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Semicontinuity and Relaxation Properties
of a Curvature Depending Functional in 2D

G. BELLETTINI - G. DAL MASO - M. PAOLINI 

1. - Introduction

The aim of this paper is to study the functional

where E C R2 is a bounded open set of class C2, p &#x3E; 1 is a real number,
x(z) = raE(Z) is the curvature of 9E at the point z, and J/1 1 denotes the one
dimensional Hausdorff measure in 

We are interested in the study of the minimum problem

where g E is a given function. This can be considered as a simplified
version of a variational problem proposed in [15] as a criterion for segmentation
of images in computer vision. Moreover, it was recently conjectured by E. De
Giorgi [4] that problem (1.2) is connected with the asymptotic behaviour of
some singular perturbations of minimum problems arising in the theory of phase
transitions.

Assume, for simplicity, that g is non-negative for Izllarge enough. If we
apply the direct method of the calculus of vatiations to problem (1.2), we are
led to consider a minimizing sequence { Eh } h, whose elements, according to our
hypothesis on g, are contained in a suitable ball independent of h and satisfy

Pervenuto alla Redazione il 10 Marzo 1992.
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By a well known compactness theorem there exists a subsequence which

converges in to some bounded set E of finite perimeter. We shall prove
that the functional 7 is lower semicontinuous with respect to the convergence
in This allows us to show that, if the limit set E is of class C2, then
E is a minimizer of (1.2). Since, in general, it is hard to prove directly that
the limit of a minimizing sequence is of class C2, we want to extend the

functional 7 to the set .M of all Lebesgue measurable subsets of JR2, in such
a way that the extended functional 7 is still lower semicontinuous. As usual
in the relaxation method (see [2]), we define 7:.M --4 [0,+oo] as the lower
semicontinuous envelope of 7 with respect to the i.e.,

The main purpose of this paper is to study the functional 7 and to determine
the family of sets E for which 7(E)  +oo. The study of the minimum problem
(1.2) led us to consider the functional

as a function of E rather than of aE. Indeed, the compactness properties of a mi-
nimizing sequence of (1.2) ensure a good convergence for the sets Eh, but the

corresponding weak convergence of the boundaries aEh does not seem to be ap-
propriate for variational purposes. The main difficulties that we encountered were
due essentially to the lack of good contintuity properties of the map E - BE.

Lower semicontinuity results and existence of minimizers under suitable
boundary conditions are much easier to reach for the functional

related to (1.3), where -1 varies now over all curves of class C2 satisfying pre-
scribed boundary conditions and s is the corresponding arc lenght parameter. In the
case p = 2, this problem is classical and the minimizers, discovered by Euler
[8] in 1744, are called elastica because of their application to the theory of flexi-
ble inextensible rods. For a complete treatment of the elastica we refer to [14,
10]. Unfortunately, these results cannot be applied directly to the study of (1.2).

In this paper we have considered the problem in the plane. The extension
of our results to the n-dimensional case is a difficult open problem and seems
to require the methods of geometric measure theory [9, 18]. We want to stress
that all our proofs are obtained by using only elementary tools. We cannot
exclude that some of these results could also be obtained in a more direct (but
less elementary) way by using varifolds theory [13, 6, 7].
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We describe now in detail the content of the paper.
In Section 2 we fix the notation and introduce the problem.
Section 3 is devoted to the study of the lower semicontinuity of 7.

Precisely, we prove (Theorem 3.2) that given a sequence fehlh of bounded
open sets of class C2 converging in to a bounded open set E of class
C2, then 

1* 11

where K and Kh are the curvatures of aE and of aEh, respectively.

The definition ( 1.1 ) of 7 makes sense if E is a set whose boundary can
be parametrized, locally, by arcs of regular curves of class H 2,p . The previous
semicontinuity theorem holds also in this case (Corollary 3.2). 

_

We emphasize that the semicontinuity of 7 and the definition of ~ are
considered with respect to the This means that the sequence

lehlh approximates E if and only if +oo, where ~ ~ ~ I
denotes the Lebesgue measure and A is the symmetric difference of sets. No
further conditions are required on 8Eh and 8E. 

_

Simple examples show that there exist sets E E N with  +oo,
whose boundary is not smooth. In particular, let us consider the set E of Figure
1.1 and suppose that 8E is parametrized by arcs of curves of class Coo, except
for the cusp points.

Fig. 1.1: A set E with -7(E)  +oo, and whose boundary is not smooth.

Fig. 1.2: This approximating shows that 7(E)  +oo.
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Fig. 1.3: This approximating sequence {Eh } h is such that

SuPh +00.

Figure 1.2 shows that 7(E)  +oo. Indeed, the sequence {Eh}h described
in Figure 1.2 converges to the set E in the norm and SUPH  +00.

On the other hand, the approximating sequence of Figure 1.3 gives
rise to an infinite energy. Here the cusp points are smoothed by circular arcs,
and it is easy to prove that, if p &#x3E; 1, then faEh - +oo as h - +oo.

Note that Figure 1.2 shows that, in the limit, the sequence (8Eh)h creates a
hidden arc (with multiplicity two), given by the segment joining the two cusp
points.

The main issue is obviously to characterize those subsets E of JR.2 such
that 7(E)  +oo. We find some necessary conditions and a number of different
sufficient conditions, but the complete characterization of this class of sets still
remains an open problem.

In Section 4 we present some regularity properties of the sets E such
that 7(E)  +oo. To be precise, we prove the following result (Theorem 4.1,
Proposition 4.3): Let E C R2 be a measurable set such that 7(E)  +oo.

Then, up to a modification of E on a set of measure zero, we have that E is
bounded, open, and )l1(BE)  +oo. Moreover, there exists a system of curves
r = {~y 1, ... , ~ym } of class H2,p such that 9E is contained in the union (r) of
the traces of the curves Ii and E = int(Ar U (r)), where Ar is the set of all
points of JR.2B(r) of index 1 with respect to r. Finally, 9E has a continuous
unoriented tangent and can have at most a countable set of cusp points.

At the end of Section 4 we classify the points of 8E according to the
local behaviour of the normal line with respect to aE.

In Section 5 we show examples of sets E such that 7(E)  +oo, despite
of their boundaries being very irregular. Precisely, in Example 1 a set E
is described whose irregular boundary points have positive one dimensional
Hausdorff measure. In Example 2 a set having an infinite number of cusp
points is shown.

In Section 6 we deal with the following problem: which conditions must
be satisfied by the boundary of a set E in order to have 7(E)  +oo? To answer
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this question, we first study those systems of curves that can be obtained as
limits, in the H2,p norm, of a sequence of boundaries of smooth sets. To this
aim we introduce the definition of system of curves satisfying the finiteness

property (Definition 6.1 ), and the compatibility condition (Definition 6.6). Then
the following result holds (Theorem 6.2): Let r be a system of curves of class
H 2,p without crossings and satisfying the finiteness property, and define E as
the set of all points of JR.2B(r) of odd index with respect to r. Then aE C (r).
Moreover 7(E)  +oo, i.e., there exists a sequence lehlh of bounded open sets
of class Coo such that Eh --&#x3E; E in L 1 (II~2 ) as h --&#x3E; +oo and SUPH  +00. In

addition, up to a suitable surgery operation on the parameter space of r, we
have that r in H2,p as h --+ +oo.

Then, quite surprisingly, using only elementary properties of graphs, we
prove one of the main results of the paper (Theorem 6.5): Suppose that 19E is
smooth except for a finite number n of cusp points. Then

In Section 7 we localize the definition of 7’ to all open subsets of JR.2, i.e.,
we consider the functional

where Q C R2 is an open set and E is a bounded open subset of JR.2 such that
Q n aE is of class C2. We prove (Theorem 7.1 ) that :1(., Q) is L1(Q)-lower
semicontinuous.

Let 7( . , Q): M 2013~ [0, +oo] I denote the lower semicontinuous envelope of
:1( . , Q) with respect to the L1(Q)-topology. One of the main results of this
section is that, as conjectured by E. De Giorgi in a slightly different context
[4, Conjecture 5], there are sets E such that 7(E, - ), if considered as a set
function, is not a measure. Precisely, we construct an example of a set E whose
boundary is smooth except for two cusp points and such that

where Q2 C R2 are two open sets, with S21 U SZ2 - JR.2.
This shows that Q) cannot be represented by an integral of the form

(1.3). Finally, the value of is computed explicitly in this example
(Theorem 7.2).

Acknowledgements

We are indebted to Prof. E. De Giorgi for having suggested us the study
of this problem.
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2. - Notations and preliminaries

A plane curve 0 1 2013&#x3E; of class C is said to be regular if 0 forp Y: [ 0,1 ] 
2 g dt 

,

every t E [o, 1 ] . Each closed regular curve -1: [0,1] 2013&#x3E; R2 will be identified, in the
usual way, with a map ~y: S’ ~ ]R2, where S’ denotes the oriented unit circle. By
(i) = ,([0,1]) = {-I (t): t E [0, 111 we denote the trace of -1 and by l(,) its length;
s denotes the arc length parameter, and 1, i the first and the second derivative

of i with respect to s. Let us fix a real number p &#x3E; 1 and let p’ &#x3E; 1 be its

conjugate exponent, i.e., 1 + I = 1. If the second derivative y in the sense ofJ g p 
p p, 

1’

distributions belongs to LP, then the curvature K(i) of y is given by and

in this case we say that -1 is a curve of class H2,p and we write y E H2,P.
Moreover, we put

If z E I~2B(~y), 1(1, z) is the index of z with respect to 7 [3].
~’ denotes the 1-dimensional Hausdorff measure in R~ [9]; for any zo E 

o &#x3E; 0, B,2(zo) =  ol is the ball centered at zo with radius o.
We remark that if f is a positive Borel function defined on (~y), then (see for
instance [9, Theorem 3.2.6])

for any Borel set B C [0, 1(-1)1.
Given a measurable set E C R2, xE denotes its characteristic function,

that is xE(z) = 1 if z E E, XE(Z) = 0 if z V E; JEJ is the Lebesgue measure of
E. For any subset C of ]R2, we denote by int(C) the interior of C, by C the
closure of C, and by 9C the boundary of C. Let E C R2; we say that E is of
class H 2,p (respectively C2) if E is open, and, near each point z E aE, the set
E is the subgraph of a function of class H 2,p (respectively C2) with respect to
a suitable orthogonal coordinate system. Note that, if 8E can be parametrized,
locally, by arcs of regular curves of class H 2,p (respectively C2), and E lies
locally on one side of its boundary, then E is of class (respectively C2).

If E is a bounded subset of JR.2 of class H 2,p then 9E can be viewed,
locally, as the graph of a function of class H2,p. This allows us to define,
locally, the notion of curvature of aE at every point of aE, by using
the classical formulas involving second derivatives. It is easy to see that the
function K(z) does not depend on the choice of the coordinate system used to
describe aE as a graph, and belongs to LP( BE, ~( 1 ).
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If M denotes the class of all Lebesgue measurable subsets of ]R2, we define
the map 7: [0, +oo] by

if E is a bounded open set of

class C2,
elsewhere on M,

where K(z) is the curvature of aE at the point z.
Let g E be a function such that {z C ]R2: g(z)  01 C BR(O), for a

suitable R &#x3E; 0. Let us consider the minimum problem

where E varies over all bounded open subsets of JR.2 with boundary of class C2.
It is clear that (2.3) is equivalent to the problem

in the sense that (2.3) and (2.4) have the same minimum values and the same
minimizers. If the region where g is less than a prescribed negative number is
large enough, then it is immediate to verify that the minimum value of problem
(2.3) is negative, hence every solution of (2.3) must be non-empty.

