Annali della Scuola Normale Superiore di Pisa Classe di Scienze

R. LEHMANN

D. FELDMUELLER

Homogeneous CR-hypersurface-structures on spheres

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 14, nº 4 (1987), p. 513-525

http://www.numdam.org/item?id=ASNSP_1987_4_14_4_513_0

© Scuola Normale Superiore, Pisa, 1987, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Homogeneous CR-hypersurface-structures on Spheres

R. LEHMANN - D. FELDMUELLER

Introduction

Let M be a compact CR-hypersurface which is homogeneous under the action of a real Lie group G of CR-transformations (see §1 for basic definitions). If some additional condition is imposed, a detailed classification is possible. For example in [3] a fine classification is given for the case when the Leviform is non-degenerate. Instead of the non-degeneracy of the Levi-form a Kähler-condition is imposed in [17].

In this note the additional condition is topological: M is assumed to be a homogeneous CR-hypersurface which is homeomorphic to the (2n+1)dimensional sphere. There is a standard (homogeneous) CR-structure on Mcoming from the embedding of M as the boundary of the ball B_{n+1} in \mathbb{C}^{n+1} . We want to answer the following question: Are there homogeneous CR-structures on M which are different from the standard CR-structure? This is a natural question because in [6] E. Cartan showed that there are nonstandard CR-structures on S^3 . These structures are homogeneous and appear as follows: The generic SU_2 -orbits on the affine quadric $SL_2(\mathbb{C})/\mathbb{C}$. (where $\mathbb{C}^* = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} : \lambda \in \mathbb{C}^* \right\}$ are hypersurfaces which are diffeomorphic to $\mathbb{P}_2(\mathbb{R})$. It is known that different orbits have different CR-structures (see e.g. [17]). The CR-structures on the orbits induce CR-structures on the universal covering S^3 which is also an SU_2 -orbit. It can be shown that S^3 with one of these structures is never the boundary of a Stein manifold (see e.g. [3]). The situation for S^3 is different from the general situation. On one hand, the affine quadric is an affine C-bundle over $\mathbb{P}_1(\mathbb{C})$ which is not equivalent to a holomorphic line bundle. In higher dimensions every affine C-bundle over $\mathbb{P}_n(\mathbb{C})$ is equivalent to a line bundle (see §2.4) and therefore examples don't appear in this way. On the other hand, these non-standard structures come from unit sphere bundles over the symmetric spaces S^2 or $\mathbb{P}_2(\mathbb{R})$, while in higher dimensions the universal covering of a unit sphere bundle is never a sphere.

Pervenuto alla Redazione il 17 Febbraio 1986.

In fact we have:

Main Theorem: The only CR-hypersurface-structure on $S^{2n+1}(n \ge 2)$ which admits a transitive action of a Lie group of CR-transformations is the standard CR-structure.

Our main tool is the so-called \mathfrak{y} -anticanonical fibration of a homogeneous CR-hypersurface (cf. [3] or [17]). We use the topological properties of the sphere to show that the \mathfrak{y} -anticanonical fibration is principal and the fiber is either finite or the identity component of the fiber is a compact abelian group. In the latter case, using a result of Eckmann, Samuelson and Whitehead ([7]), we show that this group is one-dimensional, and that M is an S^1 -principal bundle over a projective rational manifold. In the case of a finite \mathfrak{y} -anticanonical fibration we consider the so-called Stein-rational fibration. Applying results of Nagano ([16]) we show that the base of this fibration is not trivial. Again we obtain an S^1 -principal fibration of M over a projective rational manifold.

From the classification of Nagano we also know that in each case the base X of the S^1 -principal fibration is diffeomorphic to $\mathbb{P}_n(\mathbb{C})$. Using results of Kodaira and Hirzebruch ([10]) we know then that X is biholomorphic to $\mathbb{P}_n(\mathbb{C})$.

The next step is to show that M is an S^1 -subbundle of a holomorphic \mathbb{C}^* -principal bundle over $\mathbb{P}_n(\mathbb{C})$. The principal bundle is shown to be $\mathbb{C}^{n+1}\setminus\{0\}$ and therefore $M=S^{2n+1}$ with the standard structure.

We think that some of the methods should work for the study of simply-connected homogeneous CR-hypersurfaces.

The organization of the article is as follows:

As the result might be interesting for someone not familiar with the methods applied, we have explained them in the beginning. Therefore $\S1$ consists of the basic definitions and main theorems about homogeneous CR-structures, the g-anticanonical and the Stein-rational fibration.

In §2 it is shown that there is a CR-fibration of M with fiber S^1 and base $P_n(\mathbb{C})$. This lies in a holomorphic line bundle or a \mathbb{C}^* -principal bundle over $P_n(\mathbb{C})$. Finally we prove the uniqueness of the CR-structure.

We want to thank Prof. Alan Huckleberry for proposing us the problem and for his help in numerous discussions.

1.1 Basic Definitions and Facts about CR-manifolds

We begin by giving some basic definitions and facts about CR-manifolds. For details we refer to [1] or [2].

