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Homogenization and Corrector
for the Wave Equation

in Domains with Small Holes

D. CIORANESCU - P. DONATO - F. MURAT - E. ZUAZUA

1. - Introduction

In this paper we study the homogenization of the wave equation with
Dirichlet boundary conditions in perforated domains with small holes. Let Q be
a fixed bounded domain of (n &#x3E; 2). Denote by S2E the domain obtained by

.

removing from Q a set Se = U S~ of closed subsets of Q (here, e &#x3E; 0
i=l

denotes a parameter which takes its values in a sequence which tends to zero
while tends to infinity). Finally let T &#x3E; 0 be fixed. We consider the wave

equation

Our aim is to describe the convergence of the solutions uc, to identify the
equation satisfied by the limit u and to give corrector results.

In the whole of the present paper the sets Qê will be assumed to satisfy
the requirements of the abstract framework introduced by D. Cioranescu and
F. Murat [6] (see assumption (2.1) below) for the study of the homogenization
of elliptic problems in perforated domains with Dirichlet boundary data. The
model case (see Figure 1 on the next page) is provided by a domain periodically
perforated (with a period 2~ in the direction of each coordinate axis) by holes
of size r~, where r, is asymptotically equal to or smaller than a "critical size"

Pervenuto alla Redazione il 29 Ottobre 1990.
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a,. This critical size ag is given by

where Co &#x3E; 0 is fixed and 61 log 6,, -~ 0 as e -~ 0 (see Section 2 below).

Figure 1

In this abstract framework, let v, be the solution of the problem

where g is given in H-1(0). Denote by f), the extension of Ve to the whole of
Q defined by

It has been shown in [6] that ve weakly converges in to the solution v
of the problem

where ti is a nonnegative Radon measure belonging to This measure

appears in the abstract framework and relies on the behaviour of the capacity
of the set Be as c -~ 0. In the model case described above, it is a constant
which is strictly positive when the size of the holes is the critical one. In such
case the additional zero order term iLv appears in the limit equation.

As a first hypothesis on the data in ( 1.1 ) we assume that
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As it is naturally expected, the extension ii, of the solution Ug of ( 1.1 ) weakly
* converges in L"(0, T; Hol(u)) n T ; L2(n)) to the solution u of the

problem

This result is proved in Theorem 3.1 of Section 3.
In Section 4 we prove corrector results for the problem (1.1) by following

ideas similar to those used by S. Brahim-Ostmane, G.A. Francfort and F. Murat
[ 1 ], who adapted to the wave equation the ideas introduced by L. Tartar [18]
in the elliptic case. Under a special assumption on the data (see (1.9) below)
we prove in Theorem 4.1 that Üê can be decomposed in

In this decomposition u is the solution of (1.6), Wê are functions which appear
in the abstract framework (they are related to the capacitary potential of the
holes) and the remainder R, satisfies the strong convergence property

we also prove that

The term uw~ is then a good approximation ("the corrector") of the solution
UC.

In order to obtain (1.7)-(1.8) we have to make special assumptions on the
data; to be precise, we will assume that there exists gg E H-1(0) such that

Note that the initial condition u° has to satisfy the very special hypothesis
(1.9a). The meaning of this hypothesis is that uO has to be well adapted to the
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asymptotic behaviour of the holes. In general (1.9a) implies only the weak (and
not strong) convergence in Hol(O) of u° (see Remark 4.1 below).

Assumption (1.9) on the data turns to imply the convergence of the energies

to the energy of the limit problem

This convergence of energies is at the root of the proof of the corrector result
(1.7)-(1.8).

We also consider in Section 6 the case of initial data which have a

regularity weaker than (1.4)-(1.5), i.e., the case where

We then prove that under suitable convergence assumptions on u°, u~ and f6 9
the extension Us of the solution of ( 1.1 ) weakly * converges in L"(0, T ; L2 (Q))
to the solution u of the problem (1.6) (see Theorem 6.2). In this setting we also
obtain, under special assumptions on the data, the following corrector result
(see Theorem 6.3):

Besides their own interest, the previous results have interesting applications
to the exact boundary controllability problem for the wave equation in domains
with small holes, see D. Cioranescu, P. Donato and E. Zuazua [4], [5], where
Theorems 3.1, 4.1 and 5.1 are used as a tool combined to the "Hilbert

Uniqueness Method" introduced by J.-L. Lions [14].
The present paper is only concerned with homogeneous Dirichlet boundary

data. Let us mention that the case of homogeneous Neumann data leads to

completely different results, the critical size being in this case a, = ~ (see D.
Cioranescu and P. Donato [3] for the homogenization of this problem).

The present paper is organized as follows:
Section 2 is divided into three parts. We first recall (Subsection 2.1) the

abstract framework of [6] on the geometry of the holes, as well as the results
dealing with the homogenization of the elliptic problem in this setting. The
counterparts of some of these results for the time dependent case are given in
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Subsection 2.3, where a quasi-extension operator is also introduced. Subsection
2.2 presents some compactness results in the spaces Lp(0, T; X).

In Section 3 we prove the weak * convergence in 

T; L 2(Q)) of the extension u£ of the solution u£ of ( 1.1 ) to the solution
u of (1.6). Lower semicontinuity of the corresponding energy is also proved.

In Section 4 the corrector result (1.7)-(1.8) is proved when the assumption
(1.9) on the data is made.

In Section 5 we consider the case where the size of the holes is smaller than
the critical one. In this situation ti = 0 and the convergence of Mg. to u is proved
to take place in the strong topology of L°° (0, T; Ho (SZ)) n T; L2 (SZ)).

