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Realization of Any Finite Jet in a Scalar Semilinear
Parabolic Equation on the Ball in R3

PETER POLÁ010DIK

1. - Introduction

Consider the scalar semilinear parabolic equation

on the unit ball D = {x  1} in Assuming some regularity of g,
equation (1.1), subject to either of the boundary conditions

where n is the unit normal vector field on aD, defines a local dynamical system
on an appropriate Banach space [He].

The present paper is a continuation of our previous results [Po 3, 4] that
aim at showing dynamic complexity of this boundary value problem. This is
not a trivial task, because the considered dynamical system, nonetheless that
it is infinite-dimensional, is defined by a special (scalar, local) equation. The
structure of the equation may significantly restrict the class of dynamical systems
that are admissible for the given problem. One of such restrictions concerning
(1.1), (1.2) (or (1.3)) is that "most" trajectories converge to an equilibrium [Po
1]. In fact, any possible interesting dynamics must occur within a Lipschitz
hypersurface in the phase space [Po 2, Ta]. For more special types of equations
(1.1), there are yet stronger implications on the dynamics (see [Po 3] for a

discussion). Our attempt in this and the previous papers [Po 3, 4] has been to
show that, in the general case, there are few (if any) restrictions other than the
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mentioned one. This is done via solving an inverse problem, finding an equation
for which a dynamics or some mode interaction bifurcation is prescribed. Note
that inverse problems of this type have been addressed for different types of
equations in [F-P, Ha 1, 2, Da 2].

In [Po 3], we have proved that any finite jet of an arbitrary N-dimensional
vector field can be realized in (1.1), (1.2). More specifically, for any k &#x3E; 0,
and for any C~ vector field H on with H(o) = 0, one can find a function
g such that (1.1), (1.2) has an invariant N-dimensional manifold through the
equilibrium u =- 0, and the Taylor expansion of the vector field given by the flow
of (1.1), (1.2) un this invariant manifold coincides, in appropriate coordinates,
with the Taylor expansion of H, up to order terms. Having this result, one
would expect that (1.1), (1.2) is dynamically no simpler than the vector fields
on R N. For (1.1), (1.3) this conclusion has been explicitly proved [Po 4]: Any
vector field on can be realized as the vector field given by the flow of
(1.1), (1.3) on some invariant manifold.

In both these results, the dimension of the spatial domain D and that
of the phase space of the vector field, which (or whose jet) is being realized
in the given problem, coincide. In the present paper, we prove that any jet
(without restriction on the dimension of the source space) can be realized in
the problem (1.1), (1.2) on the three-dimensional ball already. This result shows
that for N = 3 (and therefore also for N &#x3E; 3, as we explain in Section 4), the
dimension of the spatial domain does not pose a limitation on complexity of
the dynamics of ( 1.1 ), (1.2).

For N = 2, the method of this paper does not apply. We leave open the
question whether two dimensions are enough for realization of any jet. As for
N = 1, the dynamics of such equations is known to be very simple (see [Ze,
Ma] and other references in [Po 3]).

The paper is organized as follows. In Section 2, we introduce a basic
notation and state the main theorems. Section 3 is one part of the proof of the
jet-realization result. Using a procedure from [Po 3], we reduce the proof to the
problem of finding a function a(x) such that the operator u H Au + a(x)u has
some specific properties. Section 4 is mostly devoted to the proof of existence
of such a function a(x).

Acknowledgement
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2. - Main results

In the sequel, we focus our attention to the following equation of type
(I.I)

where D is the unit ball in I~ 3, a(x) C C(D) and g(x, y) E i.e., g is

continuous on D x Il~ 3 together with all its partial derivatives with respect to y
(usually g(x, y) will be a polynomial in y). For definiteness, we chose Dirichlet
boundary conditions (1.2), but all the subsequent results can be proved for
Neumann boundary conditions with slight modifications in the proofs.

In this section we formulate our main results. First we put (2.1), (1.2)
into the context of abstract analytic semigroups.

Pick a number p &#x3E; 3 and write the boundary value problem (2.1), (1.2)
as the abstract equation on X := Lp(D):

Here A is the sectorial operator defined by the differential operator A + a(x)
and Dirichlet boundary condition, and f is the Nemitskii operator defined by
g. More specifically, one defines A with the domain

by

This is a sectorial operator on X [He]. For 1/2  a  1, the fractional

power space Xa, corresponding to A, is the Sobolev-Slobodeckii space
n Wo e(D) (see [Am, He]). Since p &#x3E; 3, we can find a  1 such

that the following embedding takes place

(see [Tr]). Then, defining f : X" - X by

we clearly have f E C°°(Xa, X). Thus, by [He], (2.2) defines a local semiflow
on X".