Let M be a real C^{∞} -manifold of dimension m. By a Cauchy-Riemann-(CR-)-structure of type (m,ℓ) on M we understand a subbundle HM of rank ℓ of the complexified tangent bundle $TM \otimes \mathbb{C}$ which satisfies the following two conditions:

- (a) $HM \cap \overline{HM} = \{0\}$ (zero section)
- (b) HM is involutive, i.e. the Lie product $[\xi, \eta]$ of two sections ξ, η in HM is again a section in HM.

A CR-manifold of type (m,ℓ) is a pair (M,HM) consisting of a C^{∞} -manifold M of dimension m and a CR-structure HM of type (m,ℓ) on M. If $2\ell+1=m$, we will call (M,HM) a CR-hypersurface. An analytic CR-manifold M is defined to be a real analytic manifold M with HM locally generated by analytic local sections in $TM\otimes \mathbb{C}$. Let f be a smooth map between two CR-manifolds (M,HM) and (M',HM'). We call f a CR-map, if for every $p\in M$ the complexified differential $f^{\mathfrak{C}}_*$ carries HM_p into $HM'_{f(p)}$.

If $M' = \mathbb{C}$ and HM is the usual holomorphic tangent bundle, then f is called a CR-function.

An embedding τ of a CR-manifold M into a complex manifold \hat{M} is defined to be a smooth embedding $\tau: M \to \hat{M}$, where τ is a CR-map and $\tau(M)$ carries the induced CR-structure, i.e. one has $H \tau(M) = (T \tau(M) \otimes \mathbb{C}) \cap T^{1,0} \hat{M}$. An embedding is called generic, if $\dim_{\mathbb{C}} M = m - \ell$ (the smallest possible value), M being of type (m, ℓ) . In this case (\hat{M}, τ) is called a complexification of M.

We recall two basic facts (see e.g. [1], [2]):

THEOREM 1: Every analytic CR-manifold M has a complexification (\hat{M}, τ) . The germ of the complexification is unique.

THEOREM 2: Let $M \subset \hat{M}$ and $M' \subset \hat{M}'$ be two analytic CR-manifolds with their complexifications and $f: M \to M'$ be an analytic CR-map. Then there exist open neighbourhoods $U \subset \hat{M}$ of M (resp. $U' \subset \hat{M}'$ of M') and a holomorphic mapping $\hat{f}: U \to U'$ with $\hat{f}|_{M} = f$. The germ of the extension \hat{f} of f is unique.

Defining a CR-vector field X to be a vector field on M inducing local one-parameter groups of CR-transformations, one can also show that, for every analytic CR-vector field X, there exists a neighbourhood $U \subset \hat{M}$ of the analytic CR-manifold M and a holomorphic vector field Z on U so that $Re\ Z = X$ on M (see e.g. [3]). Again the germ of Z on M is unique.

1.2 Homogeneous CR-manifolds and the \mathfrak{g} -anticanonical Fibration

The details of what will follow can be found in [3] or [17].

We call a CR-manifold M homogeneous if there exists a real Lie group G acting transitively on M as a group of CR-transformations. We always assume M to be connected. Thus we may also assume that G is connected. Furthermore we assume that G is simply-connected. This can be arranged by going over to the universal covering.

Since G as a Lie group possesses an analytic structure, we can also give M the structure of an analytic manifold so that G acts by analytic transformations. One can show that HM is locally generated by analytic local sections in

 $TM \otimes \mathbb{C}$ ([17]). Thus a homogeneous CR-manifold M has the structure of an analytic CR-manifold. From 1.1.1 we know that M possesses a complexification (\hat{M}, τ) .

We regard the Lie algebra ${\bf y}$ of G as an algebra of CR-vector fields on M. Since it is finite-dimensional and since individual vector fields can be extended, there is a neighbourhood $U\subset \hat{M}$ and for every analytic CR-vector field X a unique holomorphic vector field Z on U such that $Re\ Z=X$ on M. We define $\hat{\bf y}$ to be the complex subalgebra of the holomorphic vector fields on U which is generated by ${\bf y}$ and the map $X\mapsto Z$. So we have a Lie algebra homomorphism ${\bf y}\to\hat{\bf y}$. We call (U,τ) a $\hat{\bf y}$ -complexification. After shrinking \hat{M} , we may assume that it is a $\hat{\bf y}$ -complexification.

If there exists a complex Lie group \hat{G} with Lie algebra \hat{g} which acts holomorphically and transitively on \hat{M} so that this action induces the G-action on M, then \hat{M} is called a \hat{G} -complexification of M.

Now let \hat{M} be a $\hat{\mathbf{g}}$ -complexification of M, $\dim_{\mathbf{C}} \hat{M} =: n$ and $V_{\hat{\mathbf{g}}} := \Lambda^n \hat{\mathbf{g}}$ with $\dim_{\mathbf{C}} V_{\hat{\mathbf{g}}} :=: N+1$. One can take a base $\langle \sigma_0, \cdots, \sigma_N \rangle$ of $V_{\hat{\mathbf{g}}}$ and define a map

$$\hat{\phi}: \hat{M} \longrightarrow \mathbb{P}_N(\mathbb{C})$$

$$z \longmapsto [\sigma_0(z): \cdots : \sigma_N(z)]$$

where $[y_0:\cdots:y_N]$ denote the homogeneous coordinates on $\mathbb{P}_N(\mathbb{C})$.

