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New CR Invariants and their Application
to the CR Equivalence Problem

ELISABETTA BARLETTA - SORIN DRAGOMIR

1. — Introduction

Let M be a strictly pseudoconvex CR manifold (of hypersurface type)
of CR dimension n'— 1. Let K(M) = Q"%(M) be its canonical bundle and
KO%(M) = K(M) — { zero section }. Let C(M) = K°(M)/R,. Then C(M)
is a principal circle bundle over M and, by work of C.L. Fefferman [4],
with each fixed pseudohermitian structure 6 on M one may associate a Lorentz
metric g on C(M). This is the Fefferman metric of (M, 8). Its properties
are closely tied to those of the base CR manifold. For instance, if M is
a real hypersurface in C" then the null geodesics of the Fefferman metric
project on biholomorphic invariant curves (known as the chains of M, cf. S.S.
Chern & J. Moser [1]). Although not fully understood as yet, the Fefferman
metric proved useful in a number of situations, e.g. provided a simpler proof
(cf. LK. Koch [9]) of the striking result of H. Jacobowitz (cf. [6]) that two
nearby points of a strictly pseudoconvex CR manifold are joined by a chain.
See also C.R. Graham [5], for a characterization of Fefferman metrics among
all Lorentz metrics on C(M).

By classical work of S.S. Chemn & J. Simons [2], the Pontrjagin forms of a
riemannian manifold are conformal invariants. On the other hand, the restricted
conformal class of the Fefferman metric is known (cf. J.M. Lee [10]) to be a
CR invariant. This led us to investigate whether the result by S.S. Chern & J.
Simons may carry over to Lorentz geometry. We find (cf. Theorem 2) that the
Pontrjagin forms P (%) of the Fefferman metric are CR invariants of M. Also,
whenever P(Qf) = 0, the De Rham cohomology class of the corresponding
transgression form is a CR invariant, as well. As an application, we show that
a necessary condition for M to be globally CR equivalent to a sphere $?"~!
is that P;(Q?) = 0 (i.e. the first Pontrjagin form of (C(M), g) must vanish)
and the corresponding transgression form gives an integral cohomology class
(cf. Theorem 3).

Pervenuto alla Redazione il 26 marzo 1996.
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2. — The Fefferman metric

Let (M, T,,0(M)) be an orientable CR manifold (of hypersurface type) of
CR dimension n — 1, where T} o(M) C T(M) ® C denotes its CR structure. Its
Levi distribution H(M) = Re{T;,0(M) ® To,1(M)} carries the complex structure
J: HM) > H(M) given by J(Z+Z) = i(Z —Z) for any Z € T 0(M).
Here Ty (M) = T1,o(M). Overbars denote complex conjugation and i = +/—1.
The annihilator E C T*(M) of H(M) is a trivial line bundle, hence it admits
global nowhere vanishing cross sections 8 € '*°(E), each of which is referred
to as a pseudohermitian structure. The Levi form Ly is given by Lo(Z, W) =
—i(d0)(Z, W) for any Z, W € Ty o(M). Two pseudohermitian structures 6, 6
are related by 6 = €6 for some C*™ function u : M — R and the corresponding
Levi forms satisfy L; = €% Lgy. This accounts for the (already highly exploited,
cf. e.g. D. Jerison & J.M. Lee [7], and references therein) analogy between CR
and conformal geometry. If Ly is nondegenerate for some choice of 6 (and thus
for all) then (M, T;,0(M)) is a nondegenerate CR manifold. Any nondegenerate
CR manifold, on which a pseudohermitian structure 6 has been fixed, admits a
unique linear connection V (the Tanaka-Webster connection) parallelizing both
the Levi form and the complex structure (in the Levi distribution). Cf. also [3]
for an axiomatic description of the Tanaka-Webster connection.

