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The Inhomogeneous Dam Problem
with Discontinuous Permeability

AVNER FRIEDMAN - SHAO-YUN HUANG

Introduction

In this paper we study the stationary flow of a fluid (say water) through an
inhomogeneous porous medium (say dam) with general geometry. This problem
for a rectangular dam was studied first by Baiocchi [5], in the homogeneous
case, and then by Benci [7], Baiocchi and Friedman [6], and Caffarelli and
Friedman [9] in the inhomogeneous case with permeability k(x, y) 
in these papers, existence, uniqueness and properties of the free boundary were
obtained. For the homogeneous dam with general geometry, the existence of a
solution was proved by Alt [1] and by Brezis, Kinderlehrer and Stampacchia [8],
the regularity of the free boundary was established by Alt [2], and uniqueness
was proved by Carillo and Chipot [11] and by Alt and Gilardi [4].

In this paper we consider the dam problem for a general geometry and with
a general permeability function y) in LlO which is positive and nondecreasing
in y. We establish existence and uniqueness of solutions and the continuity of
the free boundary. We then proceed to study the behaviour of the free boundary
when it intersects a curve of discontinuity of k, assuming that k is piecewise
constant; a result of this type was previously derived by Caffarelli and Friedman
[9] for a rectangular dam in case y) = k2 if y  yo, k(x, y) = kl if y &#x3E; yo
where k2 &#x3E; 

In § 1 we recall the statement of the dam problem. In § 2 we establish the
existence of a solution with continuous, free boundary of the form y = ~(x). In §
3 we prove that the solution is unique. The rest of the paper is concerned with
the behaviour of the free boundary near a free boundary point 0, assuming that
k(x, y) is piecewise constant with jump discontinuity along a line ~, containing
~ = {(7-~0), 0  r  R} where say -7("  00  - 2 , 0 = (0, 0). In § 4 we prove
that ~(0+) and ~’(0_) exist. In § 5 it is shown that the pressure p is Lipschitz
continuous in a neighborhood of O.

(*) This work is partially supported by the National Science Foundation Grants DM-
8420896 and DMS-8501397

Pervenuto alla redazione il 9 Gennaio 1986 ed in forma definitiva il 10 Novembre 1986.
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Denoting by B 1 and 82 the solution of

and setting A = (  1) where k = k2 below and k = kj 1 above .~, we
establish in § 6 the following refraction law: if -- z3l-l  el  00 then only the
following three possibilities can occur:

then also the case

A similar law holds in case 81  - 2 .
In § 7 we prove that 0’(x) --~ ~’(0+) if x ~, 0 provided (1,~(0+)) is neither

in the direction nor in the vertical direction.
We finally mention that uniqueness for the inhomogeneous dam with

general geometry, under an additional regularity assumption on k, namely,
l~ E was recently and independently proved by Starve and Vemescu [14].
However, to justify their argument following (4.7) may require regularity on k;
further, it is tacitly assumed in [14] that the free boundary already has measure
zero.

1. - Statement of the problem.

Let Q be a bounded domain (the dam) in R2 with boundary S which is
locally Lipschitz graph. The boundary S is divided into three disjoint parts 8i
(i = 1, 2, 3). 6i is a closed set representing the impervious boundary of the dam.
63 is an open subset of S representing the bottom of the water reservoir; in
case of several reservoirs, we denote the components of S3 by S3, ~ , ... , 83,n. 52
is the remainder of S and it represents the part of the dam in contact with the
air.

We denote by 7r x the usual projection mapping from R2 into the x-axis.
Set

We assume that

S’+ and S- are piecewise continuous on 
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and we denote by a ’ the finite set of discontinuities of ,5~. We further assume
that

Denote by A the wet part of the dam. The boundary of A is divided into
four parts (see Figure 1 ): T’1 = o9A n NS1 is the impervious part, F2 = aAnQ is the
free boundary separating the wet and dry regions of the dam, r3 = a An 83 = S3
is the bottom of the reservoirs, and r4 = aA n S2 is the wet part of the dam in
contact with the air.

