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Varieties whose Hyperplane Section are PkC Bundles

MARIA LUCIA FANIA - ANDREW JOHN SOMMESE

In this article we study the following problem.

PROBLEM. Let X be a normal projective variety. Let L be an ample line
bundle on X that is spanned at all points of X by global sections. Assume that
some normal A E I is a ? k bundle f : A - Y over a projective variety Y.
Describe X.

The second author studied this earlier in [Sol] where he showed (as a
consequence of an extension theorem of his) that if A is a smooth ample divisor
on a smooth projective X 2 then f extends holomorphically to a P k+1
bundle f : X - Y with L restricted to a general fibre isomorphic to ( 1~ .
Some technical improvements were made in this result by Fujita [Ful, Fu2] and
Silva [Si]. We include a quite general extension theorem subsuming all these
results in a short appendix. This paper is concerned with the much more subtle
case when the fibre of f is ~’ 1.

The key to analyze X is to show that the map f : A --~ Y extends to a
holomorphic map f : X --+ Y. This is not always true - examples with Y = lP "
for some n &#x3E; 1 are easy to construct. We rule this sort of example out by
assuming that Y has a nontrivial top degree holomorphic form.

THEOREM. Let X, A, Y, and f be as in the above problem with k = 1. If
&#x3E; 0 and A is smooth then f extends to a meromorphic map 7 : X ---4 Y

holomorphic in a neighborhood of A. If X is also a local complete intersection
then f is a holomorphic p 2 bundle.

If f is holomorphic, then it is an easy consequence of an earlier result

of the second author [Sol] that dim Y  2 and in the case that dim Y == 2,
7 : X - Y is a holomorphic ? 2 bundle with L restricted to a fibre of 1
isomorphic to On» 2 ( 1). The classical case when dim Y = 1 has been thoroughly
investigated by Badescu ([B 1 ], [B2], [B3]).

The above theorem is proved as a consequence of a more general
meromorphic extension theorem.

One form of it is the following.

Pervenuto alla Redazione il 28 Aprile 1986 ed in forma definitiva il 23 Febbraio 1988.
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THEOREM. Let L be an ample line bundle on a normal projective variety
X. Assume that L is spanned at all points by global sections and that there
is a normal A c I L I which fibres holomorphically f : A -~ Y over a normal
projective variety Y. Assume that:

a) X is a local complete intersection.

b) The general fibre of f is ? 1 and both A and Y have at most rational
singularities.

c) There is a desingularization Y of Y with ho (KY) &#x3E; 0.

Then f extends to a meromorphic map f : X -. Y which is holomorphic
in a neighborhood of the open set U c reg(A) such that fu : U f (U) is a
p 1 bundle.

The most natural approach to such extension theorems is to choose a very
ample line bundle E on Y, show that f * E extends to a line bundle E on X,
and show that a "lot" of sections of extends to ~ . This was the approach
in [Sol] (cf. the appendix to this paper) but it works if dim A = 1+ dim Y

only in very special cases, e.g. [BI] for the case when A is a ? 1 bundle over
Y. 

_

The second approach is to attempt to construct 7 geometrically. The idea
is to take a general fibre A of f and look at the closure F of all deformations A’ I
of A such that is not empty. F should be the general fibre of f . The main
trouble in this approach is showing that dim F = 2. A counterexample with
Y = ---I I shows that F can equal X. A modified form of the above approach
does work. We use a non-trivial holomorphic form on the desingularization of
Y to guarantee that dim F = 2. To do this we need control over the parameter
space of the set of deformations A’ of A that meet A. For this reason we restrict
to deformations A’ of A such that A’ meets A and such that A’ is a fibre of a
deformation f’ : A’ 2013~ Y’ of f : A --~ Y This requires us to
show first that for an appropriate f’ : A’ - Y’ exists.

The contents of this paper are as follows.
In §0 we present background material for which there is no good reference

(especially material on vanishing theorems and extension of line bundles). We
also present the standard counterexamples to extension. We close the section
with the following extension theorem for threefolds.

(0.8) THEOREM. Let L be an ample line bundle on a normal variety X.
Assume that there is a normal A E I L I and a holomorphic map f : A --~ Y
where Y is a smooth curve of positive genus and the general fibre of f is ? 1 .
Then f extends to a meromorphic map 7 : X --&#x3E; Y, that is holomorphic in a
neighborhood of A. If X is Cohen-Macaulay then 7 is holomorphic.

In an appendix to §0 we give the strongest known version of the extension
theorem for holomorphic surjections f : A ~ Y with dim A- dim Y ~ 2 that
was originally given for manifolds in [Sol].

In §1 we prove some results on descent of holomorphic forms.
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In §2 we prove the general meromorphic extension theorem.
In §3 we use the extension theorems to analyze the global structure of X.

We also deduce some results on when a modification of a hyperplane section
extends to a modification of a projective variety; these results which are in
the same vein as [Fal, Fa2, Fa+So, So2, So3, So4] were one of our main
motivations to study the problem stated at the beginning of this introduction.

In §4 we discuss a conjecture on extension.
We would like to thank J. Noguchi for helpful remarks on the De Franchis

theorem. We would like to express our thanks to the Max Planck Institute for
Mathematics for making this joint research possible. The second author would
like to thank the University of Notre Dame and the National Science Foundation
(DMS 82-00629 and DMS 84-20315) for their support.

0. - Background Material

Our notation is the same as in [So2] and [Fal]. For the convenience of
the reader we review it here.

(0.1) We work over the complex numbers. All spaces are complex analytic
and all maps are holomorphic. By variety we mean an irreducible and reduced
complex analytic space. If X is a complex analytic space, we denote its

holomorphic structure sheaf by Ox. We do not distinguish notationally between
a locally free coherent analytic sheaf and its associated holomorphic vector
bundle.

We denote the sections of a sheaf S over X by r(x, s), or r(S) when
no confusion will result. We say that a line bundle L on a complex space, X,
is semi-ample if there is some t &#x3E; 0 such that spans Lt at all points.

Assume that X is a compact variety and L is a semi-ample line bundle
on X. If spans Lt, where t &#x3E; 0, and dim p(X) = dim X for the map

associated to r (Lt ), then L is said to be big.
If X is a connected complex manifold then we have the dualizing sheaf

Kx = A"Tx., where n = dim X and Tx* is the cotangent bundle of X. If X
is a normal variety then the dualizing sheaf Kx = 3 .* KReg(x), where

is the inclusion of the smooth points of X into X.

