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A Bochner-Martinelli Formula for Vector Fields which

Satisfy the Generalized Cauchy-Riemann Equations

R.G.M. BRUMMELHUIS*

We prove a Bochner-Martinelli type formula for vector fields u on 
which satisfy the system of generalized Cauchy-Riemann equations proposed by
M. Riesz: curl u = 0, div u = 0.

As an application it is shown that, for smoothly bounded open 11 in R~
such that all components of are simply connected, the tangential part of
the boundary values of such "Cauchy-Riemann vector fields" is characterized

by the condition d (i * u) = 0. Here u is considered as a 1-form --&#x3E; 

denotes the inclusion. This result extends work of Koranyi and Vagi for the
unit ball in 

0. - Introduction

Let 11 be an open subset of A vector field u = ( u 1, ..., un ) on fl,
u E C1 (11; II~ n ), is said to satisfy the generalized Cauchy-Riemann equations
(abbreviated: GCRE) if

(cf. [5], p. 234). We will also say, in this case, that u is a Cauchy-Riemann
vector field on 11.

The system (i)+(ii) is called the M. Riesz system in [5]. Note that if
n = 2, satisfies (i)+(ii) iff u 1 - iu2 is holomorphic.

* Author supported by the Netherlands Organization for the Advancement of Pure Research
(ZWO).
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If we introduce the one-form on 0, (i) is the
same as

Depending on which of the two points of view seems expedient, we will

alternately consider vector field or a one-form.
Note that a u E satisfies the GCRE iff, locally, it is the gradient

of a harmonic function. In particular, the uk’s are harmonic then.
In this paper we prove a Bochner-Martinelli type formula for Cauchy-

Riemann vector fields, see theorem 1.1 below.
As an application, we characterize (theorem 4.5) the tangential parts of the

boundary values of a Cauchy-Riemann vector field u on a smoothly bounded
domain 11 in R" by the condition d(i*u) = 0, where i : 8Q - is the

inclusion, and i * u is the pullback of u considered as a one-form. In the special
case of a ball in this result is due to Koranyi and Vagi [4], who used the
representation theory of SO(n).

1. - A Bochner-Martinelli type formula for Cauchy-Riemann vector fields.

Let be a fundamental solution with pole in x of the Laplacian

For instance, we can take

the standard fundamental solution, where wn is the surface area of the unit

sphere in R’~. In this section we will derive the following Bochner-Martinelli
type formula.

THEOREM 1.1. Let n C open, bounded, with an. Let
u = (ti~...tt~) E satisfy the generalized Cauchy-Riemann equations.
Then for x E n, 1  k  n,
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(The means, as usual, that the term dy3 is omitted.)
For a given vector field u on u = (ui , ... un ) E say, we let

T(u) denote the vector field (or one-form) whose component
is defined by the right-hand side of (1.2). For the sake of concreteness, we will
assume that is given by (1.1), but much of the following remains true
with other fundamental solutions.

If we substitute formula (1.1) for Ez (y) in (1.2), we obtain

REMARK 1.2. In case n = 2, (1.3) is the Cauchy integral formula (in real
variable notation).

Note that, unlike the Poisson formula for uk and like the Bochner-Martinelli
formula in several complex variables (cf. [1]), (1.3) is universal: the kernel is
the same for all Q.

Also, unlike the representation of uk as a sum of two surface potentials
(cf. (1.5) below), (1.3) does not involve derivatives of the u; ’s.

The derivation of (1.2) starts with one of Green’s formulas which we now
recall in differential form notation. Let w = dx1 A... n dxn be the volume form
on If V = (Vl, ..., V n) is a Cl-vector field, let

Then c

Let u, v C Let V denote the gradient operator:
Then

PROOF OF THEOREM 1.1. Let u E satisfy the GCRE in n and let
x From (1.4), applied to u and v = Ex, and Auk = 0 we obtain
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Now it turns out that VUklw is the d of an (n - 2 ) -form.
LEMMA 1.3. Suppose that u = ( u 1, ..., un ) satisfies the GCRE. Let

PROOF.

