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Boundedness of Solutions Via the Twist-Theorem

R. DIECKERHOFF - E. ZEHNDER

1. Introduction and results

a) - Results

It is well known that the longtime behaviour of a timedependent nonlinear
differential equation

f being periodic in t, can be very intricate. For example, there are equations
having unbounded solutions but with infinitely many zeroes and with nearby
unbounded solutions having randomly prescribed numbers of zeroes and also
periodic solutions, see V.M. Alekseev [8]. K. Sitnikov [7] and J. Moser [4]. In
contrast to such unboundedness phenomena one may look for conditions on the
nonlinearity, in addition to the condition, that

which allow to conclude that all the solutions of the equation are bounded. For
example every solution of the equation

p(t + 1) = p(t) being continuous, is bounded. This result, prompted by questions
of J.E. Littlewood in [2], is due to G.R. Morris [1]. Our aim is to extend the
result to a more general but still very restricted class of equations for which in
particular the timedependence is involved in the nonlinearity in x.

Pervenuto alla redazione il 9 Gennaio 1986 ed in forma definitiva il 31 Gennaio 1986.

(*) Supported by the Stiftung Volkswagenwerk.



80

THEOREM 1. Every solution x(t) of the equation

with + 1) = and pj E Coo, is bounded, i.e. it exists for all t and

We shall not make the bound explicit in terms of the initial conditions x(O)
and £(0) of the solution. The proof of Theorem 1 is strictly 2-dimensional and
based on J. Moser’s twist theorem similarly to the proof of Morris’ result. The
underlying idea is as follows. By means of transformation theory the equation
is outside of a large disc D in the transformed into a Hamiltonian

equation having the following property. Following the solutions from the section
t = 0 to the section t = 1 defines a map, the time 1 map ~ of the flow, which
is close to a so called twist map D. By means of the twist-theorem
one finds large invariant curves diffeomorphic to circles and surrounding the
origin in the (x, x)-plane. Every such curve is the base of a time periodic and
under the flow invariant cylinder in the phase space (~, x, t) x 3, which
confines the solutions in its interior and which therefore leads to a bound of
these solutions. It turns out that the solutions starting at t = 0 on the invariant
curves are quasiperiodic.

THEOREM 2. There is a (large) w* &#x3E; 0 such that for every irrational number
w &#x3E; w* satisfying

for all integers p and with two constants ,Q &#x3E; 0 and c &#x3E; 0, there is a

quasiperiodic solution of (1.4) having frequencies (w, 1 ); i.e. there is a smooth

function F(OI, 02) periodic of period 1, such that

are solutions of the equation.

It is well known that the invariant curves guaranteed by the twist-theorem
lead to an abundance of periodic solutions. For example by applying the
Poincare-Birkoff fixed point theorem to the annuli bounded by two suitable
invariant curves one finds fixed points and periodic points of the time 1 map of
the flow. They give rise to forced oscillations and subharmonic solutions of the
equation. One knows, in addition, that these invariant curves are in the closure
of the set of periodic points. Since in our case the set of invariant curves has
infinite Lebesgue measure in J? 2 B D we shall conclude:
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THEOREM 3. For every integer m &#x3E; 1 there are infinitely many periodic
solution of (1.4) having minimal period m. Moreover the closure of the set

of subharmonic solutions of (1.4) is of infinite Lebesgue measure in the phase
x S’ 1.

For related results concerning infinitely many forced oscillations we point
out [5] and [6]. We should mention, that up to now there is no genuine
generalization of the first part of this statement to higher dimensions, i.e.

equations x = JV h(t, x), x E ’~2n, n &#x3E; 2. In the special case of equations of
the form i = JVh(x) + p(t) Berestycki and Bahri [13] found infinitely many
forced oscillations using minimax techniques, under suitable assumptions on the
Hamilton function h.

b) - Remark about the smoothness requirements.

It is likely that in the general case (1.1) the boundedness of the solution is
related to an excessive smoothness requirement in the x-variable. The role of
the smoothness in the t-variable is not clear. In the special case of (1.4) where
the time is not involved in the nonlinear term, the dependence on t is only
required to be continuous. In fact we shall prove:

THEOREM 4. Every solution of

with a continuous p(t + 1) = p(t) is bounded. Moreover the statements of Theorem
2 and Theorem 3 hold true.