, 

Given an effective normal Cartier divisor A on a normal Cohen-Macaulay
variety X we have by A + K] pg. 7:

_ 

Let X be a variety and let p : ~ -~ ~ be a resolution of singularities, i.e.

X is a complex manifold and p is a surjective holomorphic map which gives
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a biholomorphism from to X - Sing(X). The Leray sheaves
p (i) (OX-) for i ~ 0 are independent of the resolution; we denote them by 
X is normal if and only if So (X) 0x .

Assume that X is normal. If = 0 for i &#x3E; 0 then the singularities of
X are said to be rational. It is a theorem of Kempf ([Ke], pg. 50) that X has
rational singularities if and only if X is Cohen-Macaulay and Kx.
We denote by Irr(X), the irrational locus of X, which is the union of the

supports of the sheaves for i &#x3E; 0.

(0.2) We need the following vanishing theorem ([ (F + L) 2]; theorem (0.2))
due to Picard, Kodaira, Ramanujam, Mumford, Grauert and Riemenschneider
[Gr+Ri], Kawamata [Ka] and Viehweg [V], and Kempf [Ke]. See [Sh+So] for
a discussion of similar results.

(0.2.1) Vanishing Theorem. Let L be a negative line bundle on a normal
projective variety X. If Ht &#x3E; 0 for some ample divisor H and some
t &#x3E; 0 then:

for 2  min X 2013 ~ 2},
for i &#x3E; max {t, dim Irr(X)}.

PROOF. a) is a simple variant of Mumford’s vanishing theorem that uses
[Ka] and [V] in place of the usual Kodaira vanishing theorem (cf. [Sh+So]).

To see b), let p : X -+ X be a projective desingularization of X. Consider
the exact sequence:

By Kempf’s theorem support (5 @ L) c Irr(X). Therefore by the long
exact cohomology sequence associated to *), the theorem will follow from

L) = 0 for i &#x3E; max {t, dim Since

by the Grauert-Riemenschneider vanishing theorem, theorem (0.2.1b) will
follow from the Leray spectral sequence for p and p*L, and the fact that

== 0 for i &#x3E; t. This last fact follows immediately from tb-e

Kawamata-Viehweg vanishing theorem ([Kal, [V]).
El

(0.2.2) THEOREM. Let f : X --+ Y be a holomorphic surjective map from
a compact normal projective variety X to a projective variety Y. Assume that
dim X-dim Y &#x3E; 2. Assume that L is a semi-ample and big line bundle on X.
Then given any locally free sheaf E on Y, Hl (X, L-k (9 f* E) = 0 for k 2:: 1.

PROOF. Let 7r : X --+ X be a projective resolution of singularities of X.
It is clear by the Leray spectral sequence that H’ (X, L -k (8) injects into
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H (X, Therefore, using X,f01r, and instead of X, f ,
and L respectively, we have reduced to the case when X is smooth.

Using dim X- dim Y &#x3E; 2 the result follows from [Ful; Corollary A6].
D

(0.3) We need some information about extension of line bundles.

(0.3.1 ) LEMMA. Let A be an effective ample divisor on a projective variety
X of dimension &#x3E; 4. Assume that A c Reg (X ) . Then for any desingularization
X of X the restriction map Pic(A) has finite cokernel.

PROOF. Since A c Reg(X), X has isolated singularities and we can assume
without loss of generality that X is normal.

Let Jr : I - X denote a desingularization of X. Since g is a

biholomorphism from X - (Sing(X)) -+ X - Sing(X) we identify .A and

~r~~ (A). .
Consider the long exact cohomology sequences associated to the

exponential sequences on X and A where the vertical maps are restrictions:

From the vanishing theorem (0.2.1), we know that = 0

for i  dim A and hence that 0°z) ’ H’ (A, 0A) for i ~ dim A - 1.

Therefore we will be done by a diagram chase if we show that the restriction
H2 ~_.~, ~ ) --~ H 2(A,Z) has finite cokemel. This will follow if we show that

.~I~~X, ~) ---&#x3E; ~~~A, ~) is onto.
Choose n &#x3E; 0 such that [A]n is very ample and embeds X in c

using There is a hyperplane ~’ _ ~ ~ -1 that meets X in nA. The

hyperplanes sufficiently near H’ meet X in sets contained in a neighborhood
V c Reg(X) of A which is a deformation retract of A. The basic result of

[So5] shows that for any of these nearby hyperplanes H, the restriction mapping
RH : Hi (V, Z) ---&#x3E; is an isomorphism for j  dim X - 2. Choosing
an H near H’ so that A’ = H’ n X is smooth we see that

is equivalent to showing that

Indeed consider
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By Kronecker duality we are reduced to showing that:

Since the intersection homology of a manifold is equal to its usual homology
((G + M)3] ] and since the rational intersection homology of a complex algebraic
variety X injects into the rational intersection homology of any desingularization
X [(G + M) 11, we are reduced to showing that:

where IH., denotes the intersection homology. This last injection follows from
the beautiful result l(G + M)3] that, for a hyperplane section of a variety by
a hyperplane transverse to all strata of a Morse stratification of the variety,
(which A’ c Reg(X) certainly is) the usual first Lefschetz theorem holds with
intersection homology replacing the usual homology.

o

(0.3.2) LEMMA. Let A be an effective ample divisor on an irreducible
projective local complete intersection X. Assume that cod Irr(X) &#x3E; 3. Under
restriction Pic(X) * Pic(A) if 4 and

has torsion free cokernel if dim X = 3.

PROOF. By the usual argument, using the long exact cohomology sequence
associated to the exponential sequence of X and A, the above result will follow
if we show that 1ri (X, A, a) = 0, with i  dim A and any basepoint a c A, and
also that Hi (X, C A] -1 ) = 0 for i = 1, 2. The former is the very useful Lefschetz
theorem of Hamm [H] (see [(G + M)2] also) and the latter is just (0.2.1).

o

In the same spirit as the above results we need information about

holomorphic forms on the desingularization of a variety.

