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Deterministic Nonlinear Filtering

WENDELL H. FLEMING

Dedicated to the memory of Ennio De Giorgi

Abstract. A model for nonlinear filtering is considered in which errors in state
dynamics and observations are modelled deterministically. Mortensen’s deter-
ministic estimator and a minimax estimator are considered. A risk sensitive
stochastic filter model with small state and observation noise intensities is also
considered. The minimax estimator is obtained in the zero noise intensity limit,
using asymptotic properties of a pathwise interpretation of the Zakai stochastic
partial differential equation.

1. - Introduction

In general terms, the filtering problem can be stated as follows. Let xT
denote a state (or signal) at time T and yT an observation at time T. The
observation depends on both xT and certain measurement errors. Estimates eT
for xT are allowed which depend on past observations yt for 0  t  T.
The goal of filtering is to find estimates which are "best" or at least "good"
according to some criterion. Moreover, to be useful in applications, filtering
algorithms must be computationally implementable in real time.

In the traditional stochastic filter model, state dynamics are governed by
white-noise driven stochastic differential equations, and observation errors are
also modelled as white noises. The objective is to minimize an expected mean
squared estimation error criterion. For linear-gaussian filter models, the Kalman-
Bucy filter provides a highly successful solution. This filter involves only the
solution off-line of a matrix Riccati differential equation and the solution on-line
of a linear stochastic differential equation for the estimate. See for example
[FR, p. 136]. For nonlinear stochastic filter models, the expected mean squared
estimation error depends on the conditional distribution of the state at time T
given past observations for 0  t  T. Nonlinear filtering theory reduces
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the problem to the solution of the Zakai stochastic PDE for an unnormalized
version of the conditional density, followed by integrations [Ku]. Except in the
lowest state dimensions this is a computationally formidable task. However,
a splitting method considered by Rozovskii and associates is useful for doing
part of the computation off line rather than in real time [LMR]. In engineering
practice, extended Kalman filters are frequently used instead. The extended
Kalman filter approximation has been rigorously justified in some special cases,
in which observation noise is of low intensity. See Picard [P].

Instead of the stochastic filter model, we consider in this paper a determin-
istic model described in Section 2. Errors in the state dynamics and observations
are modelled as deterministic functions (called disturbances) rather than as white
noises. See (2.1), (2.2). The unnormalized conditional density is replaced by a
certain "information state" function, which in our notation is - V (T , x ), where
V (T, x) is defined by minimizing a least squared disturbance error criterion.
See (2.5). The function V evolves according to the first-order PDE (2.6) of
Hamilton-Jacobi-Bellman type, and is interpreted as a viscosity sense solution
to (2.6). This function V is central to the analysis. In Section 3 we consider
the solution operator ST, which maps initial data 0 for the PDE (2.6) to the
solution V (T, x). The solution operator is "linear" when considered in the so-
called max-plus algebra [AQV] rather than with respect to ordinary addition and
scalar multiplication. See (3.3), (3.4). Another important property is that the
solution operator preserves semiconcavity (Lemma 2.5). These properties are
useful to obtain a representation (3.7) of solutions in terms of quadratic basis
functions.

The deterministic approach to filtering was pioneered by Mortensen [Mo].
Mortensen’s estimator xT minimizes V(T, x) as a function of x. Thus, iT
maximizes the information state - V ( T , x ) . In Section 4 we consider another
estimator 8$, called a minimax estimator. It is a slight variant of the minimax
estimator introduced by McEneaney [Mc2]. The minimax estimator minimizes
over e the maximum over x of el) - V ( T , x), where it &#x3E; 0 and t(r)
represents the loss from absolute estimation error r. This minimax point of
view in filtering is similar in spirit to the robust approach to control (also
called H-infinity control theory). See [BB].

In Section 5 we return to a stochastic filter model. However, instead of the
traditional expected mean square error criterion, an expected exponential-of-loss
criterion is minimized. The estimator obtained in this way is called a risk
sensitive filter. Hijab’s thesis [H] obtained the deterministic information state
via WKB -type asymptotics of the unnormalized conditional density, as a state
and observation noise intensity parameter E tends to 0. See also [JB] for a proof
of this kind of result using viscosity solution methods. In order to compare
stochastic and deterministic filter models, so called pathwise filtering theory
is needed [Da] [Mi] [FP]. Under some simplifying assumptions, we sketch a
stochastic control proof of this asymptotic result (Lemma 5.1 (a)). Then we

prove convergence of the risk sensitive estimate to the minimax estimate as

E ~ 0 (Theorem 5.2).
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The results presented here are part of ongoing joint research with W. M. McE-
neaney. The mathematical framework, and similar results under a different set of

assumptions, have been announced in [FM2]. In the present paper we impose
restrictive assumptions as needed to avoid various technical issues addressed
in [FM2] and its more detailed version which is in preparation.

