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Weighted Sobolev Spaces in Complex Ellipsoids

JOAQUÍN M. ORTEGA - JOAN FÀBREGA

1. - Introduction

Let D be a bounded domain of C’ and let cv be a positive measurable
function on D. We denote by

the weighted Sobolev space with norm

where dz denotes the volume element on D. We will denote by cv) the
space of holomorphic functions on D which belong to L f (D, w).

This paper deals with the a-equation and some problems of division and
extension. To precise the object of our work, we begin stating some known
results in this direction.

The first problem is to obtain sharp Sobolev estimates of the solution of
a g = f. For a strictly pseudoconvex domain D with smooth boundary, N. Kerz-
man [KE] and N. Ovrelid [OV] obtained (LP, LP) estimates, S.G. Krantz [KR]
(LP, Lq) estimates and D.C. Greiner and E.M. Stein [GR-ST] Sobolev estimates
(Lf(D), 1+ 112 (D)). If p is a defining function of D such that ap (z) 0 0
for z in the boundary of D, then we can also obtain (_p)8+p/2),

(- p)s )) estimates (see [OR-FA 1]).
Of course the above results can be considered in other domains. J. Bruna

and J. del Castillo [BR-CA], following the method of the integral operators
started by M. Range [RA], obtained (LP, LP) estimates in some pseudoconvex
domains with real analytic boundary and D.C. Chang, A. Nagel and E.M. Stein
[CH-NA-ST] obtained Sobolev estimates for the canonical solution in smooth
domains of finite type in (C2. Estimates of type (LP, Lq ) have been obtained
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by P. Bonneau and K. Diederich [B-DI], A. Bonami and Ph. Charpentier [B-
CHA] and Z. Chen, S.G. Krantz and D. Ma [CHE-KR-MA] in some particular
domains.

The second object is a problem of division. To be precise, let Y = iz; u =
0} be a complex submanifold in a neighbourhood of D and assume that 
0, z E Y. Let f be a holomorphic function on D vanishing on Y n D. Then we
can consider the holomorphic function and it is natural to study the regularity
of this function in terms of the regularity of f. The C°° case has been treated
by E. Amar [AM] and M. Hickel [HI]. Assuming that D = (z; p  0} is
a bounded strictly pseudoconvex domain with smooth boundary and that the
function u satisfies the condition of transversality

P. Bonneau, A. Cumenge and A. Zeriahi [BO-CU-ZE] showed that if f is in
the Lipschitz class A~ then ~ is in the class A,-1/2- Under the same conditions
it was proved that if f is in the class (- p)s), then the function L is

the class Af(D, (- p)s+p~2) [OR-FA 1 ].
Let us consider the third problem. Let Y be a complex submanifold in a

neighbourhood of D and transversal to the boundary of D. Then we can consider
an extension problem from the submanifold M = YnD to D. If D = iz; p  01
is a strictly pseudo-convex domain G.M. Henkin [HE] proved restriction and
extension theorems for bounded functions and continuous functions on D and
A. Cumenge [CU] for Hardy spaces and AP(D, (- p)s ) spaces. F. Beatrous

[BEA] obtained that if Y is a submanifold of codimension d then

We point out that in this case it is possible to obtain a result of extension
of jets (i. e. to find a extension of a function and derivatives, see [OR-FA 1].
For pseudoconvex domains E. Amar [AM] studied the C°° case and K. Adachi
[AD-1, 2, 3] studied the problem for Hardy spaces in a generalized type of
real ellipsoids.

When D = f z; p(z)  0} is a domain of finite type m, all the known
estimates on the above problems just depend on the type. This have a close
relation with the fact that the multiradious v (z) of the bigger polidisc centered
at z and contained in the intersection of D and the tangent complex space at
the point z satisfies co(-p) 1~2  ~ Observe that this estimate
if m = 2 gives Iv(z)1 ( ~ (-~0 (,z)) 1/2. Then, if we want to give precise results
on the previous problems it seems convenient to introduce Sobolev spaces with
weights to depending on p and v.

The aim of this paper is to consider the above problems in the context of
these spaces. We will treat that for the most simple model of domain of finite
type i. e. the complex ellipsoid of cC2, where we can give sharp estimates.
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Let D be the complex ellipsoid of (C2

and a D its boundary.
We consider the spaces for 1 :S p  oo, 1 = 0, 1,...

and 8, r such that the function is integrable on D. The subspace of
holomorphic functions will be denoted by (2013/))~p~).

We state two of the main results which will be obtained in this paper.