(0.3.3) LEMMA. Let L be a line bundle on a normal projective variety, X,
of dimension n. Assume that L is semi-ample and big. Let ILl I be normal
with at most rational singularities. Let lr2 : X --), X be a desingularization of
X and let 1rl : A -~ A’ be a desingularization of the proper transform, A’, in
A of X. Let R : r(AkTx*) - be the map induced by Then R is
a surjection for k  dim A.

PROOF. By Hodge theory it suffices to show that the map
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induced by 1f1 is a surjection for I~  dim A. By (0.2.1) the restriction

is an isomorphism for l~  dim ~i where A" = 1r-l (A).
Using this and considering the commutative diagram:

it suffices to show that the map

induced by the composition 7r : ~1 --; A of 7r, and A’ - A is an isomorphism.
Using the Leray spectral sequence for 1r and the fact that A, having only rational
singularities, is equivalent to (Q) = 0 for i &#x3E; 0, this is clear.

a

(0.4) LEMMA. Let p : be a holomorphic map of a projective
variety Z with dim ~p~Z) &#x3E; 2. Given a general hyperplane H 
is irreducible. Given any hyperplane H on ? c, is connected.

PROOF. This is a standard fact, e.g. [Sh+So; theorem (3.42)].
0

(0.5) We give here a few standard counterexamples to the extension

problem discussed in the introduction. The most obvious C P 3. This
can be generalized slightly. Let Hd C ? 3 be a smooth degree d hypersurface
that contains a line A, e.g. let Hd be defined by

Then L = is spanned by global sections and gives a holomorphic
surjection f : with general fibre biholomorphic to a curve of degree
d - 1 in ? 2 ; see [Sol] for more on this type of fibration. Clearly f cannot
extend holomorphically to ? 3 . 

_

Many examples of non-extendable maps with dim Y = 1 can be given.
There is one example of bundle A over Y with dim Y &#x3E; 1, where X is
not a ? 2 bundle. The following simple argument was given to us by E. Sato.
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Let y _ ~ n with n &#x3E; 1. Let i be a non-trivial element of 
and let F* == a direct sum of n + 1 copies of Cpi(-2). Let E* be the unique
extension

such that 1 E goes to

Note that P (F) is a very ample divisor on P (E). To see this it must just be
noted that E is ample. By dualizing the above exact sequence we can easily
check that E is spanned by global sections. We must only check that E does
not contain a trivial summand.

If it did then E* would have a nowhere vanishing section. Since F* has no
section, the image of this section would split the above sequence contradicting
the non-triviality of i. Thus P ~.~’) is a very ample divisor of P (E).

Note that P(F) = JP 1 x P n. Since there are no non-trivial maps from
the map P(F) ---&#x3E; P" cannot extend to a map from 

bundle ? (E) to P".

(0.6) THEOREM. Let L be an ample line bundle on a normal projective
local complete intersection X. Assume that L is spanned at all points by global
sections, dim X &#x3E; 4, and that cod Irr(X) &#x3E; 3. Assume that there is an A E ILl
and surjective holomorphic map f : _A --; Y into a normal projective variety Y.
If f extends to a meromorphic map 7: X --&#x3E; Y holomorphic in a neighborhood
of A and dim A &#x3E; dim Y, then 7 is holomorphic.

PROOF. Let E be a very ample line bundle on Y and let e be the extension
of f * ~ to X that exists by lemma (0.3.2). If we knew that pullbacks under
f of sections of E extended to sections of ~‘ , then we would be done by an
argument of [Sol] in the smooth case that was nicely generalized to arbitrary
X in [Ful]. Indeed dim Y + 1 sections span E. Thus dim Y + 1 sections span
e off an analytic set A c X - A. Therefore A is empty or dim A &#x3E; dim X-
dim Y - 1 &#x3E; 0. But since A c X - A, dim A = 0. Thus since E is spanned by
dim Y + 1 sections, the map associated to pullbacks of sections has a dim Y
dimensional image. It is easy to see that this must be Y.

If when D E then we would be done by the above
reasoning. If 7* D were Cartier this would thus be clear since 0 --y Pic (X)
Pic ~ A) . Unfortunately it is not obvious that f * D is Cartier.

Let 1r : X --+’ X be a desingularization of the graph of /. Choose an A’ I
such that A = ~r-1 ~ A’ ) is smooth and 7 is holomorphic in a neighborhood of
A’. This is possible since f is holomorphic in a neighborhood of A.

Let f’ : X - Y be the holomorphic map induced by f. Let E and
be as before and let M = f’ * E. If we show that 7r*,E we will be done.
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Consider:

Since 1t’* e 0 it suffices to show that ~1 (~r* ~ ~ ~ L ~ 1 ) (8) M - 1) = 0.
Since the map associated to has a dim A dimensional image, it
follows that .I~1 ~{~r* (~ ~ L-t) (9 M-1)A) == 0 for t &#x3E; 0.

Therefore, by tensoring the above exact sequence with for t &#x3E; 0,
and using the associated long exact cohomology sequence, we are reduced to
showing that

By Serre duality and the Leray spectral sequence we are reduced to showing
that:

A and t &#x3E; &#x3E; 0.

Since hl is spanned, it follows from [Gr+Ri] that (Ky 0 M) = 0 for j &#x3E; 0.

Since L is ample Lt 0 ~’ * 0 ~r* ~ ~X ~ M)) = 0 for t » 0. 0

(0.7) SLICING LEMMA. Let f : X --~ Y be a holomorphic surjection between
projective manifolds. If H is a general hyperplane section of Y then

a) H and are smooth,

b) dim support = dim support + 1 whenever

f ~i~ is non-trivial (here we adopt the convention that the empty set
has dimension - 1).

PROOF, a) is true by Bertini’s theorem. We have the exact sequence:

The long exact sequence of direct image sheaves gives:

If S is any coherent sheaf in a manifold Y, then a general hyperplane section
will not contain the support of any subsheaf of S. Thus

From this and the long exact sequence of direct image sheaves above, we get
the exact sequence

and the lemma.
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(0.8) THEOREM. Let L be an ample line bundle on a normal variety X.
Assume that there is a normal A c I L I and a holomorphic map f : A --&#x3E; Ý
where Y is a smooth curve of positive genus and the general fibre of f is ? 14
Then f extends to a meromorphic map 1 : X --~ Y, that is holomorphic in a
neighborhood of A. If X is Cohen-Macaulay then 1 is holomorphic.

