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Pointwise Estimates for a Class of Strongly
Degenerate Elliptic Operators:

a Geometrical Approach

B. FRANCHI* - R. SERAPIONI

1. Introduction

In this paper we extend to a class of strongly degenerate elliptic operators
of the second order some classical pointwise estimates: the Harnack inequality
and the Holder continuity of the weak solutions (De Giorgi - Nash - Moser
Theorem). This problem is the subject of many papers: see, e.g., the references
in [F.K.S.] and [F.L.2]. See also the survey contained in the book by
Stredulinsky [Str] and the recent results in [Ch.W.] and [Sc]. Most of these
papers are concerned with classes of "not too degenerate" operators. Usually
this means that the inverse of the lowest eigenvalue of the quadratic form of
the operator is supposed to belong to some suitable £P space, for a large p. On
the other hand, in [F.K.S.] and in [F.L.2] stronger degenerations are allowed:
a typical operator satisfying the hypotheses in [F.K.S.] is

while a typical example in [F.L.2] is

We note explicitly that these two classes are completely different ones. Rou-
ghly speaking, the operators of [F.K.S.] are good operators when working with
a degenerate measure as w (x)dx, where w is an A2 weight in the sense of
Muckenhaupt, while an appropriate metric not comparable with the euclidean
one is the right tool for the operators in [F.L.2]. These two approaches can be
unified in the setting of homogeneous metric spaces in a way that seems to be
the most natural one. (We note that a theory of Ap weights in homogeneous
spaces was developed by A. Calderon in [C]). Thus we can deal simultaneously
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with the two classes of operators and we are able to enlarge them in an essential
way. A typical example of the new class is given by

The proofs of the main results are obtained adjusting the classical Moser

technique to the geometry of the homogeneous space. We just observe here
that we had also the different possibility of using the new approach by Di
Benedetto and Trudinger ([D.T.]). An essential tool in both these proofs is
a weighted Sobolev type embedding theorem. We obtain such a result using
a representation formula for a function u closely fitting the geometry of the
operator and substituting the usual rapresentation of u as a fractional integral
of its gradient.

The material of the paper is divided as follows: in Section 2 we describe
our hypotheses and we recall some known results on the metric associated
to a degenerate elliptic operator and on Ap-weights in homogeneous spaces.
In Section 3, we state the main results and give some examples. In Section
4 we prove the representation formula and the Sobolev-Poincaré Theorem. In
Sections 5 and 6 we prove the results of Section 3 and in Section 7 we give
the proof of a number of technical estimates used throughout the paper.

Section 2.

In this paper we consider the differential operator:

where aii = aji for = 1,..., N, are real, measurable functions defined in
a bounded open set n c We assume the following hypotheses on the
structure of L:

(2.b) there exist v &#x3E; 1 and N + 1 real non negative functions

w, ~1, ..., aN defined on R N such that:

We will say that L E ,G (~, N, L, ~, p, Cw,2 ) if the functions A = (À1,..., ÀN)
and w satisfy the following assumptions (2.c),’’ ~,(2.f).
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~, then

(2.e) there is a family P of N(N - 1)/2 non negative numbers pji such that:
0  xi (Di,Bj) (x) :5 Pj,¡ for 2  ~’  ~

1

REMARK 2.1. The right hand side of condition (2.e) can be stated in an
equivalent way as:

For a proof of this fact see [F.L.3] Prop. 4.2. For a further discussion about
the meaning of (2.e) see also [F.L.3] Remark 2.9.

In order to formulate the last hypothesis on the function w we anticipate
that it is possible to associate a natural distance d on R N (See Def. 2.1 ) to the
vector valued function a = (~1’...’ in such a way that the triple (RN , d, £)
consisting of R N equipped with the distance d and the Lebesgue measure f is
an homogeneous space in the sense of Coifman and Weiss (see e.g. [C.W.I]
and [C.W.2]). Given the existence of this d we make the following hypothesis
on w:

Here S(x,r) = ~y E RN : d(x, y)  r} are the d-balls in RN while we indicate
by B (x, r) the euclidean balls. Moreover, if E c RN is a measurable set, E (
is its Lebesgue measure.

Observe that (2.f) is a Muckenhaupt A2-condition in the setting of the
homogeneous space (R N d, £). More properties of functions satisfying (2.f)
will be mentioned in Lemmas (2.9) and (2.10).

/
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Our next task is to givel the definition of the natural distance d and to
state some of its properties. Let’s start introducing the notions of A-subunit
vector and A-subunit curve (see also [F.P.] and [N.S.W.]):
a vector v E RN is a A-subunit vector at a point if

.7 = I

[O,T] -. RN be an absolutely continuous curve; then 7 is a A-subunit
curve if ~ (t) is a A-subunit vector at -y (t) for a.e. t E (O,T].

DEFINITION 2.2. For any X, y E RN we define d : RN x 7~~ -~ R+ as:

d(x, y) = Inf {T E R+ I there exists a A-subunit

REMARK 2.3.: d is a well defined distance. In fact our hypotheses on A
guarantee the existence of a A-subunit curve joining x and y, for any couple of
points x and y. This has been proved in [F.L,I] and [F.L.3]. Moreover there
is a positive b = 6(A) such that V x, y : b d(x, y).