THEOREM A. If f is a (0, on D, a closed and with coefficients in
then there exists (- p)s vr) such that

THEOREM B. Let Y = IZ E V; u (z) = 01 be a holomorphic submanifold
defined in a neighbourhood of D and let M = Y n D. Moreover, assume that the
holomorphic function u satisfies

Then, if f is a function of class , vanishing on M the function
flu is of class

Before stating the first result about extension, we need to introduce some
notations and results.

_ 

Let Y = f z; u(z) - 0} be an analytic set, defined in a neighbourhood of
D and we assume that (au A ap) (z) ~ &#x3E; c &#x3E; 0, for z in a neighbourhood W of
Y n a D . Let M = D n Y. Then we denote by

the space of holomorphic functions f on M such that the restriction of f on
M n W belongs to W, (-p ySvr). Note that this space does not depend
of the neighbourhood W.

Then we obtain:

THEOREM C. Let Y = u(z) = 0} be an analytic set, defined in a neighbour-
hood of D and we assume that
Then

If Y is a complex submanifold we can obtain this result as corollary of
a more general result of extension of jets. To state this result we will start

given conditions of regularity of the restriction on M of the function and its
derivatives. Finally, we prove that the above conditions are sufficient to obtain
the extension results.

Let di f be the j -th covariant differential of f and let X = (X 1, ... , Xj)
be a j-tuple of smooth vector fields. Assume that X has n2 tangent complex
vector fields. We define the function 0(X) - (_p)ntvn2, where n, 1 = j - n2.
Then we will obtain the following theorem:
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THEOREM D. Let Y = {,z; u (z) = 01 be a complex submanifold defined in a
neighbourhood of D and transversal to he boundary of D. Let M = Y n D.

Then for every function f in Af(D; and every j -tuple of smooth
vector fields X = (X,,... , Xj) we have

For every holomorphic function on D, we denote by

Let F = ( F°, ... , Fn ) be, where E M and i = 0, ... , n, is a j -covariant
symmetric tensor. The next problem is to obtain necessary and sufficient con-
ditions on F such that

It is clear that condition (1.2) gives some necessary conditions of compati-
bility on F and that Theorem D gives necessary conditions of regularity of Fi.
Then defining an of order n on M as a jet which satisfies
these conditions (to precise, see Definition 6.5), we obtain:

THEOREM E. Let Y = iz; u(z) = 0} be a complex manifold, defined in a
neighbourhood of D and transversal to the boundary of D, and let M = D f1 Y.

Then, if F is a Ap (D, (-p)3Vr)-jet of order n on M, there exists a function f
in such that = F.

This paper is organized as follows. In Section 2 we obtain a precise
estimate of the function v. In Section 3 we construct some representation
formulas and we give estimates of the corresponding kernels. In Section 4 we

study the properties of the integral operators which appears in Section 3 and
as application we prove Theorem A. In Section 5 we prove the division result
of Theorem B. In Section 6 we prove the extension results of Theorems D and
E and in Section 7 we obtain the result of Theorem C. Finally, in Section 8
we give some results for complex ellipsoids in 

As usual, all the constants which appear in the inequalities will be de-
noted by c.

2. - Notations and geometric results on D

The aim of this section is to obtain a precise estimate of the radious v (z)
of the bigger disc of center z and included in the intersection of D and the
tangent complex space at the point z. To do so we introduce some notations
and definitions that we will use in this paper.
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DEFINITION 2.1. We denote by I D 1, D2, D3 ) the following partition of D.

DEFINITION 2.2. For z in D and TJ &#x3E; 0, we define the functions

Ifi I we write T(Z) instead of

The next lemmas will be used to prove that

DEFINITION 2.3. For § , ,z E cC2 we define

The following result has been obtained by M. Range in [RA].

LEMMA 2.4. If ç, z are in a neighbourhood of the boundary of D then

PROPOSITION 2.5. For z in D and near of the boundary, we have

where denotes the complex tangent plane at
the point z. 

’ ’

PROOF. Using Lemma 2.4, we find that for ~ E a D n Tz,

Since ~ is in T,, then we have and therefore
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Observe that

and that the polynomial

has a unique positive zero xo for every z E D, z # 0.
Thus, to prove the result is sufficient to show that this zero satisfies

First, we assume that and we take

Replacing x by xt in the polynomial we obtain

Since z is near the boundary of D and IZl12k  -p (z), then I is near
to 1 and thus there exists to such that &#x3E; 0 for every t &#x3E; to.

On the other hand, we have

and therefore there exists a tl such that  0 if 0  t  tl .