2. - Deterministic filter model

In this paper we are concerned with the following model. The state xt which
is to be estimated evolves according to the differential equation

where wt is the state disturbance. The observation yt at time t satisfies

where vt is the observation disturbance. Here xt E E JRm, E RP.
We assume throughout:

Here f, is the matrix of partial derivatives of f with defined similarly.
An estimator is a function which assigns to each observation trajectory Y. and

time T an estimate eT for the unknown state xT . It is required to be nonan-
ticipative, in the sense that yt = yt for 0  T imply that the corresponding
estimates satisfy eT = eT . Following a rather common abuse of terminology,
we shall also refer to eT as the estimator.

Mortensen’s deterministic estimator [Mo] is described as follows. Let 4)
satisfy:

We regard -4J(xo) as a measure of the likelihood of unknown initial state xo.
(Later additional assumptions (A3)-(A5) will be made as needed.) Let

Given observations yt for 0 T, one wishes to minimize J among all

xo, w. v, consistent with the observations. Suppose that the minimum occurs at
X0, w*, v*, and let xt be the corresponding solution to (2.1). The Mortensen
estimator at time T is xT = xr. (If the minimum is not unique, then iT need
not be unique.)
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It is convenient to describe the Mortensen estimator in the following way.
We fix the final state x and solve (2.1 ) backward in time. An obser-
vation trajectory y. is fixed throughout the discussion which follows. We can
rewrite (2.3) as

For given (T, x), a standard existence theorem in control theory implies that
there exists w * which minimizes J. See [FR, Cor. III. 4.1 ] .

Let K c 1 be any compact set. There exists a constant BK such that
where I . 112 is the norm in Z~[0, T], provided that ( T , x ) E K.

This follows from (A2), (2.3’) and 0 :s J(T, x ; J(T, x; 0). It then suffices
to consider disturbances w. with If xt is the corresponding solution
to (2.1 ) with xT = x, then R for some R depending only on K. We call
this the range of dependence property. Let us next obtain a L 00 bound for w7:
LEMMA 2.1. (a) For every compact set K C JRn+1 there exists MK such that

MK provided (r, x ) E K.
(b) Lipschitz and or is constant, then M where M depends only

on T.

PROOF. It suffices to assume that ~ is smooth, by approximating ~ uniformly
on compact sets by smooth functions which satisfy uniform local Lipschitz
bounds. By Pontryagin’s principle [FR, Sec. II. 11 ], 2 I w I2 -~- pt ~ ~ (xt ) w is
minimum for w = w7, where

with po = -Øx (xõ) which is bounded by the range of dependence property.
From (2.4) and (AI)

for suitable Ci 1 depending on K. BK, this implies that log(I +
is bounded, and hence also pt and This proves (a). If 0 is Lipschitz

and o- is constant, then po = is bounded and o-x = 0. A bound
for pt, and hence also a bound for w7, which depends only on T is obtained
immediately from (2.4). 0

Following the dynamic programming method consider the optimal cost func-
tion

One can interpret - V (T, x) as a measure of the likelihood of state xT = x at
time T. Sometimes - V (T, .) is called the information state at time T. The
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Mortensen estimator xT E argminx V (T, x) is in this sense a maximum likelihood
estimator for xT . The function V (T, .) satisfies a local Lipschitz condition,
uniformly for T in any finite interval. To see this, by the range of dependence
property it suffices to consider q5 Lipschitz on R" and then to use Lemma 2.1 (a)
and a standard argument [FS, Sec. 4.8]. Another standard argument using the
dynamic programming principle gives a uniform local Lipschitz estimate for
V ., x). Thus, V (., .) is locally Lipschitz.