For our purposes it is useful to introduce a (non symmetric) quasi-distance
6, more explicitely defined and sometimes easier than d to work with. Observe
that 6 has been defined and throughly studied in [F.L.1 ]; we just recall here
the relevant results. 

°

If x E RN and t E R put Ho(x,t) = x and

Here is the standard base in RN. The function

is strictly increasing on ~0, +oo~ for any

and for j = 1,..., N. Hence it is possible to define the inverse function of
Fj (x, .) that is

Now we give the definition of the new quasi distance:

DEFINITION 2.4. For any E RN we define 6 : i

where
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Associated with 6 we will consider the rectangular neighbourhoods
Q(x,r) = {y E  r}. Some properties of 6 are collected in the

following lemmas and proposition:

LEMMA 2.5. ([F.L.1 ] Theorems 2.6 and 2.7). There exists a &#x3E; 1 (a depends
only on P) such that for any x, y E RN :

LEMMA 2.6. ([F.L.2], Proposition 4.3). Put

Then

we get:

PROPOSITION 2.7. For any x E RN and any r &#x3E; 0

where a is the constant in Lemma 2.5.
Moreover there is b &#x3E; 1 such that

where 1/ = min 
3

Finally, there is a constant A &#x3E; 1, such that the two following doubling
properties hold:

for any x E RN and for any r &#x3E; 0.

PROOF: Follows easily from (2.6a), (2.6b) and Lemma 2.5.
Observe that all the constants depend only on N, A and P.
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It follows from (2.7c) and (2.7d) that both (RN , d, f-) and (RN, b, ,G) are
homogeneous structures in the sense of Coifman and Weiss (see [C.W.2] pag.
587). ,

Now we have to recall some results related with condition (2.f).
Let’s start with a definition:

DEFINITION 2.8: Let 1  p  oo. We ~ ‘say that a non negative function w
defined on RN belongs to Ap = or is an Ap weight if there is a
constant cw,p &#x3E; 1, such that: 

’

ù J J

It is obvious that Ap c Aq for p  q; on the other hand a crucial point of the
theory of Ap weights is the following "almost reverse" result

LEMMA 2.9. (See [C], Theorem 2): If w E Ap then w E A,. for any
r &#x3E; po, po  p and po depending only on cw,p, p and A (A is the constant in
(2.7c)).

The following doubling property for the measure w(x)dx is a consequence
of Lemma 2.9:

LEMMA 2.10. If w E then there is a constant B =

B(p, cw,p, A) such that: 
.

for any x E RN, for any r &#x3E; 0. (We use the notation w (E) = J* w dx for any
- E

measurable set E 

It follows from (2.10a) that the triple consisting of 1~N
equipped with the distance d and the weighted measure is an

homogeneous structure. Moreover since (2.7a) the same is true for the triple
(R~, b, wdx). ~ 

’

We note explicitely that (2.10a) implies that there exist a &#x3E; 0 such that,

We want now to give the definitions of solution, subsolution and supersolution.
Let’s start with some fact about weighted Sobolev spaces.

Given a measurable set E c R N we denote by LP(E), 1  p  oo the
usual Lebesgue spaces, while we denote by LP (E, w), 1 ~ p  00, the Banach

space of the measurable functions f, defined on E, for which:
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Observe that since w E then L2 (E, w) c Ll (E) for any bounded
measurable set E. We will denote also by Va the differential operator
V). == and by div,B the differential operator acting on vector
valued functions f = (/1,... , fN ) as

0

Given an open set Sl again we use the notations H 1 p(S), 1  oo,

for the usual Sobolev spaces, while we indicate by (respectively
0

H w)) the closure of the space Lip (f2) of the Lipschitz continuous functions
on f2 (respectively Lip(f2) n c,(f2)) with respect to the norm:

Moreover the spaces LPoc (E, w) and are defined in the usual way.

The following assertion is straightforward:

PROPOSITION 2.11: The bilinear form B defined as:

can be continued on all of Hf(O,w).
DEFINITION 2.12. Let f = ( fl, ~ ~ . , fN) be a vector valued function such

that E and let g E We say that u is a solution of the
Dirichlet problem:

and

DEFINITION 2.13. We say that v E Hx"loc ([2, w) is a local subsolution
(local supersolution) for L if for any open set f2l cc f2 and 0 E
0HJ,(f!):B()0 (&#x3E;0).
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DEFINITION 2.14. We say that u E w)- is a local solution for L
if it is both a local subsolution and a local supersolution.

The following theorem on existence and uniqueness of solutions follows
from Lax-Milgram theorem and the results of section 4:

THEOREM 2.15. Given f = (f1,...,fN) such that Ifl/w E L2 (n, w) and
g E Hxl ([2, w), there exists a unique solution in H’ ([2, w) of the Dirichlet
problem (2.g).

Section 3.

In this section, we shall formulate the main theorems of our paper;
moreover, some typical applications will be discussed. The basic point is an
invariant Harnack inequality for the d-balls (i.e. a Harnack inequality where ’the
constant does not depend on the radius of the ball). This result will be proved
in Section 5.

