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Partial Regularity of Free Discontinuity Sets, I

LUIGI AMBROSIO - DIEGO RALLARA

1. - Introduction

In the last few years new variational problems have been studied, where
the functionals involved depend on a variable closed set K and a function
which is smooth outside K (see e.g. [3], [4], [7], [13], [17], [18], [24]): such
problems have been called free discontinuity problems (notice that K is not

necessarily a boundary). The canonical example of free discontinuity problem
is the minimization of the so-called Mumford-Shah functional

where c is an open set, g E and H’-’ is the (n - I)-dimensional
Hausdorff measure in In the two dimensional case, this functional has been

proposed (see [24], [23]) as a variational model of image segmentation: g is
the grey level function giving the image to be segmented, K is the competing
segmentation, and u E B K) is the smoothed approximation of g. The

proof of the existence of minimizing pairs (K, u) is due to De Giorgi, Carriero
and Leaci (see [19]): they relax the problem in the space SB V of special
functions with bounded variation introduced in [18], where a weak solution is
known to exist (see [3]), and then prove that from any weak minimizer in SB V
a minimizing pair for the original functional can be constructed. A different
proof in the planar case is also given in [14].

The singular sets x of minimizers are known only to be rectifiable, but
are expected to be piecewise regular (see [17]). The main aim of this and of
the subsequent paper [6] is to prove some results in this direction (see [15],
[16] and [8] for some results in the case n = 2 and [25], where the main
results of our two papers are summarized). More generally, we study a class
of perturbations of the functional
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which is suitable to encompass G, and we prove that if (K, u) is a quasi
minimizing pair in S2 and IV u I belongs to the Morrey space L 2,1(0) for some
h &#x3E; n - 1, then K is a hypersurface outside a relatively closed, 
negligible singular set (see Theorem 3.1 and the subsequent remarks).

The main difficulty in facing the regularity problem for (quasi) minimizers
of F relies in the necessity of dealing at the same time with an elliptic term
and a surface integral; this can perhaps be more easily seen by looking at the
first variation formula (see [12]):

(where div’ is the tangential divergence along K) which holds for any vector
field 77 E Co (S2 , and any local minimizer u of (1.2). In fact, the surface
integral in (1.3) is the first variation of area, hence (1.3) shows that the mean
curvature of K is related to the Dirichlet integral of u. Thus, even though
we have taken as a starting point the regularity theory of minimal surfaces,
as it has been developed in the context of varifolds by Allard in [ 1 ], it has
been necessary to adapt these ideas to the peculiar form of the term controlling
the mean curvature of K. In particular, we borrow many ideas from Brakke’s
book [9], where the properties of varifolds with mean curvature in L 1 are

analyzed. However, to make the paper more self contained, we will not directly
use results from the theory of varifolds.

In this paper we do not treat the regularity problem in full generality,
because of the a priori assumption IV U E L 2,-(Q) (see Remark 3.3): this hy-
pothesis will be removed in [6] by means of a suitable decay lemma for the
Dirichlet integral which will be the natural counterpart of the flatness improve-
ment Theorem 6.2 of this paper. Looking for decay properties of the Dirichlet
integral is a natural approach, because u solves a Neumann problem in the
domain Q B K, which has a highly irregular (a priori only rectifiable) boundary,
hence no apriori estimates on the Dirichlet integral of u near K are available.
A similar approach to the the regularity of free interface problems has been
developed by Lin in [22].

Before passing to a brief description of the paper, we point out that the
techniques developed here are suitable to be further exploited and applied in a
large class of free discontinuity problems (see also Remark 3.4), leading likely
to a general scheme for the proof of similar regularity results.

The content of the paper is the following.
In § 2 we collect a few notions and notations which are needed in the sequel,

and give the definition of quasi minimizer; the main density properties of quasi
minimizers are studied in § 4 and pave the way to the main geometric results of
§ 5, namely the Lipschitz approximation Theorem 5.2 and Theorem 5.3, which
gives a sufficient condition in prder that a portion of K be a C I’a graph.

The main point in the proof of Theorem 3.1, presented in § 7, is checking
the hypotheses of Theorem 5.3, and this will pass as usual through an iterative
procedure applied to the flatness improvement theorem of § 6.
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2. - Notations and statement of the problem

2.1. - Rectifiable sets, approximate tangent space

The dimension n &#x3E; 2 of the ambient space R n will be fixed throughout
the paper; since we will often deal with (n - I)-dimensional sets, we will use
m for n - 1. We indicate by the measure of the unit ball in RP.

In this paper denotes the m-dimensional Hausdorff measure in R n
7f"LE the measure Jim restricted to the set E, the m-dimensional

density of E at x and Gn,m the Grassmann manifold of m-planes in Each
T E Gn,m will be identified with the matrix representing the orthogonal
projection onto T with respect to the canonical basis {el , ... , en }; the distance

T 11 between two m-planes is the euclidean norm of the matrix S - T.

DEFINITION 2.1 (rectifiable sets) (see [20, 3.2.14]). We say that E C JRn is

Bçountably m ) -rectifiable if Jim -almost all of E can be covered with a sequence
of C 1 hypersurfaces ri, i.e.