In this statement, conjectured already in [ 1 ], the timedependent term is
bounded and is required merely to be continuous. In contrast, the proof of the
general case in Theorem 1 with the timedependent term unbounded, requires
an excessive amount of derivatives in the t-variable. In fact the number of
derivatives in t we need depends on the size of the t-dependent nonlinear term.
It will follow from the proof that the statement of Theorem 1 holds true for
the equation 

°

0  .~  2n, under the following smoothness assumption which is weaker than
in Theorem 1: pj E where v = vel, n) is the smallest integer satisfying
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It is not clear whether the boundedness phenomenon is related to the smoothness
in the t-variable or whether this requirement is a shortcoming of our proof.

We point out that related problems for the equation x + = 0 have been

investigated by Coffmann and Ullrich [ 17]. We should remark that the statement
of Theorem 1 holds true for a more general class of equations as can be seen
from its proof.

2. - Action and angle-variables

Dropping the timedependent term equation (1.4) becomes x + x2n+l = 0.

Introducing x = y we have vectorfield x = y and -x2n+’ which is a time-
dependent Hamiltonian system on 

Clearly h &#x3E; 0 on R2 except at the only equilibrium point (x, y) = (o, 0) where
h = 0. All the solutions of (2.1 ) are periodic, the periods tending to zero as h = E
tends to infinity. In fact, since the Hamiltonian function is homogeneous in the x-
variable, the solutions are easily described in terms of a single reference solution
for which we take (x*(t), y*(t)) having the initial conditions (~* (o), y*(O) = (1, 0).
It has the energy , Let T* &#x3E; 0 be its minimal period
and introduce the functions C and ~S’ by 

’

These analytic functions satisfy

Let r &#x3E; 0 and set 1 :- 1 , then the solution of ~ 2.1 ) with the initial conditions
n

(x(O), y(0)) = (r~’, 0) is given by (x(t), y(t)) = as one readily
verifies. It has period T In terms of its energy we
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find for T = f (E) the function f (E) = C.E-11 with a = n . Loosly speaking2(n + 1 )
the solutions spin around faster and faster with increasing energy, which has,
as it turns out, a stabilizing effect.

The action and angle variables are now defined by the )

R 2 B {0}, where (x, y) = 0) with A &#x3E; 0 and with 0 (mod 1) is given by the
formulae:

We claim that 0 is a symplectic diffeomorphism from R+ x S 1 onto ~~ 2 B 101-
Indeed, for the Jacobian A of 0 one finds by (ii) and (iii) 1, so that

1/J is measure preserving. Moreover since (S, C) is a solution of a differential

equation having T* as minimal period one concludes that 0 is one to one and

onto, which proves the claim.
In the new coordinates the Hamiltonian function (2.1) becomes

which is independent of the angle variable 0 so that the system

(2.1 ) becomes very simple:

The full equation (1.4) has the Hamiltonian function:

Under the symplectic transformation y it is transformed into:

where G is of the form:
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with Gj E COO(T2) and T2 = L~ 2/22. The Hamiltonian system Xh,, is now more
complicated:

In the following we shall transform this system, for large A, into a simpler
system for which the 0-depending terms are small, so that in the new variables
A is close to an integral. To this effect an iterative sequence of finitely many
canonical transformations of R+ x S’ 1 which depend periodically on time t will
be carried out in the next section.

3. - More canonical transformations

First we introduce a space of functions fer) which behave for large A &#x3E; 0,
with all their derivatives, like Arf,(O,t). Given r E R we denote by fer) the
set of C°° functions in (A, 0, t) x T~ which are defined in A &#x3E; Ao for some
Ao &#x3E; 0 and for which there is a sequence Àjlk &#x3E; 0 such that

We summarize some properties readily verified from the definition:

LEMMA 1.