THEOREM 3.1. If the hypotheses (2.b)-(2.f) are satisfied, there exist

C, M &#x3E; 0 such that, if u E w) is a nonnegative weak solution of
Lu = 0 in a bounded open subset 0, then _

for any xo E RN, p &#x3E; 0, p  
The classical Harnack inequality follows straightforwardly from the above

result. We get: 
’

THEOREM 3.2. Let the hypotheses of the above Theorem be verified. If
o is connected, then for every compact subset K of 0, there exist MK &#x3E; 0

(independent of u) such that

Finally, the Holder continuity of the weak solutions follows from the invariant
Harnack inequality by standard methods (see, e.g., [Sta]). We have:

THEOREM 3.3. Let the hypotheses (2.b)-(2.f) be satisfied. If u E

Hl,loc(O,w) is a weak solution of Lu = 0 in an open subset 0, then u is

locally Holder continuous.
Let us now describe some relevant examples where our hypotheses are

verified.

EXAMPLE 3.4. Let us choose A 1 = A2 = ... = AN = 1; in this case

(2.c)-(2.e) are obviously satisfied and the metric d is the usual euclidean metric.
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Thus, hypothesis (2.f) is an usual A2-condition in RN and the operators
we consider are the same as in [F.K.S.].

EXAMPLE 3.5. Let us choose w = 1. In this case, if (2.c)-(2.e) are satisfied,
(2.f) is always verified and we obtain, in particular, the results of [F.L.3].

EXAMPLE 3.6. Let us suppose N = n + m, n, m &#x3E; 1.
Denote by (x, y) the generic point in R N , by I (x, y) I and I x I the usual

euclidean norms in l~~ and in Rn respectively. If we choose Å1 = ... = An = 1
and Ån+ 1. = ... = AN = &#x3E; 0, the hypotheses (2.c)-(2.e) are satisfied.
We will prove later that in this case, w (x, y) _ ~ I(x, y) la is an A2-weight with
respect to the metric d defined by Å1,..., aN if -n  a  n. Thus, our results
may be applied, e.g., to operators such as

Let us prove that is an A2-weight if -n  a  n.

Obviously, we need only to prove the assertion if 0  a  n. Now,
let r be a positive real number and let (e, t7) be a fixed point such that

~ (~, r~) ~  2rb, where b is the constant we introduced above such that

d((xr ~ y) ~ &#x3E; (~ y ym)) ~ &#x3E; I for any (x’, y’), &#x3E; (x", yn) E RN; &#x3E;
then S((~, ’I), r) g B (0, 3br); hence

On the other hand, by Lemma 2.5, there exist two constants cl, c2 &#x3E; 0

(depending only on P) such that x 9 r) 9
J3(~, c2r) x C2P)), where p = r(lxll + r,..., IXnl + r)°. Then, we get (the
constants depending only on P and a):

Thus, we proved that

for any 0 such that I
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moreover

Hence

due to our choice of I (C,,q) 1.

We note also that our choice of a cannot be improved, as we can see, by
choosing e = q = 0.

EXAMPLE 3.7. Let Å1..., ÅN be given functions satisfying (2.c)-(2.e).
Then, if e is a fixed point in RN, the function is an A2-weight with
respect to the d-balls if -N  a  N. 

’

Due to the doubling property (2.7c), the proof of the assertion can be
reduced in a standard way to the estimate of the means

where ci &#x3E; 0. 
’

By Lemma 2.5 we have:

(defining yj such that

(by Lemma 2.6 and the very definition of 
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Analogously,

and the assertion is proved.

EXAMPLE 3.8. For sake of simplicity, let us choose N = 2 and let us
consider the operator

where are real numbers, i = 1, 2.
° 

If

the hypotheses (2.c)-(2.f) are satisfied choosing

In an analogous way we can deal with the case

We note that the results in [F.K.S.] contain the case

and the results in [F.L.3] the cases

Section 4.

In this Section, we will prove the basic results we use in order to adapt
Moser’s machinery to our geometry. The main result is a Sobolev-Poincaré
estimate. It is stated in two equivalent versions in Theorems 4.1 and 4.5. We
will show first how Theorem 4.1 follows easily from Theorem 4.5. To prove
Theorem 4.5 we obtain first a weak version of Theorem 4.1, i.e. statement 4.a;
from this one and an appropriate covering argument Theorem 4.5 follows

THEOREM 4.1. Let /? be a fixed positive real number and let w belong
to for a given q &#x3E; 1. Then, there exists cp &#x3E; 0 (depending only
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on p, Nh and p) such that, if ,S = 9(~,r) is d-ball and u : S - R
is Lipschitz continuous and such E S : u(x) = 0}~ &#x3E; we get

for any p &#x3E; q and for a suitable k &#x3E; 1 depending only on p, q and P.
The admissible range for k is:

where the constants Gi are the ones in Lemma 2.6.

Then:

In the last inequality w is used. Now triangular inequality and Theorem
4.5 yield the thesis:

The main tool used in this section is the representation formula, closely
fitting the geometry of the homogeneous space (RN, d, ,C), stated in Lemma
4.3. Preliminarly, we recall the following definition.

DEFINITION 4.2. Let v belong to If 0  a  ’ 1, define the
fractional maximal funtion of v as:
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Now, we have:

LEMMA 4.3. Assume that S = S (~, r) is a fixed d-ball of radius r. For any
,3 E ]0, 1[ ( and any Q E 1 - (1:9i)-1, 1 (, there are constants co = co ((3, Q)

. i
and 9 = t9(p, Q) &#x3E; 1 (depending also on p and N) such that if u : ,9S =

- R is Lipschitz continuous and lEI = I{x E S : u(x) = 0}~ &#x3E;_ 81SI
then:

Here we used the symbol for the characteristic function of 

PROOF. In the sequel, we shall use some of the notations of Section 7. All
the constants c1, c2, ~ ~ ~ depend on P; we will specify explicitly the (possible)
dependence on ~Q.