A complex valued p-form w on M is a (p,0)-form if Tp (M) Jw = 0.
Let QP°(M) be the bundle of all (p,0)-forms on M. Set K(M) = Q"%(M).
There is a natural action of Ry = (0, c0) on K°(M) = K(M) — {0} and the
quotient space C(M) = K°(M)/R, is a principle S!-bundle over M. Let
7t : C(M) - M be the projection. A local frame {6} of T1o(M)* on U C M
induces the trivialization chart:

7 W WU) - U x S, [w] — (x, I%)

where w € KO%(M), n([@]) =x and @ = A (O AO' A--- A0"")_ with A €R,
A # 0. Define y : n~1(U) — [0,2n) by y([w]) = arg(A). Moreover, consider
the (globally defined) 1-form o on C(M) given by:

o =

1 i R
= d *iw,® — ~h*fdh - — —0) ) .
n+1(”+’r (“" 2"t B T o ))

Here h,3, w,? and R = h®*PR ; are respectively the (local) components of the
Levi form, the connection 1-forms (of the Tanaka-Webster connection) and the
pseudohermitian scalar curvature (cf. e.g. (2.17) in [12], p. 34).

Let us extend the Hermitian form (Z, W)y = Ly(Z, W) to the whole of
T(M)®C by requesting that (Z, W)y =0, (Z, W)y = (Z, W)g and (T, V)p =0
for any Z, W € T1 (M), V € T(M) ® C. Then:

¢y g=7"(, )g+2(n*0) 00
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is a semi-riemannian metric on C(M). Assume from now on that M is strictly
pseudoconvex and choose 6 so that Ly is positive definite. Then g is a Lorentz
metric on C(M), known as the Fefferman metric of (M, 0). By a result of J.M.
Lee (cf. [10], p. 418) if 6 = €29 is another pseudohermitian structure and g
the corresponding Fefferman metric, then § = ¢>*°™g.

3. — Pontrjagin forms

Let I¢(GL(2n)) be the space of all invariant polynomials of degree ¢, i.e.
symmetric multilinear maps P : gl(2n)® — R which are ad(GL(2n))-invariant.
Here gl(2n) is the Lie algebra of GL(2n) = GL(2n,R). Also, if G is a linear
space then G =G ® --- ® G (¢ terms). Let Q; € I*(GL(2n)), 1 < £ < 2n, be
the natural generators of.the ring of invariant polynomials on gl(2n) (cf. [2],
p. 57, for the explicit expressions of the Q). Let (M, T, o(M)) be a strictly
pseudoconvex CR manifold of CR dimension n — 1 and 6 a pseudohermitian
structure on M so that Ly is positive definite. Let g be the Fefferman metric of
(M,0). Let F(C(M)) -> C(M) be the principal GL(2n)-bundle of all linear
frames on C(M) and w € I'*(T*(F(C(M))) ® gl(2n)) the connection 1-form
(of the Levi-Civita connection) of the Lorentz manifold (C(M), g). Then:

THEOREM 1. The characteristic forms Qae11 (Q2+1!) vanish for any 0 < € <
n—1

Here Q = Dw is the curvature 2-form of w. Also, for any P € I*(GL(2n))
we set P(Q) = P o Q% where Q¢ = QA .- AQ (¢ terms). Let us prove
Theorem 1. To this end, let L(C(M)) — C(M) be the principal O(2n — 1, 1)-
bundle of all Lorentz frames, i.e. u = (c, {X;}) € LIC(M)) if g.(X;, X;) = €;5;j
where ¢, =1, 1 <a <2n-1 and €, = -1, c € C(M). Here O2n —1,1)
is the Lorentz group. Let o(2n — 1, 1) be its Lie algebra. By hypothesis:

oy (T, (L(C(M)))) S o2n —1,1)

ie. ewy(X) + w,(X)'e =0 for any X € T,(L(C(M))), u € L(C(M)). Here
€ = diag(ey,--- ,€2,). Let {EJ‘-} be the canonical basis of gl(2n) and set

w=0Q®E, Q=9 ® E/. We claim that:
) €Q+eQ] =0

at all points of £(C(M)), as a form F(C(M). Here € =¢;. As Q is horizontal,
it suffices to check (2) on horizontal vectors (hence tangent to L(C(M))). We
have: . ) ) .