Moreover, V satisfies in the viscosity sense the dynamic programming PDE
(also called Hamilton- Jacobi-Bellman PDE)

with initial data

Here a = aa’ where ’ denotes matrix transpose.
In order to obtain uniqueness of viscosity solutions to (2.6)-(2.7), further

assumptions on the initial data 0 are needed. A general uniqueness result when
I grows at most linearly in Ixl as Ixl ~ oo is given in [Mcl]. In the

present paper, this uniqueness issue will not arise. We remark that if 0 is

Lipschitz and or is constant, then V(T, .) satisfies a uniform Lipschitz condition
on any finite time interval. Uniqueness holds in the class of such viscosity
solutions.

In addition to (A 1 ) and (A2) let us now assume

LEMMA 2.2. For each T &#x3E; 0,

SKETCH OF PROOF. If w* is minimizing and xt the corresponding solution
to (2.1 ) with xj. = x, then by (2.3’)

If V (T, xn ) is bounded for a sequence xn with I --+ oo, then the correspond-
ing xon is bounded by (A3) and w n is bounded in L2-norm. However, this is

impossible by (2.1) and (Al). D

In particular, V (T, .) has a minimum at some xT (Mortensen estimator).
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REMARK 2.3. If f (x) - = constant, h(x) = Hx, and 0 is quadratic
the model (2.1 )-(2.2) is the deterministic counterpart of the stochastic Kalman-

Bucy model. In this case, the Mortensen filter agrees with the Kalman-Bucy
filter. It satisfies the linear differential equation

where can be precomputed from the solution to a matrix Riccati differential
equation. For nonquadratic 41, there are similar asymptotic results as T ~ oo.
See formula (2.13) in the 1-dimensional case and discussion after it.

REMARK 2.4. In the nonlinear case there is an analogue of (2.8). For
notational simplicity, let xt , yt be scalar valued (n = p = 1). Suppose that V is
smooth (class C2) in a neighborhood of (T, iT) and that Vxx (T, xT) &#x3E; 0. By
differentiating the PDE (2.6) with respect to x and the equation Vx (T, XT) = 0
with respect to T, one gets

with initial data xo E Unfortunately, Vxx is not known without

solving (2.6)-(2.7); and hence (2.9) does not provide a finite dimensional proce-
dure for finding iT. In engineering practice, extended Kalman filters involving
repeated linearizations of (2.1) and (2.2) are frequently used instead. At the
end of Section 4, we will consider the special case of one to one observa-
tion function h and small observation parameter p. In that case a simplified
version (4.5) of equation (2.9) provides a robust filter.

SEMICONCAVITY. A function fjJ is called semiconcave if for every R there
exists CR such that

(2. 1 0) x - x - 1C 2(2.10) 2
is concave on the ball  R } . In addition to (Al) let us now assume:

bounded.

LEMMA 2.5. If 0 is semiconcave, then V (T, ~) is semiconcave. In fact, there
exists rR (T ) such that for 0  T  T, R &#x3E; 0

is concave on the ball I  R I -
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SKETCH OF PROOF. Let

where r = rR (T) is to be chosen suitably. Since the infimum of any family of
concave functions is concave, it suffices to show that j(r, . ; w.) is concave on

R} for each w.. By smoothing via convolution with approximations to
the identity, we may assume that 0 is smooth. Then semiconcavity is equivalent
to CRlçl2 for all ~ , when R. To show concavity of J it

suffices to show that

whenever Ixl :s R = 1. The solution xt = to (2.1) depends
smoothly on the final data x = XT. Let 0161/, 0161? denote the first and second order
derivatives of xt in the direction ~ . Then

By Lemma 2.1 we may assume that MK, where K = [0, T] x R }.
Then IXol:S R I for suitable R I and hence ~o  Moreover,
from (A 1 ), (A2) and (A4) there are bounds for I~/I, 1 and all other terms
on the right side of (2.2). This implies (2.11), for suitable r. a

LARGE TIME BEHAVIOR. We recall that is interpreted as a measure
of the likelihood of initial state xo. The function 0 is often chosen rather

arbitrarily. It is an interesting question to describe conditions under which the
dependence of the Mortensen filter on 0 is lost asymptotically as T --~ oo.

For the stochastic (white noise disturbance) counterpart of the model which we
consider, see [OP] and references cited there for results of this kind.