As in [Po 3], we will use the phrase "realize a jet in (2.1), (1.2)", which
we now explain.
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Assume that A admits a decomposition X = Xi 0 X2 into close invariant
subspaces, with Xl c D(A) having finite dimension. Let P : X - Xl be the
continuous projection along X2. Note that APu = PAu for any u e D(A).

Now fix an integer k &#x3E; 0, and consider the finite-dimensional linear space
of the k-jets on Xl for which 0 is the source and target. Equivalently,

any element can be understood as the Taylor expansion at 0 of a Ck_
mapping h : Xl such that h(O) = 0. This Taylor expansion (taken up to
the order 1~) is called the k-jet of h.

We say that a jet j k E It(XI) can be realized in (2.1), (1.2), if there exists
a g E such that 9(x, 0) - 0 and the corresponding abstract equation (2.2)
has the following two properties:

(i) There exists a locally invariant manifold (i.e., a manifold consisting of
portions of trajectories of (2.2)) of the form

where U is a neighbourhood of 0 in X 1 and x : is a Ck mapping
with x(o) = 0.

(ii) The k-jet of the Ck function u 1 ~--~ ) -Au 1 +Pf(UI Xi - X 1
is equal to the given jet j.

Note that the function in (ii) is the right-hand side of the projected equation

which represents the flow of (2.2) on the invariant manifold W : any solution of
(2.2) on W is given by where is a solution of (2.8). Thus
to be able to realize any jet from means that we can achieve that (2.1),
(1.2) has a locally invariant manifold of dimension n = dim X 1 and, up to an
error in terms of order &#x3E; k, we can prescribe the vector field on this invariant
manifold.

In order to state the main theorem, one more remark is needed.
If Xl is the kernel of the operator A, then Xl is finite dimensional

and there exists a closed A-invariant subspace X2 complementary to Xl (i.e.,
X = X2). This follows from the well-known fact that all eigenvalues of A
have the same (and finite) algebraic and geometric multiplicities and are isolated
points in the spectrum of A (see e.g. [Ka]).

THEOREM 1. Let k, n be arbitrary positive integers. Then there exists a
function a(.) E C(D) such that the following two properties hold:

(i) The operator A defined by (2.3), (2.4) has an n-dimensional kernel Xl.

(ii) There exists a neighbourhood B of 0 in 10 (Xl ), such that any jet in B
can be realized in (2.1), (1.2).

Let us remark that the fact that only jets sufficiently close to 0 can

be realized is not a big restriction. With the help of time rescaling one can
subsequently obtain any jet.
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We now state another result, which is a linear version of Theorem 1.

THEOREM 2. Let n ne an arbitrary positive integer. Then there exists a
continuous function a(x) and a 6 &#x3E; 0 with the following property: For any
complex ~cn satisfying the relations

/-z2 ~ A I, - - -, /-12t = J.L2l-l (the bar denotes the complex conjugate)

and

there exist functions bi, b2, b3 E C(D) such that the differential operator

subject to Dirichlet boundary condition (cf. (2.3), (2.4)) as

eigenvalues.

From Theorem 1 it immediately follows that, for any integer m, one can
find a(x) and g(x, y) linear in y such that (2.1), (2.2) has a trajectory dense in
an m-torus. Just take n = 2m and in Theorem 2 choose A2j- = iWj, where
the wj are rationally independent real numbers. The corresponding coefficients
a, b I, b2, b3 then define a linear equation (2.1 ), which has the required property.

In the nonlinear case, Theorem 1 enables one to apply bifurcation analysis
involving higher order terms in the center manifold reduction, in order to find an
m-torus which is in addition normally hyperbolic (see [Bi] and [Ch-H, Section
12.12.5]).

The proofs of Theorems 1, 2 are given in the following sections.

3. - A sufficient condition on the eigenfunctions i

Assume that the operator A defined by (2.3), (2.4) has an n-dimensional
kernel

X1 = 0.1.
The aim of this section is to derive a condition on the eigenfunctions 01, On,
which will imply that any small on Xl can be realized in (2.1), (1.2).