In Section 6 we prove the convergence of the solutions and the corrector
result ( 1.11 ) in the case where the data only meet a weaker regularity assumption
(see (1.10)).

Finally the Appendix is devoted to the proof of the density of P(Q) in
Ho (SZ) n when it is a nonnegative and finite Radon measure which
belongs to 

2. - Geometric setting. A review of the elliptic case and preliminary results

This section is divided into three parts. In the first one (Subsection 2.1) we
describe the geometry of the problem and the abstract framework introduced by
D. Cioranescu and F. Murat [6] in which the present work will be carried out; we
also recall the homogenization and corrector results obtained in this framework
when dealing with elliptic problems. Subsection 2.2 deals with compactness
results in the spaces LP(O,T;X). In Subsection 2.3 we introduce a "quasi-
extension" operator and prove some pointwise (with respect to the time variable)
lower semicontinuity results of the energy for the time dependent case. These
latest results are in some sense the time dependent counterparts of the results
presented in Subsection 2.1 for the elliptic case.

2.1 The geometry of the problem. A review of homogenization and corrector
results in the elliptic case.

Let Q be a bounded domain of RI (n &#x3E; 2) (no regularity is assumed on
the boundary aSZ), and let be the domain obtained by removing from Q a

.

set S, = U S’~ of N(e) closed subsets of R n (the holes). Here e is a parameter
i=l

which takes its values in a sequence which tends to zero while N(c) is an

integer which tends to infinity.
Instead of making direct geometric assumptions on the holes ,5~, we adopt

here the abstract framework introduced by D. Cioranescu and F. Murat in [6]
where the assumption on the geometry of the holes is made by assuming the
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existence of a suitable family of test functions. Precisely we will assume that

there exists a sequence of test functions Wg such that

In (2.1 ) and denotes the duality pairing between 
and Hol(Q), while ( - , ~ )Oe will denote the duality pairing between H-l(i2,) and

REMARK 2.1. Hypothesis (2.1) differs from the original framework pro-
posed in [6] by the fact that in (2.1 ) ~u is only assumed to belong to 
while in [6] ~ was assumed to belong to Nevertheless the present
variation allows one to prove the same type of results in the elliptic case

(see H. Kacimi and F. Murat [12, Paragraphe 2]). Note that the framework
adopted here is of the type (H5)’ in the notation of [6] (see [6, Remarque
1.6]) which for the present case is more convenient than the hypothesis (H5) of
[6]. 0

EXAMPLE 2.1. Let us present the typical example where assumption (2.1)
is satisfied. Consider the case where Q is periodically perforated, with a period
2c in the direction of each coordinate axis, by small holes S~ of form S and
size a, obtained from a model hole S by a translation and an a,-homothety. To
be precise Si is given by

where (i 1, i2, ... , in) is a multi-index of Z n, {e 1, ... , en } is the canonical basis
of R n, S is a closed set contained in the ball B1 of radius 1 centered at the

origin (in the case n = 2, S is assumed to contain a ball centered at the origin,
see [12, Remarque 2.2]), and a,  e satisfies

for a given Co &#x3E; 0.
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The model case is then

the model hole S being choosen as the unit ball of R n .
When aE is given by (2.3) or (2.4), it is possible to construct "explicitely"

We (see [6, Exemple modele 2.1 ] ) on the cube Pj of size 2c of center
, 

n 
,

x~ = consider the function We E defined by
k=1

where B: is the ball of center z§ and radius E e. (When ,S is a ball the function

We can be easily computed in radial coordinates). The function We defined by
(2.5) in each PE satisfies (2.1 ) with

For the proof see [6, Exemple modele 2.1 ] and [12, Theoreme 2.1 ] ; in (2.6)

is the capacity in R n of the closed set S.
We refer the reader to [6] and to H. Kacimi [11, Chapitre 1 ] for other

examples of holes where assumption (2.1 ) is satisfied. D

REMARK 2.2. In the above Example 2.1, the size a, defined in (2.3) is
critical in the following sense: when the size of the holes is r~ with r, « ag,
i.e., when

hypothesis (2.1 ) is satisfied, but in (iii) We now converges strongly to 1 in
and in (iv), 1L, and -1, strongly converge to 0; thus u = 0 in this case.

On the other hand, if a, « r, (which corresponds to replace oo by 0 in (2.7)),
it can be proved that there is no sequence satisfying assertions (i), (ii) and (iii)
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of (2.1). The size a, given by (2.3) is therefore the only one for which (2.1)
holds with weak (and not strong) convergence of wl to 1 in (iii). 0

In the abstract framework of hypothesis (2.1 ), the following results can
be proved (see [6, Chapitre 1 ] and [ 12, Paragraphe 2]).

LEMMA 2.1. If (2.1 ) holds true, the distribution /.u which appears in (iv)
is given by

Thus it is a positive Radon measure as well as an element of moreover

is finite.

A result of J. Deny [7] (see also H. Brézis and F.E. Browder [2]) then
asserts that any function v E Ho’(i2) is measurable with respect to the measure

and belongs to namely

This allows one to define without ambiguity the space

which is a Hilbert space for the scalar product

Finally, for any v E L2 (SZ~ ) define v as the extension of v by zero outside
11ê, i. e.

Of course one has

Note that v belongs to if v belongs to and that

We recall the following result on the homogenization of elliptic problems.
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THEOREM 2.2. Assume that (2.1 ) holds true and consider the solutions v,
of the Dirichlet problems

where g, E is such that

The sequence ve (obtained from the solution v, of (2.15) by the extension
(2.12)) satisfies

where v = v(x) is the unique solution of

(see Remark 2.3 below). Moreover

Finally if v belongs to Ho (SZ) f1 C°(S2), the convergence of r, in (2.19) takes
place in the strong topology of Hol (L2).