Let us consider only the linear model in Remark 2.3, but with 0 not neces-
sarily quadratic. (For the stochastic model, this corresponds to linear dynamics
and observations, but nongaussian initial data.) As in Remark 2.4, for simplicity
we consider the 1 dimensional case. Equation (2.9) now becomes

We assume that H # 0 and that o is smooth (class C2) with 0  C. We

will show that V is also smooth with &#x3E; 0, and that as T --~ oo, Vxx (T , XT)
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tends at an exponential rate to a constant K. See formula (2.21). The constant
K is the same one obtained via the Kalman-Bucy filter, and does not depend
on q5. Since f (x) - Ax, h(x) = Hx, a is constant and 0 is strictly convex,
J(T, x ; w.) is strictly convex by (2.1) and (2.3’). Hence the minimizing w* is

unique. Moreover, by Pontryagin’s principle wt - -cr pt with pt as in (2.4).
Then (2.1), (2.4), with xt become

These are the characteristic equations for the PDE (2.6), for this choice of

f, h, a. Let xt (a), pt (a) denote the solution to (2.14) with initial data

Given T, x, we have xt = for a unique a * such that x_= xT (a * ) .
The method of characterisitics provides a smooth solution V (T, x) to (2.6)-

(2.7) on some interval 0 s T  T1, and V(T, x) = V(T, x) in this interval. Let
us show that TI = oo and that Vxx (T, x) &#x3E; 0. For 0  t  T1,

Let §1 = axt/aa, qi = -apt/aa. By (2.14)

with the initial data ~o = 1, 170 = &#x3E; 0. An elementary analysis shows
that §1 &#x3E; 0, r~r &#x3E; 0 for all t &#x3E; 0. Since &#x3E; 0 the mapping a ~ xt (a )
is one-to-one, and V(r,jc) = for all T. Thus T, = Moreover,
by (2.17), Vxx &#x3E; 0. Since Vxx = we have by (2.17) and (2.18) for each
fixed a

where Vxx = and the initial data are = Thus,
rt = solves the Riccati differential equation it = g (rt ), where

Then g ( K ) = 0, g’(K) = -h, where
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For initial data 0  ro  C, there exists B such that I rT - Be-ÀT for
all T. By choosing a such that xT (a) = iT,

Thus, (2.13) is asymptotically as T --~ oo the same as for quadratic initial
data. From this we wish to obtain a result which says that, asymptotically as
T 2013~ 00, iT loses dependence on 0.
By (2.20), (2.21) we can rewrite (2.13) as

for some fl. Consider another initial $ with 0  $(x) :s C. The corresponding
Mortensen estimate iT also satisfies (2.22), with 1/IT replaced by which also

satisfies (2.23). Let ~T = Then

Let us assume that the state and observation disturbances satisfy

An elementary analysis shows that I and I are all as t -

0o for any it &#x3E; A+, where A+ = max(A, 0). By (2.20b), A+  h/2.
From (2.23), (2.24) it then follows that ~T -~ 0 as T ~ oo. The author
wishes to thank D. Hemandez-Hemandez for helpful comments concerning this
argument.

3. - The solution operator

Let ST denote the nonlinear operator which maps the initial data 0 in (2.7)
to the optimal cost function V defined by (2.5):
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Recall that V satisfies the PDE (2.6) in the viscosity sense. Let C denote the
cone of all functions 0 such that q5 is semiconcave and satisfies (A2), (A3).
By results of Section 2, ST maps C into C. Moreover,

Moreover, the solution operator has the following important property. Consider
a collection Z of functions qlz E C.

LEMMA 3.1. If 0 (x) = then

PROOF. Since 0 j qlz for all z, (3.2) implies that STØ(X) is no more than the
right side of (3.4). Given (T, x), let w* minimize J(T, x; wJ with associated
solution x * to (2.1), xT = x. = for some ~ E Z and hence

where for J~ we replace 0 by ql, in (2.3’). D

Properties (3.3), (3.4) state that the solution operator ST is "linear", not with
respect to the usual addition and scalar multiplication but when considered with
respect to the so-called "max-plus" algebra [AQV]. We shall return to this point
in Section 5 in discussing the small noise asymptotics of linear, parabolic PDEs
which arise in risk sensitive filtering. See Remark 5.3.