Let x be a point of S. Since C S (x, 2r) and S (x, r) c S ( ~, 2r), by
the doubling property (2.7c), c21SI.

Now, we note that there exists a E { -1,1 } N such that

since

Thus, by the doubling property,

Let us now choose in Proposition 7.4 A = (thus a and e are fixed,
depending on 8); then, we get:

Now, we can suppose x V E (otherwise (4.3a) is obvious) and we put

Let

be a smooth function supported in ~
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Let’s assume for the moment that

Integrating on ~, we get

Now, we note that y -~ H(t, x, y) is a good change of variables in
V t &#x3E; 0; moreover,

and, by Proposition 7.5, the last product is equivalent to I with

equivalence constants depending only on P, a and e; hence the equivalence
constants depend only on P and on ~Q.

Thus, we get:

Now, there is c5 - c5 (,Q) such that

~ E RN and y E we get:

In fact, if
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Thus, s --~ is a sub-unit curve starting from x and attaining
H(t, x, y) at the time s = then, by the very definition of d, it follows that

~.4o:2t.

So that we obtain

A standard approximation argument shows that the above inequality holds also
for Lipschitz continous functions.

Now define 3 = 1 + 2ac5, then

and dx E S; hence in (4.3b), under the integral, we can substitute 
I for 
Moreover, by the doubling property, [ is comparable to IS(x,cst)1 [

and we obtain:

The last step is an estimate of 1 E 1; we have:

(changing variable once more H(2ar, x, y) = y’)

Substituting this estimate in formula (4.3c) we obtain
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The last inequality follows from:

and from our choice of Q.
Estimate (4.3a) now follows using once more that

Next Lemma is almost identical to Lemma 1.1 of [F.K.S].

LEMMA 4.4. Let w belong to d, G) for a given q &#x3E; 1.

Let f belong to Ll (RN) and be compactly supported in the closure of
a given ball S = S(~, R). Then if Q E ]0, 1], for any p &#x3E; q we have:

for 1  k  (1- (1- Q)plq)-l if 1-Q  qlp and for any k &#x3E; 1 if 
The constant C depends only on N and on cw,p.

PROOF. Fix A &#x3E; 0 and let Ea = {z E S : Mf (i) &#x3E; A}. By definition of
maximal function, for any z E Ea there is a positive number r(z) and a d-ball
S(z,r(z)) such that:

Since f is compactly supported in S, without loss of generality we can suppose
that 21~ for any x E Ex. By a "Vitali type" covering lemma (see e.g.
[C.W.l] pag. 69) we find a sequence x3 E Ex, such that for the
associated d-balls Sj = 

Here 0 &#x3E; 1 is a constant depending only on the homogeneous structure

(Rn, d, ,C) (more precisely, 6 depends only on the constant A in (2.7c)). From
(4.4c) and the doubling property (2.7c) it follows for any k &#x3E; 1 and for any
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Note that in the last inequality we used w E Ap; now from Jensen inequality:

So that we obtain:

Now we can choose k such that 1

. otherwise. Now from (4.4b):

Finally we obtain:

s

that is MQ is continuous from LP(w(x)dx) in weak-LPk(w(x)dx). Now the
conclusion follows from a standard use of Marcinkiewicz interpolation theorem
(see [Ste] pag. 272) and from Lemma 2.9. D
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From Lemma 4.3 and 4.4 it follows readily the following:

WEAK VERSION OF THEOREM 4.1: Assume w E Aq (Rlv, d, L) for some
q &#x3E; 1 and S = is a fixed d-ball. For any 6 E ~0,1~ there are constants
c~ = co (/~, q) and d &#x3E; 1 (both depending on P and N) such that if u : ,9S -~ R
is Lipschitz continuous and lEI = I {x E S : u(x) = 0}~ &#x3E; I then:

for any p &#x3E; q and k &#x3E; 1 satisfying the limitations in (4.1 b).
The proof is , obvious but for the use of Lemma 2.9 to get the full range

of values of k.

Now we are in position to prove:

THEOREM 4.5. Assume w E d, ,~) for some q &#x3E; 1 and S = r)
is a fixed d-ball. Let u : ,S --~ R be Lipschitz continuous, then there are constants
co = and UIJ such that:

for q and k &#x3E; 1 satisfying the limitations in (4.1 b).
Moreover Us can be chosen to be either the Lebesgue average of u, i.e.

Us = ISI-1 J u or the weighted average, i.e. Us = w (S) - 11 f u w.
s s

PROOF. First we obtain from (4.a) the following inequality (4.5b) for any ~ 
°

d-ball B such that c S

Here r(B) indicates the radius of B and p = is the median of u
in B. To get (4.5b) just observe that, B and u given, there is a number

~u = JL(u,B), the median of u in B, such that if B+ = {x E B : u(x) ~! p) and
B- = fx E B : u(x)  it) then:

Hence both the functions and u- = u, 0) satisfy



545

the hypotheses of the weak version of Theorem 4.1 with 8 = 1/2 and we get:

and the same for u-. Adding these two we get (4.5b).
Now, by a minor modification of a tecnique developed by Jerison in [J],

we show that (4.5b) is actually equivalent to a Sobolev-Poincaré inequality "on
the same ball", i.e. to (4.5a).