Using the two above results, we find that

if |z1|2k-p(z)
The same method can be used to show the other cases and hence the lemma

is proved. D

REMARK. The functions A(z, 1]) and r(z, q) of Definition 2.2 are a precise
estimate in our case of the functions A (z, 8) and -r (z, 3) introduced by A. Nagel,
E.M. Stein and S. Wainger in [NA-ST-WA].

Also note that for 0  1]  1]0 and z in a neighbourhood of the boundary
of D we have
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3. - Some integral representation formulas and estimates

In this section, using a result of B. Bemdtsson and M. Andersson [BE-AN],
we obtain some representation formulas and some estimates which we will be
used in the next sections to find solutions of the mentioned problems.

To do so we introduce the functions

and the forms

For every t &#x3E; 0, we consider the kernels

These kernels satisfy = Rt outside the diagonal, and Rt is holo-

morphic in the variable z.

THEOREM 3.1 (Koppelman Formulas [BER-AN]). Let be the component

of Kt ofbidegree ( p, q) in z, (2 - p, 1 - q) in ç, and let be the component of
Rt of bidegree (p, q) in z, and (2 - p, 2 - q ) in ~ . Then, if f is a ( p, q ) form with
coeff’zcients in Cl (D), we have

Note that for every 0, the above formulas give explicit integral operators
to solve the a-equation. For (0, 1) forms a-closed this operator is given by the
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kernel

Also, we obtain an integral representation formula for holomorphic functions
using the kernel

The following lemmas will be used to obtain estimates of these kernels.

LEMMA 3.2. The kernels I~t and Rt satisfy the estimates

PROOF. It is clear that and that

Thus i) follows from the expression (3.2) of Kt (~, z).
To obtain ii) observe that

Therefore, to prove the result of the lemma is sufficient to show that

and this result follows trivially from
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LEMMA 3.3. The representation kernel Rt,o is given by

PROOF. The proof follows easily from the computations of (d Q)2, d P and
d a given in the proof of the above lemma. 0

The next proposition gives some estimates of these kernels.

PROPOSITION 3.4. Let s, r be real numbers such that the function (- p)S Tr is a
function of class L 1 (D) and let t &#x3E; 0 be large enough. Then we have

To prove this result we need some preliminary lemmas.

LEMMA 3.5. If§, Z ~ D then

PROOF. This result follows trivially from the definition of a (~, z) and the
result of Lemma 2.4. 0

LEMMA 3.6. For and I we have

PROOF. It is clear that

Finally, using the change r = in the first integral and r in
the second one, we obtain the estimate. D
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LEMMA 3.7. Let i
and

Then:

if I , we have

if I we have

If we have

PROOF. By Lemma 3.5 we find that &#x3E; 0 or

if ~ or z are in a compact subset of D.
Thus, to prove the lemma is sufficient to obtain the above estimates for

with z in a neighbourhood of a D .
First we consider the case 8 = 0.
To compute this integral we consider three cases.

a) 
In this case we have 1~21 ~ c &#x3E; 0 and therefore using the usual change of

coordinates 
- - -

and the estimates of Lemma 3.5, we obtain

Now, using polar coordinates I rJ 11 = r, = s we get
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To finish, we consider the cases n = 0, 1, 3.

n = 3. In this one we have

n = 1. Using the same method and Lemma 3.6, we obtain

n = 0. The same argument gives

The cases i ~ and follow
in the same way.

Now, we consider the case 8 # 0.
If 8 &#x3E; 0, the result follows trivially from the

above case.
If -1  8  0, using

in a neighbourhood of a D and an integration by parts we obtain

Hence, the result follows from the above case.

LEMMA 3.8. For ~, z E D we have

PROOF. The first inequality follows from the definitions of r and

Now we prove the second inequality. By Lemma 3.5 we have

Finally, using the above estimates and the definition of i (~, ~a (~, z) 1) we obtain
the result. D
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PROOF OF PROPOSITION 3.4:

Estimate i). We consider the following cases:
a) z E Di. If r &#x3E; 0, using the definition of r and the estimates of

Lemma 3.7, we have

If r  0 we obtain

b) z E D2. This case follows in the same way.

c) z E D3. If r &#x3E; 0 using Lemma 3.8 and the estimates of Lemma 3.7 we
obtain

If r  0, we have

Assume for example 4. Then, by Lemma 3.7 we obtain
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Thus estimate i) is proved. Estimates ii) and iii) follow in the same way
and their proofs will be omitted. Estimate iv) follows from part iii) and from
the estimate

obtained in Lemma 3.8. D

4. - Integral operators and resolution of a-equation

The aim of this section is to give some properties of the integral operators
Kt and Rt defined in the above section. Also we prove the following result:

THEOREM 4.1. Let 1  p  oo be and let 8, r be such that (_ p) 3 -, r belongs
to L 1 (D). Then, for every (0, 1) form f on D, a closed and with coefficients in
Lf (D, there exists a function g in Lf (D, (- p)s t’’) such that ag = f.