We say that E is m)-rectifiable if E is countably (xm, m)-rectifiable and
+oo.

The approximate tangent space Tanm ( E , x ) of a set E
at x is the m -plane S such that, setting E p = x), we have

The map x H Tanm (E, x) is defined Jim-a.e. on E and is Jim-measurable (see
[20, 3.2.25]). When integrations are involved and no confusion is possible we
shorten Tanm ( E , x ) to Sx ; for instance

denotes the mean square deviation of the approximate tangent space from a
given m-plane T (this quantity, which is usual to call tilt, will be crucial in the
Lipschitz approximation Theorem 5.2).

Finally, we recall that any Lipschitz continuous function f : R"

maps m)-rectifiable sets into (?-lm, m)-rectifiable sets. If f is one-to-one
then Jim (f (E)) can be computed using the area formula (see e.g. [26 § 8]]):



4

where by definition J
often use (2.1) with

I 

in this case

for any m-plane S. We will
and 8 small;

for any m -plane S. ~ 

_

2.2. - functions- and-.free discontinuity problems

Let 0 c R" be a bounded open set and let U E B V (0), i.e. a function
with bounded variation in ~2. We denote by Su the jump set of u, defined as
the complement of the Lebesgue set of u : . 

,

It is well known (see for instance [20, 4.5.9(16)]) that Su is countably m)-
rectifiable. The vector measure Du representing the distributional derivative of
u can be decomposed into absolutely continuous part Vu and singular part Dlu
with respect to the Lebesgue measure Ll. It is clear that u belongs to the
Sobolev space if and only if Du = Vu.en, or Dlu = 0.

DEFINITION 2.2. (SB V functions) We say that u is a special function with
bounded variation in S2, and we write u E SB V(S2), if D’u is supported in Su,
i.e., 

The space SBV has been introduced in [18] to give a rigorous mathematical
formulation to several variational problems involving both a "volume" energy
and a "surface" energy. The main feature of such problems, also called free
discontinuity problems, see [17], is that the surface energy is supported on a
set which is not fixed a priori and is not necessarily a boundary.

The model problem has been suggested by Mumford and Shah in [24].
Given g E L °° ( S2) and a, p &#x3E; 0, we look for minimizers of the functional

where K is a closed subset of R’ and u E C 1 (S2 B K). We refer to [7], [24] for
the relevance of this problem in computer vision theory and some properties
of minimizers; here, we want only to emphasize that, by minimizing G, one
looks for a "piecewise C 1 approximation" of g.
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Existence of minimizers is achieved passing through a weak formulation
of the problem in SBV(Q), namely, minimizing the functional’

The equivalence between the strong -and weak formulation of the problem has
been proved in ,[l~], whereas the existence of minimizers of F easily follows
from a compactness property of SBV first proved in [2] (see also [5]).

.. (compactness theorem) Let
and assume that

Then, there exists a subsequence converging in L 1 (Q) to U E SB V (Q). More-
over, V Uhk weakly converges to V u in LP(Q, and weakly converges
in Q to a measure A such that J.L &#x3E; L Su. 

’

2.3. - Quasi minimizers

We are interested in the interface regularity of solutions U E of
variational problems whose leading term is

Our model is the Mumford-Shah functional described above. By a scaling
argument, it is not restrictive to assume fl = 1.

DEFINITION 2.4. (local minimizers) We say that U E is a local

and

whenever v E and
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DEFINITION 2.5 (quasi minimizers). We will call deviation from minimality
Dev(u, Q) of a function u E satisfying (2.4) the smallest), E [0, +00]
such that

for any v E such that [v :A u} cc A cc Q. Clearly, Dev(u, Q) = 0 if
and only if u is a local minimizer in Q. Moreover, we say that u is a quasi minimizer
in Q if there exists a nondecreasing function w (t) : (0, [0, +(0) such that
w(t) ~ 0 as t i 0 and

for any ball BP (x) C Q. We denote by .JI~I~, (S2) the class of functions satisfying (2.5).

REMARK 2.6. Let u E be a solution of the Mumford-Shah problem
of minimizing (2.3). Then, if g E L°° (S2), the function u is a quasi minimizer.
Indeed, since

with M = we have and, for any competing function v, the
inequality F (- M v v n M) implies

for any ball Bp (x) c SZ, hence we can take

The following fundamental density estimate on the jump set of quasi min-
imizers was proved in [19], [10] (see also [4] for two-dimensional minimizers
of (2.3)).