REMARK 2.3. Note that the variational formulation associated to (2.18) is
(see (2.10), (2.11 ) for the definitions of V and a)

REMARK 2.4. Assertion (2.19) is a corrector result for the solution v, of
the Dirichlet problem (2.15), since it allows one to replace f), by the "explicit"
expression w~v, up to the remainder r, which strongly converges to zero. p

It is finally worth mentioning the following lower semicontinuity of the
energy.
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THEOREM 2.3. Assume that (2.1 ) holds true and consider a sequence z,,

such that

Then

Moreover when Zg also satisfies

one has

Finally if z belongs to HJ(Q) f1 cO(i2), the convergence of r, in (2.24) takes
place in the strong topology of Ho’(i2).

REMARK 2.5. Note that, in view of (2.9), any element of Hol(Q) belongs
to LI(92;dA); the first assertion of (2.22) thus claims that z actually belongs to
L2(Q; diL). D

2.2 Some compactness lemmas.

Let X and Y be two reflexive Banach spaces such that X C Y with
continuous and dense embedding. Denote by X’ (resp. Y’) the dual space of
X (resp. Y) and by ~ ~ , ~ ~ X,X~ (resp. ~ ~ , ~ ~ y,yl ) the duality pairing between X
and X’ (resp. Y and Y’). We will use the following space introduced in [16,
Chapitre 3, Paragraphe 8.4]:

is continuous

from [0, T] into R for any fixed v E Y’ } .

LEMMA 2.4. Consider a sequence gê such that

weakly * in

strongly in
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Then g, strongly converges to g in

function

belongs to CO([O, T]) and satisfies

where h is defined by

PROOF. According to a result of J.-L. Lions and E. Magenes [16, Lemme
8.1, p. 297] we have

Hence g, belongs to Ct([0, T]; X) by (2.25) and therefore he defined by (2.26)
lies in T]).

To prove (2.27), it is sufficient to show that h, is a Cauchy sequence in
T]). For a given v E Y’ introduce the function

We have

Combining (2.25), (2.29) and the density of Y’ in X’, we easily deduce that h,
is a Cauchy sequence in CO([O, T]). 0

PROPOSITION 2.5. Assume further that the embedding X c Y is compact.
Let ge be a sequence such that

weakly in T; X)

weakly in T; Y).

strongly in CO([O, T]; Y).
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PROOF. In order to obtain the result it is sufficient to prove that (see, e.g.
J. Simon [17, Theorem 3])

uniformly in e.

On the first hand

On the other hand Theorem 4 of J. Diestel and J.J. Uhl, [8, p. 104] states
that the norm (in Y) of a sequence which converges weakly in LI(O, T; Y) is
uniformly integrable on [0, T]. This implies that the right hand side of (2.34)
converges to zero as h converges to 0, uniformly in c, which yields (2.33) and
completes the proof. D

REMARK 2.6. The convergence (2.32) is proved in [17, Corollary 4] under
the further assumption (compare with (2.31)) that for some p &#x3E; 1

Observe also that compactness (2.32) is false in general when (2.31) is

replaced by the boundedness of g~ in T; Y): consider, e.g. the case where
X=Y=R, gê (t) = t / e if 0  t  c, g~ (t) = 1 1 and g (t) = 1 if
ot 1. D

As a consequence of Lemma 2.4 and Proposition 2.5 we have the following
result.

COROLLARY 2.6. Assume that the embedding X c Y is compact. Let 9,
be a sequence satisfying

Then g, strongly converges to g in C° ( [0, T]; X), i. e.

strongly in

REMARK 2.7. Note that (2.37) implies in particular that

weakly in X for any fixed t E [0, T] ]

and not only almost everywhere in [0, T].
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2.3 Counterparts of some elliptic results. A "quasi-extension " operator.

PROPOSITION 2.7. Assume that (2.1 ) holds true and consider a sequence
of functions Vg in L°°(0, T ; Hol(i2,,)) n T; L2(Qg)) satisfying

weakly * in

weakly * in

Then

and on the other hand

REMARK 2.8. From (2.38) we know that

property (2.40) then asserts that the limit v further satisfies

PROOF OF PROPOSITION 2.7. Convergence (2.39) is a direct consequence
of Corollary 2.6 applied to X = and Y = 

In view of Remark 2.7, we have in particular

Vg(t) - v(t) weakly in for any fixed t E [0, T].

Applying Theorem 2.3 to and v(t) we obtain that for any fixed t E [0, T]

Since for some Co  +oo we have

we have proved that v(t) belongs to V for any t and that
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This implies (2.40) once the measurability of the function v : [0, T]’2013~ dp)
is proved, since we know from (2.38) that v belongs to 

nW1,00(O, T; L2(S2)).
Since is separable, it is sufficient to prove, using Pettis’

measurability Theorem (see [8, Theorem 2, p. 42]), that v is weakly measurable,
i.e. that for any p E the function t H is

Q

measurable. We already know that v belongs to Ll (0, T; Ho (SZ)) and therefore,
by (2.9), to L°°(0, T; Thus the function t - j v(x, is
_

measurable for any Approximate now p E L~(Q; d/z) by a sequence
1/;n E C°(Q). Since v(t) belongs to L2 (~; for any t E [0, T], we have

This proves the measurability of the function t and
Q

completes the proof of Proposition 2.7. D

In the following Proposition we prove the existence of some quasi-
extension operators that will be useful in the sequel.