. 

We just sketch here the main steps in Jerison’s argument.
First observe that by a standard covering argument and Lemma 2.10,

(4.5b) yields:

Here and in the following c indicates a constant, not the same at any appearance,
depending on the doubling constant of Lemma 2.10. By Whitney decomposition
there is a pairwise disjoint family F of d-balls B and a constant M such that

(i) S = U 2B.
BEF

(ii) If B E F then 102r(B)  10~r(B); where d(B, aS) is the
distance in the metric d from B to aE.

(iii) for any x E ,5 : #{B E E M; here ~{ } is the number
of elements of the set { }.

For any B E F fix a subunit curve 1B from the center of B to ~, the
center of S, of length  r, the radius of S. Denote

and for any A E F denote

Then (see Coroll. 5.8 and Lemma 5.9 in [J]) there are constants c and e

depending only on the doubling constant in Lemma 2.10 such that for any
A, B E F.

where the sum is extended to all B E A(F) such that
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Now choose Bo E F such that ~ E 2Bo. Let ~co be the median of u on B.
From (4.5d) and arguing as in the proof of Theorem 2.1 in [J] we get for any
BEF:

Adding over all B E F and raising to 1/k:

Now by (4.5e) and (4.5f):

hence:

Since w E Aq, from Lemma 2.9 w E At for some t, 1  t  q; hence:

From the left side of (4.5g):
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Note that, by Lemma 2.6 and Proposition 2.7:

hence:

where both the exponents on the left and on the right are positive for k as in
(4.1 b). From the above inequality and r(A)  r/10:

In all:

by (4.5g):

Finally it is easy to show that o can be substituted by an average of u:

uw then:

If 1 then:

since w E Aq and pk &#x3E; q.



548

THEOREM 4.6. Assume w E Aq (RN, d, L) for some q &#x3E; 1 and S = ,S (~, r)
is a d-ball. Let u : S’ --&#x3E; R be Lipschitz continuous and supported in S, then
there is a constant Co = co(cw,q,p,N) such that:

for p &#x3E; q and k &#x3E; 1 as in (4.1b).
Moreover, if S~ is a bounded open subset of RN, and

is compactly embedded in

PROOF. In order to prove the first assertion, we need only to apply Theorem
4.1 in the ball S(8, 2r), keeping in mind that, by the doubling property (2.7c),
it follows immediatly that S ( , 2 r) - I is equivalent to 

o

Now, we note that the continuous embedding of in
2  p  po, follows from (4.6a), if we choose r sufficiently large.

Then, we need only to prove compacteness. By an interpolation argument,
we can reduce ourselves to the case p = 2.

o

Let now (’un)nEN be a sequence in the unit ball of without
loss of generality, we may suppose

un E supp un C f2 C S(0, 1) for any n E N.

By the reflexivity of L2(O,w), we may suppose that un converges to u weakly
in L2(O,w). 

’

Now, by the "Vitali type" theorem of [C.W.11, pag. 69, for every r E ]0,1],
there exist x 1, - - - , E S (0, 1) such that:

We can prove that:

iii) m(r)  cor-" and
iv) ,S (xk, r) n S (xi, r) 1= 0 for at most M different indices i 0 k;
here a is the constant of (2.1 ob) and co and M depend only on a. In fact,
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so that

and iii) follows.
Arguing in the same way, if we put

since , we get:

Then, iv) follows.
Now, we can prove that is a Cauchy sequence in L 2 (11, w). Let

E &#x3E; 0 be fixed. By (4.5a), we have:

Now, let us choose r = e(2C(M + 1))-1/2, so that last term is estimated by
g2/2. On the other hand, since S(z;, 2) D S(0,1), we get:

Since the sequence (Un)nEN is weakly convergent in L2 (0, w), there exists
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n (e) such that, if n, m &#x3E; n (e),

Keeping in mind the estimate of m(r), the assertion follows. 0

REMARK 4.7. It is a consequence of the comparability of the two distances
d and 6 and of the doubling properties that Theorems 4.1, 4.5 and 4.6 yield
similar statements with the 6-balls Q(~,r) instead of the d-balls 

Let us see how this works for Theorem 4.6. Let u : Q = - R be

Lipschitz continous and supported in Q and extend it equal to zero to all of
RN.

From (2.7a) and Lemma 2.10 there exists a constant c( a, B), 0  c(a, B)  1,
such that:

Hence thinking u ns supported in ,S (~, ar), from (4.7a) and Theorem 4.6 we
have: 

°

The analogous versions of Theorems 4.1 and 4.5 are less precise than the
original ones, but sufficient to our purposes.

Let’s see first Theorem 4.1:
Assume u : be Lipschitz continuous and

Once more from (2.7a) and (4.7a) we have:

Hence from Theorem 4.1 in S’ ( ~, ar) and from (4.7a):
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From (4.7c) as in the proof of Theorem 4.6 one gets:

The last result we formulate explicitly is an embedding near the boundary. We
will need the following definition.