THEOREM 2.6 (density lower bound). There exist constants p~, and 8w &#x3E; 0

depending only on n and w with the following property: if u E we have

for any ball Bp (x) c S2 centered at X E 9,, with p  PW.
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PROOF. By approximation, we need only to prove that the inequality is
valid for balls centered at points x E Su. The proof can be achieved by a decay
lemma (see [10], Proposition 1.2 and Remark 3.13). Setting

it has been proved that for a E (o, 1 ) and a, cv) small enough, the conditions

imply Now, let a E (0, 1) and choose
so small that

We define 8m = a’, w) and Pm satisfying the conditions

If p  pw and Jim(Su n Bp(x))  using the energy upper bound (see
Remark 4.1 ) and the decay property with a’, we have

Applying now k times the decay property with a we get

It follows that TJ-m F(u, converges to 0, as TJ ~ 0, hence (see [19])
x f!. Su. 0

A first consequence of Theorem 2.7 is the following
PROPOSITION 2.8. Let u E be a quasi minimizer in Q. Then

PROOF. Let It be the restriction of H"’ to Su and B = Su n Q B Sue Since

by [26, Th.3.2] we infer that hence
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REMARK 2.9. Let u E and let us denote- by K(uj the set Su.
Thanks to Proposition 2.8, the quasi minimality of u implies: ..

for any ball B p (x ) c Q and any function V E such that v 0 u) c C
Bp(x). In the following/we will always work with pairs (M, ~(M)), using the
(weaker) minimality condition (2.fi). and avoiding the SBV theory (except in
Step 5 of Theorem 4.3). 

- 

, 

’ 

From now on, we will use the notation for and we denote

by div’ the tangential divergence along the approximate tangent space to K (u ) .

3. - Statement of the main results 

The main result of this paper is the following (here are the classical

Morrey spaces, see e.g. [21]):

THEOREM 3.1. Let u E SB V (S2j, assume that IVul E somek &#x3E; m

and that constants co &#x3E; 0, S E (0, 2) exist such that

for any ball Bp(x) C Q. Then, setting a = min{~, - m, s}, there is a constant
8o(n, co, a, 11 VU such that for any x E K (u) and any ball Bp (x) C Q, the
conditions

imply that f1 K (u) is hypersurface.
REMARK 3.2. Let R (u) be the set of regular points of K(u), i.e. the set

of those points x E K (u) such that (3.2) holds for a sufficiently small p &#x3E; 0.
It is easy to see that R (u ) is relatively open in K (u ) . Moreover, using in the
definition of approximate tangent space a = with a
cut-off function ~, it is easy to check that R(u) contains the set of the points
where the approximate tangent space exists. In particular,
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Theorem 3.1 applies in particular to minimizers u of the Mumford-Shah func-
tional (2.3) under the assumption IVu1 E L2·~ (S2) for some k &#x3E; m. Indeed, ,

-arguing as in Remark 2.6, we see that (3.1) holds 1 /2. ,

REMARK 3.3. We remark that an easy comparison argument (see Remark 4.1 "

below) and (3.1) imply ] E L~’ m ( S2 ) . Our regularity theorem requires
-the stronger assumption ] E L2·~‘ (S~) with h &#x3E; m ; by H61der’s inequality,
this assumption is satisfied if E LP(Q) for some p &#x3E; 2n.

At the moment, no nontrivial example of local minimizer of (1.2) is known.
However, there is some evidence (see [12], ~[24j) that the function (in polar
coordinates) u(p, 0) = p/x sin(8 /2) is a local minimizers in and that it

presents the typical behaviour of a local minimizer near the tip of the singular 
°

set. Elementary computations show that IVu1 E L2.1(]R2), hence the hypothesis
I E L 2,1, With X = m, rather than A. &#x3E; m, is suitable to cover the general

case. This question will be tackled in a successive paper [6].

REMARK 3.4. The techniques of this paper apply, more generally, to quasi
minimizers of functionals

assuming that the following three condition hold:
1 ) H is continuous, p-homogeneous for some p &#x3E; 1 and H (.z) &#x3E; 0 for

2) 1 VU E for some Â. &#x3E; m;

3) the density lower bound of Theorem 2.7 holds.
Up to now, using the blow-up method of [19], [10], [ 11 ] the density lower

bound has been proved only in the cases H (z ) = z I P for k &#x3E; 1, even under
the constraint I u = 1. Its general validity is still an open problem.

4. - Some properties of quasi minimizers

We start by recalling an elementary upper bound and the natural scaling
properties of quasi minimizers.

REMARK 4.1 (energy upper bound). For every u E and every ball

Bp(xo) C Q, comparing with functions constant inside Bp’(xo) C C Bp(xo) and
letting p’ t p we get
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REMARK 4.2 (scaling). Let u E and let c S2. Then, it is

easy to check that 
-

belongs to with i

Qp we have
Moreover, for any ball c

In particular, if p  1, the monotonicity of w (p) shows that

The following theorem shows the asymptotic behaviour of K(u) in regions
where both the Dirichlet energy and the tilt of tangent planes are small. Using
essentially a first variation argument we show that is close to a locally finite
sum of measures supported in parallel planes Ti . Then, lower semicontinuity
of the energy and the minimality imply that iti = Jim L 

THEOREM 4.3. Let (uh ) C sequence and let us assume that

for any open set Ace Q. Then, a subsequence OfA (Uh) weakly converges in Q to a
measure IL which is locally sum of affine m planes parallel to T with multiplicity 1.

PROOF. STEP 1. Let Gm(Q) be the product of Q and Gn,m ; the so-called
varifold measures Vh associated are defined by

for any bounded Borel S) with compact support in x. Since Vh are
locally equibounded in (Q), we can assume that Vh are weakly converging
in to a measure V.