PROPOSITION 2.8. Assume that (2.1) holds true and define the 
by

where ~ is the extension of 0 by zero in the holes Bg defined by (2.12). Then

Moreover the operator P, extends to an operator defined on and

for any - &#x3E; 0 and any q E (1, n/(n - 1))

REMARK 2.9. The operator P, is not an extension operator since does
not coincide with 0 in indeed We does not coincide with 1 on this set.

However for any p in L~(Q) we have

which shows that Ps acts as a "quasi-extension" operator. D
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PROOF OF PROPOSITION 2.8. In view of (2.1 ), the operator Pe defined by
(2.41) clearly enjoys properties (2.42) and (2.44) (use Lebesgue’s dominated
convergence Theorem to prove (2.44)).

Let now p &#x3E; n be fixed; define on the operator

Since ’ we have

where the constant Cp does not depend on e. We thus have

Consider the operator R~ defined on by

where q is given by , The identity

proves that J~ == Pe is an extension of Pe defined by (2.41) and (2.47)
immediately implies (2.43). 0

REMARK 2.10. An interesting consequence of the construction of the

operators Pe is that it makes possible to perform the homogenization of the
elliptic problem (2.15) when the sequence g, only satisfies

where C &#x3E; 0 is a constant independent of e. Under this hypothesis the extension
Vg of the solution v, of (2.15) is still bounded in Ho’(0).
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On the other hand, from Proposition 2.8 we deduce that Pggg is uniformly
bounded in Thus, by passing to a subsequence (denoted we

have

Using Wgcp (with p E and w, defined by (2.1 )) as test function in the
variational formulation of (2.15) and following exactly the proof of [6, Theoreme
1 ], one easily proves that

where v solves

is dense in V (see Appendix below), (2.52) actually holds for any
p in V. Since the left hand side of (2.52) is a continuous linear form on p E V,
we actually have

and not only in for q E (1, n/(n - 1)) as obtained in (2.50).
Finally note that in order to pass to the limit in (2.15), for some right

hand side g, defined on Q and bounded in H-1(o.) (this assumption is slightly
stronger than (2.49) where g, is only defined on one has to consider a

subsequence -’ such that P~~ g~~ weakly converges to some g* in (see
(2.50)) and not a subsequence such that ggl weakly converges to some g** in

D

We conclude this Section with the following result, which proves that
averaging in space provides some compactness in time.

PROPOSITION 2.9. Assume that (2.1) holds true and let Pg be the quasi-
extension operator defined in Proposition 2.8. Consider a sequence Vg in

L"(0, T; £2(o.g)) n W1~1(o, T; H-1(Qg)) satisfying

for some Then for all

strongly in C° ( [0, T]).
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PROOF. Combining (2.1), (2.42) and (2.54a) one can easily prove that

Corollary 2.6 applied to the sequence g,.. = P~v~ with X = Y =

therefore implies that

for all p E 

Convergence (2.55) is then deduced from (2.56) and from

since

in view of (2.54), (2.1 ) and Lebesgue’s dominated convergence Theorem. D

3. - The homogenization result for the wave equation

The goal of this Section is to prove the homogenization result for the wave
equation (Theorem 3.1 ). Lower semicontinuity of the energy is also proved
(Theorem 3.2).

Consider a bounded domain Q of (n &#x3E; 2) and the domain Qg obtained
N(g)

by removing from Q a set ,S~ = U S~ of "small" holes for which hypothesis
i=l

(2.1 ) holds true. Let T &#x3E; 0 be a given real number. Consider the wave equation

where the data u°, u~, f, are assumed to satisfy
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Classical results (see, e.g. [16] or [14]) provide the existence and

uniqueness of a solution Us = us(x, t) of (3.1) which satisfies

Moreover defining, for any t E [0, T], the energy E~ ( ~ ) by

one has the following energy identity

Recall that ? denotes the extension by zero outside of K2, and that V is
the space Hol (12) n (see (2.12) and (2.10)). We have the following
homogenization result for the wave equation (3.1 ).

THEOREM 3.1. Assume that (2.1) holds true and consider a sequence of
data which satisfy

weakly in

weakly in

weakly in

The sequence u, of solutions of (3 .1 ) then satisfies

where u = u(x, t) is the unique solution of the homogenized wave equation
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REMARK 3.1. In view of definition (2.11 ) of the scalar product a( ., . ) of
V, the variational formulation of the wave equation (3.8a) is

Note that according to Theorem 2.3, the function ul (which is the weak
limit in Hol(Q) of functions li) vanishing on the holes Be) belongs to V, so there
is no contradiction between the two assertions u(O) = u° and u E CO([O, T]; V).

On the other hand, observe that classical results (see e.g. [16]) provide
existence and uniqueness of a solution of (3.8). In fact, uniqueness holds in the
larger class T; V ) n T; L2(S2)).

Finally note that f, is assumed to converge weakly in LI(O, T; L2(S~)),
which is a stronger assumption than to be bounded in this space. D

PROOF OF THEOREM 3.1. We proceed in four steps.

First step: a priori estimates.

From (3.5) we have

which by Gronwall’s inequality implies

u

In view of (3.6), the right hand side of (3.10) is bounded independently of
t E [0, T] ] and e. Using the properties of the extension by zero outside Qs (see
(2.12)) this implies that Us is bounded in Loo(O, T; Ho (S2)) n T; L2 (il)).
Extracting a subsequence (still denoted bye, since in the fourth step the whole
sequence will be proved to converge) one has

On the other hand, in view of Proposition 2.7 we have
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Second step: passing to the limit in the wave equation (3.1 a).