For f E T(r) we denote the meanvalue over the 0-variable by [ f ] :

If Ao &#x3E; 0, then Aao C R+ x T2 denotes the annulus

PROPOSITION 1. Let



85

with h, E fee) and h2 E f(b). Assume a &#x3E; 1, b  a and c  a. Then there is a
canonical diffeomorphism 0 depending periodically on t of the form

with u c ~(1 - (a - b)) and v E .7(-(a - b)) such that A,,, C C A~,_ for
some large  J-Lo  Moreover the transformed Hamiltonian vectorfield
~b* (XH) = XH is of the form:

where hi E F(cl), with cl = max{c, bl, is given by

and where h2 E 1(bl). The constant bl is smaller that b and is given by

PROOF. The proof will follow from several Lemmata. We shall look for the
requires reansfonnation 1b given by means of a generating function 0, t),
so that 1/Jis implicitely defined by

In the following we shall often supress the variable t in the formulae.

Abbreviating:

we have for the transformed Hamiltonian vectorfield = fl expressed
in the variables (ti, 0) instead of (IL, 0):

By Taylor’s formula we can write
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with

where ’ stands for the derivative in A. We now determine v from the equation

so that

and therefore

Consequently:

LEMMA 2. Let S be defined by (3.7) and (3.6). Then the formula (3.1) defines
a symplectic diffeomorphism 0 depending periodically on time t of the form

PROOF. We first claim that

Indeed, since a &#x3E; c we find, for 1L sufficiently large,

and therefore by Lemma

Then in view of Lemma 1
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(iii) 91 - g2 = v E ~( 1 - (a - b)) and the claim (3.9) follows. Next we solve the
second equation of (3.1) for 0 and write

For the inverse we set

In view of (3.10) we find for v the equation

If p is large, then so that v is uniquely determined by the contraction
principle. Moreover, by the implicit function theorem v E for some

large po. We claim

Indeed, apply to the equation (3.11). The right hand side is a sum of
terms

s

with 1  s + k  k. The highest order term is the one
~ 

k=1 
with s = 0 and k = 0, namely which we put to the left hand
side of the equation. Inductively assuming that for j  n - 1 the estimates

I  hold true we conclude the same estimate for j = n, since
g E 3~(-(a - b)) and therefore The claim (3.12) follows.
We next insert 0 = Q + v into the first equation of (3.1 ) and define u to be

Since v E 7’(1 - (a - b)) in view of (3.9) and since v E ~(- (a - b)) in view of
(3.12) one concludes using (3.13) that u E ~( 1 - (a - b)).

To finish the proof of the Lemma one verifies easily that the map y has a
right inverse of the same type as 0 defined on A~_ for some large 1L- and that
it is injective on for po large

For the transformed Hamiltonian function ÎI, now expressed in the variables
J-L, cP we have in view of (3.8), (3.5) and (3.14):

where R = R, + R2 + R3, with
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LEMMA 3.

PROOF. ad(i) ,S E ~(1 - (a - b)) by (3.9) and v E .1( -(a - b)) by Lemma 2,
hence Rl E ~( 1 - (a - b)).

ad(ii) Set f = then f E 7(a - 2). Setting w := ~ + Tu, D = D,, then
is a sum of terms:

s

with 1  n amd 1  s  n. Since f E F(a - 2) and
k=l

u E ~( 1 - (a - b)) we have Moreover, if j = 1 then
2 for 1L sufficiently large, since Du E ~(2013(a - b)). If j &#x3E; 1, then

Djw = TDJU E ~(1 2013 (a - b) - j). Therefore the above term is estimated by
 J-La-2-n. Hence gi := f (w) E F(a - 2). Since g2 . u2 E ~(2 - 2(a - b)) we
conclude in view of Lemma 1 (iii) that 91 - 92 C F(b - (a - b)) as claimed.

ad(iii) Recall that Dn( f (A, B)) is a sum of terms

with and and Since

and one concludes that
Therefore as claimed.

In view of Lemma 2 and Lemma 3 and in view of (3.15) the proof of
Proposition 1 is finished setting h2 = R.
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4. - Proof of the Theorems 1-3

If H satisfies the assumptions of Proposition 1 then for any given number
d  0 there is an integer j = j(a, b, d) so that after j successive applications of
the proposition we find that the corresponding perturbation term h2 belongs to

with bj  d. We shall make the number j of steps needed precise for our
special case (1.7), which in angle and action variables is a Hamiltonian system
of the form:

where and a = 1 * Therefore 1  a  2 and b  a so that the
- - 

n+2

assumptions of Proposition 1 are met.