DEFINITION 4.8. A bounded open subset n c l~~ is said to belong to
the class S if there exist a, ro &#x3E; 0 such that for each xo E and for each
r E ]0, ro[, we have

THEOREM 4.9. Assume w E Aq, for q &#x3E; 1, n belong to the class S with
constant a and xo E an. If fl S (xo, r) is Lipschitz continuous and u = 0
on an n S (xo, r), then there is c = c(a, N, Cwq,p) such that

PROOF. Just extend u = 0 on S - 11 and use Theorem 4.1.

Section 5.

We devote this section and the following one to the study of global and
local properties of the solutions defined in section 2. Our main result here is
Harnack inequality from which interior Holder continuity of solutions follows.
The study of the boundary behavior of solutions is the argument of the next
section.

Since the techniques we use are well known we often merely state the
main theorems and lemmas. After the statement is given, we give a reference
to a corresponding nondegenerate theorem and explain the differences in the
proof (if there are any). The references we use in this section are [K.S.] chapter
2 and [Sta]; see also [F.K.S.].

Let’s begin with some technical lemmas:

LEMMA 5.1 (Chain rule) Let f : R --&#x3E; R, be either a C 1 function
with bounded derivative, or a piecewise linear function whose derivative has
discontinuities at an}. Let u E Ha (0, w).

Then

with the convention that both sides are 0 when ;
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The proof of this lemma follows the lines of Lemma A.3 and Corollary
A.5 of [K.S.].

COROLLARY 5.2. Let u E H’ ([2, w), then u + = max(u, 0), u-
max(-u, 0) and I u E Hxl (f2, w) - Moreover Vx u+ = Vau where u is positive,
otherwise V Å 1.£+ = 0. An analogous statement holds for u- and Moreover

0

if u E so does u+,1.£-,I1.£I. If v also belongs to H¡(n,w) so does
Sup(u, v) and Inf(u, v).

Given E c f2 and u, v E Hxl (f2, w), the notions of u  v on E in H..’ (f2, w)
and of Sup u in H.’ (f2, w) are defined as usual (see [K.S.] Definition 5.1). The
following lemma summarizes the main properties of the concepts mentioned
above.

then there exists a sequence

(iv) If E is open in {} and u &#x3E; 0 on E a.e., then u &#x3E; 0’ on K in the H.’ (0, w)
sense, for any compact K c E.

PROOF. (i), (ii), (iii) have identical proofs to the corresponding statements
in Proposition 5.2 of [K.S.]. For the proof of (iv) see [F.K.S.] Lemma 2.13.

0
The last lemma we need is the. following:

LEMMA 5.4. (Existence of cut-off functions. See [F.L.2] pag. 537). Let
x E Rn and 0  r1  r2, then there is a function a E such that

Now it follows a version of the classical Stampacchia’s weak maximum
principle and after a global boundedness theorem.

THEOREM 5.5. (weak Maximum Principle) Let L belong to L (f2, N, v, A, P,
Cw,2) . Let u E Ha (f2, w) be a L-supersolution in O. Then

where Inf u is taken in the Hi (0, w) ,sense.
an
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PROOF. See Theorems 5.5 and 5.7 in [K.S.].

is a solution in 0 of

Where C (Q) depends only on the diameter of Q.
The proof again is like the one of Theorem B.2 of [K.S], replacing the

exponent 2* by 2 k and the usual gradient by Vi. 0

Finally we start with the proofs of Harnack inequality and interior Holder
continuity of solutions. To get these results we need the inequalities of Theorems
4.5 and 4.6 (more precisely we will use their corollaries (4.7b) and (4.7d) since
it will be more convenient to use the distance 6 and the corresponding 6-balls
Q(x, r)).

. Let’s start with the following local boundedness theorem that can be

proved using (4.7b).

THEOREM 5.7. Let L belongs to ’c(0, N, v, A, P, Cw,2) and let u be a local
subsolution. Then there exists M &#x3E; 0, M independent of r and u, such that
for any b-ball Q = Q (x, r) C n, we have

PROOF. Proceed as in Theorem C.4 of [K.S.], using the cut-off functions
defined in Lemma 5.4. The main fact that is needed is: if v is a non-negative
local subsolution in n and a E then

Now choose « such that Supp Q(x,r) and use (5.7b) together with
Corollary 4.7 to get:

where + 1/k’ = 1. Now the only change needed is to choose ~ and t7 so
that C + 17 = = 6r¡k’, with 6 &#x3E; 1. This can be done with t7 = 1, if we

choose 0 to be one of the roots of the equations 62 - 0 - Ilk’ = 0. 0
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From the above theorem it follows that solutions are locally bounded. In
fact we have: 

.

COROLLARY 5.8. Let u be a local solution in f2 of Lu = 0, L E

.c(0, N, v, A, P, Then

The following theorem is Harnack’s inequality.