Fix a positive integer k. We shall apply a result of [Po 3]. For this, we
first introduce a Hilbert space of functions g(x, y). Let A be the set of all g(x, y)
such that
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where am(~) E H 2(D) = W2,2 (D). Since c C(D), by the Sobolev

embedding theorem, any g E A is a polynomial in y with continuous coefficients,
hence g E co,oo. There is a one-to-one correspondence between g E A and the
vector of coefficients

We can thus make A a Hilbert space by equipping it with the topology of
(H2(D»k through the above identification.

Note that for any g e A and u E one has

where U’19 is the differential expression (3 comes from the spherical
coordinates x = r cos3 sin-1, X2 = r sinv sin-1, X3 = r COS1).

We now apply the following result of [Po 3]. Any jet sufficiently close to
0 in can be realized in (2.1), (1.2), provided the following condition is
satisfied.

(SCP) For any polynomial H : Xi - Xl of degree 1~ satisfying H(0) = 0,
there exists a g E A such that

For the reader’s convenience, we briefly recall how this condition has
been obtained.

If g is sufficiently close to 0 in A, then the corresponding abstract equation
(2.2) has a locally invariant C~ manifold of the form (2.7) near the space Xl
(which is an invariant manifold for g - 0). The vector field, given by (2.2) on
this invariant manifold, is represented by an equation of the form (2.8) (with
Aul = 0, because Xl is the kernel of A). Denoting the of the right-hand
side of this equation by ~P(~), we constitute a C’ mapping g ~--&#x3E; T(g) from a
neighbourhood of 0 in A into satisfying W(0) = 0. The image R(T)
of this mapping consists of k-jets which can be realized in (2.1), (1.2). The
condition (SCP) ensures that the derivative W’(0) is a surjective linear operator
and, as a consequence, that R(T) contains a neighbourhood of 0 in See

[Po 3, Section 2] for details.
In what follows, we find an explicit condition on the eigenfunctions

~i,..., 0,, which will imply (SCP). First, using (3.2), we rewrite (3.3) as follows
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In the real coordinates

on Xl, (3.4) is equivalent to a system of equalities. To write this system down,
we use the following notation. (o 1, - - - , cPn), cP19 = ... , For a

nonnegative integer multiindex {3 = ({3I, ... , (3n), let 10 = /3i + ... and

Now, plugging (3.5) into (3.4) and comparing the coefficients of the resulting
polynomials, we obtain for each m = a system of equalities

where are real numbers (coefficients of the components of the polynomial
H(ul)), and (., .) denotes the standard scalar product on L2(D). Thus (SCP) is
equivalent to the property that, for any m E { 1, ... ,1~ ~ and any numbers 
there exists a function am E H2(D) such that (3.6) holds true. This last property
is satisfied, provided the functions

are linearly independent. To show this, we adapt an argument used in a sim-
ilar context in [F-P]. The functions (3.7) are elements of E C2(D),
by elliptic regularity). If they are linearly independent, then, using the Riesz
representation theorem, for any one finds an am E L2(D) such that (3.6)
holds true (i.e., the functional u H (am, u) takes the prescribed values at the

linearly independent functions (3.7)). The fact that such an am can be chosen
in H2(D) follows from the observation that the assignment am - 
j - 1, ... , n, 1,8B = m, defines a continuous linear mapping from L2(D) into a
finite dimensional space. As we have just seen, this mapping is surjective, thus
so is its restriction to the dense subspace H2(D).

The linear independence of the functions (3.7) is the sought explicit
condition on the eigenfunctions. As we have shown, this condition implies
(SCP) and hence enables us to realize all small k jets in (2.1), (1.2). We state
this result as

LEMMA 3.1. Let a(.) E C(D) be such that the operator A, defined by
(2.3), (2.4), has an n-dimensional kernel Xl = Onj and, for each
m = l, ... , l~, the functions (3.7) are linearly independent.

Then there exists a neighbourhood B in lcf(Xl) such that any jet in B
can be realized in (2.1), (1.2).

Let us remark that independence conditions similar to the one in Lemma
3.1 occur in the jet realization results of [F-P] and [Po 3]. The condition in



90

[F-P] involves eigenfunctions of the Sturm-Liouville operator Uxx + a(x)u. It was
achieved, using a transversality theorem, by taking a generic potential a(x). In
the present situation, the genericity approach seems to be rather delicate, since
we want to keep eigenvalues of higher multiplicity. The method we use here
relies, similarly as in [Po 3], on the explicit knowledge of the eigenfunctions
on the ball. However, unlike in [Po 3], the required property is not satisfied

by the operator A + A, where A is a constant, and an additional perturbation is
needed. This problem will be considered in the next section.