PROPOSITION 2. Let H be as in (4.1 ). Then there is a canonical

transformation, periodic in time t : V) = with A,,, C C A,,-
for some IL-   u+, which transforms the Hamiltonian system into

~*(XH) = HH, where

with hl E Y(b) and h2 E ~(-E) for - &#x3E; 2 - a. The number j of transformations
is smaller or equal to j* = j * (n, t) where j* is the smallest integer &#x3E; n (.~ + 3)
in the case that f  n + 1, respectively in the case

PROOF. + 1, so that b = a(.~ + 1)  1. Then j applications of
Proposition 1 lead to a perturbation term h2 E 7’(bj) with bj =b-j(a- 1) =
a(£ + 1) - jan, which is smaller than -2a &#x3E; ~(£ + 3). On the other

n

hand, &#x3E; 1. Set £ + 1 = 2n + 2 - s, then after r

applications of Proposition 1 we have br = a(2n + 2) - 2r sa as long as br &#x3E; 1.

Now br &#x3E; 1 if and only if 2rS  n. Let k be so that 2ks  n  2k+1s. Then
bk+l =  1 and therefore bk+l+q = bk+l -qan, hence bk+l+q  -2a

hence in particular if We find in this case

hence the result,..

Let now H be as in (4.2) i.e.
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on for some large Ao, with h, E T(b) and h2 E T( -6) for 6 &#x3E; 2 - a. The
Hamiltonian equations are

Since h2 E ~(-~) one verifies easily that the solutions do exist for 0  t  1,
if the initial value A(O) = A is sufficiently large. In fact we shall conclude that
the time 1 map is close to a twist map. 

’

LEMMA 4. The time 1 map ø1 of the flow Ot of the vectorfield XH given
by (4.3) is of the form:

with Moreover for every pair (r, s):

PROOF. Set

and set for the flow (A(t), 0(t)) = 0) with 00 =id

Then the integral-equation
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for the flow is equivalent to the following equations for A and B:

One verifies easily that for A &#x3E; Ao these equations have a unique solution in
the space IAI,  1 using the contraction principle, moreover A and B are
smooth. The required estimates can then inductively be verified from (4.6) in

a2
view of l(b), hence aÀ2hl E 1(b-2), and h2 E ~’(- ~). ·

For the completness we include a proof of the following well known fact
(see f.e. [14]).

LEMMA 5. The map 7 = ~~ has the intersection property on AÀo’ i.e. if
C is an embedded circle in AÀo homotopic to a circle A =const in AÀo’ then

PROOF. Since 7 = 01 1 is the time 1 map of an exact Hamiltonian vectorfield,
XH it is exact symplectic, i.e. l*w-w = dW for some W on AAO, where w = Ad0.
In fact, since ØO =id:

where , Therefore, if ; 1 is the injection

map, we have and hence
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Assume now, by contradiction, that 7(C) n C = 0, then 7(C) U C bounds an
annulus in which has positive measure. Consequently, by Stokes formula,

in contradiction to (4.7). This proves the Lemma

Finally, in the new coordinates

the time 1 map ? is expressed as follows:

From Lemma 4 one concludes the following estimates for the perturbation:

if IL &#x3E; s). Therefore, if it is sufficiently large, the map f is, with its

derivatives, close to a standard twist map. Moreover, it has the intersection

property in view of Lemma 5, so that the assumptions of the twist-theorem [3]
are met.