Figure 1

We denote by k(x, y) the permeability coefficient of the dam, and assume
that

and that
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i.e., y) is a nondecreasing function of y. For any

by the second mean value theorem (recall that k is nondecreasing in y), where
,S-(x)  ~y(~) ~ S+(x). Hence, by approximation,

’ 

We denote by p(x, y) the pressure of water in the dam and by hi
(i =~ 1, 2,..., n) the level of water in the reservoir with bottom ,S3,i.

Let y) be a Lipschitz continuous function in Q satisfying:

We assume that the atmospheric pressure is equal to zero, that the water is

incompressible, and that capillarity effects may be ignored. Then by Darcy’s
law and the continuity equation (cf. [11])

and

where v = (v2, vy) is the outward unit normal to A.
The physical problem is to find a pair (p, A) satisfying ( 1.7)-( 1.11 ).
Suppose (p, A) is a solution and that the free boundary is smooth enough,

say locally a Lipschitz graph. Then, by Green’s formula,
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where

Since p = 0 outside A, we can also write

where X(B) denotes the characteristic function of a set B. From (1.12), (1.5)
we get 

I-

Hence, by the strong maximum principle (cf. [13; Th. 8.19])

Consequently ( 1.14) takes the form

The previous considerations show that problem ( 1.7)-( 1.11 ) may be
reformulated as follows:

PROBLEM (D). Find p E H 1 (0) such that

where e = (0,1) and H is the Heaviside function. (H(p) = 1 a.e. on {p &#x3E; 01 and
H(p) = 0 a.e. on {p = 0}.)

It will be convenient to work also with the following formulation:

PROBLEM (P). Find a pair (p, g) E H’ (Q) X Ll (Q) such that

We recall the following result of Alt [3]:



54

THEOREM 1.1. If k satisfies (1.3) then there exists a solution (p, g) of
Problem (P).

In the next section we establish the existence of a solution of Problem (D).

2. - Existence of a solution to problem (D)

Let (p, g) be a solution of Problem (P). From (1.19) it follows that

Hence, by elliptic regularity (cf. [12. Th. 8.27]), p E CO, (Q U S2 U S3 ) for some
a &#x3E; 0 and, in particular,

LEMMA 2.1. There holds:

i.e., (I - g)k is a nondecreasing function of y.

PROOF. Let a,(s) = (1 - &#x3E; 0. For any 0 E &#x3E; 0,

Letting e -&#x3E; 0 and noting that

the assertion (2.2) follows.
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LEMMA 2.2. If (xo, yo) E {p &#x3E; 0} then

PROOF. Since {p &#x3E; 01 is open we have, for some a &#x3E; 0,

therefore g = 1 a.e. in D~ . Set

by (1.2) Cu is connected.
Since ( 1 - g)1~ &#x3E; 0, (1 - = 0 a.e. in D~ and ( 1 - is nondecreasing

in y, we must have

and consequently,

Taking ~ in ( 1.19) and using (1.4), (2.3), we get

Hence, by the strong maximum principle [12; Th. 8.19], p &#x3E; 0 in C~ , and the
lemma follows.

We introduce the function, defined on 

if this set is nonempty

From Lemma 2.2 it follows that

It is easily seen that is lower semicontinuous on 
We shall henceforth use the notation

THEOREM 2.3. (i) The function 4$(z) is continuous at any point xo such
that (xo, lies in Q. (ii) (D(x) cannot take a strict local maximum.
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The proof relies on several lemmas.

LEMMA 2.4. If Br - yo) C 0. then the following cases cannot occur:

PROOF. Suppose (i) holds. By (1.19),

Since g = 1 a.e. on Br,

We can therefore apply the strong maximum principle and deduce that p &#x3E; 0

in Br, a contradiction.

Suppose next that (ii) holds. We claim that

Indeed, for any in Br  xo }, the set

belongs to {p &#x3E; 0} if a is small. Introduce a cutoff function a(x) E such

, and substitute
We then get

It follows that g = 0 in C(J /2.
Having proved that g = 0 a.e. in Br n { x  we introduce the function
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Then k is still nondecreasing in y, and

This gives a contradiction as before.