We continue with the proof of theorem 1.1. By the previous lemma and Stokes’
theorem, formula (1.5) becomes

A straightforward computation now shows that

This proves theorem 1.1.
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We now derive a Pompeiu-type formula for arbitrary C 1-vector fields on
n, by applying Stokes’ theorem to the (n - 1 ) -form on the right-hand side of
(1.2).

THEOREM 1.4. Let 11 C Rn be open, bounded, with Let
Then for

PROOF. Let x c 0, and let B(x,e) denote the closed ball around x with
radius e. Apply Stokes’ theorem on sufficiently small, to the

(n - l)-form + = as in lemma 1.3 (cf. formula
(1.7)).
Now

since

Hence,

One easily shows that the left-hand side of (1.9) converges to uk (z) if
e - 0. For instance, one can expand the ui’s to first order in a Taylor series
around x, and then use theorem 1.1 with n = and uj identically equal
to u~ (x~, 1  j  n.
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To finish the proof we must show that

This is again a straightforward computation, left to the reader.

2. - The case n = 3

In the special case n = 3 it is possible to re-interpret formula (1.8) in
terms of the operations ·, x (inner and exterior product) and curl( ) = V x ( )
from vector calculus. This may be of interest in applications.

Let n C = ( u 1, u2 , u3 ) be as in theorem 1.4. Let n ( y) denote the
outward unit normal to an at y E and let 0’ denote the volume-form on
an induced by w (i.e. 0’ is the surface measure).

Formula (1.8) can be shown to be equivalent to

One can prove (2.1 ) by checking that the integrands of (2.1 ) agree pointwise
on respectively, with those of (1.8). For the integrand of the volume
integral in (2.1 ) this is straightforward.

For the boundary term it is probably easiest to introduce suitable
coordinates depending on the point of if yo E choose Euclidean

coordinates x 1, x2 , x3 ) of R 3 such that yo - 0, n ( yo ) = 0, 0, -1 ) . Then

or(yo) = and considered as a one-form on is 0 in

yo (locally around yo, an is given by an equation Y3 = so that

It is now again straightforward to check that the integrands of the boundary
integrals of (1.8) and (2.1) agree in yo.
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3. - Interpretation of (1.2) in terms of differential forms.

Let n ç Rn be bounded, with C 1-boundary Let u E We

would like to rewrite the formula for T(u) given by (1.3) in the language of
differential forms. This is possible, but in general the outward unit normal to all
will enter the resulting expression explicity, making the kernel non-universal.

Suppose, from now on, that 0 x  E 

1 on = 0} (so that Vp is the outward unit normal to 
We can decompose a u E in its tangential and normal part at

each 

with 0(y) E R, and v(y) I Vp(y); v and 0 are continuous.
If we extend u in a C 1 way to a neightbourhood of 8Q, and if we let

i : be the inclusion, then = v (u, v considered as one-forms), and
v is a one-form on the C’ 1-manifold an.

Define the ( n - 2 ) -forms for Y 1= x by

and define the double form on I

8(y, x) is an (n - 2)-form in y and a one-form in x.

THEOREM 3.1. All notation as above. Then, as a one-form in x on

can be written as

PROOF. T(u) = T(v) + First we investigate T(v). The condition
in (3.1) can be expressed as

v = (vl,..., v,,). (This can easily be checked pointwise on 8Q by introducing
suitable linear coordinates of R n at each point of an; cf. the end of section
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2.) Hence,

Substitute this in the defining expression for T(v)k(x), which then becomes,

We now turn to T(~Vp). Since dp = 0 on 811,

Take the wedge product with , Then

and hence,

4. - Characterization of the tangential parts of boundary values of Cauchy-
Riemann vector fields.

Let n = { x E R" :  0} be bounded, with p e C2 (I~ n ) , ~ = 1 on

and let i : denote the inclusion map. Suppose that u E 
satisfies the generalized Cauchy-Riemann equations on n. Then obviously

= 0.
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We will say that u E C1 R n) satisfies the induced Cauchy-Riemann
equations if dv = 0, with u = v + as in (3.1).

THEOREM 4.1. If u E satisfies the induced Cauchy-Riemann
equations, then T(u) satisfies the generalized Cauchy-Riemann equations on
1ft nBan.