THEOREM 5.9. Let L belong to N, 1.1, A, P, Cu,,2) and u be a positive
local solution of Lu = 0 in O. Then there is a positive constant M (depending
only on the structural constants of L, but independent of xo, u, r such that if
8r  6 (xo, aO) then:

PROOF. The proof is along the lines of Moser iteration techniques. See for
example theorem 8.1 of [Sta]. The main estimates that are used are the following
ones: for any p ~ 1/2 let v = uP, a E Ogo(Q(xo, 2r)), then:

We also need to estimate v = log u. It is at this point that we use (4.7d). For
any Q(x, 2r) c 12 we obtain the inequality:

where vQ = f v w dx / Because of the last inequality, using the

NJohn-Nirenberg lemma in, the setting of the homogeneous space (RN, d, w (x) dx)
(a proof of this lemma in homogeneous spaces can be found in [B]) we obtain:

for two positive numbers q and c, both independent of u, ac, r.
Now let us fix zo and r satisfying the hypotheses, then using Theorem

5.7 applied to v = uP for p  0 or p &#x3E; 1, Moser’s iteration argument gives:
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and

Combining (5.9c), (5.9d) and (5.9e) the theorem follows if we can show that:

once more this can be obtained with an iteration argument, similar to the

preceeding one. 0
We observe here that Theorems 3.1 follows from Theorem 5.9 and the

comparability of d and 6. Moreover Holder continuity of solutions, as stated in
Theorem 3.3, follows from Harnack’s inequality and from (2.7b).

We now wish to study the local behaviour of solutions of

and p sufficiently large. For the proofs our references here are Theorems 7.1,
7.2, 7.3 in [Sta].

First we obtain the following variant of (5.6a) using (4.5a):n

From (5.b) we obtain the following Lemma that is a key step in the proof of
Holder continuity: 

"

where k is as in (4.5a).
Assume also that p is so large that w E AP16, where b &#x3E; N is such that

r6.
Then there is u E ]0, 1[ such that:
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PROOF. Let q be a number &#x3E; 1 that will be fixed later.

If (,w)l~tQ-1~ E it follows that 
.

Hence

Since we assume w E AP16 wt have also w E A~p~~~ _ s hence

with this choice of q we have 6qlp  1, and the statement follows from (5.b)
, 

0

Finally the interior Holder continuity for solutions of Lu = -diva f follows
in a standard way from the above results:

THEOREM 5.11. Let L belongs to c~, ~ 2 ) . Assume u E
H’ (12, w) be a local solution of Lu = -divÅ! in 0, where p &#x3E; 2k/(k - 1), k
as in 4.5a, and p is such that w E 

,

Then u is locally Hölder continuous in 0, that is there is u, 0  u  1

such that if 
- 

..

then

Section 6.

We now proceed to study the behavior of solutions of Lu = -diva f near
a portion of the boundary where the solution vanishes. We assume through all
this section that

Our first result is an L°° estimate which is analogous to Theorem 5.3 of [Sta].

LEMMA 6.1. Let xo E and let



557

be a subsolution for L Assume that u  0 on 
in the sense of f1 Q (xo, ro), w), then if r  ro and ko &#x3E; 0 we have:

where

and

PROOF. As for Theorem 5.7 of the preceeding section the proof follows
the same steps as in Theorem 5.3 of [Sta]. More precisely: integrating by parts
in the equation and using Theorem 4.5 one gets the following two inequalities.

From now on the proof has no changes but for the choice of

The following result follows from Lemma 6.1.

THEOREM 6.2. Let Xo E afl and u E nQ(xo,ro),w) be a solution
of Lu = 0 ro) such that u = 0 on ao nq(xo, ro) in the Ha sense.
Then if r  ro:

.. 18

In order to establish Holder continuity at the boundary, certain smoothness

assumptions on the domains to be considered are necessary. We recall here
definition 4.8 of domains of class S: (see also [Sta] Def. 6.3) 0 is of class S
if there are a, ro such that for any xo E ao and for any r  ro:
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From (6.a) and the comparability of the two distances d and 6 it follows:

for any xo E af2 and r  ro.

We observe also that there are equivalent formulations of (6.a) or (6.b)
in terms of the weighted measure. In fact we recall the following property
of Ap weights (see [C] Lemma 4): if w E Ap and E c S(xo, r) then

From (6.c) if 0 is of class ,S there are a’, ro &#x3E; 0 such that:

A preliminary version of Hölder continuity is given by the following Lemma:

LEMMA 6.3. Let 0 be of class S, G a bounded open set and u a solution
in Lu = 0. Assume that u = 0 on (gf2 nG in the sense.

Then there is 17 &#x3E; 1 such that, for zo Eafi fl G and r small enough,

where

PROOF. Once more the proof is similar to the one of Lemma 7.4 of [Sta].
Let 0  h  h’ and let v = min(u, h’)-min(u, h) in S(xo, r) n ii while v = 0

in S (xo, r) - 12. Define the level sets of u as A (h, r) = {x E S(xo, r) : u (x) ~: h}.
We recall Lemma 2.9; then w E A2 implies that w E Ap for some p  2. Finally,
since [2 is of class S and v = 0 on S (xo, r) - 11 we can use Theorem 4.1 and
we obtain:
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Finally from Holder’s inequality we have:

. Using (6.3c) the last part of the proof proceeds with almost no changes. D
Our main result on boundary regularity follows from Lemma 6.3 and

Lemma 5.10.

THEOREM 6.4. Let (1 be of class S, G a bounded open set. and
u E H¡(GnO,w) be a solution of Lu = -diva f . Assume f = (f1,...,fN) is
such that

where k &#x3E; 1 is the exponent of (4.5a) and b _&#x3E; N is such that r~ .
If u is 0 on an fl G in the fl f2, w) sense, then u is Holder continuous
on G fl 0, i.e. there are M &#x3E; 0 and ]0, 1 such that:

for , and

for

Section 7.

