r (t), v) is an L-equivariant holo-

morphic map; since A is a closed analytic subset of B, the map ~ extends to
an L-equivariant holomorphic map li$ : N x B - Txo X such that ~ (eo, v) = v
for all V E B. Now the map GIH G ~ xo C X, geo -* g.xo, is
an injective immersion and V is transversal to xo); therefore, after

shrinking lil and B, the x Bv is biholomorphic onto its image SZ.

Thus ØD : 1 N x D - x D, is biholomorphic onto its im-

age Â := ØD(N x D) In order to show that A= QnA,, we
have to assume that N is connected and that every irreducible component
Aa of Q n A 1 contains 0 E then Da . := Aa n V is not empty and

x Da ) C Aa . From dim N x Da - codim V + dim dim 

dim (Aa n V ) + codim V = dim Da -~- codim V follows that ØD(N x = Aa .
This implies that A = Q n A 1.

Finally note that N x D can be viewed as an open subset of G x H S, where

biholomorphic on N x D. Equivariance implies that i is localy biholomorphic. 0

REMARK 1. For the proof of the lemma, one needs that the image of
H = Gxo in is reductive; in particular, the statement of the lemma
also holds if H is a compact complex Lie group, since in this case the image
of H in GL(TxoX) is compact and therefore finite. In this context the proof of
Lemma 1 is essentially due to Holmann ([Hol]).

COROLLARY 1. If the G-action on X is proper, then every x E X has a G-stable
slice neighborhood, i.e., there exists a locally closed Gx -stable subspace S of X with
x E S such that G . S is open in X and

is biholomorphic.
PROOF. Since Gx acts as a finite group on S, after shrinking S, there

exists an open neighborhood N of 1 E G, stable by Gx with respect to right
multiplication, such that

is an open embedding. Propemess of the G-action implies the existence of an
open Gx-stable neighborhood V of x in X such that f g E G; ~} c N;
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after replacing S with S n V we claim that i : G X is an open
embedding.

We have to show injectivity: for this it is sufficient to prove that g SI = s2
implies g E Gx for g E G, S. Now, from g sj 1 = s2 follows that
g - V n V # 0 and therefore g E N . Thus g = -r(u) - h for some u E N and
h E Gx (we use the notation of the proof of Lemma 1). Since h E Gx, we
have h - s 1 E S and s = s2 = Gx ) ~ s2 . The injectivity of BÎ1 implies
-r (u) = 1 and therefore g E Gx follows. 0

For the following consequence see also [Hol].
COROLLARY 2. If G acts properly on X, then XIG is a complex space. In

particular, if G is assumed to be a complex reductive group which acts properly on
X, then XII G = X / G exists. 0

REMARK 2. Let G be a complex reductive group, and let X be a holomor-
phic G-space such that the semistable quotient exists. Then the complex analytic
version of Luna’s slice theorem (see [H] or [Sn]) implies that the G-action on
X is proper if and only if dim G - x = dim G for all x E X .

Now let G be a Lie group, T a Lie subgroup of G, and assume that there
exist compact subgroups K2 of G such that G = KIT K2. Let G act

topologically on X and assume that the T-action on X is proper; then we have
the following:

LEMMA 2. If T acts properly on X, then the G-action on X is proper.
PROOF. We have to show that any sequence (gn , xn ) in G x X such that

(gn · xn , xn ) converges to x X has a convergent subsequence with
~ x0 ) ·

For this, we write gn = kntnhn with kn E E T, hn E K2. We may
assume that ko - lim kn and ho - lim hn exist; since lim(kntnhn) · xn - Yo, it
follows that lim hn = ho xo and lim tn · (hn ~ xn) = yo. The properness
of the T-action implies that a subsequence of (tn ) converges to to E T ; thus

(gn) converges to kotoho. D

REMARK. If G is a reductive group and T is its maximal torus, the same
statement is proved in [Mu], chap.II, Proposition 2.4. for algebraic actions.
There the use of the decomposition G = KIT K 2 is replaced by the use of a
theorem of Iwahori.