We finish Section 3 with a result concerning linear equations.

LEMMA 3.2. Let a(.) E C(D) be such that the operator A defined by (2.3),
(2.4) has a n-dimensional kernel X = span~ ~ 1, ... , and the functions

are linearly independent. Then there exists a 6 &#x3E; 0 such that a(.) and 6 have
the property from the conclusion of Theorem 2.

Lemma 3.2 is a slightly stronger assertion than a special case (l~ = 1) of
Lemma 3.1. In addition to this special case, on only has to verify that, if g(x, y)
is linear in y, then the function x in (2.7) can be chosen linear. This implies
that the right-hand side of (2.8) is linear and hence prescribing its 1-jet means
prescribing this function itself. The arguments are quite analogous to those in
the proof of Proposition 2.2 in [Po 3]. We omit the details.

4. - Fulfillment of the sufficient condition

This section is devoted to the proof of

LEMMA 4.1. For any positive integers k and n, there exists a function
a(.) E C(D) satisfying the hypotheses of Lemma 3.1 (hence also those of Lemma
3.2).

Lemma 4.1, in conjunction with Lemmas 3.1, 3.2, implies Theorems 1, 2.
From now on we assume that 1~ and n are fixed, arbitrarily chosen, positive

integers. Lemma 4.1 will be proved using the following result.

LEMMA 4.2. Consider the eigenvalue problem

There exist an eigenvalue A of multiplicity 2£ + 1 &#x3E; n and corresponding
1/;2f+l, such that the following properties are satisfied:
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(P 1 ) The functions

are linearly independent (x E D).

are linearly independent.

The proof of this lemma, which forms a major part of this section will
be given later.

PROOF OF LEMMA 4.1. The outline is as follows. Take A and ~l, ... , ~+1
as in Lemma 4.2. We introduce a small perturbation to the eigenvalue problem
(4.1), (4.2), by replacing A by a continuous function a(x) = A +b(x), with b(.) ~ 0.
By continuous dependence of the spectrum, the operator A, defined by -Da(x)
and Dirichlet boundary conditions, has exactly 2£ + 1 eigenvalues (counting
multiplicity) near 0. The corresponding eigenfunctions satisfy thus the

independence condition (P2) remains valid for 4J’s. Using (P 1 ), we then prove
that if b(.) is properly chosen, then the kernel of A is spanned by ~l, ... , ~n,
which gives us the desired conclusion.

Now we give the details. Denote Y . := span{ y1, ... , 1/;2f+l} and let

Q : LZ(D) --~ Y be the orthogonal projection (assuming the usual scalar

product on L2(D)). For b(.) E C(D), let Ab denote the operator on L2(D)
defined by -(A + A + b) and Dirichlet boundary conditions (cf. (2.3), (2.4)).
It is well-known that Ab is a self-adjoint operator. For b = 0, the spaces
Y = ker(Ao) and Y1 = R(Q) are invariant under Ao. By standard perturbation
results [Ka], there exists a neighbourhood 1) of 0 in C(D) and a c1 mapping
b H Sb : 1) ---+ feY, Y 1-) (,~ denotes the space of bounded linear mappings) such
that S’o = 0, and, for each b E v, the space Yb := R(I + Sb) (I is the identity on
Y) is invariant under Ab. This invariant space is spanned by the eigenfunctions
4&#x3E;~ := 1/;i + i = 1, ... , 2.~ + l, which correspond to 2£ + 1 eigenvalues of Ab
near 0, and all the remaining eigenvalues of Ab stay away from 0 as b varies
in 1). Since 1/;i + Sb1/;i depends continuously on b even in the C’ -norm (by [Ka]
and regularity of the eigenfunctions), we can shrink 1~, if necessary, such that
for any b E 1), the property, (P2) remains valid if 1/;’s are replaced by 1/; ’s. We
now prove that, for an appropriately chosen b, the kernel of Ab is spanned by
the functions 1/;i + i = 1,... n. Actually, we prove the stronger claim that
the symmetric matrix of the restriction

with respect to the basis 1/Ji + t = 1, ... , 2.~ + 1, can be prescribed arbitrarily,
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up to a scalar multiple. Indeed, this matrix is equal to the matrix of the operator

with respect to the basis 1/;ù i = 1,..., 2f + 1 (note that = I, because Q
is the orthogonal projection). Clearly, Zo = 0 and b ~ Zb is a C mapping. We
compute the derivative of this mapping at b = 0. For any e E C(D), we have

because QAo = 0. Now, since the derivative of Ab is simply the multiplication
operator v(.) ~ e(.)v(.), we find that the matrix of T e E V), with respect
to the basis 1/;i, is equal to