To prove this theorem we will use the solution of the a-equation given
by the operator Ko,o for some t &#x3E; 0 large enough (see (3.2)), the estimates of
Section 3 and the following integration by parts formulas.

The first lemma can be found in [BR-BU].

LEMMA 4.2. Let f be a (0, 1) form a-closed with coefficients of class Coo (D).
Then

where y, fl are multiindexes with y ( + ~ = j - 1 and i = 1, 2 denotes the
coefficient in dzi in the component of the kernel Rt of degree ( 1, 0) in z and (2, 1 )
in ~. -

To find estimates of the terms which appear Rt", we need to introduce
the following operators:

DEFINITION 4.3. For positive integers i, j, u, v, v, 17 and s, t &#x3E; 0 we define the
kernel 

,

and the differential operator

REMARK. It is clear that the coefficients of Rt (~, z) are linear combination
of these kernels.
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LEMMA 4.4. If s &#x3E; 0 and f is a function of class Cl (D), then

where I denotes the Identity operator.
PROOF. First, note that Stokes’ theorem implies

for every function of class G1 (D) which vanishes in the boundary of D. Also,
note that from the definition of p (~ ), and a (~, z) (see (3.1 )), we have

Hence, we obtain

and the lemma is proved. 0

The next lemma is well-known (see for instance [OK] Theorem 4.1.2).

LEMMA 4. 5 . Let (X, f1x), (Y, f1y) be cr -finite measure spaces and let 1  p 
oo, and p’ its conjugate exponent. Suppose that there exist f1x, f1y measurable
functions (x), w2 (y) and 1/1 (x, y) such that

Then the operator

is continuous from LP(X, f1x) to LP(Y, f1y).
If p = 1 and condition ii) is satisfied for some q; = = ~p2, then the operator

T maps L 1 ( X, f1x) to L 1 ( Y, f1y).
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PROPOSITION 4.6. For 8, t, r satisfying the conditions of Theorem 4.1 and K an
integral operator have: 

-

PROOF. Let 1  00 be and let p’ be its conjugate exponent.
To prove i) we define

with s &#x3E; 0 small enough such that belongs to 
Then we have = ~p2 if P = I and

Moreover, by proposition 3.4 we have:

and thus applying the result of Lemma 4.5 we obtain i).

As final result about these operators we give the following lemma:

LEMMA 4. 7. Let Rt,, the differential operator where I is the

Identity operator and Rz is the differential operator A

Then for t &#x3E; 0 large enough, the di, fferential operator

gives an isomorphism between these spaces.
The inverse operator is given by the integral operator

with o
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PROOF. A direct computation gives

and thus the lemma is proved.
REMARK. Using this lemma we can obtain the known result

PROOF OF THEOREM 4.1: We define the function g by

for some t &#x3E; 0 large enough. Then by the Koppelman formulas (Theorem 3.1 )
it is clear that ag = f.

Now, we prove that g is of class (- p)s tr). By integration by
parts in the formula of Lemma 4.2, it is sufficient to show that the inte-

gral operator Ko,o maps the space of (0, I)-forms with coefficients of class

LP(D, to the space LP(D, (-p)3r’) and that the operator 7?o j i
maps the space of (0, I)-forms with coefficients of class Lf-j(D, 
to the space (_p)8TT), j = 0, ... , I-I.

By Lemma 4.4 we have that the last condition is equivalent to show that the
operators maps the space Li(D, to the space AP(D, (-p)6-rr).
Moreover we have 2013~(~) ~ -r(~) and thus

(-p)3+P-r’). Finally using (see [GR],
Theorem C) and Lemma 4.4 we find that to prove the theorem is sufficient to
show that: 

-

The operator KÖ,o is continuous from

(-/p). 
,

The operators are continuous from

(2013~)"’~). Thus the theorem follows from Lemma 3.2 and Proposi-
tion 4.6. D

REMARK. This result is sharp in the sense that there exists a (0, I)-form
9-closed with coefficients in (_p)8rr) such that the solutions g of the
equation ag = f are not in (- p)~ ir+p-E) for all E &#x3E; 0. As usual this
form can be taken of type

See [CHE-KR-MA] for more details.
Also, note that the same estimates and a more general version of Lemma 4.5

(see [OK] Th. 4.1.2) permit to obtain

estimates for the a-problem.
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5. - Division in the Af (D, (- P) 6 -rl*) spaces

The goal of this section is to prove the following theorem:

THEOREM 5.1. Let Y = {z_E V; u (z) = 01 be a holomorphic submanifold
defined in a neighbourhood Y of D and let M = Y fl D.