We shall identify .M with a closed subset of by means of the map
E H XE. The on .M is, therefore, the topology on M induced
by the distance El AE2 1, where E1, E2 E N and A is the symmetric
difference of sets.

Let us prove that any minimizing sequence {Eh}h of 9 is relatively
compact in Z~(R~). Let fehlh be such a minimizing sequence; clearly, we can
assume that SUPH  +oo, hence Eh is a bounded open set of class C2 for
any h. Then, since

it follows that

Now we will show that there exists ho c N such that Eh C BR+H(O) for any
h &#x3E; ho. If this condition is not satisfied, then there exists a subsequence of

still denoted such that for every h E N. As
the total length of is bounded by H, each set E has a connected component
Ch which does not meet Denoting by Eh the set Eh = EhBCh, we get
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 g(Eh) (recall that g &#x3E; 0 on Since also is a minimizing
sequence, it follows that necessarily 0 as h - +cxJ. On
the other hand, one can show (see (3.5)) that Ch gives a positive contribution to
the energy .7 independent of h, that is .7(Ch) 7Z+ 0, which gives a contradiction.

Hence there exists ho E N such that

We deduce that

Using the Rellich Compactness Theorem in BV (see [12, Theorem 1.19]), it
follows that there exist a bounded set E of finite perimeter and a subsequence

such that Ehk -~ E in Ll(JR.2) as k - +oo, and this shows that any
minimizing sequence of 9 is relatively compact in 

We denote by 7 the lower semicontinuous envelope of X with respect to
the topology of L1(JR.2). It is known that, for every E E M, we have

For the main properties of the relaxed functional we refer to [2]. In particular,
one can prove that

In addition, every minimizing sequence of + fE g(z) dz has a subsequence
converging to a minimum point of 7(E) + fE g(z) dz and every minimum point
of 7(E) + fE g(z) dz is the limit of a minimizing sequence of l(E) + fE g(z) dz.
_ 

The main purpose of this paper is to study the properties of the functional
7. From the definition, it follows immediately that 7(E)  +oo if and only
if there exists a sequence {Eh}h of bounded open sets of class C2 such that
Eh - E in L 1 (JR.2) as h - +oo and

where Kh denotes the curvature of aEh.

DEFINITION 2.1. By a system of curves we mean a finite family r =
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~ 7 &#x3E; .. &#x3E; ’Y m } of closed regular curves of class C 1 such that I is constant on

[o,1] for any i = 1,... , m. Denoting by ,S the disjoint union of m unit circles
Si, ... , Sm, we shall identify r with the map h: ,S -~ I1~2 defined by = ,~,
for i = 1, ... , m. The trace (r) of r is the union of the traces of the curves Y,

DEFINITION 2.2. If r = ~~y 1, ... , ~ym } is a system of curves of class 
we define

and

If z E JR.2B(r) we define the index of z with respect to r as

is constant on [0, 1], we have s(t) = hence

3. - Semicontinuity of 7

DEFINITION 3.1. By a disjoint system of curves we mean a system of
curves r = { 71, ... , ~ym } such that (Y) n = 0 for any i, j = 1,..., m, i ~ j .

Let {Eh}h be a sequence of sets satisfying (2.5). Note that, for any h,
there exists a suitable parametrization rh of aEh such that the sequence {rh}h
satisfies

LEMMA 3.1. Let
Then

be a system of curves of class H2,p.
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PROOF. Let -1 be a simple closed regular curve of class H2,p; let us prove
that

If i E C2, then [5, Theorem 5.7.3]

By a standard approximation argument, inequality (3.4) holds for any curve -1
of class H2,p . Then (3.3) follows from the Holder inequality, since, if i E 

Hence 1(-i’) &#x3E; for any I = 1,..., m. Then, recalling Definition
2.2, it follows that

(1-’" 1 (1-"" 1

The following generalization of inequality (3.3), as well as Corollary 3.1, will
be useful in Section 7.

LEMMA 3.2. Let 1: [0, 1 ] - R2 be a regular curve of class H 2P and let
0: [0, 1] ] - R be a continuous function such that 0(t) is the oriented angle
between the x-axis and the tangent vector of I at t. Then

PROOF. Let us write with obvious notation 1(S) = (cos 0(s), sin 0(s)). Then,
using the Holder inequality, it follows that
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COROLLARY 3.1. 01 be as in Lemma 3.2. Then

PROOF. Lemma 3.2 implies that

Hence, since the minimum point of the function
I

is reached at

DEFINITION 3.2. Let E C be a bounded open set of class C 1. We say
that a disjoint system of curves r is an oriented parametrization of aE if each
curve of the system is simple, (r) = aE, and, in addition,

PROPOSITION 3.1. Each bounded subset E of JR.2 of class (respectively
C2) admits an oriented parametrization of class H2,p (respectively C2).

PROOF. Since E is of class H2,p each connected component of BE can
be parametrized by a regular closed curve of class H~&#x3E;P. As BE is compact
and locally connected, it has a finite number of connected components. The
statement about the index follows from Jordan’s Theorem. D

DEFINITION 3.3. We say that a sequence of systems of curves of
class converges weakly in H2,p to a system of curves r = ~~y 1, ... , ~m ~
of class H2,p if the number of curves of each system rh equals the number
of curves of r for h large enough, i.e., r h = ~~yh, ... , ~yh ~, and, in addition,
~yh ~ 7i weakly in as h - +00 for any i = 1,..., m.

Note that, if (rh)h converges to r = { ~y 1, ... , ~ym ~ weakly in H2,p, then

for any In particular,
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THEOREM 3.1. Let {rh } h be a sequence of systems of curves of class H 2,p
satisfying (3.1) such that the traces (rh) are contained in a bounded subset of

independent of h. Then {rh }h has a subsequence which converges weakly
in H 2,p to a system of curves r.

PROOF. By (3.2), using (3.1 ) it follows that the number mh of curves of
the system rh is bounded uniformly with respect to h. Hence, for a subsequence
(still denoted by { rh } h ), there exists an integer m such that rh = ...... iml
for any h. Fix i E {l,...,m}; using (3.3) and (3.1) we get that there exist two
positive constants C1, C2 such that

Then, using (2.6) we obtain that there exists a positive constant c3 such that
I - If)

whence, as (rh ) are bounded
1 I 

_

uniformly with respect to h by the hypothesis, the family is equibounded
in H2,p. Then, for a subsequence, there exist m curves 71, ... , 7m of class H2~~
such that 1~ - i’ weakly in H2,p as h - +00, for any i = 1,..., m. This shows
that {rh}h converges to the system of curves r = {71, ... , ~ym} weakly in H2,p.

lJ

DEFINITION 3.4. We say that r is a limit system of curves of class H2,p
if r is the weak H2,p limit of a sequence {rh }h of oriented parametrizations of
bounded open sets of class 

The following remark is an easy consequence of (3.6).

REMARK 3.1. If r is a limit system of curves of class H2~~, then

I(r, z) E {0,1} for any z E JR.2B(r).
In order to prove the semicontinuity Theorem 3.2, we need the following

Lemma.

LEMMA 3.3. Let E C R2 be a measurable set, let { Eh } h be a sequence of
bounded open sets of class satisfying (2.5), and suppose that E in

as h ~ +00. Let us define

Then E* and F* are open, E* is bounded,
F* = int(JR.2BE*), and

Moreover there exists a limit system r of curves of class H2,p with the following
properties:
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where

where

PROOF. It follows immediately from the definition that E* and F* are open.
For any h, by (3.1) and by Lemma 3.1, aEh admits an oriented parametrization
Ah of class and the number mh of curves of the system Ah is bounded

uniformly with respect to h. Hence, for a subsequence (still denoted by fahlh),
there exists an integer m such that Ah = for any h. In order 

to

apply compactness arguments, we shall transform the sequence which
is not necessarily bounded, (see Figure 3.1), into a sequence {rh } h of oriented
parametrizations whose traces are contained in a bounded set independent of h.

Fig. 3.1: The sequence not bounded: two connected components
of (Ah) approaches +00 with length and curvature

uniformly bounded with respect to h.

Let us consider first the sequence of curves {’yh ~ h . If the sequence

I/A(t)1 converges to +00 as h - +00, then we eliminate lA,
i.e., we replace Ah by the system Oh - ~ ~yh, ... , ~yh ~ . Note that, as is

uniformly bounded with respect to h, the behaviour of gives that, for

any r &#x3E; 0, there exists hr E N such that = 0 (hence = 

for any h and for any z E If does not tend to +00,
there exists a subsequence, still denoted by such that the traces (~yh) are
bounded uniformly with respect to h. In this case we define Oh = Ah. Starting
from we repeat the same procedure for obtaining a new sequence
of systems of curves ~Oh } h. After m steps, we end up with a sequence of

systems which we shall denote by {rh}h. By construction, for every h,
rh is a disjoint system of curves of class H~,P, and for every r &#x3E; 0 there exists

hr E N such that

for any h &#x3E; hr and for any z E Br(0))(Ah). It is clear also by construction that
the traces (rh) are bounded uniformly with respect to h, i.e., there exists R &#x3E; 0
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such that

From (3.8) and (3.9) it follows easily that, for h large enough, for any z E

R2B(rh) we have z) C {O, I}. Let us define Ah = fZ E JR.2B(rh): I(rh, z) = 1}.
Since Th is a disjoint system of class H2,p , Ah is a bounded open set and

(r). Using Theorem 3.1, there exists a subsequence {Th}h which

converges weakly to a limit system r of curves of class H 2,p . By
(3.9) we have (r) C By Remark 3.1, I(r, z) E 10, 1 ) for any z E JR2B(r).
Let Ar be the open set defined in (i). It is clear that Ar c BR(O). Since

xAh(z) = I(rh, z) for any z E JR2B(rh), and XAr(Z) = I(r, z) for any z E R2B(r),
by the continuity property of the index and by the Dominated Convergence
Theorem we have that Ah --~ Ar in as h - +oo. Let us prove that

By (3.8) and (3.9), for any r &#x3E; R, we have that Ah = Eh n Br(0) for h large
enough; passing to the limit as h -~ +oo, we obtain that Ar0(E n = 0.

Since r is arbitrary, we get (3.10).
Let us prove that = 0. By (3.10), it is enough to prove that

Since Ar is open and = 0, for any z E Ar there exists r &#x3E; 0 such that

Ar, so that IB,(z)BArl = 0, hence z E E*. Therefore

To prove (3.11), being I (r) = 0, it is sufficient to show that

If z g Ar U (r), then I(h, z) = 0. Since the index is locally constant, there exists
r &#x3E; 0 such that = 0 for any w E Br(z). As IBr(z) n Ar T = 0,
we have z V E*. This proves (3.13), so we can conclude that 0.

Moreover (3.13) shows that E* is bounded.
Let us prove (i). The inclusion Ar follows from the fact that

Ar is open. The inclusion E* C int(Ar U (r)) follows from (3.13) and from the
fact that E* is open. To prove the opposite inclusion, let z E int(Ar U (r)). Then
there exists r &#x3E; 0 such that Br (z) C Ar U (r). Hence IBr(z)BEI = lBr(z)BArl = 0
by (3.10), and, therefore, z E E*. This shows that E* = int(Ar U (h)).