PROOF. We need a small lemma.

(0.8.1) LEMMA. A has at worst rational singularities.

PROOF. Let p : 5i - A denote a desingularization of A. Note that

and

This follows from the Leray spectral sequence for f o p and 0:4 upon noting
that A is ruled and f o p gives an isomorphism of with for all
2.

Since A and Y are normal and f has a generic fibre connected, it follows 
"

that all fibres are connected and therefore that

Consider the Leray spectral sequence for 0z and the two maps f and p.
and it follows that 

ll

Since A is a normal it is Cohen-Macaulay. From this and the fact that it
is a Cartier divisor we conclude that X is Cohen-Macaulay in a neighborhood
U of A. Since A is ample X - U is a finite set.

Let x be an arbitrary point of A and let T be a defining function for A in
some neighborhood U of x. The map T : II --~ C is flat for a possibly smaller
U. This follows since U is Cohen-Macaulay, C is smooth, and the fibres of
T are equal dimensional. By the above lemma and Elkik’s theorem [E] we
conclude that X has only rational singularities in a neighborhood of A.

Let x : X -&#x3E; X be a desingularization of X. Recall that equals
the support of Ox. Since a neighborhood of A has rational singularities
and since A is ample is a finite set in the complement of A. Let
X = X - Let F : X - Alb (X) be the Albanese mapping of X. It is

easy to check, e.g. (0.3.3) of [So6], that holomorphic one forms on X restrict
to 0 on fibres of 7r over X and therefore that there is a commutative diagram
of holomorphic maps:
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By (0.3.3) and lemma (0.8.1 ) it follows that ~4 is the composition of f
with the Albanese mapping of Y.

Let A be a general fibre of f. Since A c reg(A) and since A is Cartier,
A c reg(X). Since f is of maximal rank in a neighborhood of A, we have:

where .Na is the normal bundle of A in X. From this we conclude that Na
is spanned by global sections and also that H 1 ( Na ) - 0. Therefore smooth
defonnations of A in reg(X) cover a neighborhood of A in X. For any such
deformation A’ ‘ we know is a point. Since .1 ‘ ~ A A L &#x3E; 0
we conclude that 1(X) = 1(A) = Y.

All that it remains to show is that X = X when X is Cohen-Macaulay.
This is obvious since for Cohen-Macaulay X, S, (X) has pure codimension 2
support.

o

Appendix - Extension Theorems for Maps of Fibre Dimension at least 2

(A.1) THEOREM. Let A be an ample divisor on a normal projective
variety X. Assume that A is normal and that there is a holomorphic surjection
f : A - Y of A onto a projective variety Y such that dim A- dim Y &#x3E; 2. If
there is an ample line bundle L on Y such that f * L extends to a holomorphic
line bundle l on X, then f extends to a holomorphic map 7 : X -+ Y. In
particular, extension takes place if X is a local complete intersection with the
locus of non rational singularities having codimension &#x3E; 3.

PROOF. The proof follows that of [Sol] very closely; we incorporate the
improvements cif [Full and [Fu2]. By raising L to a sufficiently high positive
power we get a very ample line bundle whose pullback extends to X. Thus we
can assume that L is very ample without loss of generality. Consider:

If the sections of extend to sections of f" we will get an extension of f
to a meromorphic 7 : by using as sketched in (0.6) (cf. [Fu 1 ]
also). ,

To show that the sections of extend to sections of f it suffices by *)
to show that ~ ~ ~ ,~ ~ ~ A ~ i 1 ) = 0. Considering the above exact sequence tensored

for r &#x3E; 1 we see that H’(A, lA 0 = 0 for r &#x3E; 1 would imply
that
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Since X is normal, H’ (L ~ [A]-") = 0 for r &#x3E; &#x3E; 0 [Ha, Cor. 111.7.8]. Therefore
we have reduced to showing that

This follows from (0.2.2).
Note that under the local complete intersection condition, extension occurs

by (0.3.2).
p

(A.1.1 ) and X are as in theorem (A.1 ) so that the

holomorphic extension f : X - Y exists and bundle with
k &#x3E; 2, then it follows from [Sol] that 7 is a bundle.

(A.2) THEOREM. Let X be a normal projective variety with isolated
singularities. Let A be an ample divisor on X which is normal and such
that A c reg(X~ . If there is a holomorphic surjection f : A - Y onto a

projective variety with dim A- dim Y &#x3E; 2, then f extends to a meromorphic
map f : X - Y which is holomorphic on reg(X).

PROOF. Let L be an ample line bundle on Y. Let ir : X - X be a

desingularization of X. By lemma (0.3.1 ), f * L"2 extends to a holomorphic line
bundle f on X for some m &#x3E; 0. The proof of the last result and a standard
Hartogs’ theorem argument would prove this result if we show that for some
neighborhood U of A

This is true by a result of Griffiths ([Gri], see also [LP]); we have followed the
idea of [Si]. Instead of using Griffiths’ theorem we could work on the formal
completion of A in X as done by Fujita [Fu2].

o

1. - Some Results on Holomorphic Forms

(1. 1) THEOREM. Let f : X --~ Y be a holomorphic surjection with connected
fibres between normal projective varieties X and Y. Assume that there is a

non-empty Zariski open set V c Y such that V and f -1 (~ ) are smooth and
f : f -1 ~V ~ -~ ~ is of maximal rank. Assume that X and Y have at most
rational singularities. If (OF) = 0 for 0  i  q, where F is a general fibre
of f, then l(iJ(OX) = 0 for 0  2 ~ q.

PROOF. It can be assumed without loss of generality that .X and Y are
smooth. To see this let g : Y be a desingularization of Y and let X’ be
a desingularization of the irreducible component of the fibre product .~ Xy Y
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which surjects onto both X and Y under the natural projections. We have the
commutative square:

The horizontal maps are birational morphisms and since the singularities of X
and Y are rational:

for

and since X and Y are normal g* { ~) = Ox and The
condition on the general fibre of f and the fact that g : ~*~(V) - V and
? : 9’~(/"~(~)) ~ are biholomorphisms imply that hi -_0, for
0  i ~ q, where F is a general fibre of f. If the theorem is true for f, then
using *) and **) and the Leray spectral sequence for g and f we see that

for and g o , /

Using this, g o f = *), **~, and the Leray spectral sequence for f and g,
we see that:

Therefore we can assume, without loss of generality, that X and Y are
smooth.