For a complex reductive group G with a maximal algebraic torus T, this implies
the following (see [BB-S1] for a similar statement for algebraic actions):

COROLLARY 3. If X is a holomorphic G-space such that the geometric quotient
X / T exists, then the geometric quotient X / G exists. 

’ v

Let H be a closed complex subgroup of the reductive group G. If for
X : = the semistable quotient XIIT exists, then our main result in this
special case simply states that H is reductive. For this we need the following
decomposition theorem for complex linear groups.
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PROPOSITION 1. Let G be a connected complex Lie subgroup of a complex linear
group GL(W). Then G is a semidirect product G = H - U, where H is a complex
reductive group and U is a normal solvable simply connected complex subgroup
of G.

This result is well known. It is the complex analytic analog of the same
statement for real Lie groups [Ho] (p. 223); for the convenience of the reader
we give here the’ proof in the complex setting.

We need the following remark.

LEMMA 3. Let G be a connected complex Lie group and A a connected closed
normal complex subgroup of G, which does not contain a non-trivial compact sub-
group. If G/A is reductive, then A is a semidirect factor of G.

PROOF. Let K be a maximal compact subgroup of G. Then, since A
is connected, n ( K ) is a maximal compact subgroup of G / A ([I]), where
n : G -~ G/A denotes the quotient map; thus, by the assumption on A,
the restriction isomorphism. Since G/A is the uni-
versal complexification of the compact the inverse homomorphism
a : G, or := extends to a holomorphic homomorphism
aC : G/A - G. D

PROOF OF PROPOSITION 1. Assume that the commutator subgroup G’ of G
is reductive. Then the radical R of G is abelian, and therefore R = Lc x V,
where L -= (Sl)l is the maximal compact subgroup of R, and V is a vector

group. Note that the automorphism group of Lc- is finite and therefore Lc is
central; thus, if we write G = SR, where S is a semisimple subgroup of G,
the group H = S Leis reductive and G = H ~ V is a semidirect product.

Note that G’ = G’, where G denotes the Zariski-closure of G in GL (W).
If G’ is not reductive, it has a non-trivial unipotent radical Ru, which is closed
and normal in G and in G’; the group G := G/RU is a linear group, because
it is contained in the linear algebraic group Apply induction to the
quotient, i.e. G = fi . U is a semidirect product, where H is reductive and U
is a simply connected solvable normal subgroup of G. If 7r : G - G is the

natural map, define U : := then is reductive and an application
of Lemma 3 shows that G = H ~ U is a semidirect product. D

PROPOSITION 2. If for X : := G / H the semistable quotient X ll T exists, then H
is a complex reductive group. In particular, X is affine.

PROOF. Let H ° denote the connected component of the identity of H.

Since H° is a connected complex linear group, there is a closed complex
normal simply connected solvable subgroup U of H°, and a complex reductive
subgroup L of H° such that H° = L ~ U is a semidirect product. Thus the

fibration G/H° has L = HOIU as typical fiber and therefore it is a

Stein map; moreover, since the fibration G /H° - G / H is a covering, it is also

a Stein map: thus G / H is a Stein map. Hence, for Y : := the

semistable quotient YIIT exists; but, since U is solvable and simply connected
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and the T -isotropy groups are reductive, the T-action on Y is free. Therefore
G acts properly on GI U, and this implies U = {e}, i.e., H° is a reductive

group.
We have to show that H/H° is finite: for this, set No := N/H°, where

N := NG(Ho) denotes the normalizer of Ho in G. The groups N and No are
reductive and we may assume that the maximal torus TN of N is contained
in T and that TNO : := TN / TN n H° is a maximal algebraic torus of N°; note
that the fiber X N : - N/ H of the fibering is closed in X =

G/H and therefore XNIITN exists. Since XN = NIH = (NIHO)I(HIHO) =
Noll’, where r := H/H° is a discrete subgroup of No, the semistable quotient
XNII TNO exists. But TNO is a maximal torus of the reductive group No and r
is a discrete subgroup, thus TNO acts properly on XN = N°/ r (Remark 2), and
therefore No also acts properly: this implies that r = H/H° is finite. 0

REMARK. For an algebraic proof see Proposition 2.3 in [BB-S l].