Taking \hat{M} small enough, one may assume $\hat{\phi}$ to be holomorphic. The map ϕ defined by $\phi := \hat{\phi}|_{M}$ is called **y**-anticanonical map of the homogeneous manifold M. This map is G-equivariant. However $\hat{\phi}$ may not be.

PROPOSITION 1: A vector field Z in $\hat{\mathbf{g}}$ vanishing at $p \in M$ vanishes identically on the fiber $\phi^{-1}(\phi(p))$.

PROPOSITION 2: Let $\phi: G/H \to G/N$ be the **y**-anticanonical map of M. Then N normalizes H^0 .

So if H is connected, the **y**-anticanonical fibration is a N/H-principal bundle. Moreover, the right principal action $\lambda: M \times N/H \to M$ is a CR-action.

From Proposition 1 one can deduce the following property of the CR-structure HL of the fiber L=N/H ([3]): $\Gamma(L, HL+\overline{HL})$ is a complex subalgebra of $\Gamma(L,TL\otimes\mathbb{C})$ and therefore generates complex integral submanifolds of L.

From now on we assume that M is a CR-hypersurface.

Since ϕ is a CR-map, HM is mapped surjectively onto $H\phi(M)$ (for the general case see [17]). In this case one deduces that the base G/N of the \mathfrak{F} -anticanonical fibration is either a CR-hypersurface in $\hat{\phi}(\hat{M})$ or is equal to the complex manifold $\hat{\phi}(\hat{M})$.

As the **g**-anticanonical fibration is G-equivariant, there is a homomorphism $\phi_*: G \to PGL_{N+1}(\mathbb{C})$. Let \tilde{G} be the smallest complex Lie group (not necessarily closed) in $PGL_{N+1}(\mathbb{C})$ containing $\phi_*(G)$. Let $p \in \phi(M)$ and

 $\tilde{G}(p) =: \tilde{G}/\tilde{N}$, containing $\hat{\phi}(\hat{M})$. The restriction to $\hat{\phi}(\hat{M})$ of a vector field in the Lie algebra $\tilde{\mathbf{g}}$ of \tilde{G} is the projection of a vector field on \hat{M} in $\hat{\mathbf{g}}$, so $\hat{\phi}(\hat{M})$ is open in \tilde{G}/\tilde{N} .

If $G/N = \hat{\phi}(\hat{M})$ then $G/N = \tilde{G}/\tilde{N}$. By a theorem of Goto ([8]) we know then that G/N is a projective rational manifold, and it is simply connected. For the special case where the fiber N/H is one-dimensional, it is shown in [3] that ϕ realizes M as a principal S^1 -bundle over the compact rational manifold Q = G/N. The natural embedding of M in the associated principal- \mathbb{C}^* -bundle \hat{M} gives a \hat{G} -complexification of M.

In the other case, $G/N \subset \tilde{G}/\tilde{N}$ is a compact hypersurface, \tilde{G}/\tilde{N} being a \tilde{G} -complexification of the base G/N of the \mathfrak{g} -anticanonical fibration. The fiber N/H is a compact complex manifold. In [3] it is shown, that either $G/N = S^1 \times Q$ with Q projective rational or we are in the situation that $\pi_1(G/N)$ is finite and the semi-simple part K of the maximal compact subgroup of G acts transitively on G/N = K/L. In the next section we will consider this situation.

We note that the **y**-anticanonical map ϕ depends both on the manifold M and on the Lie group G acting on M. For example we consider S^{2n+1} with the standard CR-structure.

Let be $G_1 := SU_{n+1}$ and $G_2 := SU(n+2,1)$ with associated \mathfrak{g} -anticanonical maps ϕ_1 and ϕ_2 . Then ϕ_1 is an S^1 -principal-fibration and ϕ_2 is an injection.

1.3 The Stein-rational Fibration

In this section we consider the situation where a CR-hypersurface M lies in $\mathbb{P}_N(\mathbb{C})$ (not necessarily as a real hypersurface) as an orbit of a compact semi-simple real subgroup K of $PSL_{N+1}(\mathbb{C})$. Let \hat{K} be the complexification of K and $\Omega = \hat{K}/\hat{L}$ be the \hat{K} -orbit of a point in M = K/L. By definition M is a real hypersurface in Ω . Note that Ω is not projective rational, because then it would be simply-connected and a maximal compact subgroup of \hat{K} would act transitively ([14]).