( 1 , I , I ) LEMMA. is an isomorphism for i  q.

PROOF. By standard Hodge theory the map f * is an injection for all
e.g. [W]. We must only show that the map is surjective. By conjugation and
the Hodge theory anti-isomorphism of H’(Ox) with and of H’(0y)
with this is equivalent to showing that every holomorphic Z* form 1’J

on X with 0  i  q is of the form for a holomorphic i form p on Y.
This is certainly true over the dense Zariski open set V c Y such that

f : f ~ ~ ~ ~ ) --~ V is of maximal rank. Indeed let V’ - f -1 (’fl ) and let I

denote the restriction of n to V ’. Consider the exact sequence:

We get a filtration Fo c Fi c ... ~ ~~ where
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The quotients are ~~ ~ F~ _ 1 = (A’- i f * TV *) (9 (Ai Tv, *). Since by hypothesis
we know that == 0 for 0  j:5 q we conclude that 0

for 0  j ~ q and thus I = for a holomorphic i form gv on V. We
must only show that pv extends to a holomorphic i form on Y.

Assume otherwise. Since by Hartogs’ theorem holomorphic sections of
vector bundles extend over codimension 2 sets, it follows that ~uV extends to

a holomorphic i form p’ on Y - Z, where Z is a set of pure codimension 1 -
Choosing dim .X - dim Y general hyperplane sections of X and intersecting we
get a submanifold X’ of X such that fx, I is generically finite to one. Further
the pullback of p’ to X’ - ( f ~ ~ ) -1 ( Z) extends holomorphically to X’, since the
pullback of p’ agrees on a dense open set with the restriction of the holomorphic
form Choose a smooth point x of Z such that is finite to one over a

neighborhood of x. An easy calculation shows that p’ has at worst poles on Z
and extends holomorphically if it has no poles. Slicing Y with sufficiently many
hyperplane sections through X, we can choose an i dimensional submanifold
Y’ c Y such that the restriction p" of p’ to Y’ - Z n Y’ has poles along Z n Y’
if p’ has poles along Z. Further desingularizing an irreducible component of
( fX~ )-1 (Y’), we get a projective i dimensional manifold X" and a generically
finite to one surjective map f " : X" ---~ Y such that the pullback of ¡JII
under f " extends holomorphically to 7?x,, on all of X". But this implies that

 oo, since

If f M" A jE!" is finite, then an easy calculation shows that MI has no poles along
Z n Y’. Therefore pv has a holomorphic extension to Y.

0

Now assume that the theorem is false. Let i be the smallest integer
satisfying 0  i  q such that 0. If is supported in a
finite set then by the Leray spectral sequence and the above lemma we have
a contradiction. If is supported on a k &#x3E; 1 dimensional set then by
lemma (0.7) we can slice with l~ &#x3E; 1 hyperplane sections on Y and reduce to
a situation where we get the same contradiction as in the last sentence.

ll

The following lemmas will be convenient.

(1.2) LEMMA. Let f : holomorphic surjective map of projective
varieties. If there is a non-trivial holomorphic k form on a desingularization of
Y, then there is a non-trivial holomorphic k form on a desingularization of X.

PROOF. Let 7ri : X -; X and lr2 : Y --~ Y be desingularizations. Since
holomorphic forms pullback to holomorphic forms under meromorphic maps,
the lemma follows by considering n2 1 o f o irl.

a
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(1.3) LEMMA. Let f : X --~ Y be a meromorphic surjective map between
projective vat-ieties. Assume that there is an open set V c reg ( Y ) such that

a) ¡-l(V) c reg(X),
b) On ¡-1 (V), f has connected fibres and is of maximal rank,
c) Given a generic fibre F of f in f ‘ ~ (V ~ , = 0 for 0  i ~ q.

If a desingularization of X has a non-trivial holomorphic q form, then a
desingularization of Y has a non-trivial holomorphic q form.

PROOF. Reduce to lemma (I - 1. 1).
a

2. - The Merornorphic Extension Theorem

(2.0) Let .~ be a line bundle on a compact normal variety X. Assume that
L is spanned at all points by global sections and that X is Cohen-Macaulay,
i.e. that the local rings of X are all Cohen-Macaulay local rings. Let

denote the evaluation map on sections. Since r ( L ~ spans L at all points, it

follows that is onto and the kernel K is a vector bundle on X. We denote

~ (.~* ) by A and note that A c X x ]L) I is the family of pairs (x, A) with
z G I L 1. Let p : A - X and q : A -- ]L] I denote the maps induced by the
product projections and note that p is the natural projection of ? (K* ~ --~ X.

Since A is a fibre bundle with smooth fibre over a Cohen-Macaulay variety,
it follows that A is Cohen-Macaulay. Since q has equal dimensional fibres, A
is Cohen-Macaulay, and ILI is smooth, it follows that:

(2. 1) LEMMA. Let X, L, A and q be as above. Assume that there is a

normal A E ILl I that fibres holomorphically f : A --; Y, where Y is a normal
variety and where f has connected fibres. Assume further that there is a smooth
Zariski open set V c Y such that U = is smooth and such that f is

of maximal rank on U. Assume that there is an ample line bundle E on Y

such that f * E extends to a line bundle e on X. Assume that (OA) = 0 for
all odd i. Then there is a compact normal variety y, a holomorphic surjection
g : ~ --&#x3E; ILl ( and a meromorphic surjection F : A -; Y such that:

commutes,
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b) F is holomorphic on a Zariski open set containing q-’(A),g-’(A) is

biholomorphic to Y and Fq-l(A) =: f,

c) g has equal dimensional fibres in a neighborhood of 

d) there is a smooth Zariski open set C c y such that F is of maximal rank on
the set U = F-1 (~j which is smooth and such that p- I (U) n q-l(A) c U -