G'Q} =€'(dw) + o A w}‘)

=d(-e/0]) + 3 (~ ) n ok = —€/ Q]
k
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on T,(L(C(M))) for any u € L(C(M)), etc. Next, note that for any A €
o(2n — 1,1) one has i) tr(A) = 0, ii) tr(AB) = 0, for any B € My, (R)
satisfying B = e B'e, and iii) tr(A%**!) = 0. Then:

3 tr(Ay--- A1) =0

for any Ay, ---, Ayp4+1 € 0(2n — 1, 1) (the proof is by induction over £). Since
Q20+1(Q%*1) is invariant, we need only show that it vanishes at the points of
L(C(M)). But at these points the range of Q%*! lies (by (2)-(3)) in the kernel
of Q¢+1. Our Theorem 1 is proved.

Let P € I*(GL(2n)). The transgression form T P(w) is given by:
1
TP(w) = e/ P(w A Ndt
0

where @, = 1Q + (1/2)t(t — )[w,w], 0 <t < 1. By Chern-Weil theory
(cf. e.g. [8], vol. II, p. 297) one has P(Q%) = dT P(w). By Theorem 1, the
transgression forms T Q.41 (w) are closed, hence we get the cohomology classes
[T Qa41(w)] € H¥**! (F(C(M)),R). Note that:

C)) [T Q2e11(w)] € ker(j*)

where j* : H¥*+! (F(C(M)),R) — H**!(L(C(M)),R) is induced by j :
L(C(M)) C F(C(M)). Indeed T Qy¢+1(w) may be written as:

20
T Qu41(®) = Y B Qos1(@ A [0, 0] A Q*7)
i=0
for some constants B; > 0. As j*w is o(2n — 1, 1)-valued, the same argument
as in the proof of Theorem 1 shows that j*T Qo¢41(w) = 0, q.e.d. One has to
work with j*o (rather than w at a point of £(C(M))) because w (unlike its
curvature form) is not horizontal.

If go is a riemannian metric on C(M) with connection 1-form @y and
O(C(M)) - C(M) is the principal O(2n)-bundle of orthonormal (with respect
to go) frames on C(M), then orthonormalization of frames gives a deformation
retract F(C(M)) - O(C(M)) and hence (cf. Proposition 4.3 in [2], p. 58) the
corresponding transgression forms T Qy,41(wp) are exact. As to the Lorentz
case, in general (4) need not imply exactness of T Qz41(w). For instance R?
" is a Lorentz manifold for which the homomorphism j* : H'(F(R?),R) —
H 1(LZ(]R%), R) (induced by j : £(]R%) C F (R%)) has a nontrivial kernel. Here
RY = RY,(, )n—vy) and (, IN—vy = Sy’ xiyi — E,N:N_mx,-y,-. Indeed,
as both F (]R%) and L‘,(R%) are trivial bundles j* may be identified with the ho-
momorphism j* : H'(GL(2),R) - H!(O(1, 1), R) (induced by j : O(1,1) C
GL(2)). The Lorentz group O(1, 1) has four components, each diffeomorphic
to R. Hence H!(0O(1, 1)) = 0. Moreover O(2) C GL(2) is a homotopy equiv-
alence, hence ker(j*) = H'(GL(2),R) = H!(0(2),R) = R® R (as O(2) has
two components, each diffeomorphic to S!).

At this point, we may state the following:
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THEOREM 2. Let M be a strictly pseudoconvex CR manifold of CR dimension
n—1and P € I*(GL(2n)). Then P(%) is a CR invariant of M. Moreover,
if P(QY = 0, then the cohomology class [T P(w)] € H*Y(F(C(M)),R) is a
CR invariant of M. In particular [T Q241(w)] € H¥**(F(C(M)),R) is a CR
invariant.