LEMMA 2.5. Let xo, x 1 be two points such that [xo, x I C and set

If in S2 there holds:

then

Taking

Hence

where we have used the fact that k is nondecreasing in y and the second

mean-value theorem (cf. [15; § 12.3]). Letting e - 0 we obtain the inequality
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This is an extension of Lemma 3.8 of [11]. We can now proceed as in [ 11 I to
derive (2.6) by using (2.7).

Using Lemmas 2.4, 2.5, all the results of [11; § 4] extend with trivial

changes. In particular, Theorem 4.11 (extended to the present case) is the
assertion (i) of Theorem 2.3, and Theorem 4.10 yields the assertion (ii) of
Theorem 2.3.

THEOREM 2.6. If (p, g) is a solution of problem (P), then p is also a
solution of problem (D), that is,

PROOF. Let (xo, yo) E L2 B {p &#x3E; 01. Since (D is lower semicontinuous, for
a &#x3E; 0 small enough we have

that is, p = 0 in C,. Introduce a function in C°°(R) satisfying:

where - &#x3E; 0 is small. Taking we get

Letting c --~ 0 we find that

hence g - 0 a.e. in Q B {p &#x3E; 0}. Since further, by Theorem 2.3, the set

a { p &#x3E; 0} n Q has measure zero, we conclude that g = &#x3E; 0} ) a.e., and
the theorem follows.

From Theorems 1.1, 2.6 we obtain:

COROLLARY 2.7. There exists a solution p of Problem (D).

3. - Uniqueness of the solution

In this section we prove a comparison theorem which yields, in particular,
the uniqueness of the solution to Problem (D).

Set
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clearly Vo c V. If p(x, y) is a solution of Problem (D) then

Consider two sets of levels of water reservoirs I hi(2) I and denote
the corresponding solutions by pi and p2. We also denote the boundary data by
S(’) 4Jl and 522~, ,532~, 4J2 respectively, and their free boundary curves by
y = and y = C2(~c) respectively. Set

and introduce

Our main tool to prove a comparison theorem is the following lemma.

PROOF. We begin by establishing that

where M = sup k and
Q

it is enough to integrate over the subset
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from which it follows that

or

by the monotonicity of k in y and the second mean-value theorem; here

~*(x)  (DI(x). Letting - -~ 0 the assertion (3.3) follows.
We next establish an improvement of (3.3), namely,

For any small - &#x3E; 0 let 0152ê be a smooth function in S2 satisfying:

Noting that ( 1 - = 0 on Ao and po = 0 outside Qo, we have

Using this in (3.6) we obtain
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and recalling (3.3) we conclude that

since -+ 0 a.e. on L; thus (3.4) follows.
If we substitute N - ç for ~ in (3.4), where N = sup~, we obtain

Q

From this and (3.4) follows the assertion (3.2) for any ~ E C"O(Q), ~ &#x3E; 0; by
approximation we then obtain the assertion (3.2) for any ~ E H 1 (SZ), ~ &#x3E; 0.

Finally, if ~ in any function in then (3.2) holds for ~’ and for ~- , and
therefore also for ~.

The following simple lemma will be needed later on.

LEMMA 3.2. Let S2 be a bounded Lipschitz domain amd let r be a

nonempty open subset of aSZ. If u E H 1 (Q) satisfies

where k E L°°(S2), k &#x3E; m &#x3E; 0 (m constant), then u = 0 a.e. in 0.

PROOF. Let B be a ball centered on r such that 8Q n B C r and let

Clearly u E U B) and

By the strong maximum principle it follows that u = 0 a.e. in Q U B and, in
particular, u = 0 a.e. in SZ.

We now introduce the definition of S3-connected solution as in [ 11 ].
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DEFINITION 3.1. An open subset SZo C Q is said to be ,S’3 -connected if

for any connected component C of Qo. A solution p(x, y) of Problem (D) is

said to be S3 -connected if { p &#x3E; 0) is S3 -connected.

As in the homogeneous case any solution p of Problem (D) can be written
as a sum of an B3-connected solution pl and pools (see [11; Th. 4.7]). Thus
we may restrict our attention to B3-connected solutions. We shall now prove a
comparison theorem for such solutions.