PROOF. Choose n large enough so that En is very ample and by Serre’s
theorem ( f * ~n ) ) = DA j 0 E n) is zero for j &#x3E; 0 and all
i. By the Leray spectral sequence for f and and the hypothesis that

f(i)(OA) = 0 for odd i, it follows that --- 0 for odd j &#x3E; 0. By
the flatness (2.0.1 ) of q, it follows is independent of ILl.
From this and the upper semi-continuity of dimensions of cohomology groups,
it follows that h 0 (A’, e A n j is constant for a Zariski open set I that contains
A. This and the flatness of q imply, by a theorem of Grauert, that the coherent
sheaf:

is locally free of rank in a neighborhood of A in ILl. Since sections
of therefore extend to give sections of S, it follows that 
is spanned by global sections for a Zariski open set 0 c ILI containing A.
Therefore we have a meromorphic map F’ from A into Proj(S) which is

holomorphic in a neighborhood of q ~ 1 ~ A ) . Let t~ denote the normalization of
the image of F’ and let ~’ denote the induced meromorphic map. Note that dim
F ( q -1 ( A’ ) ) is independent of Indeed, since e A I n is spanned, then it

equals max c 1 ~ L) is non-trivial in .H~k+2 ~X, CQ ) ~ .
This implies c) where g : p ---+ ILl I is the induced map.
The assertion d) is straightforward and left to the reader.

o

(2.2) MEROMORPHIC EXTENSION THEOREM. Let X be an n dimensional

normal compact Cohen-Macaulay variety. Assume that j4 0, where
X is a desingularization of X. Assume that L is a line bundle which is big and
which is spanned at all points of X by global sections. Assume that there xs’

a normal A I such that there is a holomorphic surjection f : A - Y with
generic onto a compact normal variety Y. Assume that there is an

ample line bundle E on Y such that f * E extends to a holomorphic line bundle
e on X. If either f is flat or A and Y have at most rational singularities, then
f extends to a meromorphic map:

holomorphic in a neighborhood of the open set U c reg(A) such that

fu : U --~ f (U) is a ? 1 bundle.
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PROOF. Lemma (2.1 ~ applies. Let

be as in the lemma. For simplicity of exposition we assume that X, Y, and A
are smooth, that f : A --* Y is a ~- 1 bundle, and that L is ample. The mainly
notational modifications to show the general case are left to the reader.

The property that f is a ~ 1 bundle over Y is inherited by the maps
--+ F (A’) given by lemma (2.1 ) for A’ near A in I L 1. Thus:

(2.2.1 ) F is bundle over a smooth Zariski open set C c P which contains
Y (here we identify Y with g-’ (A)). Set U = F-1 (C ).

Let B = and let B’ be the image of B in A x A under the map
(i, p) where i : is the inclusion. Let .F’ : A x A --+ Y x A be the map
(F, idA).

Note that .B is irreducible since it is a fibre bundle over A. Thus the
closures 3 of 3 = (U x A)) and Z of F’ ~ 1 (~ ) are irreducible, where
~1 is as in (2.2.1).

REMARK. Roughly Z is the set of triples (x, A’, z) where x E A, x E A’,
and z belongs to the rational curve F-1 ( F ~ x) ) . Thus roughly Z fibres over Y
with a general fibre I fibring over a fibre A of f : A -- Y, with a general
fibre E A fibring over the projective space ~’ of A’ I that contain a
point x of A, and the general fibre E --+ P fibring a rational curve. Thus Z is
a family of very rational looking varieties parametrized by Y, and the images
of these very rational looking varieties in X are candidates for the fibres of the
desired meromorphic map 7. The main idea of this paper is that a holomorphic
n - 2 form on a desingularization of X should force this to be true.

(2.2.2) LEMMA. The meromorphic map F’ from B’ to 3 is one to one on
~

PROOF. To see this note that if (v, x) E C x A, then

Note that

Let h : &#x3E; Z - X denote the map onto X induced by the composition of
the product projection A x A -+ A and p. Let k : Z p Y denote the surjection
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induced by the composition of the product projection A x A --. A and f : A -&#x3E; y.
Let c : Z --&#x3E; Y x X denote the map (k, h). Let Z’ = c(Zj and let k’ : Z’ -+ Y
and h’ : Z’ -+ X be the maps induced by the product projections.

Choose a general element H e 1, where N is chosen so that EN is

very ample. By lemma (0.4), H’ = ~"~(R) is irreducible, since Z is irreducible.

(2.2.3) LEMMA. h(H’) # X.

PROOF. Assume that h(H’) = X. Since a desingularization of X has a
non-trivial holomorphic n - 2 form on it, it follows from lemma (1.2) that the
desingularization .H’ of H’ has a non-trivial holomorphic n - 2 form on it.
Since F’H, : .~’ --&#x3E; ~’’ ( ~’ ) is a ? 1 bundle over a dense open set of F’(H’), it

follows from lemma (1.3) that a desingularization of F’ (H’ ) has a non-trivial
holomorphic n - 2 form on it. Using lemma (2.2.2) it is clear that is

birational to Since this is a projective bundle over it

follows from lemma (1.2) that the desingularization of has a non-trivial
holomorphic n - 2 form on it. Since maps onto H’ with generic fibre

it follows from lemma (1.3) that the desingularization of H’ has a non-trivial
holomorphic n - 2 form on it. But since dim H’ - n - 3, this is absurd.

a

We are now in a positiion to show that Z’ is the graph of a meromorphic
map from X to Y. First note that the dimension of a generic fibre of h’ : Z’ 2013~ X
is 0 dimensional. Indeed, if it was not, then given a general very ample divisor
A on Y it would follow that h I (k’- I (A)) = X. Since = h (k- 1 (A)),
this is ruled out by lemma (2.2.3).

Therefore since = h ( Z) = X, it follows that dim Y+ dim (generic
fibre of k’) = dim X or

(2.2.4) dim (generic fibre of - 2.

(2.2.5) Choose a y E Y that is general in the sense that is irreducible
and dim (y)) = 2 and fix a point = (y).

(2.2.6) Choose that is general in the following senses:

a) A’ is smooth and meets ~1 transversely ,
b) A’ doesn’t contain x,
c) c U and Fq-l(AI) is bundle.