Let us prove (ii). The inclusion int(BrU(r)) D Br follows from the fact that
Br is open. Since E* and F* are disjoint open sets, we have F* C int(JR.2BE*).
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To prove the opposite inclusion, let z E int(Br U (r)). Then there exists r &#x3E; 0

such that Br (z) C Br U (r), hence Br (z) n E I = n Arl = 0 (see (3.10)),
and, therefore, z E F*. This shows that int(Br U (r)) C F*, which, together with
(3.14), gives

and concludes the proof of (ii).
Since E* and F* are disjoint open sets, we have E* C int(JR.2BF*).

As Ar U (r) = by (ii) we have C Ar U (r), hence
E* C int(JR.2BF*) C int(Ar U (r)). By (i) we conclude that

which, together with (3.15), gives

and proves (3.7).
We will now prove (iii). Since Ar and Br are disjoint open sets, we have

aArU8Br C (r). Let us prove that BE* C Ar. For every z E aE*
and for every neighbourhood U of z we select int(Ar U (r)).
Then there exists r &#x3E; 0 such that and Br(w) g Ar U (r). As (r) has

Lebesgue measure zero, we have hence This implies
that z E A r .

Let us prove that aE* C Br. For every z E aE* and for every
neighbourhood U of z we select w E UBE* = UBint(Ar U (r)). Then there
exists r &#x3E; 0 such that Br(w) C U and Br(w) n Br = Br(w)B(Ar U (r))f=0. This
shows that U n Brf=0, hence z E Br.

Therefore aE* C Ar n Br. Since Ar and Br are disjoint open sets, we
have Ar n Br = aAr n aBr, hence aE* C aAr n aBr.

Let us prove that aAr n o9Br C aE*. By (i) we have C Ar C E*,
by (ii) we have aBT C Br 9 F*, and by (3.16) we have E* = R2BF*, hence
F* = II~2BE*. It follows that

hence aE* = aAr n aBr. From (3.7) we obtain aE* - which concludes
the proof of (iii). D
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LEMMA. 3.4. Let E C JR.2 be a bounded open set of class H2,p, and let r
be a system of curves of class H2,p such that aE C (F). Then

Hence

(see Definition 2.2).

PROOF. Let r = ~71, ... , 7m ~ . For any measurable set T C 8E and any
i = 1,..., m let

Since BE C (T), we have T = U:1 To prove the thesis it will be enough to
show that

where T varies over a suitable finite measurable partition P of aE. In fact,
from (3.18) it follows that

hence

that proves the assertion. We choose the finite partition P of 8E as follows.
Any element of P must be contained in a rectangle in which 8E is a cartesian
graph. This means that for any T E P we can choose a suitable orthogonal
coordinate system, two bounded open intervals I, J, and a function f : I - J
of class H2e such that
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Let us fix i E f 1, ... , ,m} and let i’(s) = (li(s), -li (s)). For any s E Vi we have
yi2(s) = Since the functions -yi2 and are of class H 2,p on an open
set containing Y and coincide on Vi, we have [ 11 ]

Then, since I , we obtain

and

It follows that

Hence, using (2.1 ),

that is (3.17). This concludes the proof. D

THEOREM 3.2. The functional 1(.) is semicontinuous on the
class of all bounded open subsets of JR.2 of class C2, i. e., given a sequence
lehlh of bounded open sets of class C2 converging in L 1 (I1~2 ) to a bounded

open set E of class C2, then

where K and Kh are the curvatures of aE and of 8Eh, respectively.

PROOF. Let { Eh } h be a sequence of bounded open sets of class C 2 such
that Eh - E in L1(JR.2) as h - +oo. We can suppose that the right hand side in
(3.19) is finite, otherwise the result is trivial. Let be a subsequence of

with the property that
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For simplicity, this subsequence (and any further subsequence) will be denoted
by For any k, has a finite number of connected components.
Let 0,~ be an oriented parametrization of aEk. Since feklk satisfies (2.5), the
sequence satisfies (3.1). As in the proof on Theorem 3.1, we can suppose
that Ak = 1 -11, - - - , -,m I with m independent of k. Let be
the equibounded sequence and let r be the limit system of curves of class
H2,p constructed in the proof of Lemma 3.3. Then, by construction, n  m,
r and for any j we have that -yk - weakly in
H2,p as k - +oo. Using (iii) of Lemma 3.3 and the weak lower semicontinuity
of the LP norm, we have

Since by Lemma 3.4 and
we conclude that

which is the assertion of the theorem. D

The following result generalizes Theorem 3.2.

COROLLARY 3.2. Let E C JR.2 be a bounded open set of class H 2,p . Then

In particular, 7(E)  +oo.



265

PROOF. Theorem 3.2 holds with the same proof if E is of class H2,p , hence,
passing to the infimum with respect to the approximating sequence lehlh in
(3.19), we infer that

Let us prove the opposite inequality. Proposition 3.1 implies that there exists
an oriented parametrization r = ~7’ , ... , 7m } of aE of class H2,p. Hence in

particular BE = where -1’ [0, 1] 2013~ I~2 are closed simple regular disjoint
curves of class H 2,p . For any i = 1, ..., m, let us consider a sequence Of
curves of class C~([0,1]) such that i’ strongly in H2,p as h - +00. It

follows that, for h large enough, the approximating system rh = is a

disjoint system of curves. Moreover, the curves ig are simple for h large enough.
If not, there exist a subsequence, still denoted by and two sequences

{th}h of points, with 0  Sh  th  1, such that By
compactness, we may also assume that sh - s and th -~ t. Then ~~(s) == YM.
If t  1, this implies s = t. By the Mean Value Theorem, there exist points ~h
and 1/h between sh and th such that the first component of the derivative of

ig vanishes on ~h and the second component vanishes on 1/h. As ~h -~ s = t
and qh ~ s = t, we conclude that the derivative of ~ vanishes at s, which

contradicts our assumption on -1 (see Definition 2.1 ). If t = 1, then either s = 1
or s = 0. The former case leads to the same contradiction obtained before. The
latter case can be treated with obvious modifications. Hence the curves ig are
simple for h large enough.

By construction, the traces (rh) are equibounded uniformly with respect to
h. For any h, let us define Eh = fZ E I(rh, z) = 1 }. Then aEh = 
{ Eh } h converges to ~ z E = 11 = E in as h - +oo, and

+ f o~~h~[1 + ds. It follows that

by construction. This concludes the proof of (3.20). D

4. - Some properties of the sets E with 7(E)  +oo

We recall the definition of tangent cone for an arbitrary subset of JR.2.

DEFINITION 4.1. Whenever C C E C, we define the (unoriented)
tangent cone of C at z, denoted by Tc(z), as the set of all v E JR.2 such that for
every E &#x3E; 0 there exist w E C and with Iw - zl  E and  E.

Such vectors v will be called tangent vectors of C at z.
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By the definition, it follows that Tc(z) is a closed subset of JR.2 and that, if
is an element of Tc (z), then the straight line through the origin containing

v is contained in Tc(z).
If Tc(z) is reduced to a straight line, we can write Tc(z) = IcT(z): c E R

where T(z) is a tangent unit vector of C at z, determined up to the sign. In this
case we define the normal line Nc(z) of C at z as the straight line through the
origin orthogonal to Tc(z). We will make the following convention: once T(z)
has been chosen, v(z) is taken in such a way that is oriented as
the canonical basis of JR.2. Of course, we have Nc(z) = f cv(z): c E R 1, where
v(z) is a unit vector orthogonal to T(z), determined up to the sign.

REMARK 4.1. Let C be a subset of JR.2, and let z E C be a point such
that the tangent cone Tc(z) is a straight line. It follows immediately from the
definition and the uniqueness of the tangent line that there exists r &#x3E; 0 such
that Br(z) n Nc(z) n C = {z}.

Note that if r is a system of curves, z E (r) and {t 1, ... , tk },
then

DEFINITION 4.2. We say that a system of curves r is without crossings if

and

-

are parallel, whenever = ,i(t2) for some if j and

tl, t2 C [0, ].

Let r be a system of curves without crossings, and let z E (r); note that
by (4.1 ) the tangent cone of (r) at z is a straight line. Observe also that if r is
a limit system of curves of class H 2,p then r is without crossings. This follows
easily from the fact that r is the limit in C 1 of a sequence of disjoint systems
of simple curves (see (3.6)).

_ 

We want now to list some regularity properties of those sets E such that
~(E)  +oo. We shall identify the real projective space P~ I with the set of all
one dimensional linear subspaces of JR.2.

DEFINITION 4.3. Let C be a subset of JR.2. We say that C has a continuous
unoriented tangent if at each point z E C the tangent cone Tc(z) of C at z is
a straight line and the map Tc (z) from C into P~ I is continuous.

PROPOSITION 4.1. Let r be a system of curves of class C 1 without crossings
and let C be a closed subset of (r) with no isolated points. Then C has a
continuous unoriented tangent.
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PROOF. It is clear that the tangent cone Tc(z) of C is a straight line
at each point z E C. We have to prove that the map Tc is continuous.

Let z E C - 1 z - t ... t . As 
dr 

t ... 

dr 
t are ro .Let z c C, = As are proportional,Let z E C, r ( ) = { n As dt dt are proportional,

we have T z ) 
dF 

t =.......= 
dF 

t where r denotes thewe have Tc(z) = 7r(2013(t1)) = ... = 7r(2013(dt)), where 7r denotes the( dt / O dt ,

canonical projection of into P1, i.e., 7r associates with each vector
v E R~B{0} the straight line through the origin containing v. Let U C P’ 1 be
an open neighbourhood of Tc(z). The map t -~ Tc(r(t)) is continuous because

= x dr t . Hence for any E &#x3E; 0, there exist positive numbersc( ()) dt j y p

bl, ... , 6k such that Tc(r(t)) E U if I t - ti I  6i, for some i = 1,..., k, so that,
if V 1 r(ti - + b2), then Tc(V n C) C U. Let us take 6; so small that
the intervals ]ti - S2, ti + 6i [ are pairwise disjoint; since r is a system of curves
parametrized with constant velocity, the Implicit Function Theorem implies that
V is a neighbourhood of z in (T’) for the induced topology from JR.2. This
concludes the proof. D

THEOREM 4.1. Let E C R2 be a measurable set such that 7(E)  +oo,
and let E* = { z C JR.2:::Ir &#x3E; 0 IBr(z)BEI = 0}. Then E* satisfies the following
properties:

(i) E* is bounded, open, and = 0;
(ii) ,~ 1 (aE*)  +oo;

(iii) there exists a limit system of curves F of class H2,p such that (r) ~ aE*
and E* = int(Ar U (r)), where Ar = {z E JR.2B(r): I(r, z) = 1 };

(iv) has a continuous unoriented tangent;

(v) 7(E’) &#x3E; inf(X(r): r E where A(E) is the collection of all limit

systems of curves r of class H 2,p satisfying (iii).