STEP 2. Now we prove that V is stationary in the varifold sense, i.e.,
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Indeed, we fix an open set A C C S2 containing the support of cp such that
V (aA x = 0. For E sufficiently small, the map Os(x) = x + is a
C’ diffeomorphism of S2; comparing uh with uh o ~~ 1, taking into account the
strong convergence of the gradients and the identities (see (2.1))

we find

for a suitable infinitesimal Passing to the limit with respect to h we obtain

Differentiation with respect to E and (2.2) yield (4.1 ). Moreover, denoting by
it(C) = V(C x the projection of V on S2, the measures weakly
converge to u and the density lower bound implies 8wpm for any
x E sptit and any ball B p (x ) c S~ with p  pw. Hence, by [26, Th.3.2], the
support of It is a set with locally Jim-finite measure in Q. The density lower
bound also implies that the supports of ¡.t(Uh) converge to the support of It in
the sense of Kuratowski. Finally, by lower semicontinuity we have

that means that V is supported in Q x { T } .
STEP 3. Our next step is to prove that V is invariant by translations along

T. For, let b E T, and ri (x) = x for any 0 E we

have
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hence it is invariant by translations along T and then is contained in a

,locally, finite union of affine rra-planes parallel to T.
STEP 4. It remains to prove that the density of IA is equal to 1. To this

end, assume that T = en and consider a m-plane P parallel to T such that
P n 0. For every x E P ~l spt it, we choose (0, pw) such that
for every p E (0,po) the inclusion Qp n spt p c P holds, where Qp is a cube
symmetric with respect to P with centre x and side p. Fix p E (0, po/2) and
let Wh(Y) = p-l/2uh(X + py)~ then, for Q = (-1, I)n, H = Q n }xn - 0} the
sequence (wh ) satisfies 

’

and H in the sense of Kuratowski. For a E (0,2-n8w/m), set

enough we have Wh E furthermore, translating Wh if necessary, we
can suppose that

which implies 0 strongly in WI,2(Q+). Similarly, setting

we have 0 strongly in W 1’ 2 ( Qa ) . Up to subsequences and a change of
sign we can suppose ch ~ c E [0, -t-oo]. We first show that c = 0 is impossible.
In fact, for a as above and b E (a, 2-n 9~, / m ) we can find a 1, a2 E (a, b) such
that (here 6=6’x(-l,l))

where x = (x’, xn ) . Let us modify Wh in Q, setting

otherwise.
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Taking into account that (4.4) implies

and that the area of the subset of a Q where vh can be different from Wh does
not exceed m 2m (a 1 ~- a2 ), by the quasi minimality of wh and (4.2) we get

a contradiction. Hence, c &#x3E; 0.
STEP 5. Consider the sequence h h~ wh - (-1 ) v (wh A 1), which is

compact in SB V ( Q), hence (up to subsequences) converges to a function, say
v, in and a.e. in Q. From (4.2) and (4.3) it follows that v - 0 in

Q fl {xn &#x3E; 0}, whereas

implies

since c &#x3E; 0, it holds (-1 ) v (c A 1) 0, whence v =1= 0 in Q. On the other
hand, by (4.2) again, v is constant in Q n {xn  0}. Therefore

Coming back to the sequence uh, the previous inequality shows that

for every p E (0, po/2), i.e. that the density of ti at x is &#x3E; 1 for every
x E spta. Let us prove the opposite inequality. For, suppose for simplicity
x = 0, consider two parameters a, b E (0, po), and the neighbourhood of 0
given by Q = (-b/2, b/2)m x (-a, a). Choose then (0, a) such that
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(where as above x = (x’, xn)) and define the comparison functions

By comparing the energies of vh and uh we get

which gives the desired estimate letting a j 0. o

Using Theorem 4.3 we can show in Corollary 4.4 below that the m-
dimensional density of K (u) in BR (x) is less than T &#x3E; 1 if K (u) is sufficiently
flat in some direction T and both the Dirichlet energy and the deviation from

minimality are small in a larger ball.
Similarly, we can show in Corollary 4.5 below that the m-dimensional

density of in BR (x ) is greater than r  1 if x E and the tilt of

tangent planes, the Dirichlet energy and the deviation from minimality are small
in a larger ball. In this corollary, for later use in Theorem 5.2, we allow a
small translation in the direction T.

COROLLARY 4.4. For any T &#x3E; 1 and any p E (o, 1 ) there exists a constant
y(f3, T, E (0, 1 ) such that, for any m -plane T, any R E (o, 1 ] and any u E

the condition

implies

PROOF. We argue by contradiction. Suppose that 0 E (0, 1), r &#x3E; 1 and

sequences Rh, (uh) exist such that, for any 

and

Using Remark 4.2, it is not restrictive to assume that Rh .- 1 for any h. By
compactness, (up to subsequences) p(uh) weakly converges in Bi to a measure
ti supported in Tn BI by (4.5). In order to get a contradiction, we need only to
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show that it  71’ L T. The inequality follows by the same argument used in the
final part of the proof of Theorem 4.3. Indeed, for any box (xo - b/2, 
contained in BI and any a  b/2 we have