Using in (3.1a) the test function where 0 E D((o, T)),
p E D(Q) and Wg is defined in hypothesis (2.1), we obtain after integration
by parts

Extension by zero outside 0,, Fubini’s Theorem and an integration by parts in
the second term give, in view of the identity (see (2.1)(iv))

Consider the function Ug E Ho’(Q) defined by

Convergences (3.11 ) imply that the sequence Ug satisfies

weakly in and strongly in 

on Sc

and that

strongly in 

on Sg.

It is now easy to pass to the limit in each term of (3.13), using hypothesis
(2.1)(iii) and (iv) (note that (Ie, = 0). Using Fubini’s and Deny’s Theorems
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(see (2.9)), we obtain

Since 0 G P((0, T)) is arbitrary, we have proved that

In view of (3.12), the density in V (see the Appendix below) allows
one to extend (3.17) to every test function p E V.

We thus have proved (3.9) which (see Remark 3.1) is equivalent to (3.8a).

Third step: passing to the limit in the initial data.

From (3.11) and Proposition 2.7 we deduce that

for any v E Since = u° tends to u° weakly in (see (3.6)),
we obtain

In order to prove that u’(0) = u 1 we will apply Proposition 2.9 to v, = u~ .
Let us first check that

Indeed observe that

and thus

In view of (3.11 a), we have

Proposition 2.8
and thus by

On the other hand, Pc fc = is relatively compact in the weak topology
of L1(0, T; L2(S~)) in view of (3.6) and (2.1)(i). This follows from Dunford’s
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Theorem (see [8, Theorem 1, p. 101]) since L~(Q) enjoys the Radon-Nikodym
property (see [8, Corollary 13, p. 76]), since wsfs is bounded in L 1 (0, T; 

is relatively compact in the weak topology of for any
E 

_

measurable subset E of [0, T ], and finally since the function t 
is uniformly integrable on [0, T] (indeed, the functions t ’2013~ IIls(t)IIL2(Q) are

uniformly integrable on [0, T] since the sequence fe, is relatively compact in
£1(0, T; L 2(g2)), see [8, Theorem 4, p. 104]).

Consequently P~u~ - PsLBus + is relatively compact in the weak

topology of 
Finally, combining (2.1) and (3.11 b), it easy to prove that

(3.21) = weakly * in L°°(0, T; 

Since = Pu" because of the definition of Ps, this implies that (3.20) is
satisfied.

Combining (3.llb) and (3.20), Proposition 2.9 ensures that

strongly in

for any p E Since tends to ul weakly in (see (3.6)),
we deduce

The limit u = u(x, t) therefore satisfies the initial conditions (3.8b).

Fourth step: end of the proof.

In the second and third step we have proved that, up to the extraction of
a subsequence (still denoted by c), the sequence u, satisfies (3.11) where the
limit u belongs to and satisfies (3.8a)-(3.8b).

The uniqueness of the solution of (3.8a)-(3.8b) in 

(see Remark 3.1) allows us to deduce that the whole

sequence ue, satisfies (3.7) and that the limit u satisfies (3.8c).
This completes the proof of Theorem 3.1. D

We have also the following pointwise (in time) convergence result and
lower semicontinuity property of the energy.

THEOREM 3.2. Assume that the hypotheses of Theorem 3.1 are fulfilled.
Then for any fixed t E [0, T] ]
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and

where E, is defined by (3.4) while

PROOF. The convergences (3.23) and (3.24) have been proved in the
third step of the proof of Theorem 3.1 (see (3.18) and (3.22)). From Theo-
rem 2.3 we have (3.25) while (3.26) is straightforward. This immediately implies
(3.27). D

In the next Section we shall show that, under special convergence

assumptions on the data (which are quite stronger than (3.6)), we have

This convergence property of the energies will play a crucial role when proving
the corrector result.

4. - Corrector for the wave equation in a domain with small holes

This Section is devoted to state and prove the corrector result when spe-
cial assumptions are satisfied by the data. The proof follows along the lines of
S. Brahim-Otsmane, G.A. Francfort and F. Murat [1], who adapted to the wave
equation the ideas introduced by L. Tartar [18] in the elliptic case. One of the
main steps of the proof is the strong convergence of the energy in T]).

Concerning the initial condition uo we shall assume that
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As a consequence of Theorem 2.2 we deduce that

where u° = is the solution of

THEOREM 4.1. Assume that (2.1 ) holds true and consider a sequence of
data u°, u~, fe that satisfy (4.1 ) and

strongly in

strongly in

If u denotes the unique solution of the homogenized equation (3.8), the

sequence Ug of solutions of (3.1 ) satisfies

strongly in

Moreover, if

REMARK 4.1. In (4.4) and (4.5) we have assumed the strong convergence
of the data and not only the weak convergence as in (3.6).