Assume that the function u (z) satisfies the following conditions:

Then, if f is a function of class Ap (D, (-p)3 r’) vanishing on M, the function
flu belongs to Af(D, (-p)8r r+p ).

To prove this theorem, we need the following lemmas.

LEMMA 5.2. For ~, z in D

PROOF. Using

and Lemma 3.5, we obtain the result i).
The result ii) follows in the same way. D

LEMMA 5.3. Let Y = {z; u(z) = 01 be a holomorphic submanifold with
u satisfying properties i) and ii) of Theorem 5.1. Then for every point TJ in the

boundary of M = Y rl D, there exists a neighbourhood W of ~ and a holomorphic
projection of class C°° (W),

such that

REMARK. Observe that condition ii) implies that if z E V n D then

PROOF. We define w = w(z) by



342

By property ii) we have

and thus, by the implicit function theorem, we find that w is well defined in a
small neighbourhood W of n].

Moreover, using 5.1, 5.2 and

we obtain

w) is a function of class C°° (W x W) 1 if W is small

enough. Taking ~o(z) = 1/I’(z, w) then i) is proved.
Using (5 .1 ), Lemma 2.4 and i), we obtain

Assume that 1/2. Then

Now, since for all 8 &#x3E; 0 and

) we obtain

Thus, by (5.3) and (5.4) we obtain

The same argument gives
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and thus

Using the same method we can show the case 1/2 and hence ii) is

proved.
Finally we will prove iii). z) = 0 we obtain

Thus, by Lemma 3.5 and (D (w, z) = 0 we have

and therefore using (5.5) we obtain

Then from ii) and (5.6) we obtain

To finish we prove the converse inequality. Using (5.5) and

for all 6’ &#x3E; 0 and x, y &#x3E; 0 we obtain

Then using Lemma 3.5, (D (w, z) = 0 and ii) we obtain

where c~ is a constant which depends of E -

Hence, it is clear that iii) follows from the above inequalities.
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Using the estimates of the proof of Lemma 5.3 we can obtain the two
following properties of the projection w(z).

LEMMA 5.4. Using the same notations as in the above lemma we have:

PROOF. Part i) is the estimate (5.6) and part ii) follows from part iii) of
Lemma 5.3 and from

LEMMA 5.5. If ~, z are in D, w = w (z) is the projection of Lemma 5.3 and X,
is the tangent complex vector field

then we have

PROOF. First note that

The first step is to obtain estimates of v) I v=w in terms of
and ~(~, 

It is clear that

Thus, using Lemma 5.2 and the estimates

we obtain
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Next, we will prove the lemma. From the above estimate we get

Now, we consider the three usual cases.
a) Z E Di . In this case we have ~z112k  -pCz) and

Hence

The cases b) z E D2 and c) Z E D3 follow in the same way. 0

LEMMA 5.6. Let w = w (z) be a local projection of Lemma 5.3. Then, for ~ in
D and 0  s  1, we have

PROOF. First note that
Therefore we have

Also by Lemma 3.5 we obtain ~ and

On the other hand, using part i) of Lemma 5.4 we have

and

Hence, the lemma is proved.
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PROOF OF THEOREM 5.1: We consider a covering f Ui Iio 0 of D such that:

Let a partition of the unity for this covering.
We want to show that the functions gi (z) = Xi (.z) fae are of classu(z)

(-p)r). We consider the three following cases.

Then, using part i) of Lemma 5.3 and the differential operator

we obtain

and moreover

where all the functions are of class

Next, we will prove that the function

is of class i
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Since ~~ is holomorphic on D, using the representation kernel R"O, 0 we
obtain that gi(z) is given by: 

’

Therefore, by Lemma 5.6 and integrating over the variable s, we obtain

Moreover, by Lemma 5.5 we have

and finally, applying Proposition 4.6 iii) we obtain the result.
Using the same method we can prove that the other functions which appear

in the expression (5.8) are of class LP(D, and thus the theorem is
shown. D

REMARK. The estimate of Lemma 5.1 is sharp in the sense that we cannot
take r’  r + p in the hypothesis of the theorem. The result can be proved
taking Y = f z; z = 0} and functions of type

6. - Extension of jets from holomorphic submanifolds

The aim of this section is to prove the results of Theorems D and E.