We will see that Ω fibers over a projective rational manifold. Let X be the algebraic closure of Ω . Applying the Chevalley Constructability theorem ([4]), we see that Ω is Zariski-open in X. Furthermore, X can be realized as a compact almost-homogeneous projective algebraic manifold where the generic K-orbit is a real hypersurface. Each of the (at most two) connected components of the exceptional set $E = X \setminus \Omega$ is a K-orbit and one can assume that E consists of complex hypersurface orbits of \hat{K} .

Then there exists a (minimal) parabolic subgroup $\hat{P} \not\supseteq \hat{L}$ of \hat{K} (possibly $\hat{P} = \hat{K}$) so that either Ω can be realized as a principal- \mathbb{C}^* -bundle over a compact homogeneous rational manifold $Q = \hat{K}/\hat{P}$ (if E has two components) or otherwise there is a \hat{K} -equivariant fibration of $\Omega = \hat{K}/\hat{L} \to Q = \hat{K}/\hat{P}$ over a projective rational manifold. This fiber \hat{P}/\hat{L} is either \mathbb{C}^n or the tangent bundle TN of a compact symmetric space of rank one

(see [3]). In the first case the fiber of the induced fibration of $M = K/L \subset \Omega$ is S^{2n-1} with the standard structure. In the second case it is the unit sphere bundle in TN. The compact symmetric spaces of rank one are known, they are S^n , $\mathbb{P}_n(\mathbb{R})$, $\mathbb{P}_n(\mathbb{C})$, $\mathbb{P}_n(\mathbb{H})$ (quaternionic projective space) and $\mathbb{P}_2(O)$ (Cayley projective plane). All cases lead to the following situation

$$M = K/L \hookrightarrow \hat{K}/\hat{L} = \Omega$$

$$\downarrow \qquad \qquad \downarrow$$

$$K/P \tilde{-} \hat{K}/\hat{P} = Q$$

with \hat{P}/\hat{L} a Stein manifold and Q a projective rational manifold. The fibration of Ω is therefore called the *Stein-rational-fibration* (SR-fibration). The fiber and the base are uniquely determined, because \hat{P} is chosen minimal. Only if the fiber is \mathbb{C}^n , there might be different ways to obtain the fibration ([3]).

2.1 The Fiber of the y-anticanonical Map of the Sphere

Now we consider $S^{2n+1}=M$ $(n\geq 2)$ as a homogeneous CR-manifold G/H. As mentioned above, we can assume G to be connected and simply-connected. Since M is connected and simply-connected, the homotopy sequence of the fibration $H\longrightarrow G\longrightarrow G/H=M$ shows that H is connected. Thus N normalizes H (by prop. 1.2.2) and the fiber N/H of the \mathfrak{F} -anticanonical map is a compact Lie group. Furthermore we can prove

PROPOSITION 1: The fiber L = N/H of the **y**-anticanonical fibration is either a finite group or L^0 is a positive-dimensional abelian Lie group.

PROOF: The fiber L is a compact Lie group. If it is not discrete, two cases can occur (cf. 1.2).

Case 1.

The fiber is a compact complex manifold and the base is a CR-hypersurface in complex-projective space. The only connected compact manifolds which are complex Lie groups are tori. So the identity-component L^0 of the fiber is a torus and therefore abelian.

Case 2.

The fiber is a CR-hypersurface and the base is a simply-connected homogeneous projective rational manifold Q (cf. 1.2).

A look at the homotopy sequence of the fibration $L \longrightarrow M \longrightarrow Q$ then shows that L is connected. There exists a complexification (\hat{L}, τ) of L such that \hat{L} is a complex Lie group (cf. [17]). We denote the Lie algebra of L by ℓ (resp. of \hat{L} by $\hat{\ell}$). Since $\Gamma(L, HL + \overline{HL})$ is a complex subalgebra of $\Gamma(L, TL \otimes \mathbb{C})$, we know that there exists a (maximal) complex subalgebra s of ℓ . Then $\exp(s)$ generates a (not necessarily closed) connected complex subgroup S of L of codimension 1.

If S is not closed, then $\overline{S} = L$. Let f be a CR-function on L. Since L is compact, f has a maximum at a point $x \in L$. If we look at the S-orbit S(x) through x, then $f|_{S(x)}$ is a holomorphic function which is constant by the maximum principle. Since S is dense, f is constant on L. Thus every CR-function on L is constant. We consider the adjoint representation of L in $GL(\hat{\ell})$. Its restriction to L yields the adjoint representation of L. It is given by CR-functions and is therefore trivial. Hence L is abelian.

If S is closed, then S is a connected compact complex torus. Thus every CR-function on L is constant on the S-orbits. Considering again the adjoint representation we conclude that S lies in the center of L. The factor group L/S is a compact connected 1-dimensional group, i.e. $L/S = S^1$. Looking at the Lie algebra one can easily check that a central extension L of S^1 by a connected complex torus is abelian.

If the y-anticanonical fibration is not finite, we always have a fibration

$$M = G/H \xrightarrow{N/H} G/N$$

$$N^{\circ}/H \searrow \qquad finite$$

$$G/N^{\circ}$$

where N^0/H is a connected real torus, i.e. N^0/H is diffeomorphic to $(S^1)^k$ for some k.