Since a and xo are 11m L T. 0

COROLLARY 4.5. For any -r E (0, 1 ) there exists a constant yl (1’, w) &#x3E; 0 such

that, for any m-plane T, R E (0, 1], the conditions

imply

PRooF. If the statement were false, h E (0, 1) and sequences bh E Th, Rh
and u h E would exist such that for any both

hold. Using Remark 4.2 and the invariance under rotations, we can assume that
Rh = 1 and Th = T for any h. Then, up to subsequences, bh converges to
some b E T n B I and weakly converges in B2 to a measure A satisfying

because of (4.7). On the other hand, since 0 E spt p, Theorem 4.3 implies that
p a in B2, wm holds. 0

The next proposition is essentially an adaptation to our problem of the multi-
layer monotonicity lemma of [9, 5.3]: we consider two points x, x’ E K(u)nBR
where K (u) has density 1; given their vertical separation and a parameter
h E ( 1 /2, 1 ), Proposition 4.6 shows that a good control on the Dirichlet energy
and on the tilt implies that satisfies

where b E T fl B R . This proposition will be the main tool in the proof of
the Lipschitz approximation Theorem 5.2, showing that in regions where the
m-dimensional density of K(u) is close to 1 the vertical separation of a large
portion of K (u) can be controlled.

The proof of the proposition follows by Theorem 4.3 after a suitable blow-
up argument.
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PROPOSITION 4.6. Given À E ( 1 /2, 1 ) and L E (0, 1 ], there exists a constant
y2(),, L, w) E (0, 1 ) such that, for any m-plane T, b E T fl B R, x, x’ E BR the
conditions

imply (4.8).
PROOF. Let us argue by contradiction. Let Tk, bk, Rk, u k , Xk, Xl be satis-

fying (4.9), (4.10), (4.11), (4.12) with yk = 1 / k and

By a rotation we can assume that Tk = T = efl. We will denote x E R’ by
(z, t ) with z = T x and t = Let

Since the density of is 1 at xk and at xi, we have 0  rk  Rk ::5 1.
Now we rescale all by a factor rk and we translate xk to the origin, defining

Then, by Remark 4.2, u k E where
the monotonicity of cv (p) yields

Moreover,

for any p E Similarly, we have



17

for any p E Notice also that ik and 0 belong to K(iik) and (4.9),
(4.11), (4.12) together with the definition of rk yield

It is easy to see that lik I :!S 2 for k large enough. Indeed, if &#x3E; 2 the balls
and are disjoint; since, by Corollary 4.5 and (4.13),

this contradicts (4.18) for k large enough. Possibly passing to a subsequence we
can assume that xk converges to x = (z, t) and bk/Rk converges to b E T fl Bi I
as k ~ +oo. We note that [t [ &#x3E; because of (4.15).

Since C Qk by Theorem 4.3 and (4.13)--(4.17)
we can assume that It (F4k) weakly converge in Bl (x -E- b) U B1 (b) to a measure
ti which is locally sum of m-dimensional Hausdorff measures associated to
m-planes parallel to T. By (4.18) we get

On the other hand, the density lower bound implies that x and 0 belong to the
support of tt; we need only to show that x =1= 0 (hence t ~ 0) to contradict (4.20).
If ik were converging to 0, for any t &#x3E; 0 we would have

for k large enough, so that (4.19) would imply 2Xp’. Letting
first r j 0 then p ~ 0 we find that the density of g in 0 is 2h &#x3E; 1, a

contradiction. 11
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5. - Lipschitz approximation 

In this section we show that the set of a quasi minimizer u can
be approximated by the graph r ( f ) of a Lipschitz function f in small balls
(depending on cv and the Lipschitz constant of f ). Related results are proved
in [15] in the two dimensional case, for minimizers of the Mumford-Shah func-
tional. We also estimate the measure of the symmetric difference 
this estimate will be useful in the proof of Theorem 6.2.

The following proposition shows that an integral estimate of I
in BR (xo) leads to a pointwise estimate of the same quantity in a smaller ball,
via the density lower bound.

PROPOSITION 5.1 (height bound). Let u E Denoting by pw and
8w the constants given by Theorem 2.7, we have

provided R  2 pw.
PROOF. Let for simplicity xo = 0, assume

(otherwise the thesis is trivial), and suppose that a point xl I E K (u) with 
exists such that &#x3E; a; then &#x3E; cr/2 in whence, using the
density lower bound, we deduce

which gives a contradiction. 0

Choice of the constants. Now we fix all the constants of the previous density
bounds. All these constants depend on n and possibly on w, L.

1. Let r E ( 1, 2) such that rm  2 and X E ( 1 /2, 1 ) such that rm  2À.

Now we fix b &#x3E; 0 so small that
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2. Now, let y (r/2, 2X / r’, w), yl ( 1 /2, w), Y2(À, L, w) be given by Corol-
lary 4.4, Corollary 4.5 and Proposition 4.6 respectively. We will impose a small-
ness condition on R, denoting by Rn,w,L the largest constant R  1 /2}
such that

3. Since

Corollary 4.4 (with fl = r/2 and t = 2~, / rm ) and our choice of y and of 
guarantee that the condition

implies

provided u E and R  Rn,w,L.
Now, we can state the following Lipschitz approximation theorem (similar

to [9, 5.4], see also [1] and [26]). The proof is based on the density estimates
of the previous section, the height bound and a covering argument.