PROOF. Assertions (i), (ii), and (iii) follow from (2.5) and Lemma 3.3.
Assertion (iv) follows from Proposition 4.1, and from Lemma 3.3 (iii) (note
that (3.7) guarantees that aE* has no isolated points). Let us prove (v). Since
,~(E)  +oo, there exists a sequence {Eh}h of bounded open sets of class C2
satisfying (2.5) and such that Eh - E in Z~(R~) as h --&#x3E; +oo. Using the same
notation as in the proof of Theorem 3.2, for a subsequence we have,
from the weak lower semicontinuity of the LP norm,

Taking the infimum with respect to the approximating sequence {-E/t}h, we get
(v). 0
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DEFINITION 4.4. Let C be a subset of ~2, let z E aC, and suppose that
the tangent cone of 8C at z is a straight line. Let v(z) be a normal unit vector
of 8C at z, and, for any o &#x3E; 0, let

Then we define

REMARK 4.2. Let C be a subset of such that for any z E aC the

tangent cone of 8C at z is a straight line. Then aC = 800C U 811C U 801 C. The
inclusion 600C U 911 C UYol C C aC is obvious. The opposite inclusion follows
from Remark 4.1. In particular, if E C is measurable and X(E)  +oo, then
aE* = a00E* U U 80IE*.

PROPOSITION 4.2. Let E C R2 be a measurable set such that  +oo,
and let r and Ar be as Theorem 4.1 (iii). Then the sets 800E*, 811E*, and
801E* remain unchanged if we replace in their definition int(E*) by Ar and

Br = f z E JR.2B([’): I(h, z) = 0}.
PROOF. Let z E aE, let z E a11 E, and let r &#x3E; 0 be such that

Nr-(z) U C int(E*) = E*. We will show that Nr-(z) U C Ar. As
the tangent cone of (r) is a straight line, by Remark 4.1 there exists r &#x3E; 0 such
that Br(z) n N(r)(z) n Since E* = int(Ar U (r)), the assertion follows.
The other cases are analogous. D

DEFINITION 4.5. Let r be a system of curves without crossings, let z E (r),
let T(z) be a tangent unit vector of (r) at z and let v(z) be the correspond-
ing oriented normal unit vector. satisfies h(t) = z and
dr dr

T(Z) &#x3E; 0 (respectively dr (t) . r(z)  0), then we say that h points todt 
( ) ( ) ( p Y dt 

( ) ( ) ) , then we sa Y p

the right (respectively to the left) with respect to v(z) at t. If there are k points
t 1, ... , tk E S such that = z and r points to the right (respectively to the
left) with respect to v(z) at each point ti, then we say that r points k times to
the right (respectively to the left) with respect to v(z) at z.

A particular case of the next Lemma (the case in which k = 0, d = 1) can
be found in [1, Lemma 9.2.5]. The general case can be proved using the same
methods.

LEMMA 4.1. Let r be a system of curves without crossings, let z E (f),
and let zl, z2 f z be points on N(r)(z), one on each side of z, and close enough
to z. Suppose that r points k-times to the right, and d-times to the left with
respect to v(z) at z. Then I(r, zl ) - I(r, z2) = I k - dl.
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Fig. 4.1: a. A set E with .7(E)  +oo.

b. An example of approximating sequence ~ Eh ~ h satisfying (2.5).
c. The trace of the limit system r of curves.

Fig. 4.2: a. A set E with 7(E)  +oo.

b. An example of approximating sequence lehlh satisfying (2.5).
c. The trace of the limit system r of curves.

Let E C R2 be a measurable set such that 7(E)  +oo, let r = ~71, ... , 7m ~
be one of the limit systems of curves satisfying condition (iii) of Theorem 4.1,
and let z E 9o, E*. Using Proposition 4.1, we deduce that, if F-’(z) has k
elements, then k is odd. More precisely, we get that k = 2n + 1, and r points
n-times to the right with respect to v(z) at z, and (n + I)-times to the left (or
viceversa). Conversely, if z E 800E* or z E then k = 2n, n &#x3E; 1, and r

points n-times to the right with respect to v(z) at z, and n-times to the left.
Let z E (F)BaE*; then from Theorem 4.1 (iii) there exists r &#x3E; 0 such

that either I (r, w ) = 0 for any w E n (Br (z)B(r)), or I (r, w ) = 1 for any
w C N~r~(z) n (Br(z)B(f)). This shows that (r) has even multiplicity at any point
z E 
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In Figures 4.1 and 4.2 we show some examples of sets E with  +oo,

their approximation in the norm by a sequence lehlh satisfying (2.5),
and the limit systems of curves r of Theorem 4.1 (iii).

DEFINITION 4.6. Let E C R2 be a measurable set such that -7(E)  +oo,

let q C aE*, and let T(q) be a tangent unit vector of at q. We say that q
is a cusp point of 8 E* if there exists r &#x3E; 0 such that

where

PROPOSITION 4.3. Let E C R2 be a measurable set such that  +00.

Then the set of the cusp points of 9E* is at most countable.

PROOF. Let r = 1,~ I ...... I- 1 be one of the limit systems of curves satis-
fying condition (iii) of Theorem 4.1, and let C be the set of the cusp points
of 8E* belonging to (7’ ). For any q E C let tq E [0, 1 ] be such that = q.

d72 (tg )Assume for simplicity that tq E]0, 1 [. Since by the definition of cuspdt ,

point there exists 6’g &#x3E; 0 such that either n 9 E* 0, or ,1(/;) n (9 E* 0,
where Iq Eq, tq[, Iq + Eq [. Let C- = Iq C n 8E* = 

C+ = {q E n aE* = Note that in particular n C- = 0 for

any q E C-, and n C+ = 0 for any q E C+. Hence, for any qi, q2 E C+,
qi fq2, 0, and a similar property holds for C-. This implies that C+
and C- are at most countable. D

We will see at the end of the next section that there exist measurable sets
E C R2 such that  +oo whose boundary has an infinite number of cusp
points.

DEFINITION 4.7. Let E C R2 be a measurable set such that I(E)  +oo,

let q E BE, and let T(q) be the tangent line of 8E at q. We say that q is a
branch point of 8E if there exist r &#x3E; 0 and a tangent unit vector T(q) of 8E at
q such that is a cartesian graph with respect to T(q) and 
is not a cartesian graph with respect to T(q).

An example of branch point is shown in Figure 6.2.
The proof of the following proposition is similar to the proof of Proposi-

tion 4.3.

PROPOSITION 4.4. Let E C R2 be a measurable set such that  +00.

Then 8E* can have at most a countable number of branch points.
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5. - Some critical examples

In this section we show two pathological examples of measurable sets E
such that the boundary of the set E* defined in Theorem 4.1 is very irregular
and, despite of this fact, 7(E)  +oo.

EXAMPLE 1. There exists a measurable set E C such that 7(E)  +oo

and ~~~oo~U~nE~)&#x3E;0.

Let A be a dense, open subset of [0, 1] such that A = U:1 Ik, where
Ik =]ak, bk[ are pairwise disjoint, and )11([0, llBA) &#x3E; 0.

For any k, let Xk = ak+bk/2, , and let 0: R [ , 0 1 ] be a function of class2

Coo, such that §(0) = 1, O(x) &#x3E; 0 if lxl  1, O(x) = 0 if Ixl &#x3E; 1, O(x) = 0(-x) for
any x E [0,+on].

For any x E R, let Ok(X) = 0 2 (x - . It is possible to find aY ~ ( ) ~ k - ak / p

sequence of positive real numbers such that the function

is of class Finally, let us define (see Figure 5.1)

Fig. 5.1 : A pathological set E with 7(E)  +oo.

By construction, 8ooE* = ([o,1]BA) x 101, 811E* = 0; hence U

811E*) = &#x3E; 0. Note that, as 801E* = (A x n aE* and A is dense
in [o, 1 ], we have that =,9E*.

Let us prove that  +oo. We will show that there exists a se-

quence { Eh } h of bounded open sets of class C° such that Eh -~ E in Z~(R~) as
h --i +oo, and SUPH l’(Eh)  +oo. Let I be any simple closed curve of class
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C° whose trace (i) contains the segment [o, 1] x fOl, and, for any h E N, let

(see Figure 5.2).
Then Eh has a boundary of class Coo for h large enough, and the sequence

lehlh satisfies the required properties. 0

EXAMPLE 2. There exists a measurable set E such that Y(E)  +oo and
aE* has an infinite number of cusp points.

Consider the family of intervals I - I 2k - I’ 2k [ = lak, bk[, k &#x3E; 1.
2k - 1 2k ]ak ’ 

Using the same notation of Example 1, we can construct the functions Ok and
4), and we can define E as follows:

Then E verifies the required properties.

Fig. 5.2: The approximation of E in the norm by a sequence
{ Eh ~ h satisfying (2.5).

6. - Systems of curves that can be approximated by boundaries of sets

Let E C R2 be a bounded measurable set. The aim of this section is to
find which conditions must be satisfied by aE in order to have that F(E)  +oo.

To do that, we need the following definition.

DEFINITION 6.1. We say that a system of curves r satisfies the finiteness
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property if there exists a finite set F such that (r)BF is a one dimensional
submanifold of R2 of class C l .

As the curves i’ of r have constant velocity, it is easy to see that (r)BF
has a finite number of connected components. By adding, if necessary, a finite
number of points to F, we may assume that each connected component of

(r)BF is diffeomorphic to an open interval.

REMARK 6.1. Let S be the disjoint union of m unit circles S 1, ... , Sm,
and let r: S’ -&#x3E; R2 be a system of curves. By the elementary properties of one di-
mensional submanifolds and of their parametrizations with constant velocity, it
follows that r satisfies the finiteness property if and only if there exists a fini-
te number of points t 1, ... , tn in S such that each circle S’ contains at least two of
these points, and the unique finite partition P of ... , tn~ composed of open
arcs of circles having endpoints in ~t 1, ... , tn ~ satisfies the following properties:

(i) for any I, H E P either r(I) n or r(I) = F(H);

(ii) f is injective on the closure I of any element I of P;
(iii) r(ti) ff- h(H) for every H c P and for every i = 1,..., n.

Note that if r = ... , i~’~ ) is a system of curves satisfying the finiteness
property, then no curve Ii is closed.

DEFINITION 6.2. Let r be a system of curves satisfying the finiteness

property, and let t 1, ... , tn and P be as in Remark 6.1. For every I E P the set
r(I) will be called a branch of r, and for every i = 1,..., n the point will
be called a node of r. The set of all branches will be denoted by B(r) and the
set of all nodes will be denoted by N (r).

DEFINITION 6.3. Let r be a system of curves satisfying the finiteness

property, and let J be an open and connected subset of ,S B ~ t 1, ... , tn } . The set
1,(J) will be called an arc of r.

Let A be an arc of r, and let z E A. Then the number of elements of
the r-1(z) depends only on A and does not depend on z. This number will
be called the multiplicity of the arc A. In particular, since A is contained in a
branch B, the multiplicity of A is the multiplicity of B.

We will consider now the problem of the approximation, in the H2,p norm,
of a system of curves r by a sequence (rh)h whose elements are boundaries of
smooth bounded open sets (see also [19, Chapter 8.9.4] and [17] for a similar
approach, in a very different context). We begin with the following Lemma.

LEMMA 6.1. Let r = {~...,y}:6’ -~ R~ be a system of curves of
class without crossings and satisfying the finiteness, property, and let

~t 1, ... , tn ~ - h-1 ( .N (r)). Then there exist ~o &#x3E; 0 and a sequence S - IR2,
0  -  of systems of curves of class H2,p without crossings, satisfying the
finiteness property, such that for every 0  6  -o
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I is a homeomorphism.