COROLLARY 4. If X is a holomorphic G-space such that XII T exists, then every
closed G-orbit in X is affine. El

5. - Stein neighborhoods

For the existence of a semistable quotient, it is necessary that every closed
G-orbit has a G-stable open Stein neighborhood. In this section we show that
this already follows if one assumes the existence of a semistable quotient with
respect to a maximal algebraic torus in G.

Let K be a compact Lie group, and let Xj be complex K-spaces such that
the semistable quotients exist, j = 1, 2. Let 7rj : Xj -~ denote
the quotient map. The following is a consequence of the holomorphic analog
of Luna’s Slice Theorem ([H], Section 6.3).

PROPOSITION 1. Ifq5 : X 1 -~ X 2 is a locally biholomorphic K -equivariant map
which maps a K-stable closed analytic subset A 1 biholomorphically onto a closed
analytic subset A2 of X2, maps a TCl-saturated open neighborhood of A I
biholomorphically onto a 7r2-saturated open neighborhood of A2.

PROOF. The map q5 induces a holomorphic such
that:

(i) q5 maps biholomorphically onto 7r2(A2), and

(ii) 0 is locally biholomorphic along 
Since 7rj(Aj) are closed analytic subsets of Xj /1 K, this implies that 0

maps an open neighborhood Q 1 of biholomorphically onto an open
neighborhood Q 2 of 7~2(~2). Thus we may assume that 0 : X211K
is biholomorphic; by applying Luna’s Slice Theorem again ([H], Section 6.3),
it follows that X2 is injective and therefore an isomorphism. 0
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Now let G be a complex reductive group, T a maximal algebraic torus in G,
and let X be a holomorphic G-space such that XIIT exists.

PROPOSITION 2. Every closed G-orbit G - xo in X has a G-stable open Stein
neighborhood.

The proof of Proposition 2 requires some preparation.
Let K be a maximal compact subgroup of G, and U a K-stable subset of X;

we say that U is orbit connected if for every x E U the set {g E G; g -x E 

is connected. Here K acts on G by multiplication from the left. A K-stable
subset U is said to be orbit convex if for all x E U and ~ E Lie K the set

It E R; exp it~ - x E U} is connected.
In the following we fix a maximal compact subgroup K of G such that

K f1 T is a maximal torus in K. The following was observed in a slightly
different form by Koras ([K]).

LEMMA. A K-invariant open subset U of X, which is orbit connected with
respect to the T -action, is also orbit connected with respect to the G-action.

PROOF. We may assume that G, and therefore also K, are connected; since
for every x E U and k E K we have it E T; ktk-1 - x E U } = It E T ; t -
(k-1 - x ) E UI, the set {t E T; ktk-1 - x E U } is connected for every k E K
and X E U.

Now assume that for g E G and X E U we have g - X E U. Using the
decomposition G = KTK we can write g = k,kot,ko 1 where k1, ko E K and
tl E T ; from x E U it follows that there is a path a : [0, 1] ~ T with
a (o) = 1, a(l) = tl and a (s ) - x E U for all s E [0, 1]. Let [0, 1] - K be a
path with = 1 and = then y : [0, 1] - G, y(s) = 

1

satisfies y (0) = 1, y(l) = g and y(S)-X E U for all s E [0, 1]. D

Let H be a complex reductive subgroup of G such that L := H n G is
a maximal compact subgroup of H. Let V be an H-representation space, and
identify with the corresponding subsets of the zero
section in G x H V. The following is proved in [H].

Every open neighborhood U of K / L in G x H V contains a K -invariant open
Stein neighborhood Q of K / L in G x H V which is orbit convex with respect to G.