THEOREM 5.2 ( Lipschitz approximation). Let L
some R  Rn,w,L. Suppose also that K(u) f1 BRI 16 :A 0 and

for some m-plane T. Then, there exists a Lipschitz function f : T - with

Lipschitz constant less than L such that

and, denoting by r ( f ) the graph of f, we have

PROOF. It is not restrictive to assume that T is spanned by el,..., em, and
set x = (z, t), z = Tx, t = T.1.x. Since the function u will be fixed throughout



20

the proof we set K = K (u ), it = and denote by K* the set of points of
density 1 of K.

Since L  1 and R  2p,,,, by the height bound and (5.3) we get

for any x E K fl BR . We can also assume that

Indeed, because of our choice of y and (5.3), if (5.7) does not hold then

and we can choose the constant P so large that (5.5) trivially holds with f - 0.
Now, let a = min{YI, y2) and define

Let

be the multiplicity function of A with respect to T.
STEP 1. We claim that m (.z)  1 on BR . Indeed, let z E BR and let

x = (z, t), x’ = (z, t’ ) E A. Recalling our choice of and the definition
of A, we can apply Proposition 4.6 with b = -z, to get

Since t, t’ E (-8 R, 8 R) and 1 -~- S/2  r we have

hence and this contradicts (5.7).
and let 0 : E -~ R such that

- p p -

We now claim that q5 satisfies the following condition:
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Indeed, let z, z’ E E; let us assume that
we get by Proposition 5.1

contradicting assumption (5.3). Hence I z - z’l
(z’, ~ (z’)); by applying Proposition 4.6 with b

By (5.6) and the inequalities we infer

and we find a contradiction with (5.7) as in Step 1.

STEP 3. Now we estimate if x E does not belong
to A we can find p (x) E (o, 4R) such that

hence, by using the density upper bound and (5.2)

we get

Using a standard covering argument and we get

where ~ (n) is the constant of Besicovitch’s theorem. In particular we can choose
the constant P in (5.5) so large that
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implies (5.5) with f - 0. Hence, in the following we can assume

and Theorem 2.7, (5.9) and the assumption K n BR/16 0 0 yield

STEP 4. Because of (5.6), (5.8) we can find a Lipschitz extension f of 0
satisfying (5.4). Now we claim that f satisfies (5.5). Indeed, since

by (5.9) we get

Now we estimate

Recalling that the multiplicity of A does not exceed 1 on we have

so that we need only to estimate the measure of F = To this aim, we
fix a compact set G c A such that G n 0 (see (5.10)). For any z E F
let = x R be the largest cylinder which does not intersect G. Since

0 we have r j 3R/8 and we can find x = (z’, f (z’)) e 
By applying Corollary 4.5 with b = z - z’ we get

Since (see (5.6) and (5.1 ))

we have the inclusion hence
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By Besicovitch’s theorem, we can find a disjoint collection such
that 

- - 

’

and

By summing with respect to i, since the cylinders Cri(Zi) are disjoint, we get

Since G c A is arbitrary, by (5.11 ) we get the estimate

The statement now follows from (5.11) and (5.12). 11

A first consequence of the Lipschitz approximation theorem is the following
Cl,l regularity criterion for K(u). Basically, we need to control with a power
strictly greater than pm the deviation from minimality and the Dirichlet energy
in Bp (x); moreover, we need a power strictly greater than pm+2 to control the
quantity

which measures the flatness of K (u). The tilt lemma (see § 6) guarantees also
a control on the oscillation of tangent planes.

THEOREM 5.3. Let S2 C Ilgn be an open set and let u E Assume that,
for some constants C &#x3E; 0, s &#x3E; 0, w (t)  Ct2s and

for any ball Bp (x) C S2 and any x E K (u). 
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PROOF. Let K = = and a = s /2. By the tilt Lemma 6.1 of
§ 6 with 0 = 1/2 we have also

We fix an open set D cc S2 and we prove the regularity of K in D.
Using the Holder inequality and Remark 4.1 we find a constant M &#x3E; 0

such that 
I-

for any ball B2 p (x ) C S2 with p  1. We denote by Tp any m -plane such that

STEP 1. We claim that 7~ converges as p - 0+ to some T x and x H T x
is a-Holder continuous in K f1 D. Indeed, let po  1 } be less than
the distance of D from 8Q and x E K fl D, p E (0, ,00/2); we have

Using (5.14) it is easy to see that converges as k ~ to some 

Moreover, a similar argument shows that 7~ converges to T x as p ~ 0 and

with c depending only on n, 8w, M, a. In order to check the Holder continuity
of T x we choose x, z E D with p =  po/4 and we estimate
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Using (5.14) and (5.15) the Holder continuity of x H T x in K n D follows.
STEP 2. For Jim-almost every x E K fl D the m-plane Tx of Step 1 coincides

with the approximate tangent space to K. Indeed, let xo E K n D be a Lebesgue
point for the approximate tangent space map Sx ; for any p E (0, po/2) we have

and letting p ,~ 0 we find Sxo = 
STEP 3. Now we see that K fl D is locally the graph of a Lipschitz continuous

function. To this aim, we remark that Corollary 4.4 and Corollary 4.5 imply
that K has density 1 everywhere. We define a as in the proof of Theorem 5.2.