Lemma 6.1 shows that the system r can be approximated in the H 2,p
norm by a sequence of systems of curves of class satisfying the
following properties: the systems F, are defined on the same parameter space
S, the nodes of F, coincide with the nodes of f (condition (iii)), all branches of
F, have multiplicity one (condition (iv)), and is a small perturbation
of r-1()I(r))’ (condition (i)). In particular, any branch of r with multiplicity k
is approximated by k different branches of Te with multiplicity one.

PROOF. We will construct the approximation for a pair (ql, q2) of

consecutive nodes of r, and for one of the branches joining q1 and q2. Then

it will be sufficient to repeat this procedure for all pairs of consecutive nodes
and for all the branches.

Let ql, q2 C N(r) be two consecutive nodes, let B be a branch joining ql
and q2, and let v: B --~ JR.2 be a continuous unit normal vector field on B. As
B is homeomorphic to a segment, we can extend v as a uniformly continuous
vector field defined on JR.2 such that 1 for any z E JR.2. To overcome

regularity problems for the approximating curves, we regularize v as follows.
1

We take a function P E JR.2) such that Iv(z)1  1 and v(z) . v(z) 2 2 for( ,R ) BV (  ( ) 
2

any z E JR.2. Such a function exists: in fact, defining v. = is
a sequence of mollifiers, we get v~ E and v~ ~ v --; 1 uniformly on
JR.2 0. Then it is enough to define v = vn for q small enough.

Let d: JR.2 -+ [0, +oo [ be the function defined by

d(z) = min{dist(z, B’): B’ E B (r), 
From the definition it follows that d is continuous, d(z) &#x3E; 0 for any z E B,
and d(z) = 0 if z = q1 or z = q2. In order to guarantee that the approximating
sequence has the same regularity as the original system of curves r, and that
approximations of different branches do not overlap, we introduce a function
h: JR.2 -+ [0, +oo[ [ of class Coo having the following properties: h(ql) = h(q2) = 0,
0  h(z)  d(z) for any z E B, and all the derivatives of h at the points qi , q2
vanish. Let k be the multiplicity of B. Then = where Ij E P
for any j = 1,..., k. We define the k approximating branches B1,..., B~ of B
as follows: for any j = 1,..., k and - &#x3E; 0 let

Let us consider the function ’ defined by
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Since the jacobian of g is strictly positive at the points of the form (t, 0), by
the Implicit Function Theorem it follows that g is locally invertible. As Ii is

compact, there exists 60 &#x3E; 0 such that the function g is injective on Ii x [-Eo, Fol.
Since h(r(t))) for any t E Ij, it follows that, if -  £0, then re) g( t,E 

k 
( ( ))) Y o

is injective on Ii. This implies that rt:II: Ii --+ is a homeomorphism.
Moreover n = lll for any 0 J j,E, e’  eo, e fe’. Note that, if e 1Moreover n = ø for an 0  c, c’ o’. Note that, if 6  1s( j)n s ( j)=0 for and y 2
and B’ E B (r), with then 

2

In fact, if z = F,(t) E BE and B’ ~ B, we have d(h(t))  dist(r(t), B’) 
dist(r(t), z) + dist(z, B’)  + dist(z, B’)  - d(F(t)) + dist(z, B’). Hence

Moreover, if

dist(z, B), using (6.2) we get (6.1 ).
Let us repeat this procedure for all pairs of consecutive nodes of r and for

all branches. From inequality (6.1) it follows that the approximating branches
corresponding to different branches of r are disjoint. At the end, we obtain a
family Te ={ye1,........yEm} of regular closed curves, which satisfy all conditions

dyof the lemma except the condition that 2013 I is constant. This last requirementdt )
can be fulfilled by taking a suitable reparametrization of Te. D

Let q E N (F); we denote by B (q) the set of all branches of r having
endpoint q.

DEFINITION 6.4. Let q E and Bi, B2 C B(q). We say that B1 and
B2 lie on the same side with respect to q if there exist a tangent unit vector
T(q) of (r) at q and a neighbourhood U of q such that (z - q) - &#x3E; 0 for

every z E (B1 U B2) n U. If this does not happen, we say that B1 and B2 lie on
opposite sides with respect to q.

DEFINITION 6.5. Let B, B’ be two branches of r having multiplicity one.
We say that B and B’ are consecutive if there exist two consecutive arcs of
circles I, H c P in S such that B = r(I) and B’ = r(H).
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Fig. 6.1: The ordering number of the elements of B - (q).

Note that two consecutive branches have a common endpoint and lie on
opposite sides with respect to it. Clearly the converse is not true in general.

Suppose that any branch of r has multiplicity one; it is easy to prove
that, given B E B (q), the number of the branches of B (q) lying on the same
side of B with respect to q is the same of the number of the branches of B (q)
lying on the opposite side.

We want now to order the branches of B (q) which lie on the same side of
B with respect to q. Let us fix a tangent unit vector T(q) of (F) at q such that
z’ T(q) &#x3E; 0 for every z c B near q, and let v(q) be a normal unit vector of (r) at
q (this time we do not require that IT(q), v(q)} has a particular orientation). Let
Br (q) _ Br(q): (z - q) ~ T(q) &#x3E; 0}. Using the Implicit Function Theorem, one
can prove that, when r is sufficiently small, the set Br (q) n ((r)B ~ q } ) is composed
of k different arcs ~4i,..., Ak having q as an endpoint. For any i = let

zi = (8B:(q) n n Ai (see Figure 6.1 ). We say that zi - zj if and only if
v(q)  z~ ~ v(q), and that Ai - Aj if and only if zj. Since each branch

B’ of B(q) lying on the same side of B with respect to q contains one and only
one arc Ai, we can associate with B’ the ordering number corresponding to Ai.
This number will be called the ordering number of B’ with respect to q. Of

course, the ordering number depends on the orientation of the normal vector
v(q).

DEFINITION 6.6. Suppose that any branch of r has multiplicity one. We
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say that r satisfies the compatibility condition if consecutive arcs have the same
ordering number.

Note that, while the ordering number of a branch depends on the choice
of v(q), the compatibility condition is independent of the choice of the unit
normal vectors of (r) at its nodes.

DEFINITION 6.7. Let r be a system of curves without crossings and
satisfying the finiteness property. The finite undirected graph 9r whose vertices
are the nodes of r, and whose edges are the branches of r, counted with the
corresponding multiplicity, will be called the graph associated to r.

DEFINITION 6.8. Let rl : ~i --~ JR.2 and F2: S2 - JR.2 be two systems of curves
without crossings, satisfying the finiteness property and having all branches with
multiplicity one. We say that rl 1 is equivalent to r2 if 9r, = 9r2’

We now prove the following crucial result.

THEOREM 6.1. Let F: S - JR.2 be a system of curves without crossings,
satisfying the finiteness property and having all branches with multiplicity
one. Then there exists a system of curves equivalent to r and satisfying the
compatibility condition.

PROOF. For any q E let us fix a unit normal vector v(q) of (F) at

q. To prove the theorem, one has to show that there exists a finite number of
cyclic paths of edges of the graph 9r with the following properties:

(i) each edge of 9r appears once and only once in the family of paths;
(ii) if A and B are two edges of the same path with a common vertex q,

then A and B lie on opposite sides with respect to q and have the same
ordering number.

We shall construct the cyclic paths using the following algorithm. Let us
choose Bl E B(F) in an arbitrary way, and let qo and q1 be the vertices of B1.
Suppose that B1, ... , Bi and qo,..., qi have been defined. If qi = qo and Bi lies
on the opposite side of B, with respect to qo and the ordering number of Bi
with respect to qi coincides with the ordering number of B1 with respect to qo,
then ~i,..., Bi is a cyclic path, and the algorithm stops. Otherwise, we define
Bi+1 as the unique branch of B(qi) lying on the opposite side of Bi with respect
to qi and having the same ordering number. Next, we define qi+1 as the vertex
of Bi+1 I different from qi. Let us show that for any j = 1, ... , i - 1. We
argue by contradiction. Let i &#x3E; 1 be the smallest integer such that there exists
j E N, 1  j  i such that Bi = Bj. Note that i &#x3E; 2. There are two possibilities:
either q;-i = qj or g,.i = 

Suppose that 1 = qj. Let q = 1 = qj and B = Bi = Bj. By the definition
of the algorithm, we have that B;- i and Bj+1 lie on the opposite side of B with
respect to q and have the same ordering number of B, hence they coincide.
By the minimality of i, this implies that i - 1 = j + 1. The endpoints of Bj+1
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are qj = 1 and qj+1 = qi-1, so that is a loop, in a contradiction with the
hypothesis.

Suppose that = q, -1, and suppose that j &#x3E; 1. Let q = 1 = I and
B = Bi = Bj. Then Bi-, 1 and 1 lie on the opposite side of B with respect
to q and have the same ordering number of B, hence they coincide, and this
contradicts the minimality of i. If j = 1 we have = qo. Let q = 1 = qo and
B = Bi = Bi. Then Bi_ I and B1 lie on the opposite side of B1 with respect to q
and have the same ordering number, so that the algorithm would have stopped
at the step I - 1, a contradiction.

In this way we get a cyclic path satisfying property (ii), and such that no
edge of 9r appears twice in the path. Then we repeat the algorithm, starting
from an edge not contained in the first path. It is clear that after a finite number
of implementations of the algorithm all edges are reached, since one can prove,
arguing as above, that all the cyclic paths obtained are pairwise disjoint.

- - 

l(y) ir le ofFor any z 1, ... , m let r2 = 27 , 
let Si be an oriented circle of

27r

radius ri and let ,S’(rl, ... , rm) be the disjoint union of the circles Si’s. Let

us reparametrize r on in such a way that s = 1 for anyp ( n , m) y ds( ) y

s e S(rl, ... , rm). Let us still denote by r this parametrization, by P the partition
of S(rl,...,rm) into arcs of circles, and by the arcs of circles of

corresponding to 
The family of cyclic paths obtained above corresponds to the following

surgery operations on the parameter space ,S of f. Let r = ~ ~y’ , ... , ~ym ~ and
S = Si U ... U S~. Let B1’...’ Bk represent a cyclic path of edges of 9r, and
let II,..., I k be the corresponding arcs of circles in ,S (recall that there ex-
ists a bijection between 8 (r) and the partition P of S). For any j = 1,..., k,
let be the vertices of Bj, and let Ij = Obviously, qo,

ql, ... , qk = qo are ordered in the cyclic path. Let us possibly change the orienta-
tion of some Ij (and let us still denote it by Ij = in such a way that

1 corresponds to qj-i 1 and 1 to qj. Next, for any j = 1,..., k, let us glue
dy dr 

_ 

dr
together aj with Note that, as ds - 1, 

= for any j.ds ds ds

What we get is an oriented closed circle. Repeating this procedure for all the

cyclic paths, we obtain a new parameter space formed by a disjoint union of
circles having different radii. With a reparametrization, we get the system of
curves of the statement. D

We stress that the system of curves of Theorem 6.1 has the same vertices,
branches, and multiplicities (in this case all equal to one) of r although, in

general, it is defined on a different parameter space. In particular l(F) and

IIK(r)IILP remain unchanged when we pass to the new equivalent system of
curves. Note also that the orientation of some branches of r can be reversed.