THEOREM 3.3. be two sets of water levels and let
p, and P2 be 53-connected solutions corresponding to these sets. Then:

then p,  P2 in S2 and, consequently,

where C(l) is the connected component of A, 01 satisfying

PROOF. (i) We clearly have S3( 1) C Sj2). Since S3(’) C a A 1, Sj2) C a A2 and
Ao = A n A2, we have that Sjl) c a Ao . By Lemma 3.1,

On the other hand, by assumption, p 1 = ol 1  Ø2 = p2 on so we have

pi - po = 0 on Hence pi - po &#x3E; 0 in Ao. Applying Lemma 3.2 and noting
that Ao is ,S3 -connected and C a Ao, we deduce that p 1 - po = 0 in Ao and
consequently also in Q, i.e., PI  p2 in S2.

(ii) By assumption
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and by (i), p2 - 0 on C(l). Since, by Lemma 3.1,

it follows by the strong maximum principle that p2 - PI &#x3E; 0 in

(iii) From (ii) we have that PI  p2 in all the components (
and therefore also in 

-

it follows that pi  P2 in A2.

COROLLARY 3.4. There exists at most one S3-connected solution to

Problem (D).
The following comparison theorem will be needed in the next section.

THEOREM 3.5. Let SZo be a bounded domain in R2 whose boundary S is

locally a Lipschitz graph and consists of an open portion S3 and of S2 = ,S B S3.
Let u be a solution of

piecewise continuous,

and let v be a solution of

a {v &#x3E; 0} n given by y = 4J2(X), 4J2 piecewise continuous,

where k = k(x, y) satisfies (1.3), (1.4) in 0.0. If u = v = 0 on ,S2 and u  v on

,33 then u  v in Qo.

The proof is similar to the proof of Theorem 3.3 (i); in the definition of

0152£ in (3.5) we now replace Ao U (S’ B by Ao U aSZo.

4. - One-sided differentiability of the free boundary

In the rest of this paper we assume that l~ is piecewise constant in a
neighborhood of a free boundary point, say 0, with jump discontinuity along
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a straight line t passing through O. For definiteness we shall consider in detail
only the case where t has a positive slope.

To be specific, let 0 = (o, 0),

t the straight line containing

and set

BR = the part of BR which lies below (or the right if

We assume that

Notice that if Bo ~ - 2 then (1.4) implies that

for simplicity we assume that (4.2) holds also in case 0 = - 2 .
Let y) be a solution of Problem (D) with free boundary given by

Then, by Theorem 2.3, if R is small enough,

(4.5) 
is continuous and does not attain local

~~°~~ 
maximum at any point x; -R  x  R.

We are interested in studying the behaviour of 0 near x = 0. If the free boundary
in BR lies either below £ or above £ then is analytic (by regularity results
for the homogeneous dam problem [2]); thus this case may be ruled out in the
sequel. 

°

Set

where r is the free boundary (given by (4.5)); for each open arc of T’i, O(x) is
analytic.
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In this section we prove:

THEOREM 4.1. 1/;’(0+) and ~’(0-) exist (possibly equal to ~oo).

The proof given below uses some ideas from [4, § 5].

PROOF. We shall need the following lemma.

LEMMA 4.2. The function pi is analytic in Di U int(aDi n e).

Indeed, this follows by an argument which uses harmonic extensions by
reflection, precisely as in Lemma 3.1 of [9].

Suppose that 1/;’(0+) does not exist. Then there is a line segment

an infinite number of intervals (m = 1, 2,...,) converging monotonically to
0, and p &#x3E; 0 on l2 between and I ~m+ 1. Consider first the case where

Let

where X = x + i y and " . 
" 

represents the scalar product. Then

and

where the first e denotes as usual the unit vector (0, 1).
We introduce another function

where 81 (in the interval 00 - x  and A are chosen so that

One can easily compute that
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For clarity of exposition we first assume that

The set £1 n {p &#x3E; 0} may contain a finite or infinite number of open component
7~B and then p &#x3E; 0 on £1 1 between 1j and 

Consider the function

w=v-p

and denote by connected component of {w &#x3E; 0} n BR containing as a

part of its boundary, and by Djl) the connencted component of { w &#x3E; 0 } n BR
containing as part of its boundary.

LEMMA 4.3. If m then r1 = 0.