The following theorem due to Eckmann, Samuelson and Whitehead shows that such a fibration is only possible for k = 1:

THEOREM 2 ([7, p. 437]): A fiber decomposition of the n-sphere S^n with fiber $(S^1)^k$ exists only if n is odd and k = 1.

This theorem has nothing to do with the fact that M is a homogeneous CR-hypersurface. It still remains valid if the base is only assumed to be a separable metric space.

COROLLARY 3: If the \mathfrak{F} -anticanonical fibration of $M\cong S^{2n+1}$ is not finite, the fiber is a connected, one-dimensional torus over a projective rational manifold Q.

2.2 Homogeneous Fibrations of Spheres by Spheres

In this section we consider the possible homogeneous fibrations of spheres by spheres. The classification of these fibrations has been carried out by Nagano ([16]).

• We use his results to determine the base space of the above S^1 -principal fibration of M as well as to handle the case of a finite y-anticanonical fibration.

Let E = S/H be a homogeneous sphere bundle with fiber S^k and E be homeomorphic to a sphere of dimension 2n + 1.

If B = S/I is the base of this fibration, then we have the following (see [16, p. 45])

THEOREM 1:⁽¹⁾ Under the above assumptions there are only the following cases:

- (a) If k = 0, then E is a double covering space of B and B is diffeomorphic to $\mathbb{P}_{2n+1}(\mathbb{R})$.
- (b) If k = 1, then B is diffeomorphic to $\mathbb{P}_n(\mathbb{C})$.
- (c) If k = 3, then B is diffeomorphic to $\mathbb{P}_{n-1}(\mathbb{H})$ and n is odd.
- (d) If $k = 7 \neq 2n + 1$, then B is diffeomorphic to S^8 .
- (e) If k = 2n + 1, then B is a point.

If B is the base of an S^1 -principal fibration of a sphere, then B is diffeomorphic to $\mathbb{P}_n(\mathbb{C})$. Suppose we know (as in 2.1) that B is also a projective algebraic manifold.

Then we can apply a result of Hirzebruch and Kodaira ([10]):

If g is the generator of $H^2(B, Z) = \mathbb{Z}$, chosen such that g corresponds to the fundamental class of a Kähler metric on B, then there is the following

THEOREM 2: Let B be an n-dimensional compact Kähler manifold which is diffeomorphic to $\mathbb{P}_n(\mathbb{C})$. If n is odd, then B is biholomorphic to $\mathbb{P}_n(\mathbb{C})$. If n is even, then B is biholomorphic to $\mathbb{P}_n(\mathbb{C})$ if the first Chern class c_1 of B is not equal to -(n+1)g.

It was shown by Yau that the additional assumption on $c_1(B)$ is not necessary (because the case $c_1(B) = -(n+1)g$ does not occur) (cf. [20]). In the homogeneous case, Lie group methods yield a direct proof of the fact that $c_1(B)$ is not a negative multiple of g.

COROLLARY 3: If the **y**-anticanonical fibration of M is not finite, then M fibers over $\mathbb{P}_n(\mathbb{C})$ with fiber S^1 .

2.3 The SR-fibration in the Case of a Finite Fiber

We now handle the case where the **y**-anticanonical fibration is finite. We know from 1.3 that either $\tilde{M}=K/L=S^1\times Q$ or there exists a SR-fibration of $\Omega\supset \tilde{M}$.

The first case can be excluded because $\pi_1(\tilde{M})$ is finite. So we always have a diagram

$$M \xrightarrow{\Phi} \tilde{M} = K/L \hookrightarrow \hat{K}/\hat{L} = \Omega$$

$$\downarrow \hat{P}/\hat{L} \qquad \qquad \downarrow \hat{P}/\hat{L} \qquad \qquad K/P = \hat{K}/\hat{P} = Q$$

where Q is a simply-connected homogeneous projective rational manifold.

⁽¹⁾ Indeed it is shown that such a fibration can only exist if $\dim_{\mathbb{R}} E$ and k are odd.

PROPOSITION 1: If the **y**-anticanonical fibration of M is finite, then there are only two possibilities for the Stein-rational fibration:

(a)
$$\tilde{M} = K/L \longrightarrow \hat{K}/\hat{L} \\
S^1 \downarrow \qquad \qquad \downarrow \mathbb{C}^* \\
K/P \stackrel{\sim}{-} \hat{K}/\hat{P}$$
(b)
$$\tilde{M} = K/L \longrightarrow \hat{K}/\hat{L} \\
S^1 \downarrow \qquad \qquad \downarrow \mathbb{C}^* \\
K/P \stackrel{\sim}{-} \hat{K}/\hat{P}$$

PROOF: At first we show that the fibration is not trivial, i.e. Q is not a point. In this case, $\Omega = \mathbb{C}^{n+1}$ or Ω is the tangent bundle TN of a symmetric space N of rank 1 with $\dim_{\mathbb{R}} N = n + 1$.

