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New CR Invariants and their Application
to the CR Equivalence Problem

ELISABETTA BARLETTA - SORIN DRAGOMIR

1. - Introduction

Let M be a strictly pseudoconvex CR manifold (of hypersurface type)
of CR dimension n’- 1. Let K (M) = be its canonical bundle and

KO(M) = K(M) - { zero secti on }. Let C(M) = Then C(M)
is a principal circle bundle over M and, by work of C.L. Fefferman [4],
with each fixed pseudohermitian structure 8 on M one may associate a Lorentz
metric g on C(M). This is the Fefferman metric of (M, 0). Its properties
are closely tied to those of the base CR manifold. For instance, if M is
a real hypersurface in (Cn then the null geodesics of the Fefferman metric
project on biholomorphic invariant curves (known as the chains of M, cf. S.S.
Chem &#x26; J. Moser [1]). Although not fully understood as yet, the Fefferman
metric proved useful in a number of situations, e.g. provided a simpler proof
(cf. L.K. Koch [9]) of the striking result of H. Jacobowitz (cf. [6]) that two
nearby points of a strictly pseudoconvex CR manifold are joined by a chain.
See also C.R. Graham [5], for a characterization of Fefferman metrics among
all Lorentz metrics on C(M).

By classical work of S.S. Chem &#x26; J. Simons [2], the Pontrjagin forms of a
riemannian manifold are conformal invariants. On the other hand, the restricted
conformal class of the Fefferman metric is known (cf. J.M. Lee [10]) to be a
CR invariant. This led us to investigate whether the result by S.S. Chem &#x26; J.

Simons may carry over to Lorentz geometry. We find (cf. Theorem 2) that the
Pontrjagin forms P(Q~) of the Fefferman metric are CR invariants of M. Also,
whenever = 0, the De Rham cohomology class of the corresponding
transgression form is a CR invariant, as well. As an application, we show that
a necessary condition for M to be globally CR equivalent to a sphere S2n-1
is that PI (Q2) = 0 (i.e. the first Pontrjagin form of (C(M), g) must vanish)
and the corresponding transgression form gives an integral cohomology class
(cf. Theorem 3).

Pervenuto alla Redazione il 26 marzo 1996.
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2. - The Fefferman metric

Let (M, be an orientable CR manifold (of hypersurface type) of
CR dimension n - 1, where Tl,o (M) c T(M) 0C denotes its CR structure. Its
Levi distribution H (M) = Re { Tl,o (M) ED To, 1 (M) I car_ries the complex structure
J : H(M) - H(M) given by J(Z + Z) = i(Z - Z) for any Z E Tl,o (M).
Here To,1 (M) = Ti,o(M). Overbars denote complex conjugation and i = H.
The annihilator E C T*(M) of H(M) is a trivial line bundle, hence it admits

global nowhere vanishing cross sections (} E r°° (E), each of which is referred
to as a pseudohermitian structure. The Levi form Lo is given by Le (Z, W) =
-i (do)(Z, W) for any Z, W E TI,O(M). Two pseudohermitian structures 0, 9
are related by 6 = for some C~ function u : M - R and the corresponding
Levi forms satisfy L6 = This accounts for the (already highly exploited,
cf. e.g. D. Jerison &#x26; J.M. Lee [7], and references therein) analogy between CR
and conformal geometry. If Le is nondegenerate for some choice of 0 (and thus
for all) then (M, Tl,o (M) ) is a nondegenerate CR manifold. Any nondegenerate
CR manifold, on which a pseudohermitian structure 0 has been fixed, admits a
unique linear connection V (the Tanaka-Webster connection) parallelizing both
the Levi form and the complex structure (in the Levi distribution). Cf. also [3]
for an axiomatic description of the Tanaka-Webster connection.

A complex valued p-form cv on M is a (p, 0)-form if = 0.

Let be the bundle of all ( p, 0)-forms on M. Set K(M) = 
There is a natural action of R+ = (0, oo) on x° (M) - K(M) - 101 and the
quotient space C(M) = is a principle Sl-bundle over M. Let

x : C(M) -+ M be the projection. A local frame of Tl,o (M) * on U c M
induces the trivialization chart:

where with k E R,
Moreover, consider

the (globally defined) I -form or on C(M) given by:

Here hati’ and R = hati Rati are respectively the (local) components of the
Levi form, the connection 1-forms (of the Tanaka-Webster connection) and the
pseudohermitian scalar curvature (cf. e.g. (2.17) in [12], p. 34).