For what concerns (4.1), note that this assumption is in 
and not -Dic° = gE in Note also that (4.1) is quite different of assuming
that

Indeed in view of Theorem 2.2, (4.1 ) implies that

which prevents in general the strong convergence of u° to u°. Nevertheless, this
convergence of energies to the homogenized energy is exactly what is necessary
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in order to prove the corrector result of Theorem 4.1. This is a natural substi-

tute to the strong convergence of lit, which is not the convenient hypothesis
here. 0

Before proving Theorem 4.1 we prove the convergence of the energy. Let
us recall definitions (3.4) and (3.28)

PROPOSITION 4.2. Assume that the hypotheses of Theorem 4.1 hold true.
Then

REMARK 4.2. Let us observe that combining (3.25) and (3.26) with (4.10)
we have, for any fixed t E [0, T],

On the other hand, from (3.24) and (4.11 a), we obtain that

for any fixed t E [0, T] ; this statement is not as strong as (4.6), but is a first
attempt in this direction. D

REMARK 4.3. Further to (4.10) and (4.11 ) one actually has

strongly in T])

strongly in T]);

indeed (4.13) follows from (4.10), (4.6) and from the definitions of Ec and E.
D

PROOF OF PROPOSITION 4.2. We have the identities
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with

In view of Theorem 3.1 and hypothesis (4.4) we have for any t E [0, T]

On the other hand, assumptions (4.1 ) and (4.5) imply that (see (2.17) in Theorem
2.2)

Therefore

Moreover, given any t E [0, T] ] and h &#x3E; 0 small enough, we have

Since uE is bounded in L"(0, T; L2(Q)) and since Ie: strongly converges in
L’(0, T; L2(SZ)), this inequality implies that

The statements (4.18), (4.19) and Ascoli-Arzela’s Theorem imply (4.10).
D

Defining
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PROPOSITION 4.3. Assume that the hypotheses of Theorem 4.1 hold true.
Then

for every p 

REMARK 4.4. If u belongs to P(Q), Theorem 4.1 is a direct consequence
of (4.22). Indeed, (4.7) and (4.9) immediately follow from (4.22); (4.6) is also
a consequence of (4.22) by virtue of decomposition (4.42) below.

When u is not in P(Q), Theorem 4.1 cannot be obtained so simply: in the
proof of Theorem 4.1 below we will approximate u by a sequence of smooth
functions p and deduce (4.6) and (4.7)-(4.8) from (4.22). D

PROOF OF PROPOSITION 4.3. We have

We will pass successively to the limit in each term of the right hand side of
(4.23).

First term. Since e~(u~)(t) = E~(t), we have from Proposition 4.2

Second term. Using (2.1 )(iii) we obtain that (differentiating in time proves that
the function is bounded in T)),

On the other hand,
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In view of (2.1 )(iii) and (iv) we can pass to the limit in each term of the right
hand side to get (note that each term is bounded in T))

Combining (4.25)-(4.28) we deduce that

Third term. In view of (3.22) we have

for all c E from which we deduce

since

in view of (

Approximating cp’(x, t) in by functions of the form
k

where the r~2 are continuous functions on [0, T] and the 1/Ji belong
i=l

to £00(0.) for all i in { 1, ... , we deduce, from (4.30) and from the L°° (SZ)
bound of We (see (2.1 )(i)), that

Fourth term. Let us now consider the last term of (4.23). We have
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Consider the function

Since Us is bounded in T ; (see Theorem 3.1 ), the above function
is bounded in thus relatively compact in This implies
that

strongly in T]).
G

Consider now the remaining term Since ii, vanishes
on the holes, we have

On the other hand, since , E there exists a sequence in L2(o) such
that

We have

By (2.1 )(iv) and (3.7) one has

On the other hand, (4.34) yields

Finally, from (3.7) and Proposition 2.5, we have

Therefore, for k fixed,
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Combining (4.35)-(4.38) we deduce that

From (4.23), (4.24), (4.29), (4.31), (4.32), (4.33) and (4.39) we get (4.22).
The proof of Proposition 4.3 is complete. D

PROOF OF THEOREM 4.1. From Theorem 3.1 we know that

Let us consider a sequence pk such that

, strongly in

From Proposition 4.3 we have

and thus

We now observe that

Combining (4.40), (4.41), (4.42) and hypothesis (2.1 ), we easily deduce
that

Therefore (4.6) is proved.
On the other hand, we have
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By (2.1), (4.22), (4.40) and (4.43), we conclude that

Thus (4.8) is proved. 
_

Let us finally consider the case where u E x [0, T]). In such case,
the approximating sequence pk may be chosen to satisfy, further to (4.40), the
hypothesis

strongly in

In this case we can estimate Wgu) in T; and not only in
as in (4.43): indeed, we have

Similarly to (4.43), this implies

strongly in

which gives the desired result (4.9).
The proof of Theorem 4.1 is now complete. D

5. - The case of holes smaller than the critical size

In this Section we consider the particular case where the holes are smaller
than the critical size. This corresponds to the assumption that the functions We
of hypothesis (2.1) strongly converge in which implies p = 0. In this
case all the results of Sections 3 and 4 hold true, but the corrector result of
Theorem 4.1 can be improved by replacing We by 1 in the statement.

Let us assume that the holes Be are such that

r there exists a sequence of test functions We satisfying

REMARK 5.1. Once again the main assumption is not made directly on
the form and size of the holes but in terms of the family of test functions w,.
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The main difference between assumptions (2.1 ) and (5.1 ) is that in (5.1 )(iii)
we assume the strong convergence of w~. In this case (2.1)(iv) is obviously
satisfied with -1, =0, ~ = and /i = 0. As pointed out in Remark 2.2, in
the model case (Example 2.1), assumption (5.1) signifies that the size of the
holes is smaller than the critical one given by (2.4), i.e. that (2.7) holds.

Hypothesis (5.1) may also be understood in terms of the capacity of 6g.
with respect to SZ. More precisely, let us denote by Cap(A, B) the capacity of
the closed se A c B with respect to the open set B, i.e.