But $\Omega = \mathbb{C}^{n+1}$ means that a semi-simple group \hat{K} acts transitively on \mathbb{C}^n . Then \hat{L} is reductive (see [13, p. 206]). Now \hat{K}/\hat{L} has the same homotopy type as the quotient of the maximal compact subgroups of \hat{K} (resp. \hat{L}) (see [15, p. 260]). This quotient is compact and all homology groups vanish. Therefore it is a point. Then the quotient \hat{K}/\hat{L} is also a point, i.e. we have a contradiction.

If $\Omega = TN$, then \tilde{M} is the bundle of unit tangent vectors over N.

For simply-connected N, the **g**-anticanonical fibration is injective, and one can apply 2.2.1 to see that n=3 or n=7. In both cases the base B is diffeomorphic to a sphere $(\mathbb{P}_1(\mathbb{H})\tilde{=}S^4)$. Now the bundle of unit tangent vectors of a sphere S^{n+1} is the Stiefel manifold $V_{n+2,2}$. It is known that $\pi_n(V_{n+2,2}) = \mathbb{Z}_2$ (cf. [18, p. 132]). So S^7 (resp. S^{15}) is not the tangent sphere bundle of $N = S^4$ (resp. $N = S^8$).

If N is not simply-connected, then $N=\mathbb{P}_{n+1}(\mathbb{R})$ and $\tilde{M}=\mathbb{P}_{2n+1}(\mathbb{R})$ is the unit sphere bundle in $TN=\mathbb{P}_{n+1}(\mathbb{C})\backslash Q_n$, where $Q_n=\{[z_0:\cdots:z_{n+1}]:\sum_{i=0}^{n+1}z_i^2=0\}$ (cf. [5]). Q_n is a complex K-orbit in $\mathbb{P}_{n+1}(\mathbb{C})$. By the "differentiable slice theorem" there is a K-equivariant diffeomorphism of a neighbourhood of the zero section in the normal bundle of Q_n onto a neighbourhood of Q_n in $\mathbb{P}_{n+1}(\mathbb{C})$ (see e.g. [12]). In our situation K acts transitively on the unit sphere bundle in the normal bundle (see e.g. [5]). So the K-orbit \tilde{M} is diffeomorphic to the unit sphere bundle and we obtain a homogeneous fibration $S^1 \longrightarrow \tilde{M} \longrightarrow Q_n$. This yields a fibration $M \longrightarrow Q_n$. The fiber is connected, so it is again S^1 . From 2.2.1 and 2.2.2 we conclude then that Q_n is biholomorphic to $\mathbb{P}_n(\mathbb{C})$. It can be shown e.g. by looking at the dimension of the automorphism groups that Q_n and $\mathbb{P}_n(\mathbb{C})$ are not biholomorphic except for n=1.

So Q is a positive-dimensional projective rational manifold. Note that $\pi_1(Q) = 0$ and therefore P/L is connected.

Furthermore $\pi_2(Q) = H_2(Q, \mathbb{Z})$ by the Hurewicz-Isomorphism ([18]), and

 $H_2(Q, \mathbf{Z})$ contains an infinite group.

Assume now that P/L = S is the unit sphere bundle in the tangent bundle $\hat{P}/\hat{L} = TN$ of a symmetric space N of rank 1 with $\dim_{\mathbb{R}} N = k$. For $k \geq 2$, one obtains that $\pi_1(S)$ is finite by considering the homotopy sequence of $S^{k-1} \longrightarrow S \longrightarrow N$. But then the homotopy sequence of the fibration $S \longrightarrow \tilde{M} \longrightarrow Q$ shows that $\pi_2(Q)$ is finite and we have a contradiction. If k = 1 then $N = S^1$ or $N = \mathbb{P}_1(\mathbb{R})$. Since S^1 and $\mathbb{P}_1(\mathbb{R})$ are Lie groups, their tangent bundle is (topologically) trivial and hence $S = 2 \cdot S^1$ (resp. $2 \cdot \mathbb{P}_1(\mathbb{R})$) (two disjoint copies of S^1 (resp. $\mathbb{P}_1(\mathbb{R})$)). Therefore the fiber S is not connected, i.e. a contradiction.

If $\hat{P}/\hat{L} = \mathbb{C}^k$, then $P/L = S^{2k-1}$. Assume k > 1. Then $\pi_2(Q) = 0$ as above. So the only possibility is k = 1 and $P/L = S^1$.

In the case
$$\hat{P}/\hat{L} = \mathbb{C}^*$$
 we also have $P/L = S^1$.

The following is an immediate consequence of the above proposition together with 2.2.1 and 2.2.2.

COROLLARY 2: If the **y**-anticanonical fibration of M is finite, then M fibers over $\mathbb{P}_n(\mathbb{C})$ with fiber S^1 .

The next point in the proof of the main theorem is to show that the situation where the non-standard structures on S^3 appear is impossible for higher dimensions. These appear as S^1 -bundles over $\mathbb{P}_1(\mathbb{C})$ lying in a \mathbb{C} -bundle over $\mathbb{P}_1(\mathbb{C})$ which is not holomorphically equivalent to a line bundle. For higher dimensions this situation is not possible.