BASIS FUNCTIONS. It is often useful to approximate solutions to linear, time-
dependent PDEs by linear combinations of solutions which have initial data
chosen from a given set of basis functions. Something similar can be done for
solutions V(T, x) to (2.6)-(2.7) provided we work in the max-plus algebra. Let
us consider "basis functions" of the form

where for notational simplicity we suppress the dependence of 0, on C.
We wish to represent a semiconcave function 0 in terms of basis functions q5,.

For simplicity, let us first assume is concave on R’ for

some C 1. Let C &#x3E; Ci 1 and as in (2.10) ~ (x ) Then 0 is

concave on R" and -~ -oo as oo. Let a(z) be the dual of
the convex function -4&#x3E;:
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Then - $(x) is the dual of the convex function a (z) [RW, Chap. 11 ] :

or equivalently

By (3.3) and (3.4)

To remove the global restriction above on q5, let 0 be semiconcave. Given a
compact set K, it suffices to consider disturbances w. such that R where
R depends only on K (the range of dependence property in Section 2.) We
can choose q5 such = q5 (x) whenever Ix I :S R and for suitable CR

is concave on R" with Ixl ~ oo. Then = 

for all (T, x) E K and we can replace q5 by o in (3.7). For example one can
choose

where B is sufficiently large and 9 is smooth with = 1 for Ix (  R and

9(x) = 0 for 
Basis representations may be useful in connection with a numerical technique

which does part of the task of solving (2.6)-(2.7) "off line" rather than in real
time. This will be discussed in a forthcoming paper with McEneaney. A

similar approach for solving the Zakai stochastic PDE of nonlinear filtering was
developed by Rozovskii and associates. See [LMR].

4. - Robust filters

The definition of robust filter which we will use is a slight modification of
one introduced by McEneaney [Mc2]. Let eT be any estimator for the state xT
at time T. We consider a measure l(lxT - eT I) of the loss from estimation
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error xT - eT. In [Mc2] the quadratic loss function .~ (r ) = is used. We
assume:

Let it &#x3E; 0 be a parameter. We say that eT achieves robust estimation at level
&#x3E; if, for all xo, w., v.

If one sets y 2 = A- 1, then y has the role of a familiar H~ - bound parameter
in robust control and estimation. See [BB] [Mc2]. Since f"(0) &#x3E; 0, for
small estimation errors the left side of (4.1) behaves nearly like a quadratic.
However (A5) allows for loss functions with less than quadratic growth of t(r)
as )r) -~ oo. In Section 5 we will consider linearly growing i (r), such as for
example t(r) = (1 + r2)1/2 _ 1.

By (2.3) and (2.5), eT achieves robust estimation at level /t at time T if and
only if

for all x E R’~. Under rather general assumptions we should expect that there
are many robust estimators eT if &#x3E;  A*, and no robust estimators if &#x3E; &#x3E; it*,
for a certain critical parameter value /t*. See [Mc2] for the case of quadratic
t(r) and quadratically Let us consider the following estimator,
introduced in [Mc2].

MINIMAX ESTIMATOR. Let

We assume that the maximum is attained (finite). By (A5) the function 
is strictly convex on R’ for each x and moreover

This implies that G(T,.) is strictly convex on R’ and has a minimum at a
unique ~0. We call 8$ the minimax estimator for xT . By (4.1’) the minimax
estimator 8$ is robust if and only if

If the min and max are taken in the opposite order then
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and the Mortensen estimator Jcr attains the maximum over x. In general,
min max &#x3E; max min and 8$ is not the same as XT.

EXAMPLE 4.1. Take T = 0, n = 1 and

with 0  a  1, A calculation shows that 8g = 0 is robust and that
the minimum of 0 (x) occurs at 0. D

On the other hand, if max min = min max, then 8$ = XT. In particular, this
saddle point property holds if el) - V(T, x) is concave in x, since
this function is convex in e. For instance, this happens in the Kalman - Bucy
setting (Remark 2.3) with 0 (x) and t (r) quadratic. Then Ilx - el2 - V ( T , x )
is quadratic, and concave in x for it  ~ * where &#x3E;* is the critical parameter
value.

SMALL OBSERVATION NOISE. When p is small in (2.2), then can be
estimated with small error. We call this the case of small observation noise. In

general, the filtering problem has no easy solution for small p, or even for the
case p = 0 considered in [JL]. We consider here only the following easy case
in which states and observations have the same dimension n = p = 1 and h is
one-one with Lipschitz inverse:

Following an argument in Picard [P], for the corresponding stochastic small
observation noise model, the following proposition provides an easy way to
generate robust filters, in this special case.