From this and (PI) we obtain, using the Riesz representation theorem similarly
as in Section 3, that e H Te is a surjective linear operator. Consequently, by
the local surjectivity theorem (see e.g., [Be]), the image of the mapping b H Zb
contains a neighbourhood of Zo = 0, which proves the claim.

To complete the proof, we choose a b E v such that the kernel of 
hence also that of Ab, is spanned by Oi = 1/;i + Sb1/;i, I = 1,..., n. Then a = A + b
is the sought function. D

We now prepare the proof of Lemma 4.2 by recalling some properties of
the eigenfunctions of the Laplacian. It is a standard knowledge (see [Co-H])
that the eigenvalues of the problem (4.1), (4.2) form a countable set of real
numbers

with the unique accumulation point +oo. Each Aij has the odd multiplicity 2.~+ l,
the corresponding eigenspace being spanned by the functions (in the spherical
coordinates x 1 - r cosv siny, X2 = r sino sini, X3 = r cosi, 3 E (o, 2r),
1 E (0,1r»

where Jj(r) is a smooth function of r &#x3E; 0 with isolated zeros (Jj(r) is a solution
of a second order linear equation), and the wq form a basis for the (2l + 1)-
dimensional space of the spherical harmonics of the £-th order. We shall use
the following explicit expression of the functions wq (see [Sm])
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where

Note that is the Legendre polynomial of degree .~.

PROOF OF LEMMA 4.2. The proof is split into two parts.
Part (A). We prove that the property (PI) is satisfied for any eigenvalue

A = Afj.
Part (B). We prove that if £ is sufficiently large, then one can write the

eigenfunctions corresponding to Ay is such an order that (P2) holds.

Part (A): By (4.3), it is sufficient to prove linear independence of the
functions

i.e., the functions (we omit the subscript £ in 

3 E (0, 27r).
Since elementary operations on a system of functions do not affect their

linear independence, instead of (4.7) we can consider the following functions

Suppose that these functions are linearly dependent, i.e., some their
nontrivial linear combination is identically equal to zero. In order to derive
a contradiction, we first look at this linear combination as a linear combination
of the functions

with coefficients depending on ~. Since these trigonometric functions are linearly
independent, we must have all the ~-dependent coefficients identically equal,
to zero. Now, each of these ~-dependent coefficients is a linear combination

(over R) of certain products of the functions If we prove that these

products are linearly independent, then the latter linear combinations are trivial,
therefore the original linear combination of the functions (4.8) must have been
trivial, a contradiction. So (PI) will be established, provided we prove that the
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products which occur in arbitrary of the g-dependent coefficients are linearly
independent.

Fix any v E {O, 1, ... , 2~}. As one easily finds, the ~-dependent coefficient
of the function as well as of sin(v3), is a linear combination of the

following products

We prove that these products are linearly independent. (Note that the set of
functions (4.10) is void if v &#x3E; .~). First we use (4.6) to express these functions
as

Here denotes the q-th derivative and [.] is the integer part. Of course, linear
independence of this functions is unaffected if we divide them by (1 + ç2)vj2.
In the forthcoming calculations, it is convenient to formulate the property of
linear independence of (4.11), (4.12) in the following equivalent form. Denote

It is easy to see that the functions (4.11), (4.12) are linearly independent if and
only if the following property holds.

(LI)v For any real numbers

such that

and

one has
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(Note that (4.14)v requires that the coefficients of the terms that occur in (4.13)v
twice are equal).

We prove (LI)v by induction with respect to v. It is obvious that (LI)2t
holds (Po )(ç) is a nonzero constant). Suppose that holds for some
0  v  2.~. We prove that (LI)v holds. Let numbers cq, dm satisfy (4.13)v,
(4.14)v. We have to show that this implies (4.15). We shall proceed as follows.
Differentiating (4.13)v, we obtain an identity (4.13)v+1 with coefficients satisfying
(4.14)v+l. Then we use the induction hypothesis to prove that all the cq, dm
vanish.