PROOF. Indeed, otherwise we take points Xl E Im22 and connect them

by a simple curve M lying in D)ml = D(2)m2: E clearly cannot contain points in
{ y &#x3E; ~ (x ); 0  x  7~}. Denote by Qo the domain bounded by L, the two
vertical line segments starting at Xl, X2 and ending on aBR and a part of aBR.

From (4.7)-(4.9) we see that v satisfies the conditions in (3.8). Since p  v
on we can apply the comparison theorem 3.5 and conclude that p in

Qo. But this contradicts the fact that p &#x3E; 0 = v on the interval in between

/(2) and /(2)m, anu m2.

LEMMA 4.4. If

PROOF. Indeed, otherwise take Xl E and X2 E and construct a
domain Qo as above. By (4.12) and (4.7)-(4.9) it follows that v satisfies the
conditions in (3.8). Since also p  v on 9Qo. we can apply the comparison
theorem in Qo and get p  v in Qo; this contradicts the definition of the domain

with m’ &#x3E; m.

Now pick a point Zm in where w attains its maximum in Clearly
w(Zm) &#x3E; 0. Since w = 0 on n BR, Zm g aD(2) n BR. Since further Aw = 0
in and in D(2)nD2, there are only four possibilities regarding the
position of Zm:
(i) Zm E D(2) n r2, and the tangent to r2 and Zm must be parallel to .~2;
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In case (i), by the maximum principle,

where v is the outward normal to F2; this is a contradiction to (4.8) since

1(02- E )v - e 2 .

Similarly we get a contradiction in case (ii).
In case (iii) we note that p &#x3E; 0 is a small interval a of to which contains

Zm, and therefore 
-. -.

where "+" and "-" refer to the limits from the side B1l and Bll respectively; v
is the normal to u say in the upward direction. Since by the maximum principle

this is a contradiction.
Thus it remains to consider case (iv) whereby Zm E n aBr. Since

the components D (2) are all disjoint, we can find a sequence of distinct joint
Zm between Zm and Zm+l on 9BR such that w(Z° ) = 0 and, for a subsequence,

Zo. Clearly w(Zo) = 0.
It is easy to see that there are only three possibilities regarding the

.. ’" -- -- - - 1 -1 1 I- - I I - I -1

In the first case, since w(Zo) = 0 we must have p(Zo) &#x3E; 0. Therefore w
is harmonic in some disc and, in particular, w(R, 8) is analytic in 0 for
(R, 8) in B,(ZO), a contradiction to the fact that = 0 for a subsequence
of 

If { Zo } = aBR n {8 = we again must have p(Zo) &#x3E; 0 and then get a
contradiction to the fact that w is analytic in both B,(zo) n BR and Bê n B-

Consider finally the case { Zo } - aBR f1 01 1. Then p(Zo) = 0 and
therefore {8 = 01 1 c aBR n r1. If rl coincides with .~1 I in (for
some e &#x3E; 0) then w is analytic in B,(zo) f1 {X . e 1(0, +7r/2) &#x3E; 0) and we get a
contradiction as before. Thus it remains to consider the case where Fi fl .~1 I in

Bê(Zo). In this case we can decrease R from the outset and choose it in such
a way that and then we get a contradiction to the
case = aBR n lo = oil.

Having derived a contradiction to all the cases (i)-(iv), we conclude that
the situation where (4.11 ) holds leads to a contradiction. Suppose then that
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This case can be discussed similarly (but much more simply) than the previous
case; here the water lies in a homogeneous portion of the dam.

So far we have assumed that (4.6) holds. It remains to consider the case
where

In this case we repeat the previous proof with the rate of to given to

01 is replaced by some #1 satisfying 00  Õl  00 + 7r. We have thus completed
the proof thatno ray t2 in direction 02 - 7r  02  ~ (02 ¥ 00 + 1r) can
transversally intersect the free boundary at a se q uence of 2 P oints converging to
O. This completes the proof that 0’(0+) exists. Similarly one can show that
0’(0-) exists.

The above proof works also in case 02 = 00 + 7r or 01 = 00. Hence:

COROLLARY 4.5. The free boundary cannot intersect transversally any ray
initiating at the origin at a sequence of points converging to the origin.