4. — Applications

Let M be a strictly pseudoconvex CR manifold. Assume that M is realizable
as a real hypersurface in C*. If ¢ : M — C" is the given immersion, then
n = @*dz' A---AdZ" is a nowhere zero global (n, 0)-form on M, hence C(M)
is a trivial bundle. By work of C.L. Fefferman [4], there is a smooth defining
function ¢ of M satisfying the complex Monge-Ampére equation:

14 Y /97" )
(¥) =de (awazl 92y /87 87
to sepond order along M, so that F*h is the Fefferman metric of (M, é),
6= {—,(p*(ﬁ — 0)y¥, where h is the Lorentz metric given by:

2y .
—_dzl ©d7*
32 0 270 z}

I oafia_m .
h=—m1 {@-0)w}ody+j {

and F : C(M) ~ M x S' the diffeomorphism induced by 5. Also y is a
local coordinate on S! and j: M x S! ¢ C**1. Let 6 be any pseudohermitian
structure on M (so that Ly is positive definite). Then 6 = 20 for some
smooth function # on M, and an inspection of (1) shows that F*h and g are
conformally equivalent Lorentz metrics. On the other hand 4 = j*G where G
is the semi-riemannian metric on C” x C, given by:

G=l§|2’(”+1’{—LI§I‘2d§ odf + 2V ar o a7t
(n+1)2 dz/ 9zt
1 ¢ d¢ - )}
— 1 @ = +=200
+n+1(< noF+Zoaw
where (z,¢) = (z!,---, 2" ¢) are complex coordinates. Summing up, if M is

realizable then (C(M), g) admits a global conformal immersion in (C" x C,, G),
hence (in view of Theorem 5.14 in [2], p. 64) it is reasonable to expect that
some of the CR invariants furnished by Theorem 2 are obstructions towards the
global embeddability of a given, abstract, CR manifold M. While we leave this
as an open problem, we address the following simpler situation. Assume M
to be equivalent to $>*~!. Then C(M) is diffeomorphic to the Hopf manifold
H" = §*~1 x S!. On the other hand, note that I,,, = {¢ € C : ¢**! = 1}
acts freely on C" x C, as a properly discontinuous group of complex analytic
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transformations. Hence the quotient space V,;1 = (C" x C,)/In4; is a complex
(n+1)-dimensional manifold. Consider the biholomorphism p : V,4; — C" xC,
given by p((z, {1) = (z/¢, ¢™F") for any [z, {] € Vy41 and set ¢o = p~'ojoF.
Next:

®) Go=) dz/ 0d7/ —d{ ©dT
j=1

is I,41-invariant, hence gives rise to a globally defined semi-riemannian metric
of index 2 on V,;;. Note that (V,;1, Go) is locally isometric to IR%"”.

LEMMA 1. ¢g : (C(M), g) = (Vut1, Go) is a conformal immersion.

Indeed, let ¥(z) = |z|> — 1. A calculation then shows that Gy = p*G.
Finally, it may be seen that F : (C(M), g) — (H",h) is a conformal diffeo-
morphism.

Let P; € I%(GL(2n)) be given by:

1 - ;
det (A.Izn - E;A) = Z P(A® ---® A)AZ"—ZI + Q(X2n_0dd)
i=0

i.e. the invariant polynomials obtained by ignoring the powers A2"~°44  We
obtain the following:

THEOREM 3. Let M be a strictly pseudoconvex CR manifold of CR dimension
n — 1 and 6 a pseudohermitian structure on M so that Ly is positive definite. Let
g be the Fefferman metric of (M, 0). Let w be the connection 1-form of g and
Q its curvature 2-form. If M is CR equivalent to §?"~! then P,(Q*) = 0 and
[T Py (w)] € H3(F(C(M)), Z), provided n > 3.

