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On Regularity of Solutions of Nonlinear
Parabolic Systems

JIND0159ICH NE010DAS - VLADIMÍR 0160VERÁK

1. - Introduction

It is well-known that the full regularity of the elliptic systems

in two dimensions can (under standard assumptions) be proved by using W 1 ,2+d _
estimates for linear elliptic systems with L°° coefficients. (See, for example, M.
Giaquinta [2]). The purpose of this paper is to show that a similar method can
be used when dealing with nonlinear parabolic systems

The idea is to show that 12-’ is bounded in L°°(-T, 0; L’+’(Q)) and then apply the
theory of elliptic systems. The required estimate is obtained by using estimates
for solutions of linear parabolic systems with L°°-coefficients. (See Lemma 1).
In the two-dimensional case we get full regularity.

2. - Preliminaries

Let n &#x3E; 2, N &#x3E; 1. We shall be dealing with open sets Q = Q x (-T, 0) c
where Q is a bounded domain in R" and T &#x3E; 0. A typical point of 

is denoted by z = (x, t), x E R.

For d &#x3E; 0 we let
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and

For x and p &#x3E; 0 we define

If a, b E R, we denote by a 1B b the minimum of the two numbers.
o

The Sobolev spaces W; are defined in the standard way.
The space is denoted by W2’°(Q). The norm [.]2,Q on

W2’°(Q) is defined by

The spaces p &#x3E; 1 will be denoted by and the

corresponding norm is denoted by 11 - IIp,oo,Q.
The usual LP-norm is denoted by )) . 
Let us consider the nonlinear parabolic system

where U = (Ul, - - -, UN), Du = (D,uz)liN,Ian = ( 09U -)IiN,Io,n IS thewhere U = IS the

gradient matrix of u and the summation over repeated indexes is understood.
We shall suppose that the functions Aa have continuous derivatives

satisfying

and

for every 
(Of course, for higher regularity results we have to assume higher

smoothness of Aa).
By a weak solution of ( 1 ) we mean a function u E W2’°(Q) satisfying

o

for every Q E W2 (Q).



3

We shall also be dealing with linear strongly parabolic systems

where ais = aft(z) are L°°-functions in Q satisfying for almost every z E S~
the conditions

and

for every ç E By a weak solution of (4) we mean a function u E 
satisfying

o

for every Q E W2 (Q).
We shall use the following well-known results.

(i) If u is a weak solution of (1) or (4), then u is continuous in time with

respect to the L2-norm. More precisely, if Q’ cc Q, then the map t - u(-, t)
from (-T, 0) into is continuous. (See, for example, O.A. Ladyzenskaja,
V.A. Solonnikov, N.N. Ural’ceva [4], Chap. 3, Lemma 4.3).
(ii) We have the imbedding

where

(See, for example, O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva [4],
Chap. 2).

We denote by ci various constants. The value of these constants can

depend on N. The dependence on additional parameters will
be indicated.
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3. - LP-estimates

The first statement of the following Lemma is well known (see, for

example, O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva [4], Chap. 3).
The second statement will be used for the 

mentioned in the introduction.

LEMMA 1. Let u be a weak solution of the linear system (4). Then, for
any 6 &#x3E; 0,

(i) 
_

and

(ii) For every p E [2, (2 + NM ) A qo) the function u belongs to and

PROOF. and let k &#x3E; 0 be such that meas {z E Q, lu(z)1 = k } = 0.
Define gk : [0, oo) --~ R by

Clearly g[(t) = 1B k)’~-1 and

Define also the function R by

We have

In the second formula we assume and
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Let wE be a family of symmetric mollifying functions satisfying

For f E L’(Q) let us denote by the function defined a.e. in Q by

o

(We extend f by zero outside Q). Following E.
Giusti, M. Giaquinta [3] we set cp = in (*) and we see that

Let 0 E D(Q) 1 and 0 = 1 on Q8 and let p E D(-T, 0), p &#x3E; 0.
For f sufficiently small we can use (5) with

to get

Integrating by parts on the left-hand side, letting E -~ 0 and then using the chain
rule for the derivative (which is legal) we see that

Since I  1 we see that if 0  2(7 - 1)  NM then the matrix

a~ = aft(8il + 2(~y - I)dj(u)) satisfies the condition (2’) with v replaced by
vi = v - 2(~y - 1)NM.
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We can estimate the right-hand side of (6) by

Let t 1 E (- T + 6, 0). As we have remarked in Section 2, under our

assumptions the function t --~ u(., t) is continuous mapping of (-T,0) into

L2(Q8). Hence we can use (6) with p defined by

We get

Letting 1 = 1 we get (i).
We can use (i) and the imbedding

to infer · Using this and letting k - oo in (7) we get
(ii) with p = 2~y.
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LEMMA 2. Let u be a weak solution of the nonlinear system (I). Then
u E wiQ5&#x3E;, the derivatives Diu, i = l, ... , n and Dn+1U = Ou belong to theat
space n and for each i = l, ... , n, n + 1