In § § 5,6 we shall consistently use the following notation:

DEFINITION 4. 1. t2 is the intersection of BR with the ray initiating at 0 in
the direction (l, ~’(0+)), and ~1 1 is the intersection of BR with the ray initiating
at 0 in the direction (1,1/;’(0- ». The directions of fl is 01, i.e.

5. - Lipschitz continuity near 0

In this section we prove:

THEOREM 5.1. The solution p is Lipschitz continuous in some disc BR.

PROOF. We begin with the following simple lemma.

LEMMA 5.2. Let e  ,~ } where ,Q - a  1r, and W be a
continuous function in Do satisfying

where r = IXI and C is a constant. Then
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and, for any 6 &#x3E; 0,

where C*, C8 are constants.

PROOF. By comparison

where 2q = 7r2013/3+c~ provided A is such that this inequality holds on a Do n a BR .
Thus (5.1) holds, and (5.2) then follows by a standard gradient estimate.

In view of Corollary 4.5, if R is small enough then the free boundary
does not cross the line t in BR B 101- We may also exclude the trivial case
where the free boundary lies entirely on one side of t, since in this case the
dam is homogeneous with respect to the water in BR. For definiteness we shall
first assume that t2 lies in Bli and II lies in BI (see Definition 4.1). Thus

By Corollary 4.5 we may assume that the free boundary in BR does not
cross t except at the origin. Hence ((z, 1b(z)), 0  x  RI lies in BR and
((z, 1b(z)), -R  z  0}. lies in BR.

Note that, by (4.5),

cannot occur.

LEMMA 5.3. Assume that 02 fl 00 and let 00  ,~  02. Then

in D2 n {{3  0  where d(X) =dist (X, r2) and C is a constant depending
on ~3. A similar result holds for pi in case 01 =/ eo.

PROOF. Let Xo E D2 n {{3  0  00 + 7r I, do = d(Xo), do =dist (Xo, fo).
Consider first the case

the disc is contained in D2 and touches r2 at some point Po. We shall
compare p with the function
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where , Since

the maximum principle gives

Since at Po, we get -1  ~v  0 at Po, which implies that

Applying Hamack’s inequality we obtain

and, consequently,

It remains to consider the case do &#x3E; do. Since 00  {3  02 it is clear that

Then we can find discs in D2 with Xi E L (1  i  N) such that
touches r2, 1  do/4, and XN = Xo; further, N depends

only on ,Q. As in the case (5.5),

also, by Hamack’s inequality,

It follows that

and

with constants C depending on #.
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LEMMA 5.4. If 81 ~ 00 and 02 fl 00 then p is Lipschitz continuous in BR.

PROOF. By Lemma 5.3, for any small - &#x3E; 0,

where C is a constant depending on e.
Denote by "*" reflection with respect to £ and set wi = pi + y. Introduce

the functions

Then f is continuous across ~o. = 0 from both sides of to, g = 0 from
both sides of .~o and Vg - v is continuous across ~o. where v is the normal to

to, say v = It follows that

From (5.6) it follows that f and g satisfy the assumptions of Lemma 5.2
with a = 00 - 2£, ,~ = 00 + 26. Hence

Using the relations

we get

and, together with (5.6), the lemma follows.

It remains to consider the case where either 01 = 00 or 02 = 00. We begin
with a partial result.

LEMMA 5.5. Suppose 0j = 00, O2 ¥ 00. Then
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where d(X) =dist (X, r1), and, for any small 6 &#x3E; 0 and Xo E 17 i ,

provided bd(Xo) dist (Xo, rl ); Co depends on 8.

PROOF. Note that D c D2 , Df c D2 and D n D* = D U to. Consider
the function 

_e . 7- -l’ . 

By (5.9)

From (5.7), (5.8) we also have

where

If R is small enough then clearly y* - y &#x3E; 0 in D* and therefore, since 1~1 &#x3E; k2,

We can now apply the proof of Lemma 5.3 (the case (5.5)) to p* in order to
establish the estimates in (5.11). The proof of (5.12) is obtained as in the case
do &#x3E; do* of Lemma 5.3, replacing I by the line segment going from Xo to the
point Po on Tl nearest to Xo.

LEMMA 5.6. If 01 = 90, ~2 7~0 then p is Lipschitz continuous in BR.