PROOF OF PROPOSITION 2. Since G - xo is a closed orbit in X, the isotropy
group H := Gxo is reductive; further we may assume that L := Kxo = K n Gxo
is a maximal compact subgroup of H. By the Lemma 1 in Section 4, there
exists a locally biholomorphic G-equivariant map q5 : G x H S --~ X, where S
is an open H-stable neighborhood of zero in an H-representation space, which
maps G/H biholomorphically onto its image; thus 0 maps a T-stable open Stein
neighborhood U of G/H in G x H S biholomorphically onto its image. There
exists a K-invariant open Stein neighborhood S2 C U of A"/L in G x H S which
is orbit convex with respect to G. Hence, after identifying S2 with 0(0), we
see that K - xo has a K-stable open Stein neighborhood S2 which is orbit convex
with respect to T. This implies that S2 is orbit connected with respect to G as
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a subset of X, and therefore G ~ S2 coincides with its universal complexification
~2~ ([H]) which is a Stein space. D

6. - Existence of semistable quotients

Let G be a complex reductive group, l a maximal compact subgroup, and
T a maximal algebraic torus such that G = let X be a holomorphic
G-space. The following are used in the proof of the main result of this section.

LEMMA 1. Let L~ be T -invariant subsets of X such that Ul rl U2 = 0. Then,

for any subsets Uj C we have G - Ul n G - U2 = 0.

PROOF. Since G = we have that

Thus the lemma follows. D

LEMMA 2. If XII T exists, then two different closed G -orbits in X have disjoint
G-stable open Stein neighborhoods which are G-complete with respect to G.

PROOF. Let Yj be closed G-orbits, and let 1, 2, be T-stable open
neighborhoods of Yj such that U1 f1 U2 - 0. Since Yj is K stable, there

exists an open K-stable neighborhood of Yj which is contained in By
Lemma 1, there exist disjoint G-stable open neighborhoods Uj of Yj; moreover,
we may assume that U~ are open Stein subspaces of X (see Section 5). Since

Aj := X B Uj is closed, it follows that Ai := = K . is closed

(Section 2); thus 0 := X B Aj C Uj are G-complete with respect to G in
X. Let : Uj 2013~ denote the quotient map; the semistable quotient

exists, since Uj is Stein. Now, is an open neighborhood of
qj := thus, there is an open Stein neighborhood Qj’ of qj in UjllG
such that Vj :- c ~/. Since Vj is G-complete in Uj and 0 are

G-complete in X, this implies that Vj is G-complete in X. D

THEOREM. A semis table quotient XII G exists if and only if XII T exists.

PROOF. We already proved that the existence of XII G implies that XIIH
exists for any reductive subgroup H of G (Section 2).

Thus assume that XII T exists. Then, since for every x E X the closure
of G . x contains a closed orbit, and closed orbits have open G-stable Stein
neighborhoods which are G-complete with respect to G, there is an open cov-
ering { U« } of X such that Ua is G-complete with respect to G and Stein; thus
the semistable quotients exists and can be glued together. Since closed
G-orbits can be separated by G-complete open G-subsets, the resulting space
X // G is Hausdorff, and X // G is a semistable quotient of X. 0
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In contrast to the algebraic case, the existence of semistable quotients for
all one-dimensional algebraic subtori is not sufficient in the above Theorem. In
order to give a concrete example, we consider a lattice r of rank 2n - 1 in

en, and denote by V the 2n - 1-dimensional real subspace of Cn spanned by
r; moreover we choose r such that:
(i) ~n is a direct factor of r, i.e., r = ~n E) A for some sublattice A, and
(ii) n V = (0).

Thus T := (C*16’~ = acts holomorphically and transitively on X :=
en/r = Since is not finite, X is not a Stein manifold
and therefore a semistable quotient of X with respect to T does not exist.

We claim that every one-dimensional algebraic subtorus A of T acts prop-
erly on X; in particular, X/A is the semistable quotient of X with respect to
A. In order to see this, it is sufficient to show that the image A of A in

en I r = is not compact and closed. We may assume that A
is the image of the line e. a C Cn with respect to the quotient q : en -* cCn / r,
where a E 101; the condition (ii) implies that q maps isomorphically
onto its image R. Moreover maps R isomorphically
onto but p is a trivial fibration and therefore R is a closed subgroup
of X = cCn / r. Finally, A = S ~ R, where S = a ) is the maximal compact
subgroup of A, implies that A is closed in X.
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