It follows that for w &#x3E; w*, W* sufficiently large, and

for two constants ,C3 &#x3E; 0 and c &#x3E; 0 and for all integers p and q fl 0 there is
an embedding 0 : S 1 -+ of a circle, which is differentiably close to the

injection map j of the circle (w) X ,S 1 --~ and which is invariant under the

map ,~. Moreover, on this invariant curve the map ~ is conjugated to a rotation
with rotation number w :

The solutions of the Hamitonian equation starting at time t = 0 on this invariant
curve determine a 1-periodic cylinder in the space (p, 0, t) E x ~ . Since
the Hamiltonian vectorfield XH is timeperiodic, the phase space is x S’ .
Let (DI with =id be the flow of the time-independent vectorfield (XH,1 ) on
Alto x S’ 

1 and define the embedded torus T : T 2 ~ x S’ 1 by setting

In view of (4.12) we have with # = $ ’ indeed ‘~’(s + 1, T) _ ~’( 1, T + 1 ) _ ~’(s, T).
Moreover o T) + wt, T + t), so that the torus ~’(T2) is quasiperiodic
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having the frequencies (w, 1). This proves the statement of Theorem 2. In order to
prove the statement of Theorem 1 just observed that, in the original coordinates,
every point (x, y) E R 2 is in the interior of some invariant curve of the time 1

map of the flow which goes around the origin. Its solution is therefore confined
in the interior of the time periodic cylinder above the invariant curve and hence
is bounded. This ends the proof of Theorem 1. ·

We next prove Theorem 3. Following at first the arguments of G. Morris
[1] we shall establish fixed points of the iterated map -~m for every integer
m applying the Poincare-Birkoff fixed point theorem [9] to the map #’~
in the annulus R bounded by two invariant curves with rotation numbers

satisfying (4.11). First we map this annulus R onto
an annulus Ro = {(ç,1])IO  ~  1, ~ mod 1} bounded by concentric circles.
If wj are the embeddings of the invariant curves (see (4.12)) having rotation
numbers wj we define the map X : R by

Since the embeddings 1/;j are differentiably close to the injections of the circles
wj =const, x is a diffeomorphism. The induced map G : X- I o Fo x, expressed
by

satisfies in view of (4.12) f (~ + 1, r~) = f (~, n) and g(~ + = g(~, 1]). It leaves
the boundaries q = 0 and q = 1 invariant and satisfies on these boundaries:

Define the map s : Ro - Ro by = (~ + 1,7y). To find a periodic point of
minimal period q &#x3E; 1 of G, for any given integer q, we let [qw] be the integral
part of qw, i.e. qw - 1  [qw]  qw, and choose an integer 0  p  q such that
p + [qw] and q are relative prime. The map Gq : on Ro, expressed
by

satisfies the required twist condition at the boundaries. Indeed with 0  a =

qw - [qw]  1 we conclude from (4.16):

Since Gq leaves a regular measure invariant we conclude that Gq possesses a
fixed point in Ro. One verifies readily that it corresponds to a periodic point
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of G, hence of t, with minimal period q. This proves the first statement of
Theorem 3.

As for the second statement of Theorem 3 we observe that the invariant
curves found by J. Moser’s twist-theorem are in the closure of the set of periodic
points. This is well known and follows from an application of the Birkoff-Lewis
fixed point theorem, see e.g. [15]. On the other hand it is also well known, that
the set E c A covered by the invariant curves contained in an annulus A fill
out a set of relatively large measure m(E) &#x3E; (1 - E) - m(A) with 0  E  1, we
refer to J. Pbschel [16] and the references therein. Applying these observations
to the annuli A : k  p  k + I for all large integers one sees that the set of
subharmonic solutions of (1.4) is indeed of infinite Lebesgue measure, since

This proves the statement of Theorem 3. ·

5. - Proof of Theorem 4

In case £ = 0 the equation (1.7), expressed in action and angle-variables
(a, 8), (2.3) becomes, after the transformation = Àa with a = -20132013:

n+2

and fj being continuous in t. One verifies readily that the time 1 flow

of this equation satisfies

with gj being analytic and :S J-L-ê for p &#x3E; p*(r, s). Therefore
the assumptions of the twist-theorem are met and Theorem 4 follows readily
arguing as at the very end of the proof of Theorem 1.

As for the Remark (1.8) we observe that in Proposition 2 one loses one
derivative in t at every successive iteration step, which is due to the derivative

in the term a s occurring in the transformation formula. This explains our(9t . 
g P

smoothness requirement. As for the smoothness in the x variable we should
remark that the twist-theorem requires merely C"16-small perturbations for those
rotation numbers which we have considered above [11], and even C3-small
perturbations for certain other irrational rotation numbers [12].

The work has been supported by the Stiftung Volkswagenwerk.
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