Let P c I L I denote the pencil joining A and A’. Let r denote the graph
of the meromorphic map F,,-,(p). Let X’ denote the irreducible component of
r such that:

p (projection of

Let m : X’ --4 X be the map composed of p and the projection of ~’ to q~ 1 (P~ .
Note that

(2.2.7) m is a birational map.
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Let yP denote the irreducible component of g-1(P) such that g(pp) = P
and the map Fp : X -+ Y p induced by F is onto. We have:

where y’ and r are the maps induced by g and q respectively.
By (2.2.6) m : X’ -~ X is X with A n A’ blown up.
It follows from (2.2.4) that given an a 

contains a unique irreducible 2 dimensional component Ja that contains A.
To see this note that for most E is a smooth
-I on an A" E P which is also a fibre of FA,,. From this we see also
that c ~(A:’~(~)). Since dim h ( I~ ‘ 1 ( y) ) = 2 by (2.2.6a) we conclude

= h(k-’(y)). This set which we call JA is therefore independent of
a E A n A’ and of the general A’ chosen subject to (2.2.6).

I c r ( L ) be a section defining A’. There is a short exact sequence:

of normal bundles. The infinitesimal deformation of A corresponding to the
family m(r"71(w)), for w near A E P, has as image in the restriction

SAIIA- Since SA’(X) =,4 0 by (2.2.6b) we see that Jx is smooth near x and JX
is transverse to A near x. Since x G A was arbitrary we conclude that JÀ is
smooth in a neighborhood of A and that, along A, Jx intersects A transversely.

(2.2.8) LEMMA. With as in

, 

PROOF. Let w : X --+ ? c denote the map associated to r(L). Since p has
an image of dimension equal to dim X, and since y is general, in the sense of
(2.2.5), it follows that dim = 2. By (0.4), Jx n A is connected. Since
meets A transversely along A, it follows that J).. n A = A.

0

The above shows that Jx determines y by A). From this we claim
that it follows that Z’ is the graph of a meromorphic map f : X -~ Y. This will
follow if we show that the map h’ : Z’ - X is birational. This will follow if we
show that, given a general point x E X, there are not fibres A, A with f (A) , f (A)
general in the sense of (2.2.5) and x n Q, where Ja (respectively k) is the
two dimensional set associated to A (respectively A) as above, with Jx n A 
(respectively 7-- n A = I)~

To see this we can work on .X’ since m is birational. For simplicity we let
J (respectively J) denote the unique irreducible 2 dimensional component of
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[respectively I that contains
~ (respectively A). _ 

- - - ..

Assume that J f1 J contains a general point of X’ which for simplicity we
still call x. Let:

a) f equal the smooth rational curve (FP)-i(FP(x)) and B = 

Let t denote the degree of the map lAnA’ : A n A’ - Y. Note that

and

where #( ) denotes the number of points in a set. Since J and J are Fp saturated
and since Fp(x) E Fp(J) n FP(J) it follows that #(£ n T) = t = #(£ n f).
Further note that

and

Therefore by *) £nB _= £nT = £nT. Therefore T =_rra-1 ( m(T ) ~ = 
B)) == =_T and Àn1 = 0.
Thus A = A and J = J.

Finally let A c A be a fibre of f. Choose A’ subject to (2.2.6). Choose a
local holomorphic section C7 : N ~ A, where N is a neighborhood of and

c A n A’ . For a small enough N and for y in a small enough neighborhood
of x in X, there is a well defined holomorphic map which sends y to 
where a E c(N) and This map agrees with

7 on an open set and gives the desired extension.
D

(2.3) COROLLARY. Let X be a normal projective variety and let L be an
ample line bundle on X spanned at all points of X. Assume that there is a

normal A E I L I such that:

a) A c reg(X),
b) There is a holomorphic surjection f : A ---+ Y onto a normal projective

variety and the generic fibre of f is 7 1,
c) A and Y have only rational singularities,
d) There is a desingularization Y of Y with h(l (K-g) &#x3E; 0.

Then f extends to a meromorphic map 7 : X --+ Y, holomorphic on a
neighborhood of the open set U c reg ( A) such that fu U --; f(U) is a ? 1
bundle.

PROOF. By (0.8) we can assume without loss of generality that dim X &#x3E; 4.
Let 7r : : X --~ X be a desingularization of X. Since A c reg(X) we have 11"

giving a biholomorphism of A and Let E be an ample line bundle on
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Y. By lemma (0.3.1 ), f * En extends to ~ for some n &#x3E; 0. By (1.2) and (0.3.3)
0. Thus X, 11"* L, and E" satisfy the hypotheses

on X, L, A and E in theorem (2.2). Therefore there is a meromorphic extension
f : X -~-~ Y . The composition 7 o 7r X -- Y is the desired extension.

0

(2.4) COROLLARY. Assume the same hypotheses as (2.3) except that A c
reg(X) is replaced by the assumption that X is a local complete intersection.
Then the same conclusion as in (2.3) holds.

PROOF. By Elkik’s theorem [E], as used in (0.8), we can conclude that
Irr(X) does not meet A. Since A is ample this implies Irr(X) is finite. Since
we can assume without loss of generality that dim X &#x3E; 4 by (0.8), it follows
that we can assume without loss of generality that cod Irr(X) &#x3E; 3. Use (0.3.2)
instead of (0.3.1 ).

D

(2.5) THEOREM. Let X be a projective variety which is a local complete
intersection. Assume that L is an ample line bundle spanned at all points of
X by global sections. Assume that there exists a smooth A E ILl I which is a
? ’ bundle f : A --~ Y over a projective manifold Y. Assume that there exists
an unramified cover 7r : T - Y with hdim T.0 0. Then f extends to a
holomorphic map f : X --+ Y.

PROOF. We can assume without loss of generality that T is a regular
covering of Y. Suppressing base points for simplicity we note that

f * : trl (A) -+ (Y) and i* : 1ri (A) -- 1r1 (X) are isomorphisms,

where i : A - X is the inclusion map. Let ~1 = (1rl (T)), .H2 = { f* ) 1 (H1)
and H3 == i~, (H2). Denote by A and X the covering spaces of A and X

corresponding to H2 and H3, subgroups of (A) and 03C01 (X) respectively. Thus
we have the following diagram

Note that ,f o p and i o p lift to a map from A to T and from A to X respectively,
since ( f ° P) * ( 7ti ( A ) ) = ~1 = ~* (~’i (Z’)) and (?,’ o p). (,,, (A)) = H3 =_~* ~’~1 ~X ))~
It is easy to see that ~4 is an ample divisor on X and that ~p : A ~ T is a

~ 1 bundle over T. Using (0.6) and (2.3) we conclude that the map ~p extends
to a holomorphic T. The group of deck transformations of X,
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A, and T are all isomorphic to one another by construction. Denote this group
by ~. Note that everything descends. Therefore we get a holomorphic map
7 : X 2013~ Y, where f is obtained X 2013~ T after we have considered the
action of G on X and T. Clearly 7 is holomorphic and is an extension of the
given f.