Let us extend the Hermitian form (Z, = Lg (Z, W) to the whole of
by requesting that
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is a semi-riemannian metric on C(M). Assume from now on that M is strictly
pseudoconvex and choose (} so that Lg is positive definite. Then g is a Lorentz
metric on C(M), known as the Fefferman metric of (M, 0). By a result of J.M.
Lee (cf. [10], p. 418) if 8 = e2"0 is another pseudohermitian structure and g
the corresponding Fefferman metric, then g - e2(uo1r) g.

3. - Pontrjagin forms 

’

Let I~(GL(2n)) be the space of all invariant polynomials of degree l, i.e.

symmetric multilinear maps P : gl(2n)f ~ R which are ad (GL (2n))-invariant.
Here gl (2n ) is the Lie algebra of G L (2n ) = G L (2n, R). Also, if g is a linear
space then ~~ _ ~ ® ~ ~ ~ 0 9 (t terms). Let Q£ E 1  .~  2n, be
the natural generators of, the ring of invariant polynomials on gl(2n) (cf. [2],
p. 57, for the explicit expressions of the Let (M, Tl,o(M)) be a strictly
pseudoconvex CR manifold of CR dimension n - 1 and 0 a pseudohermitian
structure on M so that Lo is positive definite. Let g be the Fefferman metric of
(M,9). Let F (C (M) ) -~ C (M) be the principal G L (2n) -bundle of all linear
frames on C(M) and W E gl(2n)) the connection 1-form
(of the Levi-Civita connection) of the Lorentz manifold (C(M), g). Then:

THEOREM 1. The characteristic forms Q2f+l (Q2l+1) vanish for any 0  l 
n- 1.

Here Q = Dcv is the curvature 2-form of w. Also, for any P E ¡l(GL(2n»
we set where SZ~ = S2 n ~ ~ ~ A Q (l terms). Let us prove
Theorem 1. To this end, let £(C(M)) - C(M) be the principal D (2n - 1, 1)-
bundle of all Lorentz frames, i.e. u = (c, { X i }) E £(C(M)) if Xj) = 
where Ea = 1, 1  a  2n - 1 and 6~ = -1, c e C(M). Here O (2n - 1, 1 )
is the Lorentz group. Let o(2n - 1, 1) be its Lie algebra. By hypothesis:

be the canonical basis of gl(2n) and set

We claim that:

at all points of /~(C(M)), as a form F(C(M). Hereei = E¡. As S2 is horizontal,
it suffices to check (2) on horizontal vectors (hence tangent to /~(C(M))). We
have: 
..
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on Tu(£(C(M») for any U E £(C(M», etc. Next, note that for any A E
o(2n - 1, 1) one has i) tr(A) = 0, ii) tr(AB) = 0, for any B E M2n(R)
satisfying B and iii) = 0. Then:

for any A 1, ~ ~ ~ , E o(2n - 1, 1) (the proof is by induction over E). Since
Q2.~+1 (QU+I) is invariant, we need only show that it vanishes at the points of
;C(C(M)). But at these points the range of Q2l+1 lies (by (2)-(3)) in the kernel
of Q2t+,. Our Theorem 1 is proved.

Let P E The transgression form TP(w) is given by:

where By Chem-Weil theory
By Theorem 1, the

transgression are closed, hence we get the cohomology classes
Note that:

is induced by j :
Indeed TQ2l+I(W) may be written as:

for some constants Bi &#x3E; 0. is o(2n - 1, l)-valued, the same argument
as in the proof of Theorem 1 shows = 0, q.e.d. One has to
work with j*w (rather than w at a point of .c(C(M») because w (unlike its
curvature form) is not horizontal.