Let z fi (1,) and let a be a continuous curve connecting z with oo such that all
the intersections between (r) and (a) are transversal. Since I(r, z) (mod 2) can
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be computed using the parity of the number of the intersections of (r) with
(a), we also deduce that the set of points of odd index with respect to the new
system of curves coincides with the set {z E I1~2B(r): I(r, z) - 1 (mod 2)}.

LEMMA 6.2. Let 1,: 5 -~ JR.2 be a system of curves of class H 2,p without
crossings, satisfying the finiteness property, having all branches with multiplicity
one and satisfying the compatibility condition. Then there exist 1]0 &#x3E; 0 and a

sequence pi: S -~ JR.2, 0  1]  qo, of disjoint systems of simple curves of class
C°° such that pi ---+ r strongly in H 2 P as 1] ---+ 0.

PROOF. We will construct the approximation near a fixed node q, and this
procedure must be repeated for any q E N(r).

Let IF- 1 (q) = It 1, - - - , tk I - Without loss of generality, we shall

suppose that q = 0 and v(q) = e2. Let B¡,..., B~ (respectively B1, ... , Bt) be
the branches of r lying on the left (respectively on the right) of q, labelled
by their ordering number with respect to 0. Let R(q) 
ci , H (  C2 be a rectangle centered at 0, and let R- - { (x, y) E R: x  0 1,
~+ == {(x, y) E R: x &#x3E; 01. If R is sufficiently small, using the Implicit Function
Theorem one can show that, for any i = 1,..., k, R- n Bi = R+ nBi+ = Ai ,
where AI,..., Ak and are cartesian graph of a function of class
H 2,p with respect to the x-axis. Hence, if i  j, then Aj lies above Ai. For
any j = 1,..., k, let Jz - f-1(Ai), Ji - f-1(A1), Ji = Ji- U Jt U I ti 1. Note
that, since r satisfies the compatibility condition, Ji is an open interval. Let
x: R -~ ] - c 1, c 1 [ be the projection of R onto ] - ci , ci [. Let ~:] 2013 [0,1] ]
be a Coo function with the following properties: §(0) = 1, §(z) = 0 for any
C1 C1C1  x  c1, §’(z)  0 for any 0  x  2’ and ø( -x) = §(z) for any x E [0, ci [.
For any q &#x3E; 0 let us define 

2

Note that, if q is sufficiently small, the functions are injective on Ji and
for any Repeating this procedure for any node, and taking

the rectangles R(q) pairwise disjoint, after a reparametrization, we obtain that
JR.2 is a disjoint system of simple curves of class H2,p such that r

strongly in as 0. Furthermore, any system T can be approximated
in the HI,P norm by a disjoint system of simple curves of class C°° (see the
proof of Corollary 3.2). By a diagonal argument, we get the assertion. D

Let r: S’ ~ R2 be a system of curves of class without crossings and
satisfying the finiteness property. Let
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Then E, E*, F, F* are open, E* is bounded,

The fact that E, E*, F, and F* are open is trivial. To prove that = 0

it is enough to observe that E C E* C E U (r) (see (3.12), (3.13)). In

particular, E* is bounded. To prove that E* = int(VBF*), F* = int(IR.2BE*)
and aE* = 9F~ = {z E R~:0  n El  IB,(z)l Vr &#x3E; 01, it is sufficient to

repeat the proof of (3.15), (3.16) and (3.7), respectively. Moreover, the relation
aE* = aF* = aE n aF C (r) can be proved as in Lemma 3.3 (iii).

THEOREM 6.2. Let r: system of curves of class H 2,p without
crossings and satisfying the finiteness property. Let E, E*, F, and F* be defined
as in (6.3), (6.4). Then

hence there exists a sequence ~ Eh ~ h of bounded open sets of class Coo such
that Eh ---* E in as h - +oo and SUPH  +00. In addition, there
exist oriented parametrizations rh of 9Eh defined on the same parameter space
S, such that fl-hlh converges strongly in H 2,p to a system of curves equivalent
to r, defined on ,S’, and whose trace contains aE*. Finally,

where Q (E) is the collection of those systems of curves A of class H2,p without
crossings, satisfying the finiteness property and such that E* = int(AA U (A)),
where Ao = II~2~(0): I(A, z) - 1 (mod 2)}.

PROOF. Let ~t 1, ... , tn } - r-1(N(r)), let r~ : S’ ~ II~2, 0  -  eo, be
the approximating sequence of systems of curves of Lemma 6.1, and let

{ t 1, ... , tn ~ - For any 0  ~  eo, there exists, by Theorem 6.1,
a system of curves equivalent to F, and satisfying the compatibility condition.
Let us prove that these systems of curves are defined on a same parameter
space. It is easy to see that the graphs associated to these systems of curves
are isomorphic. If we identify isomorphic graphs, then the cyclic paths of
edges constructed in the proof of Theorem 6.1 do not depend on e, as well
as the ordering numbers of any node q E .Jl~ (r). It follows that the

parameter space obtained at the end of the proof of Theorem 6.1, on which
the new systems of curves are defined, does not depend on ê, and we shall
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denote it by S’. Repeating on the same surgery operations made
on (recall that ti --~ t2 for any i = 1, ... , n as ~ --~ 0), we get
a system of curves defined on S and equivalent to I’. Let us still denote this

system by the symbol h. Then F, --4 r strongly in H2,P(S, as r - a 0.

For any e &#x3E; 0, let be the sequence of disjoint systems of simple
curves of Lemma 6.2 converging to F, strongly in H~~p(,S’,1R~2) as q - 0. By a
diagonal argument, there exists a sequence rh: 9 - R~ of disjoint systems of
simple curves of class Coo such that rh -- r strongly in R2) as h --) +00.

For any h, let us define

Note that this definition does not depend on the orientation of each circle

composing the parameter space S. By the continuity property of the index and
by the Dominated Convergence Theorem, it follows that ~Eh~h converges to the
set {z c IR~2B(r): I(r, z) - 1 (mod 2)}, as h --&#x3E; +oo. Since this set coincides with
the set of all points of R~B(r) of odd index with respect to the original system
of curves, by the definition of E we get that Eh - E in L~(R~) +oo.

Moreover, by construction, SUPH 7(Eh)  +00; it follows that  +oo. Since

~EAE~ = 0 (see (6.5)), we have that 7(~) = -7(E*), and (6.6) is proven.
In addition, since rh - r strongly in H2,P(S, JR2) as h -~ +oo, it follows

that 
r

v ir h

Using the same arguments, we deduce that, if A E _C (E), then 
(recall that = 0). Whence, passing to the infimum with

respect to A E Q (E), we get (6.7), and this concludes the proof. D

Let 9 be a finite graph. We denote by the edges of 9 and by 
the vertices of 9. For any q E N(9), we denote by B(q) the edges of 9 having
endpoint q. We shall designate by the number of elements of B (q), counted
with their multiplicity. In this definition, any loop at q will be counted as a
double edge.

Suppose that 9 (considered as a subset of R~) has a continuous unoriented
tangent, and let v(q) be a unit normal vector of 9 at q. We denote by B - (q)
(respectively B+(q)) the edges of B(q) lying on the left (respectively on the
right) of q with respect to v(q). We shall designate by (respectively by

the number of elements of B-(q) (respectively of B +(q)) counted with
their multiplicity.

DEFINITION 6.9. Let 9 be a finite graph. We say that 9 is regular if

e§(q) = eg(q) for any q E N(9).
Let us observe that if r is a system of curves without crossings and

satisfying the finiteness property, and 9r is the graph associated to r, then 9r
is regular.
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DEFINITION 6.10. We say that a bounded open set E C R2 has a piece-
wise boundary if 8E = where a1...ak [0, 1]  --&#x3E; JR2 are regular
simple curves of class such that, for any i, j F (1,... ,k), i

n 0, and for any t E]0, 1 [ there exists r &#x3E; 0
such that Br(ai(t))B8E has exactly two connected components, Br (ai (t)) n E
and 

Note that, if E C R2 is a bounded open set with a piecewise H2,P boundary,
then ai(O), ft 1 [), for any If, in addition, 9E has a continuous
unoriented tangent, then, for any t2 E {0,1} such that = al(t2), the

da2 daj
vectors and are parallel.dt dt

Note also that the curves a 1, ... , can be reordered and suitably
parametrized and glued together to form a family of curves {~y 1, ... , 7m }, with
1  m  1~, satisfying the following properties: for any i = 1, ... , m, Ii is

continuous, closed, and of class H2,p up to a finite number of points, and

As a notation, for any i = 1, ... ,1~, the sets a’(]0, 1 [) will be called the branches
of 8E and will be denoted by B (aE), and the points ai (o), a’(1) will be called
the vertices of 8E and will be denoted by N(8E). For any q E N(8E), we
denote by B(q) the branches of 8E having endpoint q. Assume now that aE
has a continuos unoriented tangent, and let v(q) be a unit normal vector of
aE at q. We denote by B-(q) (respectively B+(q)) the branches of B(q) lying
on the left (respectively on the right) of q with respect to v(q), and by OaE(q)
(respectively e’aE(q)) the number of elements of B-(q) (respectively of B+(q)).
Note that, if ,~(E)  +oo, then the cusp and the branch points of 8E (see
Definitions 4.6 and 4.7) are vertices. It is clear that there can be vertices in
a neighbourhood of which BE is regular (some of them must be artificially
introduced because of the condition These can be regarded as
"artificial" vertices. The simplest "genuine" vertex is the simple cusp point.
This is defined as a vertex q such that oaE(q) = 2 and oaE(q) = 0 for a suitable
choice of the normal vector v(q). Note that the simple cusp points are cusp
points according to Definition 4.6.

Observe that oaE(q)l is even, for any q E N(aE). In fact, given
q E N(aE), there exists r &#x3E; 0 such that Br(q) contains both points of E and
points of aBr(q) meets transversally all branches of aE, hence the number
of points of the set aE n aBr(q) is even. If r is sufficiently small, this number
coincides with + (!aE(q), which has the same parity of 1,0+aE(q) - 

Intuitively, more complex vertices can be seen as the result of the collapse
of a finite number of simple cusp points, with the possible addition of some
artificial vertices. We now introduce the balanced multiplicity W8E(q) of a vertex
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q, whose intuitive meaning is the difference between the number of simple cusps
having vertex at q and lying on opposite sides of q with respect to v(q). The
formal definition is

Fig. 6.2: W8E(q) = 2.

Note that if q is a simple cusp point of aE, then waE(q) = 1, and if q is
a vertex of 8E in a neighbourhood of which 8E is regular, then waE(q) = 0.

DEFINITION 6.11. Let E C be a bounded open set with a piecewise 
boundary aE having a continuous unoriented tangent. The undirected graph 98E
whose vertices are the vertices of BE, and whose edges are the branches of
aE with multiplicity one, will be called the graph associated to BE.

Note that, in general, 98E is not a regular graph.

THEOREM 6.3. Let E C R2 be a bounded open set with a piecewise H 2,p
boundary 9E having a continuous unoriented tangent. Then

PROOF. We shall define a regular graph 9 whose set of edges contains
and such that each edge of has even multiplicity.

For any vertex q of aE, let us fix a normal unit vector v(q) of 8E at
q in such a way that 10’aE(q) &#x3E; eaE(q). Denote by the set of all
vertices of 8E with waE(q) &#x3E; 2. We construct m graphs 9~,..., ~Cm inductively.
Let 9~ = 98E, and suppose that the graph 9:-1 1 has been defined. If i  m, we

define the graph g’ as follows. Let 7i : [o,1 ] -&#x3E; JR.2 be a smooth curve lying on
.. 

i

the left of q with respect to v(q), such that Y(0) = 1’(1) = qi, dt (0) dt ( 1 )’
(Y) n BE = fqil, and such that the tangent lines of 8E and (Y) at qi coincide.