D

(2.6) COROLLARY. Let X, L and A be as in (2.5). Assume that Kt y Oy
with t &#x3E; 0 minimal. Then the same conclusion as (2.5) holds.

PROOF. Let 1f : T ---+ Y be the t cyclic unramified cover of Y determined
by the torsion line bundle Ky. Note that hdim Y.o (~.~ ~ 0. Therefore (2.5)
applies. 

-

D

3. - ~ 1 Bundles as Hyperplane Sections

(3.0) THEOREM. Let X be an irreducible projective local complete
intersection. Assume that L is an ample line bundle on X spanned at all

points by global sections. Assume that there is a smooth A E I L I which is a

? ~ bundle f : A --~ Y over a projective manifold Y. Then, if ho (~fY ) ~ (~, f
extends to a holomorphic map f : X - Y. Dim Y  2 and if dim Y = 2, f is
a ? 2 bundle with the restriction of L to a fibre of 7 isomorphic to Op 2 ( 1).

PROOF. By lemma (0.8) and (2.5) the holomorphic extension f : 
exists. By Proposition V of [Sol], it follows that if f is bundle then dim

Y  2.

Let t, be the union of the singular set of X and the set where 7 is not of
maximal rank. Since fB c X - A, the set A is finite. Choose a smooth connected
curve C c Y such that 7(/L) n C = empty. Let f’ and

let F denote the general fibre of f . Suppressing basepoints for simplicity we
have the long exact sequence of homotopy groups of fibre bundles:

Note that b is surjective by the first Lefschetz theorem on hyperplane
sections. A diagram chase shows that a is surjective. Since? 1 is a hyperplane
section of F, it is very well known, e.g. (0.6.1 ) of [So2], that ~’ is either? 2
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or a ? 1 bundle over P 1. Since a is surjective, it follows that F is ? 2 and
LF * Q: 2 ( 1) .

We are done except for the possibility of a singular fibre ~’ of f : X - Y.
Dim F  dim f -1 ( f ( D ) ) + 1 = 2. By the above it is clear that ~’ is irreducible
(since L - L - F = 1). A straightforward argument using (O.f .1 ) of [So2] shows
that .~’ * P 2.

To finish the argument note that, since f ~ f (F) - ~ ~ and since f is
flat (fibres are equal dimensional, X is a local complete intersection, and Y is
sxnooth), it follows that 7 is of maximal rank in a neighborhood of F.

0

(3.1 ) THEOREM. Let L be an ample line bundle on a local complete
intersection X. Assume that:

a) L is spanned by global sections and hO ( ( K~ ~ L) ~ ) =/ 0 for some N &#x3E; 0,

b) The singular set of X has codimension &#x3E; 4.

Let ILl and assume that there is a holomorphic surjection f : H - H’
which expresses H as a projective variety with a codimension 2 submanifold
A’ c reg ( H’ ) blown up. Assume that =1= 0. Then dim A’ = 2 and f
extends to a holomorphic map f : X --~ X’ such that

comrnutes where i and i’ are inclusions. The map f expresses X as x’ with

the smooth subvariety i’ ( A’ ~ c reg(X’) blown up.

PROOF. By the same argument as in [So2] or [Fa2], it can be shown that

there exists a normal Cartier divisor D on X which meets H transversely along
E, the exceptional divisor of f over A’. By (3.0) the map fE : E - A’ extends
to a holomorphic map f : D ---~ A’ and dim A’ _ 2. The case dim A’ = 1 has
been done [Fa2]. Thus the only case remaining is dim A’ = 2. In this case

f D --+ A’ is bundle with the restriction of LD to the general fibre

of f isomorphic to ~p 2 (1). It is then, clear that the line bundle [D] restricted
to the general fibre of f is 3p2(-l). Therefore by Nakano’s theorem we can

smoothly blow down D. Thus there exists a variety X and a holomorphic map
f : .~ ---j X’ such that the diagram in the statement of the theorem commutes.
Clearly il(Al) c reg(X’) since H’ is a Cartier divisor on X’. The map f
expresses X as X’ with blown up.

0
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4. , Concluding Remarks

(4.0) CONJECTURE. Let f : A --&#x3E; Y be a holomorphic ? 1 bundle over a
smooth connected projective manifold Y. Assume that A is an ample divisor
on a pf-ojective local complete intersection X. If A 54 n x ~.~ 1, then f extends
to a holomorphic ? 2 bundle f : X - Y, and dim Y = 2.

For simplicity assume that [A] is spanned by global sections.
The above is true for dim Y  2. The case when dim Y = 1 is summarized

in [B l , B2, B3]. The case of dim Y = 2 has recently been completely settled. In
[F+S+So] the cases, when Y is of Kodaira dimension  2, but not biholomorphic
to ? ( E) for a stable vector bundle E over a curve, are settled. E. Sato and
H. Spindler have shown how to rule out the case when Y is biholomorphic to
~ ~ E) for a stable vector bundle E over a curve. Further we can weaken the
condition of this paper that 0 when dim Y = 2 and Y is of general
type. Indeed if Y is a general type surface then most fibres of ~/p 2013~ P in
the proof of (2.2) are general type surfaces. The intersection A n A’ is also of

general type and surjects generically finite to one onto most fibres of J/p 2013~ P.
By the 2 dimensional de Franchis theorem ([D+M], [M]) most of the maps
from A n A’ to a fibre of t~p -- P are the same except for some blowing up
and blowing down. Assuming that the fibre degree of these maps is t we get
a meromorphic map from to the symmetric product The image
of Yp in is birational to Y and the composition of

with this map gives the needed meromorphic extension X -i Y.
If dim Y = 3 and [A] is very ample, then the second author can show,

by using [So6], that either the conjecture is true or Y ~ ~ n, , but there is a

non-trivial two to one map of a smooth quadric onto Y. He can also show that
similar but slightly weaker restrictions hold if the dimension of Y is odd.
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