If go is a riemannian metric on C(M) with connection 1-form cvo and

O (C (M)) --~ C(M) is the principal O (2n)-bundle of orthonormal (with respect
to go) frames on C(M), then orthonormalization of frames gives a deformation
retract F(C(M)) - O(C(M)) and hence (cf. Proposition 4.3 in [2], p. 58) the
corresponding transgression forms are exact. As to the Lorentz

_ 

case, in general (4) need not imply exactness of T Q2,.e+1 (cv). For instance R 2
is a Lorentz manifold for which the homomorphism

(induced by has a nontrivial kernel. Here

and Indeed,
as both are trivial bundles j * may be identified with the ho-

GL(2)). The Lorentz group O ( 1, 1 ) has four components, each diffeomorphic
to R. Hence 1)) = 0. Moreover O (2) C G L (2) is a homotopy equiv-
alence, hence ker( j *) = H I (G L (2), R) = HI(0(2), R) = R fli R (as O (2) has
two components, each diffeomorphic to 

At this point, we may state the following:
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THEOREM 2. Let M be a strictly pseudoconvex CR manifold of CR dimension
n - 1 and P E Then is a CR invariant of M. Moreover,

then the cohomology class
CR invariant of M. In particular
invariant.

4. - Applications

Let M be a strictly pseudoconvex CR manifold. Assume that M is realizable
as a real hypersurface in en. If cp : M 2013~ C" is the given immersion, then
77 = is a nowhere zero global (n, 0)-form on M, hence C(M)
is a trivial bundle. By work of C.L. Fefferman [4], there is a smooth defining
function * of M satisfying the complex Monge-Ampere equation:

to second order along M, so that F*h is the Fefferman metric of

where h is the Lorentz metric given by:

and F : C(M) ~ M x S’ the diffeomorphism induced by 71. Also y is a

local coordinate on S 1 and j : M x S 1 C Let 8 be any pseudohermitian
structure on M (so that Lo is positive definite). Then 6 = for some
smooth function u on M, and an inspection of (1) shows that F*h and g are
conformally equivalent Lorentz metrics. On the other hand h = j*G where G
is the semi-riemannian metric on cCn x cC* given by:

where (z, ~ ) = (z  , ... , zn, Ç) are complex coordinates. Summing up, if M is
realizable then (C(M), g) admits a global conformal immersion in ((Cn x C*, G),
hence (in view of Theorem 5.14 in [2], p. 64) it is reasonable to expect that
some of the CR invariants furnished by Theorem 2 are obstructions towards the
global embeddability of a given, abstract, CR manifold M. While we leave this
as an open problem, we address the following simpler situation. Assume M
to be equivalent to s2n-l. Then C(M) is diffeomorphic to the Hopf manifold

On the other hand, note that
acts freely on C" x cC* as a properly discontinuous group of complex analytic
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transformations. Hence the quotient space = x is a complex
(n + 1 )-dimensional manifold. Consider the biholomorphism p : Yn+ --~ Cn X cC*

is I,,+, -invariant, hence gives rise to a globally defined semi-riemannian metric
of index 2 on Note that Go) is locally isometric to 

is a conformal immersion.

Indeed, let A calculation then shows that

Finally, it may be seen that

morphism.
is a conformal diffeo-

Let j i be given by:

i.e. the invariant polynomials obtained by ignoring the powers À 2n-odd . We
obtain the following:

THEOREM 3. Let M be a strictly pseudoconvex CR manifold of CR dimension
n - 1 and 0 a pseudohermitian structure on M so that Lo is positive definite. Let
g be the Fefferman metric of (M, 0). Let w be the connection I -form of g and
Q its curvature 2-form. If M is CR equivalent to S2n-1 then PI (Q2) = 0 and
[T Pl (cv)] E H3(F(C(M)), Z), provided n &#x3E; 3.

To prove Theorem 3, we study the geometry of the second fundamen-
tal form of the immersion 0 = p-I 0 j : (cCn x tC*, G). Set Cn -
n -f- 1 / 2(n ~- 1). The tangent vector fields 4~ given by:

are such that G($1 , ~2) = 0, G (~1, ~l ) = 1 and G (~2, ~2) = - 1, and form a
frame of the normal bundle of q5. Since p is a biholomorphism (with the inverse
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By (5) the Christoffel symbols of the Levi-Civita connection Vo of
vanish. The Levi-Civita connection V of (cCn x C*, G) is related to

for any A calculation shows that:

Tangent vector fields on Hn are of the form X + Y with
satisfying

Here zj = z~ . It follows that:

Let Aa = A,~ be the Weingarten operator corresponding to the normal section
~a . We shall need the following :

LEMMA 2. The first Pontrjagin form of (Hn, h) is:

where (with respect to a local coordinate system (x‘ ) on Hn):

We shall prove Lemma 2 later on. Recall the Ricci equation (of the given
immersion 0, cf. e.g. (2.7) in [13], p. 22):

where R, R 1 denote respectively the curvature tensor fields of (C" x C*, G) and
of the normal connection. As a consequence of (6)-(8) 4~ are parallel in the
normal bundle, hence the immersion 0 has a flat normal connection = 0).
On the other hand R = 0 (because (Vn+1, Go) is flat) and the Ricci equation
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shows that the Weingarten operators Aa commute. Then W12 = 0 and our
Lemmas 1 and 2 together with Theorem 2 yield PI (Q2) = 0.