LEMMA 3: For $n \geq 2$, every affine \mathbb{C} -bundle on $\mathbb{P}_n(\mathbb{C})$ is holomorphically equivalent to a line bundle.

PROOF: A locally trivial affine C-bundle over a complex manifold X is given by transition matrices

$$A_{ij} := \begin{pmatrix} \lambda_{ij} & \mu_{ij} \\ 0 & 1 \end{pmatrix} : U_{ij} \longrightarrow GL_2(\mathbb{C}).$$

Thus it defines a holomorphic line bundle L on X with transition functions λ_{ij} and a rank-two vector bundle E on X which contains a trivial subbundle of rank 1, i.e. we have a sequence $0 \longrightarrow \mathcal{O} \longrightarrow E \longrightarrow L \longrightarrow 0$. This is a holomorphically trivial extension if and only if the affine bundle is equivalent to a line bundle. It is well known that for vector bundles E', E''

$$\operatorname{Ext}_{\mathcal{O}}^{1}(E'', E') \stackrel{\sim}{=} \check{H}^{1}(X, \operatorname{Hom}(E'', E'))$$

$$\stackrel{\sim}{=} \check{H}^{1}(X, (E'')^{*} \otimes E') \qquad (cf. [9])$$

It follows that the affine bundle is holomorphically equivalent to the line bundle L, if $\operatorname{Ext}_{\Omega}^1(L, \mathcal{O}) = \check{H}^1(X, L^*) = 0$.

Now every line bundle on $\mathbb{P}_n(\mathbb{C})$ is of the form $L = H^{\ell}$ ($\ell \in \mathbb{Z}$), where H is the hyperplane bundle, and the canonical bundle K on $\mathbb{P}_n(\mathbb{C})$ is

 $H^{-(n+1)}$. If $\ell > -(n+1)$, we have by the Kodaira-Vanishing-Theorem ([19, p. 219]) $H^q(X,L) = 0$ for every q > 0. If L is a negative bundle, we apply again the Kodaira-Vanishing-Theorem and make use of Serre-Duality to obtain $H^{n-1}(X,L^*\otimes K)=H^1(X,L)=0$. This completes the proof.

3. Uniqueness of the CR-structure of M

For the proof of the main theorem we introduce the following notation: As usual we denote the hyperplane bundle on $\mathbb{P}_n(\mathbb{C})$ by H and the associated \mathbb{C}^* -principal bundle to H^m $(m \in \mathbb{Z})$ by $P^{(m)}$. $P^{(m)}$ and $P^{(-m)}$ are biholomorphic. Of course

$$\mathbb{C}^{n+1}\setminus\{0\} \xrightarrow{\mathbb{C}^*} \mathbb{P}_n(\mathbb{C})$$

is $P^{(-1)}$ and one has an associated S^1 -principal bundle by the inclusion

$$\begin{array}{ccc} S^{2n+1} & \longrightarrow & \mathbb{C}^{n+1} \setminus \{0\} \\ \downarrow S^1 & & & \downarrow \mathbb{C}^* \\ \mathbb{P}_n(\mathbb{C}) & \tilde{-} & \mathbb{P}_n(\mathbb{C}) \end{array}$$

(the first fibration simply being the Hopf-fibration). This S^1 -bundle is denoted by $A^{(-1)}$. There exists a (m:1)-covering map

$$\phi_m: P^{(+1)} \longrightarrow P^{(m)},$$

where $\mathcal{A}^{(m)} := \phi_m(\mathcal{A}^{(+1)})$ is the S^1 -principal bundle associated to $P^{(m)}$. In particular $\pi_1(\mathcal{A}^{(m)}) = \mathbf{Z}_m$.

Now we can prove the

Main Theorem: Let M = G/H be a homogeneous CR-hypersurface, which is homeomorphic to $S^{2n+1}(n > 1)$. Then M carries the standard CR-structure (which comes from the embedding $S^{2n+1} \hookrightarrow \mathbb{C}^{n+1}$).

PROOF: By considering the y-anticanonical and SR-fibration of M, we have shown that only the two following cases can occur.

(1)
$$M = G/H \longrightarrow \hat{G}/\hat{H}$$

$$\downarrow S^1 \qquad \qquad \downarrow \mathbb{C}^*$$

$$\mathbb{P}_n \stackrel{\sim}{-} \qquad \mathbb{P}_n$$

(2)
$$M \xrightarrow{t:1} \tilde{M} = K/L \longrightarrow \hat{K}/\hat{L} \\ \downarrow S^1 \qquad \qquad \downarrow \mathbb{C}, \mathbb{C}^* \\ \mathbb{P}_n \stackrel{\sim}{-} \qquad \mathbb{P}_n$$

In the first case we know that $M = A^{(m)}$ $(m \in \mathbb{Z})$. But $\pi_1(M) = 0$ and so m = 1 and

$$M=S^{2n+1}\hookrightarrow \mathbb{C}^{n+1}\backslash\{0\}=\hat{G}/\hat{H}.$$

Therefore the statement is proved in this case.