Let us associate with (i’) a multiplicity defined by WaE (qi ), if waE (q2 )
is even, and by 1, if is odd. To eliminate loops, add a new
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vertex on (,~1). Let be the graph whose vertices are the vertices of 1

together with z., and whose edges are the edges of l together with the two
arcs on the curve (72 ) determined by the point zi, with the even multiplicity
previously defined. Clearly, = 

At the end of this algorithm, we get a graph g:n whose set of edges
contains B((9E), such that each edge of B( §’))B(8E) has even multiplicity, and
such that

for any q E 

By the hypothesis, the number of the set of vertices q of BE with waE(q)
odd is even. Let us denote by these vertices. We shall construct

9 inductively using the following algorithm.
Define §i = 9’, and suppose that the graph 9i--I has been defined. If

t  k, we define the graph gi as follows. Let [0, 1] ] -+ }R2 be a smooth
di

curve such that 72 (o) = P2i-1, -i"(I) = p2i, the direction of dd"/ (0) (respectively
dt

of dt ( 1 )) coincides with the direction of TaE(p2i-1 ) (respectively TaE(P2i)),

(,i) n N(8E) = {p2z-h and such that (V) meets the edges of 9’ in a finite
number of points, say {~,..., in such a way that the tangent lines of (,i)
and of the branches of 9’ coincide at the intersection points.

Let us associate with (Y) the multiplicity two. Let gi be the graph whose
vertices are the vertices of 9i- 1 together with fZl, Zh(i)l, and whose edges
are the edges of 9i-I l together with the arcs on the curve (-i’) determined by
the points Zi, - - - , with the multiplicity two.

At the end of this algorithm, we get a regular graph 9 whose set of edges
contains B(8E) and such that each edge of has even multiplicity.
As g is regular, there exists a system of curves r of class H2,p associated to
9 (see Definition 6.7). Since, by construction, all branches of r having even
multiplicity do not meet the boundary of E, using (6.8) we deduce that

The thesis now follows from Theorem 6.2. D

Let E C R2 be a bounded open set with a piecewise H2,p boundary 8E
having a continuous unoriented tangent. Assume that l(E)  +oo. Let r be one
of the limit systems of curves of Theorem 4.1 (iii), and suppose that r satisfies
the finiteness property. Observe that, for any B E B (r), we can assume that
either B C aE or = 0. Moreover, by Theorem 4.1 (iii) and Lemma 4.1,
it follows that, if B C aE then B has odd multiplicity, and if B n 8E = 0, then
B has even multiplity. Now we can prove the following result.

THEOREM 6.4. Let E C R2 be a bounded open set with a piecewise H 2,p
boundary aE having a continuous unoriented tangent. Let )./ (a E) = f q, - - ., q,,1,
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and suppose that each qi is a simple cusp point of Then

PROOF. Let T be one of the limit systems of curves satisfying (iii) of
Theorem 4.1, and let us suppose first that r satisfies the finiteness property. We
shall define an auxiliary graph 9 such that N(8E) coincides with the set of
those vertices q of 9 such that is odd. We construct 9 in such a way that
the vertices of 9 are the vertices of and whose edges are those edges B of
~Cr having multiplicity mgr(B) &#x3E; 1. Precisely, let B E the multiplicity
mg (B) of any edge of 9 is defined as follows:

Hence, if 1, then B is deleted. Note that 9 is not necessarily re-

gular.
Let q E N (9r). If q V 9E, then all edges of 9r meeting at q have

even multiplicity. Hence and are even. As 9r is regular, we have
Therefore is even.

If q E 9E and 8E is regular in a neighbourhood of q, then exactly two
of the edges of 9r meeting at q have odd multiplicity and lie one on each
side of q with respect to v(q); let us denote by Bl and B2 these edges, and let
2k + 1 and 2k’ + 1 be their multiplicities, respectively. All the other edges meeting
at q have even multiplicity; let 2i (respectively 2 j ) be the number (counted
with multiplicities) of all these branches lying on the same (respectively on the
opposite) side of Bi, B2 with respect to v(q). As 9r is regular, we have that
9 l.e., 2k + 1 + 2i =2~+1+2~’. Hence =2(A;+z)

is even.

If q E 8E is a simple cusp point of 8E, then there exist exactly two edges
Bi, B2 C B(9r) having odd multiplicity and lying both on one side of q with
respect to v(q). Let 2k + 1, 2k’ + 1 be these multiplicities, and let 2i (respectively
2 j ) be the number (counted with multiplicities) of all the other branches of 9r
lying on the same (respectively on the opposite) side of B1, B2 with respect
to v(q) (see Figure 6.3). As 9r is regular, we have that egr(q) = Lo+,(q), i.e.,
2j =2i+2k+1+21~’+1. 

9 9

Hence = j + i + k + k’ = 2(i + k + + 1 is odd. It follows that the

simple cusp points of 8E are exactly the vertices q of 9 such that gg(q) is
odd. Since in any finite graph 9 the number of the set of vertices q with gg(q)
odd is even ([16, Theorem 1.2.1]), we deduce that n is even.
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Fig. 6.3: Computation of and when q E 9E is a

simple cusp point of OE.

We still have to prove the theorem in the most delicate case, i.e., when
the system of curves r = 1-11, ... , -I- 1 does not satisfy the finiteness property.
We want to modify r into a system of curves A of class C 1, satisfying the
finiteness property, such that (A) C (r), and still

Then the argument of the previous part of the proof can. be repeated for A (the
C1 1 regularity is enough for this purpose), so we can conclude as before that n
is even.

Condition (6.9) will be achieved by requiring that each branch of A with
even multiplicity does not meet aE and each branch with odd multiplicity
is included in aE (recall the method for computing I(A, z) mentioned before
Lemma 6.2).

Let C be the set of those points q E (F) such that, for any neighbourhood
Uq of q, (r) n Uq cannot be written as a cartesian graph with respect to the
tangent line T(r) (q) of (r) at q, and let K be the set of all accumulation points
of C. Note that I~ is a compact set.

For any q E K, let R(q) be a small rectangle centered at q, having two
sides parallel to T~r~ (q) and such that each curve Ii meeting R(q) is a cartesian
graph in R(q) with respect to T(r)(q). Such a rectangle exists, since 71, ... , ,1m are
regular curves of class H 2,p parametrized with constant velocity. Furthermore,
we can choose R(q) in such a way that, if Y is a curve of f passing through
R(q), then Ii meets the point q and does not meet the two sides of R(q) which
are parallel to Finally, we may also assume that, if q is not a cusp point
of 9E, then R(q) does not contain any cusp point of 8E.

As K is a compact set, there exist ql , ... , qN points of K such that
U = UN1 R(qi) contains K. In order to construct the modified system of
curves A, we argue by induction. Let Ao =1’,, let i  N, and suppose that Ai_ I
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has been defined. Then Ai is obtained by modifying Ai_ 1 only on R(qi), i.e.,
(Ai-1 &#x3E;BR(qi ) _ in such a way that BE C (A;) C (A;-i ), and that each
branch of (Ai ) n R(qi ) with even multiplicity does not meet 8E, while each
branch of (Ai) n R(qi) with odd multiplicity is contained in 8E. Moreover, by
the construction of Ai, there exist a finite set Fi such that is a one
dimensional C 1 submanifold. We define A = AN. The previous remark implies
that there exists a finite set F such that (A) n UBF is a one dimensional C 1
submanifold. By the definition of K, the set CBU has no accumulation points,
so it is finite. It follows that A satisfies the finiteness property. As in the points
of (A)BU we already have the correct multiplicity by Lemma 4.1, it is clear
that A = AN satisfies the required properties.

Let us suppose first that qi c K is such that qi E (1,)BE. To simplify the
notation, we assume that qi = 0, that TCAt)(O) coincides with the x-axis, and that

= e2. Let R(O) =] - a, a[x] - b, b[; we can assume that R(o) n E = 0. We
shall work on the set (A~i)D([0,a[x] - b, b[), since the modification of 1

on the set (Ai-1 )n] - a,0]x] - b, b[ is analogous. Because of the assumptions
on R(o) and the inclusion (Ai- 1) c (1,), the set (A;-i) n {(x, y) E R(O): x = a}
consists of a finite number of points {~i,..., labelled by their y-coordinate.
Let be the curves of the system 1 which meet and let

fl, ... , fk E j~~~(]0, a[) be the functions whose graphs are the traces of ,X 1, ... , A k
i.e., = graph(fj). Note that {~i,..., Zhl = {/i(a),.... fk(a)). As (Ai_ 1 )
has a continuous unoriented tangent, it follows that fj(x) = whenever

= 

For any j E { 1, ... , h }, let dj be the number of elements of the set

By the inductive property of Ai-1 1 we have that dj is even, for any

For any j E { 1, ... , h }, let 5j be the set of all continuous functions

g: [0, a] -] - b, b[ such that

It is easy to see that Sj is non-empty and that each function g E Sj is of class
C’ and satisfies

(recall that = fr(x) whenever,
function defined by

be the

As all functions in 5j are continuous, by Lindelof’s Theorem there exists a
sequence such that As Sj is a lattice, we may assume
that gj  9~ ~+1 for eve ry k. This im p lies that gj p ointwise +00,
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hence gj satisfies (6.10). By (6.11 ) and by Ascoli-Arzelà Theorem it follows

that gj is continuous. Hence gj is the greatest element of ~ and, consequently,
gj E C1([O, a]).

By the maximality of gj it follows that

We are now in a position to replace the branches of (Ai-i) contained in

[0, a] x [-b, b] by the curves given by the graphs of the functions gj, j = 1,..., h,
each curve counted with the multiplicity dj equal to the multiplicity of zj for
the system of curves (Ai-i) The system obtained after the same operation on
[-a, a] x [-b, b] will be Ai.

It is easy to see that (6.12) implies that there exists a finite set Fi such
that (Ai) n R(O)BFi is a one dimensional C 1 submanifold.

This concludes the modification when qi E (F)BE. The previous arguments
can be repeated exactly when qi E int(E), obviously taking small enough
such that C int(E).

We still have to consider the case in which qi E 8E. We shall work in
the most difficult case, i.e., when qi c K is a simple cusp point of BE, the
case in which 8E is regular near qi being easier.

We shall adopt the notation of the previous case, with the following
modifications. We shall suppose that E lies on the right of 0, and that

R n 8E = graph(Q)1 ) U graph(02), where Q1, 4&#x3E;2: ]0, a[- [-b, b] are functions
of class H2,p, with 4&#x3E;1  02. As aE is contained in we have that Q~1 (b),
§2(b) E {zl, ... , Zh I, hence there exist j,  j2 such that ~l(b) = zj, and 02(b) = zj2.
Note that, in general, graph( Q 1) is not a subset of the trace of a unique curve
Ii, and the same holds for Observe also that there can be a curve
Ii which passes alternatively above graph(Q2) and below graph(4)l) an infinite
number of times.

We will divide the set into three disjoint subsets, taking into
account the part of lying below the cusp, the part lying above the

cusp, and the part lying inside the cusp. Let Sl - S2 = fj2,...,hl,
~={./l+l,...j2-l}.