To prove Theorem 3, we study the geometry of the second fundamen-
tal form of the immersion ¢ = p~'oj : H* - (C* x C,,G). Set C, =
v/n+1/4/2(n +1). The tangent vector fields &, given by:

;) ] d _90
E=C| =+ =+t -+t =
a7’

az/ ot a
.9 .9 a _—90
= J— _j—-:-— -_— -
& C,.(z 3zf+z PY (n+2)(§8§+§8§>>

are such that G(&;, &) = 0, G(1,&) =1 and G(&, &) = —1, and form a
frame of the normal bundle of ¢. Since p is a biholomorphism (with the inverse
p Nz, ¢) = [z¢V/ 4D, ¢ 1/+D]) we have:

a _ #—=1/(n+1) 8
P = 9z
3 ~1/(n+1)( j_ 9 d )
2 - = Ne—) .
Pror =¥ vt );a;
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By (5) the Christoffel symbols of the Levi-Civita connection VO of (Vy41, Go)
vanish. The Levi-Civita connection V of (C" x C,, G) is related to V° by:

Dx (V?(Y) = VP*XP*Y

for any X,Y € T(V,41). A calculation shows that:

. 2 g g, @ __m 13
Lok 0 "%ar  n+lcac
v, 1 19
acdz] n+1¢ 07/

Tangent vector fields on H” are of the form X +Y with X = A/3/9z/ +A73/97
and Y = B3/3d¢+ Bd/d¢ satisfying Alz,+Afz, = 0, respectively B¢ + B¢ = 0.
Here z/ = z;. It follows that:

n+2 C,
\Y =C,——X, V = —

(6) x§1 nn+1X x&2 ——

C, d ]
) Vyé = —{Y+B§z’—+B§E’ }

n+1 a7’

C, d d
®) Vyé& = —_,_—1{ (n+2)Y+B§z’—+B§z’ 377 }

Let A, = Ag, be the Weingarten operator corresponding to the normal section
&,. We shall need the following:

LEMMA 2. The first Pontrjagin form of (H", h) is:

1
‘1’12 AV¥io

where (with respect to a local coordinate system (x') on H™):

] a ; j
le—h(a 7 A]Azg-j)dx Adx! .

We shall prove Lemma 2 later on. Recall the Ricci equation (of the given
immersion ¢, cf. e.g. (2.7) in [13], p. 22):

G(R(X,Y)&, &) = G(R (X, Y)E, &) + h([Ag, Ag1X, Y)

where R, R* denote respectively the curvature tensor fields of (C” x C,, G) and
of the normal connection. As a consequence of (6)-(8) &, are parallel in the
normal bundle, hence the immersion ¢ has a flat normal connection (R+ = 0).
On the other hand R = 0 (because (V,41, Go) is flat) and the Ricci equation
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shows that the Weingarten operators A, commute. Then W;; = 0 and our -
Lemmas 1 and 2 together with Theorem 2 yield P;(Q?%) =0.

Let g : H*(F(C(M)),R) - H3(F(C(M)),R/Z) be the natural homomor-
phism. By Theorem 3.16 in [2], p. 56, since P1($2?) = 0, there is a coho-
mology class o € H3(C(M),R/Z) so that pta = q ([T Pi(w)]), where pr :
F(C(M)) — C(M) is the projection. Yet, for the Hopf manifold H>(H", R/Z)
= 0 provided n > 3, hence [T P,(w)] € ker(q) and then by the exactness of the
Bockstein sequence:

... > H3F(C(M)),Z) - H*(F(C(M)),R) —»
— H3*(F(C(M)),R/Z) - H*F(C(M)),R) — ---

it follows that [T P;(w)] is an integral class.

5. — Proof of Theorem 2

Let ¢ € I'®(T*(F(C(M))) ® R?**) be the canonical 1-form and set ¢ =
¢’ ® e;, where {e;} is the canonical basis in R?". Moreover, let E; = B(e;) be
the corresponding standard horizontal vector fields (cf. e.g. [8], vol. I, p. 119).
Let u : M —> R be a C® function and let ¢ be the Fefferman metric of
(M, €20). Let & be the corresponding connection 1-form. Then:

) “;. =a)} +d(uop)8;+Ej(uop)(pi —eiEi(uop)ejgoj

at all points of £(C(M)), as forms on F(C(M)). Here p = w o pr. The proof
is to relate the Levi-Civita connections of the conformally equivalent Fefferman
metrics g and g, followed by a translation of the result in principal bundle
terminology. We omit the details. Consider the 1-parameter family of Lorentz
metrics g(s) = e*®™Mg, 0<s <1, on C(M). Let w(s) be the corresponding
connection 1-form and set o’ = :—s{w(s)}s=o. By (9) (applied to s(u o p) instead
of u o p) we obtain:

(10) @ = do p)8] + Ei(u o p)¢' — € Ei(u o p)ejp)

at all points of £(C(M)), as forms on F(C(M)). Let P € I*(GL(2n)). We
wish to show that P(¢) is invariant under any transformation 6 = ¢2“6. Note
that a relation of the form:

(11) T P(®) =T P(w) + exact

yields P(Qf) = P(Q%), hence we only need to prove (11). Since the Q
generate I(GL(2n)) we may assume that P is a monomial in the Q,. Using
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Proposition 3.7 in [2], p. 53, an inductive argument shows that it is sufficient
to prove (11) for P = Q,. It is enough to prove that:

(12) —‘i{TQg(a)(s))} = exact .
ds

Since each point on the curve s > g(s) is the initial point of another such
curve, it suffices to prove (12) at s = 0. By Proposition 3.8 in [2], p. 53, we
know that:

d
T (T Qe(@()}s=0 = £ Q@ A Q) + exact
hence it is enough to show that Qg(w’ A Q¢~!) = exact. Using (10) and the
identity:
Qe(¥ AQT) = E VIAQEA- AQYE
i

(cf. (4.2) in [2], p. 57) for any gl(2n)-valued form ¢ on F(C(M)), we may
conduct the following calculation:
Q@ AR =Y W AQEA-AQLE
=Zd(uop)/\9i3 /\/\Qig
+3° (Ei2 (o p)p't — € Eiy (uo p)ei2<pi2) AQEA AR

Recall the structure equations, cf. e.g. [8], vol. I, p. 121. As g is Lorentz, w

is torsion free. Hence ¢l A Qf = 0. This and (2) also yield e,2¢'2 A 9'2 0.
Hence:

Q@ A =dWo p) A Qe 1 () = exact
(because dQ;_1(¢~1) = 0) at all points of £L(C(M)), as a form on F(C(M)).

This suffices because both Q¢ (o’ A Q¢71) and (1 0 p)Q¢—1(2¢~1) are invariant
forms.

6. — Proof of Lemma 2

Recall (cf. e.g. [8], vol. II, p. 313) that:

P = Y 6] A A2

where ¢, = 1/ ((27)*(2¢)!) and the summation runs over all ordered subsets
(@1, - -+ ,ize) of {1,---,2n} and all permutations (j1, - - -, jae) of (i1, - -, iz) and
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8,’1‘,’22: is the sign of the permutation. We need the Gauss equation (cf. e.g.
(2.4) in [13], p. 21):

leij = kaﬁi - ?kAﬁj
where R,f,-j, B]‘-‘k are respectively the curvature tensor field of (H", /) and the
second fundamental form of ¢ (with respect to a local coordinate system (U, x*)
on H"). Also A,0; = A,{,.a,- where 9; is short for 3/dx’. The Gauss equation
and the identity:

R(X,Y)Z=u (2Q(X*, Y*),,(u_IZ))

(cf. [8], vol. 1, p. 133) for any X,Y,Z € T,(H") and some u € F(H"),,
furnish: ; .
29 = Y X* (BGAL — B AL) dx' A dx!

(where X]': : p}l(U) — R are fibre coordinates on F(H") and (Y}) = (X]':)'l).
Using:
;k = AZjhrk

a calculation leads to:

2 k k
2P (Q°) = —¢ (Bja]lkl Adp B;"zzlczAa:lzpz

_ R Ak pay 4k P i1 7] 2
o A B, Ak, ) dxPl Adxit A dxP2 A dx

hence:
PP =c1 ) Wap AWap
a,b

where W,;, is the 2-form on F(H") given by:
Wop = h(Ald;, Apdj)dx' Adx’ .

Finally, note that ¥y = Wy = 0 and ¥;; = —W¥;; and Lemma 2 is proved. Note
that the proof works for any codimension two submanifold of a flat riemannian
manifold.
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