PROOF. By Lemmas 5.3, 5.5 it remains to prove that |VP2| ] is bounded in

SZo =- BR n (00  0  where e is any small positive number; furthermore,
we also know that

Let w be a harmonic function in Qo satisfying:

We can construct w as a limit of solutions W8 in S2o n {r &#x3E; 6 1, with w5 = 0 on
{r = 61 and wb = p, on the remaining part of the boundary. By the maximum
principle, 0  01 in S2o n { r &#x3E; 6 1 where
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Consequently also 0  w  Ci.
The function W = w - pz vanishes on (0 = and on { 8 = 00 + c}. Since

it belongs to L 1 (0.0) (in fact, to L2(Qo) we can apply Lemma 5.1 of [ 10] in

order to conclude that lim W(X) = 0. It follows that W - 0 and consequently
x-o

IPxl  C1 in Qo. Similarly we can prove that py  Cl in S2o.

The proof of Theorem 5.1 now follows from (5.4) and Lemmas 5.4, 5.6.

6. - Refraction laws

We continue to assume, for definiteness, that (5.3) holds.

THEOREM 6.1. If -x  90  - 2 and - 3;  81  00, then only the

following three possibilities can occur:

(but if then also the case is possible);

where A = k2/ki.
PROOF. Consider a blow up sequence

where a --; 0. In view of Theorem 5.1, for a suqsequence,

and p* satisfies

where
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Clearly,

where  8  90 ~ and p2 = p* in fOO0021-
Note that if Oo = - 2 then the possibility 01 = 00 - ~-, 02 = 00 + ~r cannot

occur, since this would lead to a contradiction for p*, as in Lemma 2.4 (i).
Set v = r cos (0 - Oo),

Then

(6.5)

Integrating by parts and using (6.4) we get

Hence

Similarly, taking v = r sin (9 - Bo) in (6.5) we arrive at the relation

Combining (6.6), (6.7), we easily obtain the assertion of the theorem.

Consider next the case where 00  01 :5 - E. The results of 9 9 4,5 can
obviously be extended to this case. We can also extend Theorem 6.1 to this
case:

THEOREM 6.2.  00 :5 - E and 00  01  - 2 , then only the following
two cases can occur:
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where A = k2/ki.
So far we have considered in § § 4-6 only the case where the slope of

the line of discontinuity of k has positive slope. The case where has negative
slope can be studied in precisely the same way.

7. - Continuity of 1/;’ (x) as x 10

As in § § 4-6 we denote by f the line of discontinuity of y); y) = k2
below t and k(x, y) = ki above i (in some disc BR).

THEOREM 7.1. If the direction (l, ~’(x)) does not coincide with either of
the directions (0, 1), then 0’(x) ~ 1/;’(0+) as x ,~ 0.

PROOF. Suppose first that

Consider a blow up family

and their corresponding free boundaries

The pj are solutions of the homogeneous dam problem in {0  x  2, 6}
for some small 8 &#x3E; 0 and for all small a &#x3E; 0. From (7.1) it follows that

where 0  x  x and -~ 0 uniformly with respect to x, 0  x  2.

Using the local Baiocchi transformation

we have a family of solutions W(1 of variational inequalities

with the free boundary y = (x). The proof of Theorem 6.1. in [ 12] shows that
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where C is a constant independent of a.
We claim that actually

where /~(~) 2013~Oif~2013~0. Indeed, otherwise there are sequences
a,, 10 such that

We may assume that

WUn -+ wo uniformly in

By a well known stability result for free boundaries [12; p. 254],

where y/0 is the free boundary corresponding to wo. From (7.2) it is clear that

1/;0 (x ) == 0 and therefore (7.6) contradicts (7.5).
From (7.4) it follows, in particular, that

Having proved the theorem in case (7.1 ), it is clear that in case ( 1, ~’(o+))
is in the direction of a unit vector ,Q, there holds:

provided ~3 is not in the direction and not in the vertical direction.

REMARK 7.1. The above proof remains valid if (1, ~/(0+)) is in the direction
.~ provided the curve {(2;, O(x)), 0  x  RI lies below .~. The proof also extends
to the portion r n { - R  x  0} of the free boundary.
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