PROOF. To begin with, for any vector field u on T(u) satisfies
div T(u) = 0.

Write w = T (u) and evaluate aaWk by differentiating under the integralxk

sign; use . Then a ~,

The coefficient of A ... [k] .... A in the resulting integral formula for
- div w is equal to

since = 0 on 

To prove that dT(u) = 0 we use theorem 3.1. We will need the following
result.

LEMMA 4.2. There exists a double form A( y, x) on R n x 1R n B { ( y, y) : y E
which is an (n - 3)-form in y and a 2-form in x, such that

PROOF. By (3.2),
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Combining the terms for a fixed pair of indices l and k, with l  k, say, the

coefficient of dxi n dxk becomes, neglecting the sign (-1) n-1 ,

Since AEx = 0 on the last term of (4.1) becomes

We claim that (4.1) is equal to where

This is left to the reader to verify. Now put ~4(~,~) = ~ A dzk .
~ 

’ 

We now finish the proof of 4.1. Write u = v + 0 V p as in (3.1). Then by
(3.3) and Stokes’ theorem, if x o a 11,

since u satisfies the induced Cauchy-Riemann equations.
The following proposition corresponds to a special case of the Plemelj-

Sokhotskii formulas from one-variable complex analysis.

PROPOSITION 4.3. Let n C be bounded with c1-boundary an. Put
fl+ = fl, fl- Let u E and define u+, u- on 0+,0-,
respectively, by

Then ~
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For the proof one can imitate the proof of lemma 1.4 in Aizenberg and
Yuzhakov [ 1 ] .

Formula (4.2) also shows some resemblance to a formula from potential
theory (which can be attributed to Green, cf. Burkhardt and Meyer [2], pp.
470, 471), which asserts that the jump across 8Q of the normal derivative of
the single layer potential of a 0 E C(8Q) is equal to 0. (Recall that Cauchy-
Riemann vector fields are, essentially, gradients of harmonic functions.) There
are differences, however: the normal derivative is, for (x, y ) E 
less singular than the kernel of T(u).

REMARK 4.4. If 8Q is of class E N,0  a  1) and if u E 
then u± E Ck (11::1:). This follows from inspection of the proof of proposition
4.3, using theorem 2 in chapter II, §20 of Gfnter [3].

We now arrive at the characterization promised in the title of this section.

THEOREM 4.5. Let Q C R n , n &#x3E; 3, be bounded, open (not necessarily
connected) such that each component is simply connected. Suppose that

class some 1~ &#x3E; 1,0  o.:S; 1 and that v E 
is a tangential vector field on an which satisfies the induced Cauchy-Riemann
equations dv = 0. Then v is the tangential part of the restriction to of a

Cauchy-Riemann vector field on fi, {3  a arbitrary.

In the special case where 0 is a ball this result is due to Koranyi and
Vagi [4].

PROOF. Let v E dv = 0. It is sufficient to
show that there exists a ~ such that for u : := on

= 0 on 11- = For then u+ satisfies the generalized Cauchy-
Riemann equations on 11, by theorem 4.1 and u+ = v+§Vp on a11 by proposition
4.3. That u+ E follows from theorem 3.1, combined with remark 4.4
applied to v + and [3], theorem 4 of § 19, chapter II applied to 

Consider v- = T ( v) 111-. Since each component of 11- is simply
connected there exists a harmonic function V on 11- such that v - - VV

on n’. We can choose V such that ] = x ~ 1 - oo, since

= I x 2013~ oo . In particular, V x) is harmonic at oo .

It would now be sufficient to show that on each component V
differs at most a constant from a single layer potential

For then by formula (3.3), T(v + 0 V p) = V(V - P(~)) = 0 on S~-.
Let 8V/8n denote the outward normal derivative of V on = 8Q.

Since v E certainly avlan E for 0  {3  a; cf. remark
4.4.
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The solution to the exterior Neumann problem with boundary value of the
normal derivative equal 8V/8n can be written as a single layer potential P(~)
for some 0 E p  0. arbitrary, cf. Günter [3], in particular the lemma
in § 18 of chapter III. By uniqueness of the solution to the exterior Neumann
problem we are done.
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