PROOF. As above, we denote by Du the vector (Di~,..., Dn u) C let
us fix an index r, and let er e Rn x R be the r-th vector of the
canonical basis. Let 6’ &#x3E; 0. For 0  h  6’ let

Define the functions E for a.e. z E Qs~ by

It is not difficult to see that Uh is the weak solution of the linear system

in Q8’. The functions a"3 clearly satisfy the conditions (2’) and (3’). Hence,
by Lemma 1

Suppose first 1  r  n. In this case the difference is taken in the direction
of the space variables. Since u E 10 we have

Using Nirenberg’s Lemma we see from (8) that Du E and

for every 1  r  n. Now let r = n + 1. Following S. Campanato [ 1 ] we notice
that we can use equation (1) and the L2-estimate of obtained above to

infer that 3 E L2 (Q26’) and(9t
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Now we can use (8) with Q replaced by and using (11) we get by the
same argument as above

The proof is finished.

THEOREM 1. Let u be a weak solution of the system (1) and let p be the
exponent from Lemma 1. The for each 6 &#x3E; 0

and

for some q = q(v, M, p, b) with 2  q  p. Moreover

PROOF. Let 6’ &#x3E; 0. We notice that u can be considered as a weak solution
of the linear system (4) with

(See, for example S. Campanato [1]). Using this and Lemma 1 we get estimates
for the and M2,~,. Now we can use Lemma 2 to get estimates
of the Lemma 2 also implies E L2 (Q2~’ ),
(0  a, (3  n). We see that equation (1) is satisfied pointwise almost everywhere
in Q26, and that for almost every t E (- T + 26’, 0) the function u(-, t) belongs
to W2 (SZ2s~ ) and is the weak solution of the elliptic system

in Q28’. We can now use well-known LP-estimates for elliptic systems (see
Lemma 3 below). The proof is finished.

LEMMA 3. Let p &#x3E; 2 and let g E LP(Q). Let u E W2 (S2) be a weak solution
of the elliptic system
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Then there exists q = q(v, M, p) &#x3E; 2 such that u E Moreover, for every
5&#x3E;0 

~’

PROOF. Using the standard difference quotient technique, it is not difficult
to verify that the following computations are legal.

Let 1  s  n. We let v = Dsu and take the s-th derivative of (12). We
get

where (Du(x)).ty t"{3
This implies

for every ~ E (Cacciopoli’s inequality). The required estimate can now
be obtained by using the technique of reverse Holder inequalities. (See, for

example, M. Giaquinta [2], Chap. 5, Theorem 2.2). The proof is finished.

COROLLARY. Let the assumptions of Theorem 1 be satisfied.
(i) If n  4, then u is Hölder continuous in Q.

(ii) If n  2, then Du is Hölder continuous in Q.

(iii) If n  2 and the functions Ai are smooth, then the solution u is smooth.

REMARK. If n &#x3E; 3, then Du may not be continuous. Examples are provided
by nonregular solutions of elliptic systems. These can be found in J. Necas [5].

PROOF OF THE COROLLARY. Let 6 &#x3E; 0.

(i) Since Wq (S2s~2) ~ with a = (2 - #) A 1, we have u E

Loo( -T + 6, 0; cO,a(Q8».
Since we have also au E L2(Qb), u is Holder continuous by Lemma 4

below. 
at

(ii) In this case we have (3 = 1 - ~.
Hence Du e L°°(-T + 6, 0; C°~a(S2s)). Using the Hölder continuity of u it

is easy to see that in fact Du(.,t) E for every t E (-T + 6, 0), the

being bounded independently of t.
Now we can use Lemma 3.1, Chap. 2 from O.A. Ladyzenskaja, V.A.

Solonnikov, N.N. Ural’ceva [4] to infer that Du is Holder continuous in Q8.

(iii) The higher regularity follows in the standard way from the theory of linear
equations.
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LEMMA 4. Let a &#x3E; 0, q &#x3E; 1, 6 &#x3E; 0 and suppose

Denote Kl - Then there exists K =K1 = K2 = 

at 
Then there exists K =

K(K1,K2,d) such that

for every 2; c Q6 and every tl, t2 C (-T, 0), where 3 - , q’ = and
a + n/q’ q - I

suitable representative of u.

PROOF. Suppose first that u is continuous. Let x E Q8 and let 0  p  8.

Define

It is easy to see that wp is bounded in Lq(-T, 0) by 
Let (-T, 0). We can write

The proof is easily finished by using this inequality with 1 - t2 ~ a .
REMARK. It is not difficult to see that if the boundary of Q is sufficiently

regular (say, lipshitzian), then K can be chosen independent of 6.
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