PROPOSITION 4.2. Assume (4.4) and let 1/1. be any bounded function such that
1/It ~ c &#x3E; 0. Define the estimator eT by

with initial data eo. Let 0 (x) = k(x - eo)2 where k &#x3E; 0 and l(r) = !r2. Then
&#x3E; 0, To &#x3E; 0 there exists po &#x3E; 0 such that eT achieves robust estimation at

level tt for T &#x3E; To and 0  p  po.

PROOF. We may assume that hx &#x3E; 0. By subtracting (4.5) from (2.1), we have
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By using the inequality 2ab  and the boundedness of and

1/1’t, we obtain for small p

The first term on the right side is no more if T &#x3E; To &#x3E; 0 and p is
small enough (p  po . ) 0

Under the special circumstances of Proposition 4.2, it seems likely that the
minimax and Mortensen estimators are the same. It would be interesting to
find choices of 1/It in (4.5) which give especially good approximations to the
Mortensen estimator iT. (See [P] for detailed analysis of a corresponding
question in the stochastic model, in which xT is replaced by the conditional
mean.) One possibility is to find 1/IT from (2.9) with Vxx (T, xT) replaced
by an approximation obtained by linearizing f (xt ) and h (xt ) about f ( yt ) and
h (yt ), and a quadratic appromiation to ql (xo) about 0(yo). The solution to this
linear-quadratic approximation suggests that pvxx (T, iT) is bounded below by
a positive constant if T &#x3E; To &#x3E; 0 and p is small.

REMARK 4.2. A more general formulation of robust filtering involves esti-
mation errors over 0 T as well as at time T. Let i (r) = ! r2. Then the
formulation in [BJP] requires that, for all xo, w., v.

where ~c 1, /-t2 are nonnegative parameters (not both 0.) In (4.1 ) we took &#x3E;1 =

it, A2 = 0. Other authors [DBB] [Kr] took Al = 0, tt2 &#x3E; 0. When ~2 &#x3E; 0 the

analysis becomes more complicated since the dynamics of an information state
function V (T, x), analogous to our V (T, x), depend on the estimation trajectory
e, which is to be chosen optimally. Under restrictive assumptions there is an

analogue iT of the Mortensen estimator iT, obtained by minimizing V(T, .)
[Kr, Thm. 4.17]. The function V satisfies an equation (or inequality) rather
similar to (2.6). However, it is not a PDE (or partial differential inequality)
since a term involving IX - XT 12 must be added to the right side of (2.6). See
[Kr, formula 4.4.12]. The robust filtering problem with it2 &#x3E; 0 and = 0 is a

special case of a nonlinear H,,,-control problem with partial state observations.
The control is the estimate et, which affects the running cost but not the state
dynamics. The result in [Kr] just mentioned is an instance of a certainty
equivalence principle in control. See also [JBE, Section 4.6]
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5. - Risk sensitive filters

Instead of the deterministic model in Section 2, let us now consider a stochas-
tic filter model for system states and observations. To simplify the presentation,
let us make in this section the following assumptions:

In addition, we only sketch various arguments which are well known and are
given in more detail elsewhere. The development will be similar to that in [FM2]
where a technically more difficult set of assumptions is made (including
nonconstant, O(x) quadratically growing as Ix I - oo.)

Let XI denote the state process and Yt an accumulated observations process.
They satisfy stochastic differential equations

where e &#x3E; 0 is a parameter and B., E. are independent Brownian motion pro-
cesses. Moreover, Xo is independent of B., B. and has density ks exp[-E-10(x)l
where ks is a normalizing constant. The traditional nonlinear filtering problem
is to find a minimum expected least squares estimate eT for X’,, such that eT
is measurable with respect to the a - algebra generated by the accumulated
observations Yt for 0 T. For the risk sensitive filter, instead of expected
least squares, expected exponential-of-loss is to be minimized. Thus, eT is
chosen to minimize 

......

where JL &#x3E; 0 is a parameter.
The risk sensitive filter problem can be restated in terms of an unnormalized

conditional density q~ (T, x), which satisfies the Zakai stochastic PDE

with initial data

Here ,C~ is the generator of the Markov process Xr :
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and ,C~ is the (formal) adjoint of Le. See for example [Da] [Ku]. The risk
sensitive filter problem can be reformulated as one of choosing e = 8§l which
minimizes