First recall the following equality for the Legendre polynomial Po(g) (see
e.g., [Sm, Section IV.131]).

Using this, differentiation of (4.13)v gives (omitting the argument ~)

i.e.,

where

(In (4.16), we have used the fact that 0).
We distinguish two cases



96

In the case a), we have T,,, = Tv = 0 and T,,, = Tv + 1 = v + l. Thus, (4.16) is

an identity (4.13)v+l with the coefficients cq, dm. By (4.17), (4.19) and (4.14)v,
these coefficients satisfy (4.14)v+1. Hence, by the induction hypothesis, all the

eq and im vanish, i.e., .

If v is odd, then (4.21) in conjunction with (4.14)v implies

By this and (4.20), (4.22), we then also have

So all the desired equalities hold.
Now let v be even. Suppose that (4.15) fails. By (4.20)-(4.22), this means

that di fl 0. In order to derive a contradiction, we employ two other properties
of the polynomial Po(~).

(Al). If t = deg Po is odd (respectively even) then Po(g) is an odd

respectively even) function.

(A2). If £ is odd (respectively even) then the sequence 

Po’(o), ... , Po~~(0) (respectively PO(O), Po (0), ... , Po~~(o)) is oscillating (i.e., each
two adjacent terms have different nonzero signs).

Both these properties are easily seen from the formula (4.6) for Po = Poi.
By (Al) and (4.21), plugging ~ = 0 in (4.13)v gives

and

In either case, this leads to a contradiction. Indeed, by (4.20), (4.22),
have the same signs and, by (A2), the following holds:

(a) If ~ is even, then the values 0 of 
have the same sign;
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(b) If l is odd, then the values at ç = 0 of 

Pril) have the same sign, so do the values of 

but the signs of these two groups of values are different.
This clearly contradicts the latter equalities. We have thus completed the

proof of (4.15 ) for v  .~. 
’

Now consider the case v &#x3E; .~. We have Tv = .~ and Tv + 1 =

= v + 1 - .~. In (4.16), the second sum is missing (as it is in (4.13)v). Moreover,
the first and last term of the first sum are identical to 0 (because they involve
the (~+ l)-th derivative "of Po). So again, (4.16) is the identity (4.13)v with the
coefficients

which satisfy (4.14)v+1 (see (4.17), (4.14)v). By the induction hypothesis, we
must have

i.e.,

If 2.~ - v = .~ - (v - .~) is odd, then this, in conjunction with (4.14)v, immediately
implies that all the cq vanish. If 2.~ - v is even, then arguments involving
(A 1 ), (A2), similar to those in the case v  .~, give the same conclusion. This
completes the induction argument and thereby the part (A) of the proof of
Lemma 4.2.

For the part (B) we need the following lemma. Recall that n and k are
fixed positive integers.

LEMMA 4.3. There exist positive integers Sl,..., Sn such that, for any
integers c 1, ... , tn satisfying

one has

The proof is easy and is left to the reader (take sj far from one another).
Let be as in Lemma 4.3. Choose £ with

Then the eigenspace corresponding to the eigenvalue A = of (4.1), (4.2)
contains the functions
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where ~ = cos 1 E (-1,1), 1) E (o, 2~r) (see (4.3), (4.5)). We prove that these
functions satisfy the property (P2). To this end, fix an arbitrary K EE f 1, ... , K}.
We have to prove that, if

for some e R, then

To simplify the notation, let

and, as usual, ~ := (~l , ... , Further denote

Pick an ro 6 (o,1 ) such that Ji(ro) =/0. Using the above notation and fixing
r = ro in (4.23), we obtain

where the are nonzero multiples of the êJj3.
The first step in proving that such a linear dependence relation is possible

only if all the coefficients vanish is somewhat similar to an argument in

part (A). We view (4.25) as a linear combination of certain functions of ~
with v-dependent coefficients. We prove that these functions of e are linearly
independent, thus all the v-dependent coefficients must vanish identically. Then
we show this to imply that all the cjg vanish.