Let xo E K f1 D and let pl s min{,oo/7, so small that

coincides with Bpl (xo) fl K and

Let f : T - T~ be the 1-Lipschitz function given by Theorem 5.2. By
construction, the graph of f contains A, hence Bpl (xo) n K is contained in

the graph of f. We now claim that n K contains the graph of
f on B p 1 ~4 ( T (xo ) ) : indeed if there were some z E such that

(z, f1 K we could take the largest cylinder Cr = x R

that does not intersect Bp, /2 (xo) and some point xl Eacr n K fl ·

Since iz - T(xo) ]  pl /4 we have r  /?i/4, hence Xi E because the

Lipschitz constant of f does not exceed 1.

Since K n Bpl (xo) is contained in the graph of f and since Cr does not
intersect K n the density of K at xl can be at most  1, a
contradiction.
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STEP 4. In order to show that the function f of Step 3 is actually C 1,1
we need only to remark that at Cl -almost any differentiability point z E

of f the approximate tangent space to K (i.e., the graph of f )
exists and is related in the classical way to D f (xo). In particular, Step 1 and

Step 2 imply that the map D f (defined at differentiability points of f ) has a
a-Holder continuous extension to It is easy to check, e.g. using
mollifiers, that any Lipschitz map with this property is actually in D

REMARK 5.4. Let An,m be the set of affine m-planes in JRn and define, in
analogy with (5.13)

where is the distance of y from A. Then, clearly A  T. However, it
is not hard to see that Theorem 5.3 still holds if A instead of T is controlled.

Indeed, the following inequality holds

for any p  such that nwn. In particular, if A(x, p ) ;
some a  s, the assumptions of Theorem 5.3 are satisfied with s’

To check (5.17), let A E be satisfying

Denoting by T E the m-plane parallel to A and by s the distance of A
and x, by the energy upper bound, we have

Hence, we need only to estimate 8/p; using the density lower bound we get

and this implies (5.17).



27

6. - Flatness improvement

We begin this section proving a classical (compare [ 1 ], [26], [9]) estimate
on the tilt of tangent planes. The proof is achieved by a deformation argument.

LEMMA 6.1 (tilt estimate). For any p E (0, 1) there exist c(fJ) &#x3E; 0, 8p &#x3E; 0
such that for any u E S B V ( BR ) and any m-plane T we have

provided Devi

PROOF. Let it = R = 1, and let ~ E be a function such
that 0  ~  1, ~ = 1 in BfJ and IV ~ I  2/(1 - P). Consider the vector field
Ø(x) _ ~ 2 (x ) T 1 (x ), set rs (x) = x + 80 (x), and remark that positive constants
Ep, ci exist such that for 0  181 the inequality

holds uniformly with respect to S E and rs is a C I diffeomorphism of
Bi. Moreover, for us(x) = u(-r,(x)), the definition of Dev(u, B1 ) implies

Now compute (cf. [26 § 22])

(where divs and Vs are the tangential operators along S) and remark that

To check (6.4), suppose that T = and compute
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whence (6.4) readily follows. Notice also that

whence

(where c2 depends only on 0 and E~ ). Since

from (6.2) the inequality

follows. Using (6.4), (6.5) we obtain for

Finally, assuming Dev(u, we choose
to get

and use (6.6)

and the thesis follows for R = 1. To recover the general case, exploit the
scaling properties of the various quantities in (6.7) and conclude. 0

The following theorem (whose statement is similar to [9, 5.6]) shows
a decay property of the quantity A(x, p) defined in (5.16), assuming that

A(x, p)lpm+2 is sufficiently small and that the Dirichlet energy and the de-
viation from minimality are comparable with A(x, p). The proof is obtained by
the classical harmonic comparison argument of De Giorgi (see also [26]), i.e.,
we approximate K (u ) by the graph of a Lipschitz function f and show that a
rescaled function g is close to a harmonic function.
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THEOREM 6.2. For any p E (0, 1 / 112) and M &#x3E; &#x3E; 0
such that, for any u E Mw(Bp(x», the conditions

imply

with C depending only on n and w.

PROOF. Let us fix P, M, w, and assume for convenience that &#x3E; 0
for any p &#x3E; 0 (see Remark 6.3); let also be R = Rn,,,,, 1, where I is the
constant defined before Theorem 5.2. During the proof, we shall denote by c
a positive constant (which can change from a line to another) depending only
on n, M, w, R and the constants given by Theorem 5.2.

Arguing by contradiction, sequences ph, vh E Mw(Bph (Xh») and Ah
(affine m-planes) exist such that

and for every affine m-plane S and h E N

where the constant C will be specified later (see (6.30) below).
By a rotation and a translation we can assume that Ah = T = en for any

h. Moreover, translating Xh in a direction parallel to T we can assume that
T(xh) = 0.

By (6.9), (6.10) we infer that ph - 0. In particular, 8 R for h large
enough and using Remark 4.2 with p - ph / 8 R and xo - 0 we have a new
sequence uh E M,,,(B8R(Yh)) such that, for TJ¡ = TJh 2(8R)m+2
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and for every affine m-plane S and 

By the tilt estimate (6.1) and (6.10) we obtain

hence

Finally, using (6.13) we can estimate the deviation from minimality of uh in
as follows:

and we observe that the density lower bound of Theorem 2.7 and (6.12) easily
imply that yh = tends to 0 as h ~ +oo (recall that yh E K(Uh».