By the estimate (5.12) below, decreases to 0 at an exponential rate as
Ix ~ oo, which assures finiteness of the integral for small enough it.
We wish to show that the optimal stochastic risk sensitive estimator tends

to the deterministic minimax estimator in Section 4 as 8 ~ 0. This cannot be
done directly, since a fixed observation function Y. is given in the deterministic
filter model, while Y *8 is a nowhere differentiable sample path of a stochastic
process. This apparent difficulty is avoided by using pathwise nonlinear filtering
theory. This provides a version of the unnormalized conditional density process
q’ which "depends continuously" on the accumulated observation sample paths.
See [JB] [Da] [FP]. By using pathwise filtering theory it suffices to consider

any fixed smooth (class C 1 ) accumulated observation function Y and to rewrite
the Zakai equation (5.3) in Stratonovich form:

where d YT /d T . Let us multiply q £ by a convenient factor depending
only on the given observation path y., which does not affect the minimization
over e in (5.6). Let

Then q~ satisfies the linear parabolic PDE

Let V I = - 8 log 4’. Then

with initial data

Note that, when E = 0, (5.8)-(5.9) become (2.6)-(2.7) in case o- = identity. By
viscosity solution methods it can be proved that V uniformly on compact
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sets as 8 - 0. See [JB]. However, let us sketch a direct stochastic control proof
of this fact (see Lemma 5.1(a).)

There is the following stochastic control representation for V’(T, x). Let §)
denote a controlled process, satisfying backward in time the stochastic differ-
ential equation

with P. a backward in time Brownian motion and w. any backward in time
bounded progressively measurable control process. (A more precise formulation
in terms of reference probability systems is given in [FS, p. 160].) Let

Since (A6) holds, a standard argument [FS p. 190] gives a bound M,
where M depends only on T. The dynamic programming PDE for the problem
of minimizing J’, as a function of w,, is (5.8). A verification theorem then
yields

Moreover, which implies that it suffices to assume that since

w7 = Vx (t, ~t *) provides an optimal (feedback) control. Here ~t * solves (5.10)
with wi = w7.
LEMMA 5.1. (a) There exists Cl (T ) such that

(b) There exist positive Kl (T ), K2 (T) such that, for 0  8  1,

SKETCH OF PROOF. Given any sample path w. for an admissible control

process such that IWtl :s M (M = M(T)), let xt be the solution of (2.1 ) with a
= identity and xT = x. Then

where II II is the sup norm on [0, T]. By (A6) this implies for all such control
processes w,

which implies (a).
To prove (b) it suffices by (a) to show that
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for suitable K2(T). For this purpose choose a &#x3E; 0 such that

for all x, M. Then

By using (A6) (b), for suitable KI (T), K2 (T)

for all w. such that M(T). By (2.5) this gives (b). 0

By (5.12)

Moreover, by (A6) (c), Dr for some constant D. Then

which implies finiteness of the integral in (5.6) for JL  where ~l 1 -

Since .~(~x - ~~) is strictly convex, the function 4$~(T, .) in (5.6) is
strictly convex. Moreover, ~~ (T, e) -~ +00 as lei - oo. Hence, ~~(r,~) has
a minimum at a unique called the risk sensitive estimator for xT .

The main result of this section is the following.

THEOREM 5.2. As 8 -~ 0 the risk sensitive tends to the minimax

provided JL  with (5.12).

PROOF. Let

Then 8§l minimizes G~ (T, .), since e) is a function of T plus log 4$~ (T, e).
A standard Laplace-Varadhan asymptotic principle argument together with (5.11),
(5.14) shows that G£ (T, e) -~ G(T, e) uniformly on compact sets (for each
fixed T) as s ~ 0, provided JL  Since G (T, ~) is strictly convex and
is minimum at the conclusion follows. D
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REMARK 5.3. We write exp[-E-1 V] in the sense that V-’ = -£ log 4’
tends to V uniformly on compact sets as 8 -~ 0. The PDE (5.7) for ijê is
linear. Thus

Similarly, if is a solution to (5.7) for i = 1, 2, then

These asymptotic properties make clear why properties (3.3), (3.4) of the solution
operator must hold, and thus ST is a linear operator in the max plus algebra.
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