For any j E { 1, ... , h } let dj be the number of elements of the set (zj).
By the inductive property of 1 we have that dj, and dj2 are odd, while dj
is even, for any j f ji, j2. For any j E S1 let Sj be the set of all continuous
functions g : [0, a] --~] - b, b[ such that

Then, as before, Sj is non-empty, if
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(recall that whenever I whenever

Let, as before, gj : [0, a] - [-b, b] be the function defined by

For what concerns the definition of gj for j E S2, we define 5j as the set of
all continuous functions g: [0, a] -~] - b, b[ such that

and

Finally, inside the cusp we need a further attention, to treat the case in which
a curve 7i meets graph(4)l) an infinite number of times. Hence, for any j E S,
let 5j be the set of all continuous functions g : [0, a] -] - b, b[ such that

Define and let

Define

The system of curves Ai is the system obtained from A;-i I by replacing the
branches of (Ai-1) contained in [0, a] x [-b, b] with the curves given by the
graphs of the functions gj, for j E Sl U S2 U S, each curve counted with the
multiplicity dj equal to the multiplicity of zj for the system of curves 
We conclude, as before, that there exists a finite set Fi such that (Ai) n 
is a one dimensional C 1 submanifold. D

As a particular case of Theorems 6.3 and 6.4, we get one of the main
results of the paper, namely,

THEOREM 6.5. Let E C JR.2 be a bounded open set with a piecewise H 2,p
boundary aE having a continuous unoriented tangent. Let R(09E) = {ql, ... , qn},
and suppose that each qi is a simple cusp point of aE. Then
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7. - Localization

Some results of Sections 3, 4 can be localized. Let Q C JR.2 be an open
set, and let .M be the class of all measurable subsets of R2. The L1 (S2)-topology
on ,M is the topology induced by the pseudo-distance d(E1, E2 ) _ ~ .

We say that E E .M is of class and we write E E if E is bounded,
open and Q n aE is of class C2, i.e., near a point z E Q n aE the set Q n E
is the subgraph of a function of class C2 with respect to a suitable orthogonal
coordinate system.

We define the map T(., S2): .M ~ [0, +cxJ] ] by

elsewhere on .M .

Note that

for every sequence of open sets invading Q. Moreover 7’(E, - ) is

increasing if considered as a set function, i.e., if Q2 are open,

By ~( ~ , Q) we denote the lower semicontinuous envelope of ~( ~ , Q) with

respect to the topology of L1 (SZ). It is known that, for every E e M, we have

Note that 7(E, Q)  +oo if and only if there exists a sequence { Eh } h of bounded
open sets of class such that Eh - E in as h - +oo, and

where xh denotes the curvature of Q n 8Eh.

THEOREM 7.1. Let E be a bounded open set of class C2(Q). Then
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for any sequence { Eh } h of bounded open sets of class C 2 (SZ) such that Eh - E
in L 1 (fl) as h --+ +oo.

PROOF. Let fehlh be a sequence of bounded open sets of class 
such that Eh - E in L1(Q) as h - +oo. We can suppose that the right hand
side of (7.4) is finite, otherwise the result is trivial. Given a sequence 
of relatively compact open sets invading 0., it will be sufficient to prove that

for every n E N. In fact, (7.4) follows from (7.5), since, by (7.1 ) and (7.2),

Let us fix n E N. Let be a subsequence of lehlh with the property that

For simplicity, this subsequence (and any further subsequence) will be denoted
by {Ek}k. Since {Ek}k satisfies (7.3), it follows that, for any k,

where

is a disjoint system of curves of class C2 such that

see Lemma 3.1);

~ is a finite family of simple regular curves of class C2 such

is constant, /~(0), E aSZ and (,Q~ ) n aQn f0 for any

all the sets I are pairwise disjoint;

By Lemma 3.1 we have that fmklk is uniformly bounded with respect
to k. Since &#x3E; 2 dist(aQn, aQ) &#x3E; 0 for any j = 1,...,rk, using (7.6)
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we get that frklk is also uniformly bounded with respect to k. Passing to

a suitable subsequence, we can assume that mk and rk are independent of k.
These numbers will be denoted by m and r, respectively. Since all curves of the
family ,Q~, ... , meet On, by (7.6) their traces are contained in
a bounded subset of R2 independent of k. Repeating the arguments of Theorem
3.1, by compactness there exists a family r = f -11, ... , 1m, ~31, ... ,,~r} of regular
curves of class such that ~~ -1 Y weakly in H2,p +oo,
for any i = 1,..., m and any j = 1,..., r. Then, since by hypothesis E E C2(0),
it follows that On n (r) D S2n n aE. In fact, suppose by contradiction that there
exists z e Ql n (aE((r)). Let r &#x3E; 0 be such that Br(z) C Qn, Br(z) n (r) = 0,
and

As ¡~ -~ ¡i and {3~ +00, there exists ko E N such that
for any k &#x3E; ko. This implies that either B2 (z) C Ek, or

0, which, together with (7.7), contradicts the fact that Ek - E
in L1 (S2) as k - +00. Repeating the last part of the proof of Theorem 3.2
relatively to s2n we obtain (7.5). D

COROLLARY 7.1. Let E C JR.2 be a bounded open set of class which
is relatively compact in Q. Then

In particular, ’7(E, Q)  +oo.

PROOF. Theorem 7.1 holds with the same proof if E is of class H2~~, hence,
passing to the infimum with respect to the approximating sequence lehlh in
(7.4) we infer that faE + dM I (z) 7(E, S2). The opposite inequality can
be proved as in Corollary 3.2, using the hypothesis that E is relatively compact
in Q. D

The last part of this section is devoted to find an example of a set E
in which we can calculate 3’(E) = JR.2). Moreover, as we shall prove, for
this set E one has that ’7(E, - ) is not subadditive (see [4, Conjecture 5]). This
shows that ~(E, ~ ) cannot be a measure and in particular that Q) cannot
be represented as an integral of the form (1.3) for a suitable choice of the
function 
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Fig. 7.1 : Each rectilinear segment of aEh near the points ql and q2
gives a contribution to the functional J’(Eh) equal to

its length, which is less g 
3

Let E C JR.2 be the set of Figure 7.1, where q = (o, 0) and q2 = ( 1, o), and
let Ci , C2 be the two connected components of BE. Note that the unoriented
tangent lines in q1 and q2 coincide with the x-axis. As in Theorem 4.1 (v), we
denote by the set of all limit systems r of curves of class H2,p such that
(r) ~ BE and E = int(Ar U (r)), where Ar = (z e I1~2B(r): I(r, z) = 1 }.

LEMMA 7.1. Let E be the set of Figure 7.1, and let r = {~r 1, ... , ~yrn } E
Then either there exist i, j e {1,...,?~}, and t2 E [0,1] ] such

that ~(~2) = q1, or there exist i E { l, ... , m} and ti, t2 E [0,1] ] with
0  t 1  t2  1 such that ~y2 (t 1 ) = Y(~2) = q1. The same holds for the point q2.

PROOF. Let { zhl ~ } h, be two sequences of points such that, for any
zh ~ - zh2~ - (xh~ yh2))~ (1) e Ci n {2/ C ~ ~ (2) e Ci n {2/ &#x3E; 0),
and --~ Q1, as h - +00. Since (r) D aE, passing to suitable

subsequences, there exist i, j E { 1, ... , m} and two sequences fihh, {th}h ofpoints, with sh, th e [o,1], such that zh ~ _ (xh, y~2&#x3E;) _
for any h. By compactness, sh 2013~ ti, th - t2 as h - +00, so that

72(tl) _ ’~’(t2) =91. If the proof is complete. Let us suppose that i = j,
and assume by contradiction that tl = t2. By the Mean Value Theorem, for any
h there exists a point Çh between sh and th such that the first component of
the derivative of ,i vanishes at Çh. ti = t2, we conclude that the first

component of the derivative of Y at ti vanishes. This is a contradiction, since
any tangent unit vector of BEat Q1 is parallel to the x-axis. D
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An important property of the set E is that 01 lies on the left with respect
to the y-axis, and that C2 lies on the right with respect to the normal line of
a E at q2, which is the line {x; = 1}. Let us denote by ar E the set of the regular
points of aE, i.e., arE = Then the following result holds.

THEOREM 7.2. Let E be the set of Figure 7.1. Then

PROOF. We shall show that

where Q (E) is the collection of those systems of curves r of class H 2,p
without crossings, satisfying the finiteness property and such that {z E V: 3r &#x3E;

0 01 = int(Ar U (F)), with Ar I1~2 ~(h): I(h, z) - 1 (mod 2)}
(see Theorem 6.2).

By Theorem 4.1 (v) and (6.7) we have

Since

to prove (7.8) it will be enough to show that, for any r E A (E),

Let r = {~y 1, ... , ~y~ } E A (E). Let us use Lemma 7.1. Suppose that there exist
i, j E { 1, ... , m }, and t 1, t2 E [o, 1 ] such that 7i (t 1 ) = ¡j(t2) = q1. Up
to a reparametrization of the curve 7i, we can suppose that tl = 0, that the

tangent unit vector of V at t = 0 is (1, 0), and that Y is parametrized by the
arc length s. Let [0, l(¡i)] = A U B, where A = { s E [0, 1(/~")]: -li(s) E 9E), and
B = { s E [0, 1(-ii)]: -ti(s) iZ aE). Clearly B ~ ~. Let us prove that
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There are two possibilities: either nC2 0, or n C2 = 0. If (Y) n 02 -f 0,
one obviously gets M 1 (B) + fB I q2 - = 1. that is (7.10).

Suppose now that (Ii) n C2 = 0, and denote by If the z-component of the
curve Y. By construction, we have that (0) = 1. Since Ii is closed, we can
consider the smallest parameter a E]O, [ such that &#x3E; 0 and = 0.

It is easy to prove that &#x3E; 0 for any s E]0, ~ ]. Since 01 lies on the left
with respect to the y-axis, we get 01 n Q]) _ 0. Moreover, by assumption,
we have also that C2 n Y([0,~]) = 0. Hence [0, Q C B, and using (3.5) we get

that gives (7.10).
Using the same arguments also for the curve ¡j, (7.9) follows from (7.10)

applied to both Y and ¡j.
Let us suppose now that there exist i E { 1, ... , m} and t 1, t2 E [o,1 ],

0  tl  t2  1 such that ¡i(t1) = 7~(t2) = ql. If there exist k e { 1, ... , m},
and t E [0, 1] ] such that ¡k(t) = q2, then (7.9) follows from the previous

arguments. The last possibility (see Lemma 7.1 ) is whenever there exist t3,
t4 C [o,1 ], 9 0  t3  t4  1, t3 ft1, such that -1’(t3) = -Y(t4) = q2, and this
case can be treated with obvious modifications. D

THEOREM 7.3. Let E be the set of Figure 7.1. Then there exist two open
sets 521, Q2 C JR.2, with S21 U O2 = JR.2, such that

PROOF. As we saw in Section 1

Let Let us fix two open subsets Szl, Q2
,

of JR.2 such that, and S21

and from Theorem 7.2 we have

Moreover one easily constructs a sequence { Eh } h of bounded open subsets ofR2
of class with Eh - E in L1(01) as h - +oo, such that (see Figure 7.1)
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The conclusion of the theorem follows now from (7.11), (7.12), (7.13). D
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