Using we can assume, without
lost of generality, that 8, r satisfy 8 &#x3E; 0 and 23 &#x3E; -r. This is a technical
condition which gives = 0.

As in Section 5 we consider a submanifold Y = lz; u(z) = 0} defined in
a neighbourhood of D and transversal to the boundary of D. Then we can
assume that the function u (z) satisfies:
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To prove the restriction and extension Theorems D and E we will use the
extension operator given by B. Bemdtsson ([BER], Th. 2.) We recall briefly
this result.

We find holomorphic functions 9 1 (~, Z), 92 (~, Z) such that

and we define the (1, 0)-form and the
current

where da denotes the surface measure on M. Observe that the coefficients of

/1 are measures supported on M, depending holomorphically on z e D.
Then for every t &#x3E; 0 there exists a constant c = c(t) such that for every

holomorphic function f on M of class C~(M), the formula

defines a holomorphic function on D which coincides with f on M.
Note that the operator El is given by an integral operator of type

with ~p (~, z) holomorphic in z and of class C°° (M x D).
The next lemmas give some properties of these kernels.

LEMMA 6.1. For z E D, t &#x3E; 0 large enough and s &#x3E; 0, 2s &#x3E; -r, we have

PROOF. Let il be in a D n Y and 03B6 E M, z E D satisfying |03B6-771, 
with s sufficiently small such that there exists the projection w - w (z) of
Lemma 5.3.

First, we will prove

By Lemma 5.4 we have
On the other hand by (6.1 ) we have
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Moreover, since a u (z) ~ 0 on Y, we have for

For example we assume ~g2(~, w) ~ &#x3E; c &#x3E; 0. Then, we have

Hence, using the transversality of Y and taking 03B5 small enough, we obtain

Next, we will obtain the estimates of the lemma. Note that from (6.3) and
part ii) of Lemma 5.3 we obtain

This is the estimate of the lemma for s = r = 0. Now we prove the case s,
r &#x3E; 0. We consider the three usual cases.

a) .z E Di . In this case we have

b) z E D2. The result in this case can be obtained in the same way as in
the above case.

C) Z E D3. Using Lemma 3.8 we have

The case r  0, 2s &#x3E; -r follows in the same way and thus the lemma is

proved. a
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DEFINITION 6.2. Let X = (X 1, ... , X n ) be a n-tuple of smooth vector fields
with coefficients in a neighbourhood of D. Let n2 be the number of Xi such that are
tangent complex.

We define the function

LEMMA 6.3. Let X be as in Definition 6.2. Then

PROOF. Assume for example that z is in a neighbourhood of a D and that

Let be a differential operator with coefficients of

class C°° in a neighbourhood of D. By direct computation, we have

If X 1 is not tangent complex, then c and thus

....

If X 1 is tangent complex we have

Thus, using (6.4), (6.5), Lemma 5.2 and the definition of r (Definition 2.2),
we have

Therefore it is clear that

To prove the lemma we proceed by induction on n.
Then, if X1 1 is tangent complex, by (6.5), we have that for z in a neigh-

bourhood of the boundary of D
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for all differential operator Da of order 2k - 1. Hence, by (6.4), for
we obtain

If then c(- p (.z)) and thus
Finally, using these results, the equality

and an induction argument, we obtain the result. 1:1

THEOREM 6.4. Let Y = {z; u (z) - 01 be a complex submanifold in a neigh-
bourhood of D and transversal to the boundary of D. Let f be a function of class

Then for every n-tuple of smooth vectorfields X = (X 1, ... , Xn), the function
f belongs to

PROOF. We write X f instead Xl ... Xi/. Then, taking t &#x3E; 0 large enough
and applying Lemma 4.7, we have

Also by Lemma 6.2 we obtain

Hence, using (see Lemma 3.8) we obtain
for

Finally using the estimates of Lemma 6.1 and Proposition 3.4 and applying
Lemma 4.5 with

for some 0  s small enough, we obtain the result.
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Now, as in [OR-FA 1 ] we introduce the following definition of
11 -

DEFINITION 6.5. is an , jet of order n on
M if for all 0  j  n it satisfies the following conditions:

The conditions 1-1), 1-2) and 1-3) just gives a relation of coherence between
the tensors Fj and the condition 1-4) gives a condition of regularity.