In the other case \hat{K}/\hat{L} is either a \mathbb{C}^* -principal bundle or the fiber is \mathbb{C} . Since we assumed n>1, we know by lemma 2.3.3 that the \mathbb{C} -bundle \hat{K}/\hat{L} must be holomorphically equivalent to a holomorphic line bundle over \mathbb{P}_n . The S^1 -bundle K/L is then CR-diffeomorphic to an S^1 -bundle in H^m for some m and thus CR-diffeomorphic to $\mathcal{A}^{(m)}$. This situation is the same as in the case when $\hat{P}/\hat{L} = \mathbb{C}^*$. By the above remarks we may assume m>0 and m=t (since $\pi_1(\tilde{M})=\mathbb{Z}_t=\pi_1(\mathcal{A}^{(t)})$).

We know then that there is a holomorphic (t:1)-covering of $P^{(t)}$ by $\mathbb{C}^{n+1}\setminus\{0\}$, which induces a (t:1)-covering of $A^{(t)}=\tilde{M}$ by the sphere S^{2n+1} equipped with the standard structure.

Now we have two universal CR-coverings M and S^{2n+1} of the CR-hypersurface \tilde{M} . Then M is CR-equivalent to S^{2n+1} with the standard CR-structure.

FINAL REMARK: For S^3 all possible homogeneous CR-hypersurface-structures are classified (e.g. [11]). Together with our main theorem one obtains a complete classification of all homogeneous CR-hypersurface-structures on spheres.

EFERENCES

- [1] A. ANDREOTTI G.A. FREDRICKS, Embeddability of real analytic Cauchy-Riemann Manifolds, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 6 (1979), pp. 285-304.
- [2] A. ANDREOTTI C.D. HILL, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (3) 26 (1972), pp. 325-363.
- [3] H. AZAD A.T. HUCKLEBERRY W. RICHTHOFER, Homogeneous CR-manifolds, Journ. Reine Angew. Math. 358 (1985), pp. 125-154.
- [4] A. BOREL, Linear algebraic Groups, Benjamin, Inc. New York 1969.
- [5] M. BUCHNER K. FRITZSCHE R. SAKAI, Geometry and Cohomology of Certain Domains in the Complex Projective Spaces, Journ. Reine Angew. Math. 323 (1981), pp. 1-52.
- [6] E. CARTAN, Sur la géométrie pseudoconforme des hypersurfaces de l'espace de deux variables complexes, I, II, Ann. di Math. 11 (1933), pp. 17-90, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 1 (1932), pp. 333-354.
- [7] B. ECKMANN H. SAMUELSON G.W. WHITEHEAD, On Fibering Spheres by Toruses, Bull. Amer. Math. Soc. 55 (1949), pp. 433-438.
- [8] M. GOTO, Algebraic Homogeneous Spaces, Am. J. of Math. 76 (1954), pp. 811-818.

- [9] P. GRIFFITH J. HARRIS, Principles of Algebraic Geometry, John Wiley & Sons, New York 1978.
- [10] F. HIRZEBRUCH K. KODAIRA, On the complex projective spaces, Journ. de Math. 26 (1957), pp. 201-216.
- [11] A.T. HUCKLEBERRY W. RICHTHOFER, Recent Developments in Homogeneous CR-Hypersurfaces, Contributions to Several Complex Variables, Vieweg Braunshweig 1986.
- [12] K. JÄNICH, Differenzierbare G-Mannigfaltigkeiten, Lecture Notes in Math. 59, Berlin 1968.
- [13] Y. MATSUSHIMA, Espace Homogènes de Stein des Groupes de Lie Complexes, Nagoya Math. J. 16 (1960), pp. 205-218.
- [14] D. MONTGOMERY, Simply connected homogeneous spaces, Proc. Amer. Math. Soc. 1 (1950), pp. 467-469.
- [15] G.D. Mostow, On Covariant Fiberings of Klein Spaces, Amer. J. Math. 77 (1955), pp. 247-278.
- [16] T. NAGANO, Homogeneous Sphere Bundles and the Isotropic Riemannian Manifolds, Nagoya Math. J. 15 (1959), pp. 29-55.
- [17] W. RICHTHOFER, Homogene CR-Mannigfaltigkeiten, Dissertation Bochum 1985.
- [18] N. STEENROD, The Topology of Fibre Bundles, Princeton University Press, Princeton 1951.
- [19] R.O. WELLS, Differential Analysis on Complex Manifolds, Springer, New York 1980.
- [20] S.T. YAU, Calabi's Conjecture and Some New Results in Algebraic Geometry, Proc. Nat. Acad. Sci. USA 74 (1977), pp. 1798-1799.

Fachbereich 11: Mathematik Universität Duisburg - GHS Lotharstr. 65 D-4100 Duisburg

Fakultät und Institut für Mathematik Ruhr-Universität Bochum Postfach 10 21 48 D-4630 Bochum