Now, we shall construct for every h a Lipschitz continuous function fh
whose graph approximates K (uh ) according to Theorem 5.2 (Step 1) and prove
(Step 2) that a subsequence of gh = converges to a harmonic (Step 3)
function g. Using estimates on g we shall find (Step 4) for sufficiently large
h a m-plane Sh violating (6.14).

STEP 1. For h large enough yh belongs to BR~16, hence B7R c B8R(Yh)-
Using (6.12) we see that for h large enough (5.3) holds and Theorem 5.2 gives
a 1-Lipschitz function fh : T -+ such that

and, setting

the inequality
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follows from the tilt estimate (6.15); moreover, (6.13) implies

STEP 2. Let us show that (up to subsequences) gh weakly converges
in W~(B~). For, recall that IV fhl :::: 1 a.e. by Rademacher’s theorem. Thus,
by (6.17), (6.12) and (6.18):

whence in particular

Regarding the gradients, first remark that

by (6.18), and then notice that for the equality

holds. A simple computations shows that

where v is the normal to the graph of f at x. We can then infer that (see (6.15))
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Therefore, the sequence gh is bounded in and we can assume that

it is weakly convergent to a function g E 
STEP 3. In order to see that g = is harmonic in BR/4’ we shall

show that

Let us consider the vector field - (0,..., 0, 1/1); since 1/1 E and

(by Proposition 5.1) the maximum of on K(uh) is infinitesimal,
we can find for sufficiently large h a vector field 0 with compact support in

and coinciding with 0 on K (U h) fl BR (just take ~ (z, y) _ ~ (z) x (y) for
a suitable x ). 

-

We use comparison functions = where

By the definition of Dev(uh, we get (see (6.3))

whence arguing as in the proof of Lemma 6.1

(where ci has the same meaning as in (6.2)). By (6.16), (6.5) and (6.19) we
deduce 

_

From this inequality and the analogous one obtained taking
we get

Now, since by (6.18)
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for every can be deduced from (6.25) and

To prove (6.26), notice that in Fh, denoting by v the normal unit
vector to r ( fh )

Inserting (6.27) in (6.26) and using the equality we obtain

which is infinitesimal by Step 2.
STEP 4. Let r(n, R) be the constant given by [20, 5.2.5] such that

and

for any We can now define the constant C by

Define also
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and remark that

for h large enough .

Indeed, let xo E Zh and r = then
whence arguing as in the proof of Lemma 5.1

a contradiction for h large enough. Let y = 2fl; we now want to estimate

to get a contradiction with (6.14). For every x E BR we have

whence by (6.20) and (6.28)

Moreover, if in particular x = (z, fh (z)), then

whence, using (6.29) and (6.20), for R/8 and x = (z, fh(z)) we obtain

Using (6.32) and (6.33) (recall that 7y R  R18 because y  1 /56) we get



35

By virtue of 1 and (6.31)

Finally, since the first two terms in the above inequality are o ( r~h ), we get

and this contradicts (6.14) because B7yR = contains for h large
enough. 0

REMARK 6.3. If we assume that vanishes on some interval (0, b) C
(0, +oo), then Theorem 6.2 continues to hold with the additional assumption
p  b. In this case u is a local minimizer, according to Definition 2.4, in small
balls.

Notice also that we won’t use the full generality of Theorem 6.2 to prove
Theorem 3.1 (see the next section). In [6], coupling Theorem 6.2 with a decay
lemma for the Dirichlet integral we will prove that the L2,À assumption on ]
can be removed. The proof is based on a suitable choice of M and on the
independence of the constant C in (6.8) on M.

7. - Proof of partial regularity

In this section we prove Theorem 3.1. By (3.1) and the L 2 ’ assumption
on I we can find N &#x3E; 0 such that

for any ball Bp(x) C S2 with p s 1 (recall that a = min{~. 2013 m, s)).
Since a  s  2, we can choose f3 E (0, 1 / 112) such that f3a

(where C is defined in (6.30)). By (7.1 ) and Theorem 6.2 with M = 1 we
infer the existence of s &#x3E; 0 such that the function A(p) = A(x, p) satisfies the
property

for any x E K (u) and any ball
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LEMMA 7.1 (iteration). Let A (p) be a nondecreasing function satisfying (7.2).
Then, the conditions .

imply

for every r E (0, p].

PRooF. Let pk = pf3k; by the monotonicity of A, we need only to show that

for every k &#x3E; 0. We shall prove (7.4) by induction on k. remark that the

inequality holds trivially for k = 0, and assume that (7.4) holds; then, our
assumption implies

hence we are done; otherwise

and we are in a position to apply (7.2), getting

which shows that (7.4) holds with k + 1 in place of k. 0

By Lemma 7.1 we obtain (for a suitable 80  1 depending on 8, N, n, a)
that the ratio

is bounded for any x satisfying (3.2). The Cl,a/(m+2) regularity of 
follows by Theorem 5.3 and Remark 5.4.
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