In order to bring together the terms in (4.25) that involve the same

functions of ~, we introduce the following equivalence relation -- on the set of
multiindices ( j, (3) E { 1, ... , ?~} x ~,~ : = r. 1:

Note that, by the choice of s 1, ... , sn (see Lemma 4.3), (j’,/3) ~ (m, ø) if and

only if 3+cj = ~ +cm, where Em - (o, ... , 0, l, 0, ... , 0) with 1 on the m-th

position. This implies that no equivalence class v of the relation -- contains
two distinct elements of the form (j, /3), (j, ~). Let r denote the number of the
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equivalence classes. Index the classes by p = 1,..., r. To each equivalence class
vp, we associate the nonnegative integer multiindex

where is an element of Tp. By the definition of ~, this multiindex is well
defined and the assignment p - cP is one to one. Note that IcPI = K; + 1.

Using the equivalence classes, we can rewrite (4.25) as follows

We now claim that the functions

are linearly independent. Indeed, by (4.24), (4.6), we have

where scP = and Qp(0 is a finite product of functions from
the I ~o(0~" ’~ ~(0} (each of these functions may occur in Qp(0
repeatedly). Since the Legendre polynomial has all its zeros in (-1,1)
[Sm], so does any of the derivatives P~o(~), P~o(~), ... , P~o~(~). Therefore

Next, by injectivity of p -&#x3E; cP and by the choice of s 1, ... , sn, we have

This, in conjuction with (4.30), (4.29), clearly implies linear independence of
functions (4.28).

This linear independence and (4.27) now imply that, for each p = 1, ... , r,
we have

Dividing (4.31) by ~(0, by definition of the equivalence classes and the
multiindex cP, we obtain
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But the functions

are linearly independent (the sj are mutually distinct). Since Vp does not contain
any two distinct elements (j, (3), ( j, ,~), (4.32) implies

Since the last equalities hold for all the equivalence classes, it follows that all
the cjg vanish. This completes the part (B) of the proof of Lemma 4.4. D

We finish this section with remarks concerning higher dimensional
domains. Without going into details, we explain how one can treat the problem
(2.1), (1.2) with D replaced by a domain Q eRN, N &#x3E; 4. Similarly as in
the three-dimensional case above, in order to prove statements like Theorems
1, 2, it suffices to find a domain Q and a potential a(.) with the properties
as in Lemma 3.1 (where 3 is from the spherical coordinates in the first three

components of the space variable x E Q, cf. Section 3). Such a function a(.) can
be found in the same way as we did it in the three-dimensional case, provided
we find a domain Q, such that for the problem (4.1), (4.2), with D replaced by
Q, the conclusion of Lemma 4.2 holds. The latter can be easily achieved on a
cylindrical domain Q = D x B, where B is a convex domain in and D is
the 3-ball. In this case, we can separate variables to find that the eigenvalues of
the Laplacian on Q, with Dirichlet boundary condition, are of the form A + I,
where A is an eigenvalue of (4.1), (4.2) and A is an eigenvalue of

By appropriately rescaling B (replacing B by aB), we can achieve that if At l
is the first (hence simple) eigenvalue of (4.31) and A is a chosen eigenvalue
of (4.1), (4.2) with multiplicity 2~+1, then I has the same multiplicity
2£ + 1. Choosing A as in Lemma 4.2, the eigenfunctions corresponding to 1

have the form (x E D, Y E B), where z is the eigenfunction of (4.31 )
corresponding to Ai, hence the independence conditions analogous to (PI), (P2)
are satisfied.

Once we have found a domain with the required properties, we can
go on to find such a domain with smooth boundary. For this a (nonsmooth)
domain perturbation theory is needed. As is well-known, the eigenvalues and
the eigenfunctions depend continuously on the domain [Co-H] (see [Da] and
references therein for more recent results on domain perturbations). Thus

replacing Q by a "nearby" domain C2 we do not destroy the independence
properties of the eigenfunctions. One has to ensure, however, that the eigenvalue

I perturbs to an eigenvalue with the same multiplicity. For this, the 0(3)-
symmetry can be employed. Defining the action of 0(3) over function spaces
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by (ru)(x,x) = E R , Y E R~’~ r E 0(3), and considering the
domains satisfying

for each r E 0(3), we make this an equivariant problem. Since the eigenspace
corresponding to the eigenvalue 1 of the unperturbed problem is actually the
space of spherical harmonics of certain order multiplied by a single symmetric
function, the above action is irreducible on this eigenspace (see e.g., [Va, G-S ]).
This should ensure that the perturbed eigenvalue retains the multiplicity of the
unperturbed eigenvalue. (Unfortunately, we do not have a reference for such an
equivariant domain perturbation problem).
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