From Theorem 6.4 the following result is clear:

THEOREM 6.6. If f is a holomorphic function of class then

the restriction on M of the jet. I is an. jet of
order n on M.

The next step is to prove that every Af(D, of order n on M
is of type Jn fjM for some f of class Af(D, (-p)8-r’). To do so we need the
following lemmas.

LEMMA 6.7. Let f be of class C°° (M) and t &#x3E; 0. Then, for every n &#x3E; 0 there
exist integral operators EY (~, z), whose kernels are holomorphic in z and satisfy
the estimates 

I .. I

such that

PROOF. The proof of this result can be obtained using ap (z) ~ 0 in the
boundary of D and an integration by parts. See Lemma 2.5 of [OR-FA 1 ] for
more details. D
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LEMMA 6.8. If oJ and t is large enough, then
the function

PROOF. Using Lemma 6.7 is sufficient to show that the integral operators
defined by the kernels

maps
First, note that by (2.1 ) we have

Moreover, the same method used to prove part iii) of Proposition 3.5 gives:

for t large enough.
Thus taking s &#x3E; 0 sufficiently small,

and applying Lemma 4.5, with the above estimates and those of Lemma 6.1,
we obtain the result. 0

LEMMA 6.9. Let Y = f z E V ; u(z) = 01 be a complex submanifold in a
neighbourhood of D and suppose that 0 for every z of Y. Then there exist
a vector field G with holomorphic coefficients on a neighbourhood of D such that
Gu(z) = 1 for z E Y.

PROOF. Let , It is clear
that for every 8 &#x3E; OD, is a strictly pseudoconvex domain with smooth boundary
and that D Also, note that

for every z E D, and E small enough.
Then using the Bezout’s theorem we can find holomorphic functions gl , g2,

g3 on D, such that
’1-- ’1--

Taking we obtain the result.
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THEOREM 6.IO. If . jet of order n on
M then there exists a function f of class such that Jn f = F on M.

PROOF. Let G be the vector field of Lemma 6.9 and let Et be the extension

operator defined in (6.2). Then, we define the function f by induction in the
following way:

- 

We want to prove that f satisfies and that f is of class

To prove that d j f 1M = FJ observe that d j f 1M = d j hiM and that

Then, using property 1-2 of Definition 6.5, it is clear that

To show that

for every X 1, ... , Xj we proceed by induction on j and on the number of Xj
such that are equal to G.

The case j - 0 is obvious because Et is an extension operator.
Now, assume that Fj for every 0  i  j - 1. By (6.6) it is

clear that (6.7) is true if X 1 =... = Xj = G. We assume that (6.7) is true if

X = ... = = G and we prove (6.7) in the case X 1 - ... = X = G.
Since Gu(z) = 1 on M we can find a decomposition 1 - ai G + a2T

where T is a tangent field on Y. Then by properties 1-1), 1-3) and the hypothesis
of induction, we have

Thus the result is proved.
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Next we prove that f is of class
Note that by properties 1-3) and , I , we have

if T is a tangent field on Y. Since Y is transversal, decomposing G as sum
of a tangent complex field X and a tangent field on Y and applying property
1-4) we obtain that the function

is of class

Finally by Lemma 6.8 and induction on j we obtain that the functions
-fo, ... , fn are of class and hence the theorem is proved. 0

7. - Extension of functions from analytic sets

In all this section we consider an analytic set Y = {.z; u (.z) = 0} defined in
a neighbourhood of D with u (,z) satisfying the condition of transversality

Note that Y is an analytic submanifold in a neighbourhood of the boundary
of D.

- As in the above chapters we denote by M = D f1 Y and we assume that

The aim of this section is to prove Theorem C.
Observe that the methods used in the above section give the restriction part

of Theorem C:

Thus it is sufficient to prove the following theorem:

THEOREM 7.1. Let Y be an analytic set with u satisfying (7.1 ) and let g be of
class Ap (M, (_p)8r,+2).

Then, there exists a function f in Af (D, (_p)3-rr) such that f I M = g.
The first step is to construct locally extension operators. To do so, we

define the convex function
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Then for 77 E Y naD and for some fixed E &#x3E; 0 small enough we define the
convex domain with smooth boundary

Note that C c B(i7, 2~) where B(i7, E) denotes the euclidean ball of
center 17 and radious E .

Also, we define the functions

Observe that for (§ - the functions On and a,~ coincide with the
functions (D of Definition 2.3 and with the function a defined in (3.1 ).