It is easy to see that hypothesis (5.1 ) follows from the hypothesis

Indeed in this case the function w, can be constructed from the capacitary
potential of Bg by setting Wg = 1 - p~, where p, E Hol(K2), p, = 1 on S’~, is the

unique function which achieves the minimum in 
Note finally that if we assume that (2.1) holds true with 1L = 0, the use of

v~ = CPWg with p in (2.1)(iv) implies that

The assumption ti = 0 in (2.1) is thus equivalent to a "local version" of (5.1),
where is replaced by 

Let us mention two simple examples where (5.1) is satisfied.

EXAMPLE 1. As already pointed out in Example 2.1 and Remark 2.2, (5.1 )
is satisfied when Q is periodically perforated by holes Se of form S, the size
of which satisfies (2.7).

EXAMPLE 2. Another situation where (5.1) is satisfied is the case where S,
N

is the union of a finite (and fixed) number N of vanishing holes, i.e. 
_ 

i=l

with SiE closed sets such that SiE c K for some K such that _ K C Q and
0 as c - 0. 0

Under assumption (5.1) all the results of Sections 3 and 4 obviously hold
true, but strong convergence of the data now implies strong convergence of
the solutions: indeed the corrector result of Theorem 4.1 holds true if We is

replaced by 1.
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THEOREM 5.1. Assume that (5.1 ) holds true and consider a sequence of
data that satisfy (3.6). The sequence u, of solutions of (3.1 ) then satisfies

and

for all t E [0, T], where the limit u is the unique solution of

Moreover, if the data satisfy the stronger assumption

strongly in

strongly in

strongly in

strongly in

strongly in

REMARK 5.2. When hypothesis (2.1 ) is replaced by hypothesis (5.1 ),
assumption (5.3) is equivalent to the hypotheses of Theorem 4.1. Indeed, when
(4.1 ) and (5 .1 ) hold true, Theorem 2.2 implies the strong convergence of lit
to u° in Hol(O) because it is 0 in (2.17). Conversely g, = and g = -AuO
clearly sastisfy (4.1). D

PROOF OF THEOREM 5.1. The first part of Theorem 5.1 is a mere rewriting
of Theorems 3.1 and 3.2. On the other hand, hypothesis (5.3) implies that the
hypotheses of Theorem 4.1 on the data U. and fe are satisfied. Therefore
(5.4b) is nothing but (4.6).

To prove (5.4a) we proceed as in the proof of Theorem 4.1. Let pk G P(0
be a sequence verifying (4.40). We have

Arguing as in the proof of Theorem 4.1 and using now the strong convergence
of w, to 1 in the second term of (5.5) (this is the essential novelty here) we
easily obtain (5.4a). D
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6. - Homogenization and corrector for non-smooth data

This Section is devoted to the study of the homogenization and corrector
for the wave equation (3.1) with non-smooth data. We consider here the case
where

This functional framework naturally appears in the study of the exact
controllability problems for the wave equation in domains with small holes (see
D. Cioranescu and P. Donato [3], D. Cioranescu, P. Donato and E. Zuazua [4],
[5]).

When the data only satisfy (6.1), the solution u, of (3.1) has to be defined
by transposition: Us = t) is said to be a solution of (3.1) in the transposition
sense if

for all gê E T ; L2 (SZ~ )), where 0~ = t) is the unique solution of

Note that (6.3) admits a unique solution

Therefore each term in (6.2) has a meaning.
Following along the lines of J.-L. Lions [14, Chapitre I] it is easy to see

that (6.2) admits a unique solution Ue E L"(0, T; L2(SZ~)); moreover this solution
satisfies

REMARK 6.1. Another (equivalent) way of defining the solution of the
wave equation (3 .1 ), when the data only satisfy (6.1 ), is to consider the equation
satisfied by the primitive of u, with respect to time. This idea will be used
below in the proof of Theorem 6.2. 0
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LEMMA 6.1. Consider a sequence Ug of solutions of (6.2) associated to
data satisfying (6.1 ) and assume that

Then

PROOF. In view of (6.2) we have

By using for 0, the a priori estimates obtained in the proof of Theorem 3.1
(see (3. 0)), we deduce from (6.7) that for all gg E T; one has

where the constant C does not depend on e. This proves (6.6). 0

We have the following homogenization result.

THEOREM 6.2. Assume that (2.1) holds true and consider a sequence of
data which satisfy

and weakly in

and weakly in

weakly in 1

where P, is the quasi-extension operator defined in Proposition 2.8.
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The solution Ug of (6.2) then satisfies

weakly * in

where u = u(x, t) is the unique solution (in the transposition sense) of

REMARK 6.2. System (6.13) has to be understood in the transposition
sense:

for all g E L 1 (o, T ; L2 (K2)), where 0 = O(x, t) is the unique solution of

Another (equivalent) way of defining the solution u of (6.13) is to consider
the equation satisfied by the primitive of u with respect to time (see below the
proof of Theorem 6.2). D

REMARK 6.3. In view of (2.53) (Remark 2.10) we know that u 1 defined
in (6.11) actually belongs to V’. Thus each term makes sense in (6.14). D

PROOF OF THEOREM 6.2. The main idea of the proof of Theorem 6.2 is
to integrate the solution u~ with respect to time, in order to work with a wave
equation with usual (smooth) data where the results of the previous Sections
apply. This argument was introduced by J.-L. Lions in [15] and was used in
the context of exact controllability of the wave equation in perforated domains
in D. Cioranescu and P. Donato [3].