In this Section, we will prove some technical results we used in the proof
of the basic estimates of Section 4. More exactly, we introduce a suitable
family of sub-unit curves depending on N real parameters and we prove that
the set of points of a given d-ball we can reach along these curves from the
centre is as big as we like.

Let us now introduce some notations.

DEFINITION 7.1. Let a = and e = (~1, ~ ~ ~ , ~N) be given
vectors in RN with 0  ej  a j , j = 1,’" N. We shall denote by 6.: the set
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If ~ I we shall put

and we shall denote by the set Moreover, if x e R~ and p &#x3E; 0
we put .

if a = ( 1, ...1 ), we shall write instead of

DEFINITION 7.2. If x, y we shall denote by H (t, x, y) =
(H1 (t, x, y), ~ ~ ~) the solution at the time t of the Cauchy problem

We note explicitly that depends only on Y1,...,Yj.
Let us recall the notation x * _ (lx11,..., 
PROPOSITION 7.3. Let e, a be as in Definition 7.1; then, there exist 2N

real positive constants C ( 1 ) , ’ ’ ’ , C (N) , C’ ( 1 ) , ’ ’ ’ , C’ (N) such that

(i) if T &#x3E; 0, x E RN and yELl: then there exist m and M, 0  m  M  1
(depending on T, x and y) such that

for s E [mT, MT] and for j = 1,..., N. Here C(j) depend only on P, e
and a and M - m &#x3E; 4-N.

, we have

where the constants C’ ( j) depend only on P, e and a.
Without loss of generality, we may suppose C(j)  1 and C’ ( j ) &#x3E; 1.

PROOF. The proof will be carried out by an induction argument on the
index j. Without loss of generality, we can suppose 1, &#x3E; 1, j =
1, ... , N. Moreover, at each step of the proof we will modify our choice of
the constants m, M in such a way that the new interval is contained in the
old one. More formaly, for each j E { 1, ~ ~ ~ , N} we will find two constants
mj, Mj 0  m;  1 such that

We will put m = mN and M = MN.
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CASE j = 1. Here, Hi(s,z,y) = xl + syl. If 0, let us choose
we get:

then there exists son 
we choose

We choose again

Finally, if so E [0, r/2], we choose
get:

So, we proved i), by choosing C(l) = el/8a,. On the other hand, ii) is quite
obvious with = a1, since

CASE j &#x3E; 1. Let us now suppose i) and ii) hold for 1, 2, - - ., j and let
us prove the assertions for j + 1, possibly with a new choice of the constants
m, M, as we said above. For sake of simplicity, let us call m’, M’ the new
constants.
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(by the induction hypothesis, (2.c), (2.d) and (2.e))

Let us now suppose  0; then, there exists so E ]0, +oo [ such that

we choose

In fact, we get:

On the other hand,
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Then,

Now, if so E [1/2(m + M)r, M r], we choose

we get:

(by the induction hypothesis,

Now, since I can be estimate as above, we get again the estimate (7.3a).
Finally, let us suppose so E In this case,

We choose again m’ = m,

we get:

Now, put
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We have:

(keeping in mind the definition of u)

Thus, we proved i), by choosing

in fact

Finally the proof of ii) follows from (2.c), (2.d) and (2.e). 0

PROPOSITION 7.4. Let 7 E ~ ]0, 1[ and a be fixed. Then, there
exist E, a E RN as in Definition 7.1 such that, V p &#x3E; 0, V x E RN

PROOF. First, we note that
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and

so, we can reduce ourselves to the case ~ _ {1,~~~,1}.
Put e = 1 - (1 - We will choose s and a such that

From (7.4a) the proposition follows easily: in fact

hence

We will prove (7.4a) by an induction argument:
If j = 1 we choose ei =8, al = 1, then

Now let us assume that (7.4a) holds for 1, 2, ... , j - 1 and let us prove it for
j. Let us choose 

--

We note that C ( 1 ) ~ - ~ , C ( j - 1 ) , C’ ( 1 ) , ~ ~ ~ , C’ ( j - 1 ~ depend only on the

previously chosen a~, ei and on P.
In fact, let 17 belong to and let us choose yy =

p 
,

We note that, since Ay depends only on the first j - 1
o

variables and Hs depends only on the definition of yj makes sense
for any arbitrary fixed yl , ~ ~ ~ , y~ _ 1.

We will prove that:

The first one follows from the definition of H ( p, x, y). In order to prove
ii), we note that, by Proposition 7.3 i),
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(where i depend only on P, ei and

Hence

On the other hand, by Proposition 7.3 ii),

Hence

and the assertion is completely proved. 0

PROPOSITION 7.5. let g, a be fixed vectors as in Definition 7.1 and let 0-
belong to {-1,1 }N. Then, there exist two constants C1, C2 depending only on
P, e and a such that

for p &#x3E; 0 and y E ~s (~~.
PROOF. We note that, if

, we have:
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Moreover, by Proposition 7.3, there exist m, M depending on p, x, y, such that:

Then, the assertion of the Proposition follows by the estimate of IS(x,p)1 given
in Proposition 2.6. 0
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