Let q : H3(F(C(M)), II~) -~ H3(F(C(M)), be the natural homomor-

phism. By Theorem 3.16 in [2], p. 56, since = 0, there is a coho-

mology class a E H3 (C (M), so that p* ot = q ([T PI (w)]), where PF :
F(C(M)) -~ C(M) is the projection. Yet, for the Hopf manifold R/Z)
= 0 provided n &#x3E; 3, hence [T P, (w)] E ker(q) and then by the exactness of the
Bockstein sequence:

it follows that [TPI(w)] is an integral class.

5. - Proof of Theorem 2

Let w E be the canonical 1-form and set w =

~0’ (9 ei, where is the canonical basis in JR2n. Moreover, let Ei = be

the corresponding standard horizontal vector fields (cf. e.g. [8], vol. I, p. 119).
Let u : M ~ R be a C°° function and let g be the Fefferman metric of
(M, e2u 9 ) . Let w be the corresponding connection 1-form. Then:

at all points of ,C(C(M)), as forms on F(C(M)). Here p = 1r 0 PF. The proof
is to relate the Levi-Civita connections of the conformally equivalent Fefferman
metrics g and g, followed by a translation of the result in principal bundle
terminology. We omit the details. Consider the 1-parameter family of Lorentz
metrics g(s) = e2s(uo1f)g, 0  s  1, on C(M). Let w(s) be the corresponding
connection 1-form and set w’ = By (9) (applied to s(u o p) insteads
of u o p) we obtain:

at all points of £’(C(M», as forms on F(C(M)). Let P E I~(GL(2n)). We
wish to show that P(0i) is invariant under any transformation 8 = e2u 9 . Note
that a relation of the form:

yields = P (S2i), hence we only need to prove ( 11 ). Since the Qi
generate I(GL(2n)) we may assume that P is a monomial in the Qi. Using
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Proposition 3.7 in [2], p. 53, an inductive argument shows that it is sufficient
to prove (11) for P = Qi. It is enough to prove that:

Since each point on the curve s H g(s) is the initial point of another such
curve, it suffices to prove (12) at s = 0. By Proposition 3.8 in [2], p. 53, we
know that:

hence it is enough to show that
identity:

Using (10) and the

(cf. (4.2) in [2], p. 57) for any gl(2n)-valued form 1/1 on F(C(M)), we may
conduct the following calculation:

Recall the structure equations, cf. e.g. [8], vol. I, p. 121. As g is Lorentz, w
is torsion free. Hence A 521~ = 0. This and (2) also yield A S2i2 = 0.
Hence:

(because = 0) at all points of L(C(M)), as a form on ~F(C(M)).
This suffices because both and are invariant
forms.

6. - Proof of Lemma 2

Recall (cf. e.g. [8], vol. II, p. 313) that:

where ct = 1 / ((27r )2f (2f)!) and the summation runs over all ordered subsets
(i 1, ~ ~ ~ , of {1, " -, 2n } and all permutations ( j 1, ~ ~ ~ , of (i 1, ~ ~ ~ , and



202

is the sign of the permutation. We need the Gauss equation (cf. e.g.

where R’jj, B~k are respectively the curvature tensor field of (Hn , h) and the
second fundamental form of 0 (with respect to a local coordinate system (U, 
on H’). Also Aa ai = Ajiaj where ai is short for The Gauss equation
and the identity:

(cf. [8], vol. I, p. 133) for any X, Y, Z E Tx (Hn) and some
furnish: 

I I

(where X) : are fibre coordinates on and

Using: 
-

a calculation leads to:

hence:

where is the 2-form on given by:

Finally, note that TI, = T22 = 0 and 21 = -B1112 and Lemma 2 is proved. Note
that the proof works for any codimension two submanifold of a flat riemannian
manifold.
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