Define
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where z, is the solution of the elliptic problem

Define also

The function y, is the unique solution of the following wave equation

and u,, is nothing but u, = y~ .
From (6.11) we deduce (see Remark 2.10) that z~ is bounded in 

and that

where z is the solution of

with u 1 defined by ( 6.11 ) .
On the other hand, in view of (6.9), we have

Applying Theorem 3.1, we deduce that

weakly * in .

weakly * in .

where y = y(x, t) is the unique solution of
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Since h belongs to CO([O, T]; and since is an isomorphism
from V into V’, y" = belongs to CO([O, T]; V’). Defining u by u = y’,
we deduce from (6.20) that

Thus u is the solution of (6.13). Since u, = y~, we have in particular

and Theorem 6.2 is proved. 0

If assumptions (6.9)-(6.11 ) of Theorem 6.1 on the data f, and u° are

replaced by stronger ones, the strong convergence of u, follows; indeed we
have the following result, which is in some sense the analogue of Theorem 4.1.

THEOREM 6.3. Assume that (2.1) holds true and consider a sequence of
data which satisfy

strongly in

strongly in

strongly in

Then

strongly in

where u = u(x, t) is the solution of (6.13).

PROOF. Proceed as in the proof of Theorem 6.2 and observe that the

sequence of solutions y, of (6.19) now satisfies the hypotheses of Theorem 4.1.
Thus, in particular

which is the desired result. D

REMARK 6.4. There is no contradiction between hypotheses (6.11) and
(6.23). Indeed when u1 E E and u1 E tends strongly to ul E it
follows from the definition (2.48) of the operator PE = R~ that
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Note also that assumption (6.9) of Theorem 6.2 (respectively assumption
(6.21) in the statement of Theorem 6.3) can be replaced by the weaker one

(respectively strongly in 0

We now give a convergence result concerning the case of non-smooth data
(see (6.1 )) and holes smaller than the critical size (i.e. satisfying (5.1 )). If we
further assume that u~ belongs to (and not only to we can

here replace hypothesis (6.11 ) by a simpler one which formally corresponds to
the choice Wg = 1.

THEOREM 6.4. Assume that (5.1) holds true and consider a sequence of
data which satisfy

weakly in

weakly in

weakly in

The solution u, of (6.2) then satisfies

where u = u(x, t) is the unique solution (in the transposition sense) of

PROOF. To prove Theorem 6.4, it is sufficient to repeat the proof of
Theorem 6.2, just observing that when (5.1) and (6.29) hold true, the solution
z~ of (6.17) now satisfies

where z is the solution of
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REMARK 6.5. In the setting of Theorem 6.4, Theorem 6.3 applies without
any modification: if (5.1), (6.21), (6.22) and (6.23) hold true, then ii, tends
strongly in CO([O, T]; L2(S~)) to the solution u of (6.30) (see (6.24)). 0

is dense in V

For the sake of completeness, we present in this Appendix the proof of
the following result.

THEOREM A.l. open bounded set of and let ti E 
be a positive and finite Radon measure on Q. Then is dense in the space
V = Hol(O) n L2(Q; endowed with its natural norm.

PROOF. We proceed in three steps.

First step. We first prove that V n Loo(Q) n L°°(SZ; is dense in V.

For v E V and for any k &#x3E; 0 define

It is well known that Tkv E Hol(o) n LOO(i2) for every k &#x3E; 0 and that

On the other hand (see e.g. H. Lewy and G. Stampacchia [13, Appendix])
we know that k for all x E Q, except on a set of zero capacity.
Since it is a Radon measure and belongs to H-1 (SZ), M. Grun-Rehomme [10,
Lemme 3] asserts that every set of zero capacity is it-measurable and is of zero
it-measure. We have therefore for all x E s2, except on a set of
~-measure zero and thus

Hence Tkv belongs to V.
From (A.1 ) we deduce that for a suitable subsequence (still denoted by

k), Tkv(x) tends to v(x) for all x E 0, except on a set of zero capacity (see e.g.
J. Frehse [9, Theorem 2.3]). Applying M. Grun-Rehomme [10, Lemme 3] once
again, we deduce that, for the same subsequence, Tkv(x) tends to for all
x E 0 except on a set of it-measure zero. Finally the same argument as above
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ensures that lv(x)l except on a set of p-measure zero. Therefore,
applying Lebesgue’s Theorem, we conclude that

strongly in

We have thus shown that V n n L°° (SZ; dJL) is dense in V.

Second step. We now prove that V n is dense in V, where CO(K2) is the
space of continuous functions with compact support in Q.

Consider v E V n L’ (Q) n L°° (S2; dJL) and let Vk be a sequence such that

I for each k fixed

strongly in as 1~ -~ oo.

Define

and consider the sequence

The function Wk belongs to cO(u) n V .
Since the map Tm,l is continuous from into itself, we have, in

view of the definition of M

Extracting a suitable subsequence we deduce (use again J. Frehse [9] and
M. Grun-Rehomme [10]) that Wk(X) converges to vex) for all x E Q except on
a set of p-measure zero. Since M + 1 except on a set of ti-measure
zero, Lebesgue’s Theorem implies that

We have thus proved that, when

which implies, in view of the first step, that V n C~(Q) is dense in V.

Third step. In order to prove Theorem A.I, it is thus sufficient to approximate
in V any function of V n C~(Q) by functions of D (S2) .

Consider v E V n and define
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with pg(x) = ~-~ (~), where p E is a non-negative function with support
contained in the unit ball of which satisfies f p(x)dx = 1.

Rn

For c &#x3E; 0 small enough, v, belongs to ~(S~). It is well known that

strongly in

Since ii is a finite Radon measure, the embedding C(Q) c d¡.t) is
continuous and therefore

The proof of Theorem A.l is now complete. D
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