Then, as in Section 6 we consider the decomposition

the ( 1, 0) -form and the ( 1, 1 ) current

For every t &#x3E; 0 we define the extension operator

Then we obtain

LEMMA 7.2. For E &#x3E; 0 small enough the operator E’ maps the space
to the space ~

PROOF. As in Lemma 6.7, using (ap,~)(z) ~ 0 on the boundary of we

obtain:

Therefore, to prove the lemma, it is sufficient to show that the integral
operator 

-

maps
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But for we have and for

and we have

Thus, for we obtain

Then taking t, large enough and applying the argument used in the proof
of Lemma 6.8 we obtain

Hence the lemma is proved. D

PROOF oF THEOREM 7.1. We consider a finite set of points I of aDnY
such that a D c 8) for some 6- small enough. Also we can assume that

n au)(z) &#x3E; c &#x3E; 0 for z E 48) and that there exists a local projection
_

of Lemma 5.3 in a neighbourhood of 2 . Moreover, we consider a domain

Qo C C D such that D c Qo Ui 8).. 
°

By Lemma 7.2 we can find holomorphic functions fi on of class

2s ) , ( - p ) s t r ) such that Also, we have a holomorphic
function fo on D such that 

4E, we define the covering v,x of D by

and we consider the Cousin data

Then, using the local projection wi - wi (z) of Lemma 5.3 and an argument
like the one of the proof of Theorem 5.1, we obtain

It is clear that hij is a Cousin data. Using the standard proceeding to solve the
first Cousin problem, we take a partition of the unity Xi respect the covering
Vi,, and we consider the (0, 1)-form v on D defined by
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Then it is clear that v is a a-closed form with coefficients in
Thus, by Theorem 4.1 there exists a function h of class such

that

Finally defining

we end the proof. n

8. - Final remarks

The same methods used in the above sections permit us to obtain some
analogous results for complex ellipsoids D in Cn, n &#x3E; 2. However, in this case
the results are less complete.

Let D be the complex ellipsoid

Let us start stating some geometric results. We will need to know the
distance from z to the boundary of D in the different complex tangent direc-
tions. Let be a complex tangent vector field satisfying

We define

In this case, as in Proposition 2.5, we have

and thus we have that dT (,z) is equivalent to the unique positive root of the
equation 

’

For z # 0 we denote by the following vector fields which generate the
complex tangent space at the point z:
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It is clear that 0 then Ti,j, 1  j  n, j 0 i is a base of this space.
For zi I ? 1/2 we can obtain easily that

Let us first consider the a-problem. We will obtain some solutions with
Lp-estimates in terms of a weight depending of p and dT,... Some results of
this type were obtained by A. Bonami and Ph. Charpertier in [B-CHA].

The result reflects the different behavior of the solution in the different

complex tangential directions and in the normal direction:

THEOREM 8. l. Let 1  p  oo and let w be a a form on D which satisfies

Then there exists u which satisfies au = co and

The proof follows as in Section 4. We can obtain kernels
which satisfy Koppelman formulas (Theorem 3.1).

Moreover, for a 9-closed (0, 1)-fonn w we have

and

where
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As in Lemma 3.5, for z in a neighbourhood of the boundary of D we have

Finally, using the integration by parts formula of Lemma 4.1, a similar
version of Lemma 4.4 (see Lemma 3.5 of [OR-FA 2]) and the usual changes
of coordinates we obtain the theorem.

The division and extension problems are more delicate. We will only con-
sider some particular cases of the first problem. Let z’ = (,z 1, ... , z 1, 0, ... , 0),
z" = z - z’, y = en; z’ = 0} and f is a holomorphic function on D which
vanishes on Y n D. Then using the projection w (z) = .z" and following the
same steps of Section 5, we can find a decomposition

where the functions satisfy the estimate

Note that
An analogous result can be obtained for some submanifolds of codimension

one. In this case we have:

THEOREM 8.2. Let Y = {,z E V; u (z) = 01 a complex submanifold defined in a
neighbourhood of D, of codimension 1 and transversal to the boundary of D.

Then, if f is a holomorphic function on D which vanishes on Y fl D, and L (z)
is a complex tangent vector field which satisfies (Lu) (z) ~ &#x3E; co &#x3E; 0 for Z E a D ny,
we have

In this case the projection w = w (z) used to prove the theorem can be
obtained from
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This projection satisfies some analogous properties to the one defined in
Lemma 5.3, replacing the function A(z,x) by the function

where Now, following like in Section 5, we
j

can finish the proof of the theorem.
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